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Abstract

This paper presents a hybrid moment of fluid-level set (HyMOFLS) method of liquid/gas interface re-
construction for the application to simulate primary atomization of liquid fuel. This method combines
the moment of fluid (MOF) method and the level set framework in the coupled level set volume of fluid
(CLSVOF) method. In this hybrid method, the MOF and CLSVOF methods are used to reconstruct the
interface in the under-resolved and the resolved regions of the flow, respectively. An interface surface reso-
lution metric called interface resolution quality (IRQ) is introduced to identify and classify these two flow
regions in the computational domain. Such a strategy classifies/tags each computational cell with MOF or
CLSVOF method based on a threshold value for the IRQ. The MOF method uses liquid volume fraction as
well as centroids of liquid and gas phases for the interface reconstruction. The CLSVOF method uses the
level set for describing the interface and liquid volume fraction for conserving the mass. The phase centroids
in the HyMOFLS method are computed and transported on-the-fly during the cell tagging process. The
transport of the liquid volume fraction, level set, and the phase centroids are performed using a directionally
split algorithm. This algorithm is coupled with the Navier-Stokes equations solver that uses ghost fluid
method as well as consistent mass and momentum flux computation for the momentum equation. Various
numerical tests that exhaustively assess the capabilities, accuracy, and computational time consumption of
the HyMOFLS method under multiple flow conditions and configurations are presented. The results from
these tests suggests that this hybrid framework is capable of well capturing the liquid/gas interface belonging
to thin and under-resolved structures that are often encountered in simulations of turbulent atomization of
liquids. Following these tests, a detailed parametric study on the threshold value of IRQ is presented to test
its effect on the accuracy of interface reconstruction. Finally, this hybrid framework is employed to simulate
turbulent jet injection and pre-filming planar Airblast atomziation cases of engineering applications. The
proposed HyMOFLS method is found to achieve a good balance between the accuracy and the computational
cost of reconstructing the liquid/gas interface for complex and turbulent atomization configurations.

Keywords: DNS, Primary atomization, Incompressible flow, Multiphase flow, Moment of Fluid method,
Level set method

1. Motivation and objectives

The numerical simulations of primary atomization of liquid fuel provide insights into the understanding
of the droplet breakup. With the increase in the computational power over the past decades, it has become
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possible to perform detailed numerical simulations of primary atomization process [I] on large scale geome-
tries [2]. The atomization process is turbulent, multiphase (liquid and gas phases), multi-scale (varying drop
sizes), and multi-physics (presence of various physical events such as Rayleigh-Taylor, Kelvin-Helmholtz, and
Rayleigh-Plateau instabilities) in nature. The simulation of such a complex process requires accurate numer-
ical methods and schemes that can handle large discontinuities across liquid/gas interface, jump in pressure
and viscosity, singular nature of the surface tension force acting on the location of the interface, and finally,
accurate description and transport of the liquid/gas interface.

Two of the most prominent methods of handling the discontinuities in the material properties across the
interface are continuum surface force (CSF) model [3] and ghost fluid method (GFM) [4]. These methods
depend on the numerical methods responsible for the description and transport of the interface. The
prominent classes of methods for this purpose are the volume of fluid (VOF) method [0l [0, [7] and the
level set (LS) method [8 @, [I0]. The former tracks the liquid volume fraction thereby ensuring mass
conservation while the latter tracks the interface in the form of the iso-contour of a signed distance level set
function thereby computing accurate geometrical properties of the phase interface. There have been many
improvements made over the years for the VOF method [I1 12} 13 14] and LS method [I5], 10, 16]. A
combined strategy of coupled level set volume of fluid (CLSVOF) method [17, [T8] [19] exploits the advantage
of both the VOF and LS methods. This method has been successful in simulating liquid fuel primary
atomization process as shown by Ménard et al. [I8]. Another type of interface tracking and reconstruction
includes the refined level set grid (RLSG) method [20] which locally refines the LS mesh to control the errors
arising from the interface transport and to compute the interface curvature accurately. Yet another approach
of interface reconstruction was presented by Desjardins and Pitsch [2I] using a spectrally refined interface
(SRI) approach in which a polynomial reconstruction of the LS function is created in each computational
cell leading to higher accuracy of the small scale transport.

In order to well understand the primary atomization, it is necessary to capture the small and often under-
resolved liquid structures (URLS). When such liquid structures are of the size of the computational mesh
spacing, it can lead to inaccuracies in the computation of the interface geometrical properties and in the
reproduction of physics of droplet breakup. The recently developed moment of fluid (MOF) method [22] 23]
241, [25], [26] of liquid/gas interface reconstruction specifically addresses this aspect. This method uses liquid
volume fraction along with centroids of liquid and gas phases in each computational cell to reconstruct the
interface. This approach simultaneously conserves the volume and preserves the accurate orientation of the
interface. It has been shown [27] that the MOF method yields relatively low interface reconstruction errors
and higher order of grid convergence of this error. There have been various implementations and extensions
made in the recent past to the original MOF method [22], such as, the analytical interface reconstruction [28]
29] in two dimensions [30, BI] which was then extended to three dimensions [32], extension to compressible
flow simulations [33], accurate capture of the thin filaments [34], two-plane interface reconstruction [35], and
to many other applications and grid types [36], 37, [38], 39, [40, [4T], 42 [43], [44].

In a recent study, Asuri Mukundan et al. [45] compared the MOF and CLSVOF methods for variety
of tests and found that the MOF method outperformed the CLSVOF method in terms of accuracy of
interface reconstruction. However, the MOF method was found to be computationally expensive than the
CLSVOF method in simulating primary atomization simulations [46]. Naturally, a numerical method having
high accuracy and modest computational cost requirement is required to be employed for simulating large
scale applications. Thus, to that end, we have developed in this work a hybrid moment of fluid—level set
(HyMOFLS) method as a combination of MOF and CLSVOF methods. The coupling between these two
methods is solely in choosing the way the interface reconstruction need to be made with a choice between
MOPF-based and level set-based method. The rationale behind the development of HyMOFLS method is to
use the MOF method in the computational domain only when it is necessary while the CLSVOF method
almost all the time for interface reconstruction. The necessity is driven by the presence of URLS in the
computational domain. The obvious question at this juncture is, how to identify under-resolved regions of
the flow? To answer that question, a metric for interface surface resolution called interface resolution quality
(IRQ) [47] is employed in this work that classifies and distinguishes the under-resolved from the resolved
flow regions. A similar criterion has been been employed before by Jemison et al. [27] in their simulations.
Based on the threshold value for the IRQ criterion, a computational cell is classified /tagged as to whether it
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belongs to URLS or not; and by extension, a decision whether MOF method [45] is necessary to reconstruct
the interface in that cell or not.

This paper is organized as follows. Section [2] presents the framework of the HyMOFLS method imple-
mented in our solver followed by the canonical tests including Zalesak’s notched disk, 2D, and 3D droplet
deformation comparing the results between the HyMOFLS, MOF, and CLSVOF methods. Then, a detailed
parametric study on the threshold value of the IRQ criterion is presented in which the optimal value is
found such that a balance exist between the accuracy and computational costs for the HyMOFLS method.
Section [3] presents the solution procedure employed to solve the Navier-Stokes equations along with the
discretization of various terms and time integration scheme employed in our flow solver. The numerical
validation tests are presented in Section [4] to assess the capabilities of the hybrid framework for a convection
dominated two-phase shear layer, Rayleigh-Taylor instability, binary droplet collision case, and Rayleigh-
Plateau instability. Finally, Section [5| presents the results from the numerical simulations of engineering
applications — turbulent jet atomization under diesel engine-like condition and planar pre-filming Airblast
atomization using the HyMOFLS method.

2. Hybrid MOF-Level set (HyMOFLS) method

This section describes in detail the hybrid moment of fluid-level set (HyMOFLS) approach for liquid/gas
interface reconstruction implemented in our in-house Navier-Stokes equations solver ARCHER [48]. The
HyMOFLS method involves the coupling between the moment of fluid (MOF) method [45] and the coupled
level set volume of fluid (CLSVOF) method [I8]. On one hand, the MOF method has been shown [45] to have
higher order accuracy especially in capturing under-resolved liquid structures (URLS) such as thin ligaments
and small droplets; however, incurs high computational cost. On the other hand, the CLSVOF method
yields lesser computational cost [I§] by reaching relatively lower order of accuracy. The motivation for the
development of the HyMOFLS method stems from the requirement of increased accuracy to be achieved
at a modest computational expense by coupling MOF and CLSVOF methods. The rationale to couple the
more accurate MOF method with the level set framework is to use the former for capturing the interface
of under-resolved flow regions while the latter for resolved flow regions of the computational domain. The
presence of the under-resolved regions in the computational domain is determined using local mesh spacing
Az and the local interface curvature k (see Section for more details on coupling procedure). A similar
method for interface reconstruction has been explored by Jemison et al. [27] in the past. The description of
the CLSVOF and MOF methodologies along with the HyMOFLS coupling procedure are presented in the
following subsections.

2.1. Coupled level set volume of fluid (CLSVOF) method

2.1.1. Level set

The level set methods [9, 49} [50] use a contiguous signed distance function ¢(x, t) to describe the location
of the interface between two phases where « and ¢ represent the spatial location and time instant, respectively.
The value of ¢(x,t) > 0 defines the liquid phase, ¢(x,t) < 0 defines the gas phase, and ¢(x,t) = 0 defines
the location of the liquid/gas interface. The signed distance represent the distance between any point in the
computational domain to the interface.

The geometrical properties of the interface are directly computed from the level set function ¢. For
example, the unit normal of the interface is computed as

Vo
n = . 1
vl W
The curvature of the interface is then computed as:
Vo
I{:—V‘n:_v'< )1 2
vl 2



It is to be remarked that the interface unit normal points towards the liquid phase and the curvature is
positive for convex surfaces while negative for concave surfaces in this work.

The transport of this interface with a velocity w is described by the solution of the transport equation
given as 96

at—O—u-VqS—O. (3)

In order to mitigate the discontinuities in the solution of this equation and to avoid singularities in the
distance function ¢, we have implemented a fifth-order WENO scheme for discretizing the convective term
in Equation . The temporal derivative is discretized using forward Fuler scheme. A directionally split
advection algorithm [51] is used for solving this transport equation. Due to the very nature of this transport
and high velocity gradients, spreading and stretching of the level set function may occur thereby losing
its distance function property (|V¢|l, = 1). A redistancing algorithm [49] is thus applied to regain this
property.

The main drawback of the level set methods is the mass loss especially in the under-resolved regions of
the computational domain. One way to mitigate this problem is by coupling level set with the volume of
fluid (VOF) method as presented by Sussman and Puckett [17].

2.1.2. Volume fraction

The VOF method [5, 52] 1] uses the liquid volume fraction which is the fraction of the liquid in a
computational cell. Within this work, the liquid/gas interface is represented in a piecewise linear interface
calculation (PLIC) sense with the idea that a planar interface approximates the reference/original interface.
The liquid volume fraction F' is defined as

1
Fla.t) = 7 [ H(é(@).Dda, (@
| Co | Ca

where Cq represents a computational cell in the numerical simulation domain €2 and H is the Heaviside
function expressed as

1, ifgp(x) >0
0, otherwise

H(o(x)) = { ()

with the sign convention of the level set function ¢ taken as

> 0, ifxis inside liquid phase

T)= 6
¢(@) {< 0, ifxis inside gas phase, (6)

Thus, F obey the bounds of 0 < F < 1. The gas phase volume fraction is given as 1 — F'. The physical
properties of the phases « in a computational cell, which can be density p or viscosity p, are determined
using F as a(x) = aiiqF (€) + agas(l — F(x)). This expression involves an assumption that the physical
properties are constant within each phase.

The interface described within the context of VOF method is advected according to the following trans-
port equation

oF
& tuVE=0. (7)

A directionally-split algorithm proposed by Weymouth and Yue [51] is used for advecting the liquid volume
fraction. To be consistent with this algorithm, the following modified form of the transport equation for
incompressible divergence free flow is solved

oF

1, I .
9LV (Fu) = ¢(V - u); c:{’ > 05

0, otherwise.

BT (8)

In each direction of advection, the liquid volume fraction is advected along one-dimensional velocity which
is not divergence-free. Thus, the dilatation term ¢(V - u) appear in the modified form of the equation;
otherwise, jetsam and flotsam occurs in the computational domain and the bounds of F' will not be respected.
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Due to the directionally-split nature of the transport, the advection directions are swapped between
consecutive time steps, i.e.,

"t —y— 2
Tt 2y — 2 — g

(9)

T2t s —y

repeat.

It is to be remarked that there is no mass loss observed in the computational domain using this directionally-
split algorithm.

2.1.3. Coupling level set and VOF methods (CLSVOF method)

The main idea of coupling level set framework with VOF method is to exploit the advantage of each of
the methodologies which is to minimize the loss of mass and to preserve the description as well as geometrical
properties of the interface. To that end, the coupling between the two methods are carried out according
to the procedure described by Ménard et al. [I8] in the context of CLSVOF method. In this method,
the unit normal of the liquid/gas interface is computed using the least mean square approach [I7]. The
coupling mainly involves the mutual correction of the level set and the liquid volume fraction values in
the computational domain. In order to ensure that an accurate measure of level set and the geometrical
properties of the interface are preserved, care is taken in correcting the level set signed distance function
based on the liquid volume fraction in each computational cell. The redistancing procedure for the level
set function is performed as described by [I8] to regain the signed distance function property.
presents details on the implementation and algorithm of the CLSVOF method employed in this work.

2.2. Moment of Fluid (MOF) method

The CLSVOF method has been shown [48] 53, [64] to be successful in simulating the incompressible
multiphase flows for various configurations. However, such a state-of-the-art numerical method can still fail
in the computation of the geometrical properties for under-resolved interface topologies [I8]. To test this
hypothesis, we consider a 2D liquid ligament placed in [0, 1] x [0, 1] domain. The domain is discretized using
a 322 mesh resulting in an equidistant mesh spacing of Az = Ay = 0.03125. The thickness of the ligament
is specifically chosen to be 1.5Ax which qualifies it to be under-resolved (since thickness < 2Ax). This is
because at least two computational cells are needed for an interface to be resolved typically for an interface
reconstruction method. The test comprises of advection of this ligament along the z—direction (horizontal
direction) of the doubly periodic domain with a velocity of u = 1.0, v = 0.0, and CFL = 0.5 with predictor-
corrector time integration scheme using CLSVOF method [I§] in the ARCHER solver. The Navier-Stokes
equations are not solved in this test but only the phase interface transport equations pertaining to liquid
volume fraction (i.e., Equation (7)) and level set (i.e., Equation (3)) are solved. The conclusion of the test
is determined at the time instant ¢ = 7" = 1.0 at which the ligament comes back to its initial location. The
results from this test shown in Figure [I] demonstrates that the shape of the ligament is deformed at the end
of the advection process. This highlights the limitation of the interface reconstruction method in capturing
the under-resolved liquid structure that is physically relevant. Such under-resolved liquid ligaments are
commonly observed in a large scale simulations of liquid atomization.

One of the ways to accurately capture the under-resolved liquid structures [55] and preventing artificial
breakup has been demonstrated using the moment of fluid (MOF) method [22]. In one of our previous works
[45], we have shown the higher accuracy of MOF method for simulating the incompressible multiphase flows.
When the MOF method is used for the same test of under-resolved ligament advection under the same test
conditions and using numerical schemes, we get the result as shown in Figure[2] Upon comparing Figures/[]]
and [2| we find that there are no corrugations or change of shape of the under-resolved liquid ligament when
using the MOF method. This goes to show that MOF method is able to preserve the interface orientation
and shape of the liquid structure during advection.
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Figure 1: Phase interface shape of liquid ligament obtained using CLSVOF method of interface reconstruction. The velocity field
employed for advecting the ligament is w = 1,v = 0, w = 0 with the advection direction from left to right in the computational

= =

(a) t =0 (b) t =T/2 ()t=T

Figure 2: Phase interface shape of liquid ligament obtained using MOF method of interface reconstruction. The velocity field
employed for advecting the ligament is © = 1,v = 0, w = 0 with the advection direction from left to right in the computational
domain.

2.2.1. Interface reconstruction

The MOF method is to be considered as a superset of the classical VOF method as it uses both liquid
phase volume fraction (zeroth moment of liquid volume) as well as centroids/center of mass (COM) of liquid
and gas phase (first moment of liquid volume) in each computational cell to reconstruct the interface. Within
the context of the MOF method, the liquid volume fraction (defined in Equation ) and the liquid phase
centroid are computed as

d
P H (10)
Q xXr
Lt
TCcoOM — fQ dx ) (]‘1)

while the gas phase volume fraction and its corresponding phase centroid or center of mass (COM) are
defined as

dx
FEes = Jua 4= : (12)
Jo de
- fw/g xdx
TSN = Tz (13)
Q

where xcom is the phase centroid, and w is the domain of the liquid packet (with its volume denoted by
| w ) inside the computational cell Cq (with its volume denoted by | Cq |) and w/Q represents the region
within the computational cell outside the liquid phase (i.e., gas phase region).

The MOF method [45] employed in this work was developed in a PLIC sense to approximate the refer-
ence/original interface. Thus, the equation of the reconstructed interface plane in 3D (line in 2D) is given
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as ax + by + cz + d = 0 where interface unit normal n = [a,b,c]T. The interface reconstruction involves
determining the components of unit normal n and the distance d which is the shortest distance of the compu-
tational cell center to the interface. This is carried out as the solution to a constrained optimization problem
wherein both n and d have to be simultaneously determined such that volume is conserved (Equation )
and centroid defect EMOF is minimized (Equation )

|Frf — F*°*(n,d)| = 0, and (14)

EMO¥(n,d) = ||25by — 2E5m(n, d)]], - (15)

The centroid defect EMOF is the distance between the phase centroids of the reference and reconstructed
interfaces. It is to be remarked that all the variables with the superscript “ref” pertain to the reference (or
original) interface while those with “act” pertain to the actual (or reconstructed) interface. For the purpose
of illustration, Figure [3| shows a typical 3D computational cell with an interface and its 2D front view with
the reference interface (solid curved line) and PLIC reconstructed interface (dashed straight line) based on
liquid as reference fluid.

Reference
y interface
4 N 'y
N Reconstructed N
— . y AN
interface 4 N
\\
N\
n N
\ N
\\ mcﬂ d \\
N
\ N
\ AN
\ Q
\\ ‘
’ / ref
7
L’ . TcoMm
ac
\// > X LTCcoM
\
\ >
y > X
(b) Front view with centroids.

(a) 3D hexahedral computational cell.

Figure 3: Exemplary computational cell in 3D (in (a)) with its front view (in (b)) labelled with reference interface (curved
solid line), reconstructed interface (straight dashed line), interface unit normal, and liquid phase centroids of reference interface
(solid circle) and reconstructed interface (hollow circle), liquid phase region (gray region).

The MOF method [45], in our in-house solver ARCHER, reconstructs the liquid/gas interface in the
following manner based on the methodology of Jemison et al. [27]. First, the reference phase (between
liquid and gas phases) is chosen such that its centroid is farthest from the cell center. Second, an initial
guess for the components of unit normal (i.e., n® = [a°, %, °]T) are computed from the gradient of the local
value of the level set function, i.e.,

o0 = Ptk — Gtk 0 Qigiik — Pigotk 0 Pigkal — Pijko (16)
2Ax 2Ay 2Az
Using this initial guess, the value of d is determined by solving Equation using a geometric method
[56] upto the machine precision. Then, in order to compute the interface unit normal, it is expressed the
interface unit normal in polar coordinates as
a sin @ cos ©
n=|b| = [sin®sinO| . (17)
c cos ¢



using which ®° and ©° are computed. Next, using the values of ®°, ©° and d, the (chosen) actual (i.e.,
reconstructed) phase centroid @3, is computed. It is to be remarked that coordinates of the :L'rce(f)M are
already available based on the liquid volume fraction data (c.f. Section . Once the coordinates of the
actual centroid are determined, the Gauss-Newton iterative algorithm is used to minimize the centroid defect
EMOF vielding the optimal value of ® and © (and by extension optimal n). The procedure to determine these
optimal values is given in Algorithm |If where g(®,0,d) = wrceéM — &5 (P, 0,d) is the objective function
(representing EMOF) to be minimized, J is the Jacobian matrix of this objective function, ctr is the iteration
counter number, tolg and tolJ are the tolerance values. For more details on the implementation of the MOF
method and the algorithms on minimization of the centroid defect, the reader is referred to our previous

work [45].

Algorithm 1 Gauss-Newton minimization algorithm.

1: function GAUsSNEWTON(®°, Q0 Fref gt ) > ®Y OV: initial guess
2 ctr =1

3 tolg = 1078

4 tolJ =10"13

5: loop

6 nett ¢« [etr—1 @etr—1] > Equation (7]
7 d | Fref — pact(petr q) |=0 > Equation (14
8 xoon = (netr deotr, Fref) > Equations and (13)
9 g = &by — TN

10: J(ge) = ag;tr 85(;“} > Jacobian matrix
11: Q= H(JC”)T gt ’2

12: if (Q <tolJ) or (||g], < tolg)) then

13: exit

14: else if (ctr == 20) then

15: exit

16: else .

17: ((I)ctr7 O°fT) = (P°r, @) 4 ((J;tr)T J;tr> (J;tr)Tgctr

18: ctr =ctr + 1

19: end if
20: end loop
21: n + [®,0] > Equation
22: x28 1+ (n,d, Freh)
2 ENOL, = oty - atnd),
24: iy — 28 > Actual centroid to reference centroid assignment

25: return (P, 0)
26: end function

2.2.2. Computation of reference centroid

The methodology involved in the computation of the phase centroid is explained as follows. It is to
be remarked that the interface reconstruction is needed only in the mixed cells (i.e., cells with both liquid
and gas phases), thus, the centroid computation is performed only for such cells. For the cells with only
liquid phase (full cell) or gas phase (empty cell), the location of the phase centroid coincide with that of the
computational cell center. In fact, it is sufficient to know the coordinates of the centroid of one phase to
compute those for the other phase since the phase centroids are linked to each other in each computational
cell according to the following relation,

li as
VliquqOM + VgaﬁwéOM = Veencg, (18)
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where Viiq is the volume of liquid, Vg, is the volume of gas, x ¢, is the coordinates of the cell center, and
Veell is the volume of the computational cell, i.e., Veen = Az X Ay x Az.

We now consider an exemplary hexahedral computational cell with the liquid/gas interface shown in
Figure fa] The liquid phase under the interface is shown in gray color in Figure [Ib] and the unit normal
of the interface points towards the liquid phase. The basic idea of the phase centroid computation revolves

(b) Front view with liquid phase shown in gray.
(a) 3D hexahedral computational cell.

Figure 4: Exemplary computational cell used in ARCHER flow solver mesh.

around the triangulation of the corresponding phase in the cell. The premise of this algorithm pivots to
the equispaced hexahedral cells (i.e., Ax = Ay = Az) in the mesh for discretizing the domain. Thus, the
total number of vertices in each cell is 8 and total number of faces in a cell is 6 remaining constant. For
the sake of simplicity and without loss of generality, the steps described below pertain to the computation
of coordinates of the centroid of the liquid phase for the hexahedral cell shown in Figure The algorithm
for the computation of centroid of the gas phase can be derived in a straightforward manner based on the
below procedure. The following steps are implemented to compute the coordinates of the phase centroid.

(a) First, the computational cell is transformed from its global coordinates (i.e., (z1,y1,21) - .. (2,Y2, 22))
to local coordinates ((0,0,0)...(1,1,1)) (c.f. Figures [5a and [5b).

(b) Then, the coordinates of the points of intersection of the interface with the cell faces are computed. The
cell formed by the intersection of the original hexahedral computational cell and the interface will be
called as truncated cell (shown in Figure .

(¢) Using the vertices of this truncated cell, the barycenter of the liquid phase is computed within the local
coordinate system of the computational cell (shown in Figure .

(d) Then, each face of this truncated cell is triangulated to subsequently form tetrahedral elements (see
Figure .

(e) Using the liquid phase barycenter as apex of each tetrahedron, triangulation is performed to form
tetrahedra as shown in Figure 5]

(f) The volume Vietra and barycenter @ietra of each tetrahedron are then computed. The expression for the
volume of tetrahedron with vertices a = (a1, as,a3),b = (b1,be,b3),c = (c1,c2,c¢3), and d = (dy, ds, ds3)
is given as

1
Vietra = 5 | det(a—d.b—d,c—d) (19)



Ttetra —

Ytetra =

el e Y

(ag + by + o —|—d2)

The barycenter of the tetrahedron (Ztetra, Ytetras Ztetra) 18 computed as

f(al—&—bl—i—cl—l—dl)

(20)

Ztetra = — (a3 + bg + ¢3 + d3)

=~

It is to be noted that the barycenter and the centroid of tetrahedron coincide. Hence, for each tetrahe-
dron, the barycenter will be hereon referred as centroid.

(g) The centroid of liquid phase in this 3D hexahedral computational cell is then computed as the volume

Ntetra
Vi

tetra=1

weighted average of the centroids of each tetrahedron weighted using the tetrahedral volume. This is
expressed mathematically as

tetra xlt:etra

€T =
CcOM Ntetra

(21)

Ttetra

itetra=1

given in Algorithm [2]

The steps described are pictorially illustrated in Figure[5] The overall algorithm for this methodology is

Algorithm 2 Computation of reference phase centroid.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:

18:

19:

function COMPUTE_CENTROID(F, a, b, ¢, d)

Nfaces =6

Nvertices =38

0= (i (s 20 ) o

for i = 1, Nyertices dO
o(i) = ax(i) + by(i) + cz(i) + dp
num = num + nint(sign(1, ¢(7)))
S =S¢ + (b(’t)

end for

if ((num # 8) or (num # —8)) then
Find cell face-interface intersection points
Get vertices list for truncated cell
Get list of points forming each face of truncated cell
Discretize truncated cell into tetrahedra
Compute volume of tetrahedra

4
Compute barycenter of tetrahedra: @ietra = i x;
i=1
Nietra

. Vitotra Titotra
itetra=1
Ntetra
Vi

itetra=1

LCOM =

tetra

end if

20: end function

> nint(-) rounds to nearest whole number

> Cell has interface
> Figure
> Figure

> Figures [5¢| and [5]]
> Equation (19)

> Equation (20

2.2.8. Phase transport

The transport of the liquid phase (and gas phase) within the context of MOF method involves the

transport of the liquid volume fraction F' and the reference phase centroids mge(f-)M The transport of F' (c.f.
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Figure 5: Step-by-step (from (a) to (f)) pictorial representation of liquid phase centroid computation.

Equation (7)) along with the numerical methods for discretization of the various terms have been shown in
Section [2.1.2] The transport of the phase centroid is carried out as an approzimated Lagrangian particle
associated with its corresponding volume packet (also referred as flux volume) consistent to the literature
[22]. The centroid is transported according to the following equation

Jxcom

at = U(CECOM), (22)

where u(zconm) is the velocity at the location of the centroid xiSh,, linearly interpolated from the cell
face-centered velocity (see Figure |B.43|in [Appendix BJ). The reader is referred to Appendix A of Ref. [22]
for the detailed derivation of the Equation . It is to be remarked that centroids of liquid and gas phase
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are stored for a mapped unit computational cell, hence, their value is always in the range [0,1]. During
the advection step, each phase centroid coordinate is remapped back to the physical computational cell
[45]. This transport equation is solved using a directionally-split advection algorithm with an Eulerian
Implicit-Lagrangian Explicit (EI-LE) scheme. The first order time integration of Equation gives

oo = Tdom + u(TEon) At. (23)

In the case of Eulerian Implicit (EI) scheme with xgqy = wggh, the final transport equation derives to be

reom = B % (agom — (ura— —u_zy)) (24)

where £ = 1/(1 = (uy —u_)), T+ = @j11/2, and ux = u;11/2At/ Az which becomes the local cell-based
CFL number and are non-dimensional. On the other hand, for the Lagrangian Explicit (LE) scheme with
Téom = Téom, the transport equation derives to be

Toom = Lagon — (upz— —u_zy) (25)

with L = 1+ (uy — u_). The derivation of Equations and are detailed in |[Appendix B| The

consistency in the advection of phase centroid and liquid volume fraction is achieved by alternating between
the EI and LE scheme of advection between consecutive time steps of the simulation, i.e.,
t" — " 2(EI) — y(LE) — 2(EI),
t"t "2 y(EI) — 2(LE) — z(LE),
t"t2 5 "3 . 2(EI) — z(EI) — y(LE),

repeat.

(26)

The centroid transport procedure employed in this work is same as presented by Asuri Mukundan et al.
[45] following the work of Jemison et al. [27]. Without loss of generality, the procedure for the transport of
the reference liquid phase centroid :clcl%M (the same procedure is employed for gas phase centroid x{Jy,)
along the x—direction (y— and z— direction advection procedure follows the same way) is explained below.
We consider the configuration of the three computational cells in 2D as shown in Figure[6] In this case,

1 —1 ) 1+1
.
\_» ’[1,1:_1/2 RN S Ui+1
Ti-1/2 Tit1/2

Figure 6: 3-cell stencil for advection of liquid centroid. Liquid depicted as dark fluid.
the liquid from cell ¢ — 1 moves into cell ¢ and the objective is to find the new centroid of the liquid phase
in cell 7. To that end, the advection procedure is given as follows:
(a) First, we find the region and its amount of liquid volume entering (or displacing) to (or within) cell @

hereon called as departure region corresponding to the red dashed outlined region in Figure Thus,

Ca = [@i_1/2 — U120, W19 — Uig12At] X [Yj_1/2, Yj+1/2]- (27)

idepart
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i1 i i+1 i-1 i i+l

-~ -— -~ -—
Ti_1/2 —Ui—1/2A  Tip172 — U128 Ti_1/2 — Ui—1/2A0  Tip1/2 — Uip1/2AL
(a) Step 1: Departure region. (b) Step 2: Individual departure regions.
i—1 i i+1 i—1 i i+1

(b)

- - -— -—
Ti_1/2 —Ui—1/2A  Tip172 — U1 2L Ti_1/2 —Ui—1/2A0  Tip1/2 — Uip1/2AL
(c) Step 3: Compute phase centroid. (d) Step 4: Advect phase centroids.
i—1 i 141

(e) Step 5: Weighted averaged centroid.

Figure 7: Step-by-step (from (a) to (e)) procedure of advection of liquid phase centroid.

Next, we find the domain and volume of individual regions of liquid entering (or displacing) each from cell
i — 1 (dashed outlined region) and 4 (dashdotted outlined region) hereon called as intersected departure
regions as shown in Figure [Th] Therefore, we have

Cgi,’i = CQH_i, N Cq Vi = —1,0,1. (28)

idepart

The volume of the intersected departure region from cell i — 1 is denoted by V;_; and the from cell 7 is
denoted by V; in Figure [TD]

Then, we compute the liquid phase centroid of each of these intersected departure region (c.f. Figure
using Equation (11J).

We then advect these centroids using EI-LE scheme according to Equation (c.f. Figure .
Finally, we compute the new liquid phase centroid for cell i as weighted average of all the centroids of
liquid phase packets entered (or displaced) within cell ¢ with volume of each liquid packet given as

n+1 = i'=—1 ) (29)

where | CQZ_,’Z_ | represent the liquid volume of the corresponding intersected departure region.
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It is to be remarked that the same procedure is employed for the advection of the gas phase centroid. The
reader is referred to the work of Asuri Mukundan et al. [45] for detailed explanations on the methodologies,
algorithms, and implementation of the MOF method.

2.3. HYyMOFLS: coupling MOF and CLSVOF methods

In this work, we have developed a coupling between MOF and CLSVOF methods. Such a hybrid method
uses MOF method of liquid/gas interface reconstruction for under-resolved regions of the flow while CLSVOF
method for the resolved regions of the flow. One unique property of MOF method is its usage of the centroid
which CLSVOF does not. Thus, an obvious question is — how are the centroid computation and transport
handled in the hybrid method? To that end, we have adopted a strategy in which the reference centroids are
computed on-the-fly only for those cells tagged with MOF interface reconstruction. Moreover, the centroid
transport is performed only for those cells that are tagged with MOF interface reconstruction method with
the anticipation that this cell will again be tagged with MOF method in the next time step. The coupling
between the MOF and CLSVOF methods of interface reconstruction is achieved through the local interface

curvature computed as
Vo
k(p)=-V_. () , 30
) ZI )

where ¢ represents the level set signed distance function. The curvature is computed using finite difference
method with a nine-point stencil in two dimension, the details of which are explained in Ref. [57]. The
rationale in developing HyMOFLS method is that the MOF method is used for capturing the under-resolved
liquid structures (URLS) while the CLSVOF method is used for capturing resolved liquid structures (RLS).
Within this work, a liquid structure is defined as under-resolved when it is of the size of the computational
mesh spacing. The resolution of the liquid structures is determined according to interface resolution quality
(IRQ) [58] for each computational cell that belongs to a liquid structure. The IRQ is expressed as,

RQ — Kl (31)

Ax’
where Ax is the grid spacing in the computational mesh used for the simulations. The curvature x computed
in the cell center in our flow solver is associated to the surface of the liquid/gas interface (if one such exist
in the cell). It is to be remarked that the curvature used in Equation is the sum of two principal
curvatures of the liquid structures, i.e., k =| k1 + k2 |. Such a computation of curvature is inspired from the
work of Canu [58]; however, the drawback with this method of computation is that the curvature becomes
infinity on a saddle point of the interfacial surface.

In the past, an IRQ based criterion for differentiating the resolved and under-resolved droplets was used
by Wardle and Weller [59] wherein the gradient of liquid volume fraction was used rather than curvature
since diffused interface tracking method was employed in their study. An IRQ based differentiation between
resolved and under-resolved liquid structures was also used in the work of Anez et al. [I] which used diffused
interface tracking methodology. In contrast, our work is focused for the sharp interface capturing method
for which interface curvature is a relevant quantity for classification of the resolution of the liquid structures.
Moreover, the wrinkling in the interface can be well represented through the local variations in the inter-
face curvature. Hence, the under-resolved liquid structure/resolved liquid structure (URLS/RLS) criterion
implemented in this work is

IRQ= —— =

KA (32)

1 < «a, = Under-resolved structure,

> «a, = Resolved liquid structure.
The value of @ = 2 is chosen in this work based on the study by Canu [58]; higher value of a tends
towards using MOF method of interface reconstruction everywhere in the computational domain. This
value necessitates that a minimum of 8 computational cells spanning the length of the major axis of the
liquid structure to be classified as RLS else it is URLS. The reader is referred to for the
derivation of this criterion (Equation ) and to Section for the rationale behind choosing o = 2.
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In order to find the effect of o on the interface reconstruction, a parametric study for various values of «
is performed and presented in Section A similar formulation of the IRQ has also been employed by
Jemison et al. [27] with the condition that MOF method would be used for interface reconstruction when
there are less than 24 cells spanning the length of the major axis of the liquid structure. For more details
on the numerical aspect of the URLS/RLS crtierion, the reader is referred to Canu [58].

The HyMOFLS coupling works as follows. First, we compute the IRQ (Equation ) for each com-
putational cell containing the interface using the local mesh spacing and local interface curvature. Then,
the URLS/RLS criterion (Equation ) is checked in each such cell whose result determines whether the
cell belongs to an URLS or a RLS. When the cell belongs to URLS, then MOF method of interface recon-
struction is labeled/tagged and used in this cell, else, CLSVOF method is labeled /tagged and used in this
cell. The algorithm of cell-labelling with MOF and CLSVOF method based on the URLS/RLS criterion
is given in Algorithm In this algorithm, the variables imin, imax, jmin, jmax, kmin, and kmax corre-
spond to the bounds on the computational cell numbers along the x—, y—, and z—directions. Moreover,
once a cell is identified to be under-resolved (or resolved) the MOF (or CLSVOF) method is labeled to its
26-cell neighbors in 3D (8-cell neighbor in 2D). Such a neighboring cell labelling is performed to avoid local
inaccuracies/changes in the interface orientations.

Algorithm 3 URLS/RLS criterion to label cells with MOF and CLSVOF methods.

1: for k£ = kmin, kmax do

2 for j = jmin, jmax do

3 for ¢ = imin, imax do

4 if (F>¢) and (F <1-—¢)) then >e=10""?
5: if (IRQ(Z,7,k) < a) then > URLS/RLS criterion
6 MOF activated for cell (4, j, k)

7 Tag 26-cell neighbors with MOF

8 else

9: CLSVOF activated for cell (4,7, k)

10: Tag 26-cell neighbors with CLSVOF

11: end if

12: end if

13: end for

14: end for

15: end for

The full algorithm of the implementation of the computation of IRQ value, URLS/RLS criterion (Equa-
tion (32)) along with the 26-cell neighbor labelling is presented in Algorithm[4] This algorithm of URLS/RLS
criterion is implemented in the simulations on multiple processors, hence, care has been taken in ensuring
the communications of the MOF and CLSVOF label for each cell are not overwritten for the same cell from
other processors (see line numbers 14 and 15 in Algorithm . An illustration of tagging of cells (and its
neighbors) with MOF and CLSVOF methods within the HyMOFLS framework is shown in Figure

In a typical multiphase flows simulations, not all computational cells will be occupied by the liquid
structures. In fact, these structures span only a small concentrated region of the whole computational
domain. Thus, in order to reduce the computational costs, only the cells containing the interface are
checked for determining whether MOF or CLSVOF method need to be used for interface reconstruction. To
that end, the liquid volume fraction F in each cell is compared with a threshold value of ¢ = 107'2 in this
algorithm. Moreover, as seen in Algorithm [4] the steps involved in tagging a cell to MOF /CLSVOF method
and computation of phase centroid for these corresponding cells are split over three loops to mitigate the
issues with the miscommunication and over-writing of the tagged label in a cell among the processors. Such
miscommunications and over-writings often occurs for the computational cells that are on the processor
boundaries.
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Algorithm 4 Cell labelling algorithm.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

function CHECK_UNDER_RESOLVED_CELLS(¢, F, Ax)

MOF label(:, :, 1) =0
CLSVOF label(:, :,:) =0
for k£ = kmin, kmax do
for j = jmin, jmax do
for ¢ = imin, imax do
k(1, 5, k) <= =V - (Vo(i, 5, k) [ [Vo(i, 5, k)l
IRG = 1/(x(i,j, k) Ax)
if (F>¢) and (F <1—¢))then > Cell with liquid/gas interface; e = 10712
if (IRQ < «)) then > URLS/RLS criterion
MOF label(i, j, k) = 2
CLSVOF label(i, j, k) = 0
end if
end if
end for
end for
end for
call MPI_SendRecv(MOF _label)
call MPI_SendRecv(CLSVOF _label)
for k£ = kmin, kmax do
for j = jmin, jmax do
for ¢ = imin, imax do
if (MOFlabel(i, j, k) == 2) then
temp(—1:1,—-1:1,—1:1) = MOFlabel(i —1:¢+1,j—1:j+1,k—1:k+1))
MOFlabel(i—1:i+1,j—1:54+1,k—1:k+1) = max(l,temp(—1:1,-1:1,—-1:1))
CLSVOFlabel(i —1:i+1,j—1:j4+1,k—1:k4+1)=0
end if
end for
end for
end for
for £ = kmin, kmax do
for j = jmin, jmax do
for ¢ = imin, imax do
if (MOFlabel(i, j, k) > 0) then
xE (i, j, k) = compute_centroid(F, a, b, ¢, d)
end if
end for
end for
end for
Where(MOF label == 2) MOF _label = 1

41: end function

2.4. Computational comparison tests

Having described the HyMOFLS method, numerical tests are now performed to find the accuracy of the

interface reconstruction and transport. The default value of the parameter « is chosen to be 2 for the tagging
of computational cells with MOF or CLSVOF method. Three different tests are presented in this subsection
— notched disk rotation, 2D, and 3D droplet deformation. For each test, the results from HyMOFLS, MOF,
and CLSVOF interface reconstruction methods such as the shapes of phase interface, error norms (symmetric
difference error and geometric error), computational time will be compared. Finally, a parametric study of
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Figure 8: Narrow band of the MOF method tagged cells (red cells with “M” label) and CLSVOF method tagged cells (blue
cells with “C” label) around the interface (shown in black solid line).

the threshold value « along with an alternative cell tagging criterion are presented. In each test, the CFL
is fixed to a value of 0.5 and the time integration is performed using forward Euler method.
The error norms considered for the quantitative analyses are:

e Symmetric difference error: This error measures the difference in volume in three dimensions (area in
two dimensions) between the two interfaces (reference and reconstructed interfaces) giving a measure
of the accuracy in the orientation of the interface normal in addition to the amount of liquid volume
encompassed under the interface. It is shown as the gray region in Figure[0] The computation of this

Reference interface
------ Reconstructed interface

ref
*Tcom

act
OTcom

Figure 9: Illustration of symmetric difference area error shown in grey with reference interface (solid line) and reconstructed
interface (dashed line).

error can be mathematically expressed as

Esymm :| wref U wact _ oJref N wact | (33)
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This expression can be simplified in terms of the Heaviside function H as

Esymm = Z / ’H(n ' (.’1} - mcn) + d) - H(¢exact(m)) dwv (34)
i,k Y €
where @exact is the level set function of the exact interface that determined analytically. The integral
in this expression is evaluated using quadrature method by dividing each computational cell Cq
into 128 subcells in each spatial direction.

i3,k

e Geometric error: this error measures the difference in the shape between reference and reconstructed
interfaces. It is computed as

Eyeo = /Q‘F(m,T) — F(z,0)|dz. (35)

Both these error norms are computed for all the following time-periodic numerical tests at the end of their
time period, i.e., at ¢t = T where T is the time period. The computational time presented in these tests
correspond to the average CPU time consumption per timestep which is computed as tgps; = 9% x Nppyoc /Ny

where N, is the number of computational cells along x—direction in the domain.

2.4.1. Notched disk rotation
In this test case, a notched Zalesak’s disk is revolved around the center of a [0, 1] x [0,1] domain. The
disk with a diameter of D = 0.30 contains a notch with its width 0.06 and length 0.2 with its center located
at the (0.5, 0.75). The test concludes when the disk comes back to its initial position after one full revolution
around the center of the domain based on the following velocity field
T

u=37g (0.5—y), and (36)
v = 3%(@« —0.5). (37)

In order to check the order of convergence of the error norms, multiple mesh resolutions ranging from 322
to 10242 have been used to discretize the domain.

Figure [10] shows the phase interface shape after one full rotation of the notched disk around the domain
center for HyMOFLS, MOF, and CLSVOF methods obtained using 642 mesh resolution (i.e., D/Ax =
19.2). The final interface solution (dashed lines) are compared against the initial (exact) solution (black
solid line) for each method of interface reconstruction. By the formulation of the HyMOFLS method, the
cells containing the interface are tagged either with MOF or CLSVOF method of interface reconstruction.
Consequently, the interface gets the red color when the cell is tagged with MOF method and blue color
with CLSVOF method as shown in Figure From this figure, we can draw two inferences: first, the
HyMOFLS method is able to capture the sharp corners relatively accurately than CLSVOF method even
for such a coarse mesh resolution; second, the sharp corners of the disk are prone to high change in the
curvature and the cell tagging algorithm is appropriately assigning these areas of the interface with MOF
interface reconstruction method.

The effect of increasing mesh resolution on the final shape of the notched disk can be seen from Figures[T]]
and [12| shown for the 1282 and 2562 mesh resolutions. The final shapes of the interface become better and
regions of the domain with MOF method tagging is reducing with increasing mesh resolution albeit such an
observation is natural.

The convergence of the error norms are shown in Figures and It can be observed that the
HyMOFLS method consistently yields the error estimate of the same order of magnitude as that of MOF
method even for coarse mesh resolutions. Such accuracy of the HyMOFLS is obtained by consuming less
average CPU time per time step compared to MOF method even for high mesh resolution (c.f. Figure .
Obviously, the CLSVOF method will consume least time due to the absence of computation and advection
of phase centroid. Moreover, a second-order convergence of the symmetric and geometric shape errors is
observed in Figures and Finally, the values of the error norms for the HyMOFLS, MOF, and
CLSVOF methods along with the order of convergence (given within parentheses) are given in Table [1] and
the average CPU time consumption per timestep in seconds is summarized in Table 2]
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(c) CLSVOF

(a) HyMOFLS (b) MOF
Figure 10: Phase interface shape of Zalesak’s disk after one rotation for 642 grid (i.e., D/Ax = 19.2) at initial (solid line) and
final (dashed line) time instants. Black color correspond to initial interface while red, blue, and green colors correspond to
interface reconstruction using MOF, CLSVOF, and numerical interpolation between MOF and CLSVOF tagged label values,
respectively.

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 11: Phase interface shape of Zalesak’s disk after one rotation for 1282 grid (i.e., D/Axz = 38.4) at initial (solid line)
and final (dashed line) time instants. Black color correspond to initial interface while red, blue, and green colors correspond to
interface reconstruction using MOF, CLSVOF, and numerical interpolation between MOF and CLSVOF tagged label values

respectively.

Table 1: Summary of error estimates for Zalesak’s disk test with spatial order of error convergence given within parentheses.

N, HyMOFLS MOF CLSVOF
Esymm Egeo Esymm Egeo Esymm Egeo

32 417E-04 (—) 192E-04 (—) 3.95E-04 (—) 1.18E-04 (—) 1.65E-03 (—) 6.15E-04 (—)
64  6.63E-05 (2.65) 3.42E-05 (2.49) 5.99E-05 (2.72) 1.95E-05 (2.60) 2.96E-04 (2.48) 1.13E-04 (2.44)
128  1.58E-05 (2.07) T7.47E-06 (2.20) 1.53E-05 (1.97) 6.19E-06 (1.66) 8.31E-05 (1.83) 2.52E-05 (2.17)
256 3.52E-06 (2.17) 2.26E-06 (1.72) 3.21E-06 (2.25) 1.27E-06 (2.29) 2.20E-05 (1.92) 7.32E-06 (1.78)
512 9.19E-07 (1.82) 5.52E-07 (2.03) 7.42E-07 (2.11) 2.70E-07 (2.23) 5.22E-06 (2.08) 1.41E-06 (2.38)
1024 2.22E-07 (2.05) 1.24E-07 (2.15) 1.58E-07 (2.23) 6.01E-08 (2.17) 1.39E-06 (1.91) 4.61E-07 (1.61)

2.4.2. 2D droplet deformation
The velocity field used for the rotation of notched disk is linear and hence tagging the cells with MOF

and CLSVOF methods will be straightforward. In contrast, the numerical simulations of the atomization
applications will involve more complex non-linear velocity field (like a turbulent eddy) in which the liquid
structure will be present. To that end, as a first step, we test the deformation of a 2D circular droplet of
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 12: Phase interface shape of Zalesak’s disk after one rotation for 2562 grid (i.e., D/Ax = 76.8) at initial (solid line)
and final (dashed line) time instants. Black color correspond to initial interface while red, blue, and green colors correspond to
interface reconstruction using MOF, CLSVOF, and numerical interpolation between MOF and CLSVOF tagged label values
respectively.
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Figure 13: Error estimates for Zalesak’s notched disk rotation test for HyMOFLS @, MOF @, and CLSVOF @ methods
along with first-order convergence E[) and second-order convergence (~'-'-|) lines.

Table 2: Summary of average CPU time consumption per timestep (in seconds) for Zalesak’s disk test.

N, HyMOFLS MOF CLSVOF
32 1.44E-02 1.71E-02  9.66E-03
64 4.01E-02 7.81E-02  8.14E-03
128 2.05E-01 3.39E-01  1.55E-01
256 8.67E-01 1.32E+00 6.95E-01
512  3.31E400 4.76E+00 2.68E+00
1024  6.75E400  9.58E+00 5.18E4-00

liquid under a non-linear velocity field given as

u = —2. slnz(wm). sin(my) cos(my) cos(wt/T) (38)
v = 2sin®(my) sin(nz) cos(mwx) cos(nt/T)

The droplet has a diameter D = 0.3 having its center located at (0.5, 0.75) inside a [0, 1] x [0,1] domain.
In this test, the droplet is subjected to the above non-linear velocity field which progressively entraps it
into vortex thereby stretching to small filament-like structure at the moment of maximum deformation and
returns back to its original shape at the final time instant. The time period of this test is kept to T = 8,
i.e., the maximum deformation moment is at ¢t = T/2 = 4 and the final time instant is ¢ = T = 8. To study
the convergence of the error metrics, this test has been carried out for various mesh resolutions ranging
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from 322 to 10242, The solution obtained on the 10242 grid (i.e., D/Az = 307.2) will be used as reference
solution against which the results obtained on coarser mesh resolutions are compared.

Figure [I4) shows the shape of the interfaces at the maximum deformation time instant and final time
instant for HyMOFLS, MOF, and CLSVOF methods for 642 mesh resolution (i.e., D/Az = 19.2) with
the reference solution (shown in solid black line). By the formulation of the HyMOFLS method, the cells
containing the interface are tagged either MOF (red color) or CLSVOF (blue color) method of interface
reconstruction. From this figure, it is obvious that the MOF and HyMOFLS methods behave similarly
especially when capturing the thin filament-like region at the tail of the stretched shape. Moreover, the
interface shape at the final time instant is better with HyMOFLS method than the MOF method. The
reason for this super-performance behavior is unclear and requires deeper investigation. The MOF method
(i.e., red region) tagged for the tail of the stretched droplet in Figure is an anomaly. This is because
this tail region does not experience high curvature but merely due to its under-resolved nature of the liquid
structure, the curvature computed using classical nine-point stencil method is leading to a high value since
IV, is far from unity. This results in the phenomenon of over-tagging with MOF method. Such a
phenomenon can be solved by improving the method of computation of curvature.

< o g \
?
(a) HyMOFLS (b) MOF (¢) CLSVOF

Figure 14: Phase interface shape of 2D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 642 grid (i.e., D/Ax = 19.2) shown along with reference solution (black line) computed on 1024 x 1024 grid. The blue
dashed line represent CLSVOF tagged regions, red dashed line represent MOF tagged region, and green dashed line correspond
to numerical interpolation between MOF and CLSVOF tagged label values.

The effect of the interface shape and capture of the tail of the deformed droplet with increasing mesh
resolution are shown in Figures [15| and [16| for 1282 and 2562 mesh resolutions, respectively. It can be seen
that not only the tail is progressively better captured but also the interface shape at the final time instant
becomes increasingly closer to the reference solution.

The quantitative error metrics and their respective mesh convergence are shown in Figure for this
test. From the symmetric difference error shown in Figure we can see that this error experiences a
first-order convergence with increasing mesh resolution. The second-order accuracy of the MOF method
is lost due to the first-order of the Eulerian Implicit-Lagrangian Explicit (EI-LE) numerical scheme used
for the discretization of the advection equation of the phase centroids (c.f. Equation ) However, the
convergence of the geometric error metric displays a second-order accuracy since it measures the error in
the shape and not the exact error in the interface reconstruction. Moreover, the velocity is non-linear and
within the context of reversible test, the errors from the numerical scheme for centroid advection created
from ¢ = 0 to T/2 cancels those from ¢t = T/2 to T. Thus, it is unaffected with the numerical scheme
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 15: Phase interface shape of 2D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 1282 grid (i.e., D/Ax = 38.4) shown along with reference solution (black line) computed on 1024 x 1024 grid. The blue
dashed line represent CLSVOF tagged regions, red dashed line represent MOF tagged region, and green dashed line correspond
to numerical interpolation between MOF and CLSVOF tagged label values.

288

(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 16: Phase interface shape of 2D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 2562 grid (i.e., D/Ax = 76.8) shown along with reference solution (black line) computed on 1024 x 1024 grid. The blue
dashed line represent CLSVOF tagged regions, red dashed line represent MOF tagged region, and green dashed line correspond
to numerical interpolation between MOF and CLSVOF tagged label values.

for the discretization of the advection equation of phase centroid. As expected, the HyMOFLS method
is consistently consuming less average CPU time per timestep in comparison to the full MOF method. A
summary of the error norms along with their order of convergence (given within parentheses) for HyMOFLS,
MOF, and CLSVOF methods are listed in Table [3]

The advantage of the HyMOFLS method is that the MOF method is used only when it is necessary. The
high computational expense of the MOF method is directly associated to the number of calls to the Gauss-
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Figure 17: Error estimates for 2D droplet deformation test for HyMOFLS @, MOF @, and CLSVOF @ methods along with
and second-order convergence (-'-'-) lines.

first-order convergence

Table 3: Summary of error estimates for 2D droplet deformation test with spatial order of error convergence given within

parentheses.
N, HyMOFLS MOF CLSVOF
Esymm Egeo Esymm Egeo Esymm Egeo
32 1.32E-03 (—) 1.33E-03 (—) 1.20E-03 (—) 1.27E-03 (-) 2.32E-03 (-) 2.02E-03 (-)
64 1.01E-03 (0.39) 1.70E-04 (2.97) 9.97E-04 (0.27) 2.51E-04 (2.34) 1.10E-03 (1.08) 2.71E-04 (2.90)
128 5.44E-04 (0.89) 1.55E-05 (3.46) 5.25B-04 (0.93) 4.39E-05 (2.52) 5.52E-04 (0.99) 2.70E-05 (3.33)
256  2.76E-04 (0.98) 3.36E-06 (2.21) 2.76E-04 (0.93) 3.15E-06 (3.80) 2.76E-04 (1.00) 3.85E-06 (2.81)
512  1.38E-04 (1.00) 6.27E-07 (2.42) 1.38E-04 (1.00) 5.23E-07 (2.59) 1.38E-04 (1.00) 6.22E-07 (2.63)
1024 6.90E-05 (1.00) 1.35E-07 (2.22) 6.90E-05 (1.00) 1.26E-07 (2.05) 6.90E-05 (1.00) 1.38E-07 (2.17)
Table 4: Summary of average CPU time consumption per timestep (in seconds) for 2D droplet deformation test.

N, HyMOFLS MOF CLSVOF

32 1.12E-02 1.20E-02 5.60E-03

64 4.98E-02 5.24E-02 2.38E-02

128 2.25E-01 3.58E-01 1.01E-01

256 9.02E-01 3.17TE+00  4.88E-01

512 3.14E400 5.83E4+00  2.05E4-00

1024  7.09E400 12.46E400 5.30E400

Newton algorithm (c.f. Algorithm . This is because four interface reconstructions are performed in this
algorithm to compute the derivative of the objective function before finally determining the optimal values of
the components of interface unit normal. Therefore, in order to evaluate the step-up that that was obtained
from HyMOFLS method, we now present in Table |5 the comparison between the MOF and HyMOFLS
methods in terms of the total number of Gauss-Newton algorithm calls, total number of iterations, and
average number of iterations per Gauss-Newton call for this test using 642 mesh resolution. The total
CPU time taken for the MOF method is 221.41s while for the HyMOFLS method is 185.98s each using
4 processors run in Myria supercomputer at CRIANN [60]. It can be clearly seen that the HyMOFLS
takes lesser number of Gauss-Newton iterations and lesser average CPU time consumption than that for the
MOF method emphasizing the fruitfulness of this hybrid framework. However, it is to be remarked that the
average number of iterations obtained from our implementation of MOF and HyMOFLS method is observed
to be taking more number of Gauss-Newton iterations for the convergence in computation of the actual
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our initial guess for the MOF method can be improved.
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Table 5: Summary of total number of Gauss-Newton calls and iterations for interface reconstruction for MOF and HyMOFLS
methods for 2D droplet deformation test using 642 mesh resolution.

Metric of measurement MOF HyMOFLS
t=40 t=80 t=40 t=8.0
Total number of Gauss-Newton calls 2214 493 952 65
Total number of iterations for convergence 3549 1317 2060 256
Average number of iterations per call 1.60 2.67 2.16 3.94

2.4.3. 3D droplet deformation

The test of the non-linear velocity on the interface reconstruction is now extended to three dimensions. In
this test [61], a spherical droplet of diameter D = 0.3 is placed at (0.35, 0.35, 0.35) within a [0, 1] x [0, 1] x [0, 1]
domain. This droplet is now subjected to the following velocity field [62]

u(z,y, 2,t) = 2sin® (7x) sin(27y) sin(272) cos(nt/3) (39)
v(z,y,2,t) = —sin(27x) sin? (7y) sin(272) cos(nt/3) (40)
w(x,y, z,t) = —sin(2rx) sin(27y) sin®(7z) cos(nt/3) (41)

which stretches the interface to form a thin membrane at the time instant of maximum deformation (t = T'/2)
and the interface comes back to its spherical shape at the final time instant of ¢t = T' = 3. The objectives of
this test are to capture the thin membrane of the stretched sphere at t = T'/2 and to recover the spherical
shape of the droplet at ¢ = T. In order to study the convergence rate of the error metrics, six mesh
resolutions ranging from 323 to 5122 including 1923 have been utilized to discretize the domain.

Figure shows the phase interface of the 3D droplet at the maximum deformation time instant (top
row) and the final time instant (bottom row) for 192% mesh resolution. The red regions indicate the MOF
method tagged regions while the blue regions indicate the CLSVOF method tagged region. The following
inferences are drawn from this figure: first, all the three interface reconstruction methods are able to capture
the flat thin membranes in the maximum deformed spheres (see Section using this mesh resolution
at the time instant of maximum deformation; second, the HyMOFLS method is producing relatively more
spherical shape at the final time instant with less surface deformation than the MOF and CLSVOF method;
and third, HyMOFLS method is using MOF at the exact regions where there is high change in the curvature
and at the thin membrane region. However, the flat thin membrane with small curvature value with thickness
spanning 4 computational cells is tagged with MOF method. This MOF tagging (called over-tagging) is
unnecessary and is occurring as the curvature is not well computed in ARCHER, when the interface spans
over few cells (in this case 4 cells) resulting in value of IRQ for these cells satisfying the under-resolved
criterion. When the curvature computation is improved, it is envisaged that this thin membrane will be
tagged entirely with CLSVOF method thereby reducing the total CPU time even further.

In order to emphasize the importance of the mesh resolution on the interface capture, Figures [I9] and [20]
show the phase interface for the 1283 (D/Axz = 38.4) and 256° (D/Ax = 76.8) mesh resolutions. It can
be seen that for a coarse mesh resolution of 1283, there are no significant differences in the phase interface
shape at the maximum deformation time instant between HyMOFLS and MOF method. And as the mesh
resolution is doubled to 2563, the final shape tends to be more spherical with less surface deformations.

With the qualitative comparisons shown above, we now present the quantitative comparisons of the
results among HyMOFLS, MOF, and CLSVOF methods. To that end, the error metrics as well as the
average CPU time consumption are shown in Figure[2I] From this figure, we can see that both the symmetric
difference error and geometric shape error approximately follows the second-order convergence rate with
respect to the spatial mesh resolution. And the average CPU time consumed per timestep of the iteration
in the test is consistently lower for the HyMOFLS method compared to the MOF method. One more
observation is that this average CPU time consumption for the HyMOFLS method tend towards that for
the CLSVOF method as seen in Figure[2Id This is because with the increase in mesh resolution, the interface
becomes increasingly well resolved thereby leading to increase in the number of cells tagged with CLSVOF
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(a) HyMOFLS (b) MOF (c) CLSVOF

Figure 18: Phase interface shape of 3D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 1923 grid (i.e., D/Az = 57.6). Red region represent MOF method tagged region and blue region represent CLSVOF
method tagged region.
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Figure 19: Phase interface shape of 3D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 1283 grid (i.e., D/Az = 38.4). Red region represent MOF method tagged region and blue region represent CLSVOF
method tagged region.

method and hence, the HyMOFLS method virtually becomes CLSVOF method. The error estimate values
for various mesh resolutions pertaining to HyMOFLS, MOF, and CLSVOF method are summarized in
Table [6] with the error convergence order given within parentheses.

Finally, in order to evaluate the step-up obtained by combining MOF with CLSVOF method within
the HyMOFLS framework, we now present in Table [§ the comparison between the MOF and HyMOFLS
methods in terms of the total number of Gauss-Newton algorithm calls, total number of iterations, and
average number of iterations per Gauss-Newton call for this test using 64> mesh resolution. The total CPU
time taken for the MOF method is 2848.77s and for the HyMOFLS method is 2106.38s on 8 processors
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Figure 20: Phase interface shape of 3D droplet deformation at maximum deformation (top row) and final time instant (bottom
row) for 2563 grid (i.e., D/Az = 76.8). Red region represent MOF method tagged region and blue region represent CLSVOF

method tagged region.
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Figure 21: Error estimates for 3D droplet deformation test for HyMOFLS @, MOF @, and CLSVOF @ methods along with
first-order convergence E[); second-order convergence (|='='-) lines.

Table 6: Summary of error estimates for 3D droplet deformation test with spatial order of error convergence given within

parentheses.
N, HyMOFLS MOF CLSVOF
Esymm Egeo Esymm Egeo Esymm Egeo

32 7.12E-03 (—) 5.80E03 (—) 6.83E03 (—) 562803 (—) 852E03 (—) 7.77E03 ()
64 2.82E-03 (1.34) 2.30E-03 (1.57) 2.99E-03 (1.19) 2.35E-03 (1.26) 3.78E-03 (1.17) 3.50E-03 (1.15)
128 7.96E-04 (1.83) 5.23E-04 (2.14) 8.38E-04 (1.84) 5.38E-04 (2.13) 9.47E-04 (1.99) 7.72E-04 (2.18)
192 3.93E-04 (1.74) 2.05E-04 (2.31) 3.91E-04 (1.88) 1.87E-04 (2.60) 4.64E-04 (1.83) 3.12E-04 (2.23)
256 3.11E-04 (1.36) 1.92E-04 (1.45) 3.14E-04 (1.42) 1.80E-04 (1.48) 3.39E-04 (1.50) 2.35E-04 (1.72)
512 1.53E-04 (1.02) 9.05E-05 (1.09) 1.43E-04 (1.14) 7.11E-05 (1.12) 1.56E-04 (1.12) 9.56E-05 (1.30)

run in Myria supercomputer at CRIANN [60]. It can be seen again that the HyMOFLS method takes less
number of Gauss-Newton iteration to minimize the centroid error in interface reconstruction.
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Table 7: Summary of average CPU time consumption per timestep (in seconds) for 3D droplet deformation test.

N, HyMOFLS MOF CLSVOF
32 1.27E4+01 1.62E401 7.80E4-00
64 4.06E401 5.91E401 2.76E+01
128 1.42E+02 2.23E402 1.10E+02
256  3.87TE+02 7.92E+02 2.77TE+402
512 5.94E+02 1.41E+03 5.21E+402
1024 2.37E+03  5.74E4-03 2.12E+03

Table 8: Summary of total number of Gauss-Newton calls and iterations for interface reconstruction for MOF and HyMOFLS
methods for 3D droplet deformation test using 643 mesh resolution.

Metric of measurement MOF HyMOFLS
=15 t=30 t=15 t=3.0
Total number of Gauss-Newton calls 40931 17052 17492 4860
Total number of iterations for convergence 195580 83335 90965 30548
Average number of iterations per call 4.78 4.89 5.20 6.29

2.5. Parametric study

The HyMOFLS method consists of tagging computational cells with MOF and CLSVOF method based
on the IRQ URLS/RLS criterion (c.f. Equation (32))) which employs a threshold value «. This subsection
presents a parametric study on the value of o and highlights the choice of @ = 2 employed in the numerical
tests presented above. To that end, we recall the criterion for tagging cell with MOF method (for cells
belonging to URLS) and CLSVOF method (for cells belonging to resolved liquid structures) in Algorithm
where 4, j, and k are the indices of the computational cell. This IRQ criterion exploits the value of local

Algorithm 5 o based cell tagging algorithm.
if (IRQ(Z,7,k) < a) then

MOF activated for cell (3, j, k)
else

CLSVOF activated for cell (4,4, k)
end if

interface curvature and local mesh spacing. However, at times, when the computation of curvature is not
highly accurate, there arises a situation that a cell is wrongly tagged as MOF cell leading to a scenario called
over-tagging. Such a scenario has been demonstrated in Sections and for the 2D and 3D droplet
deformation tests, respectively. On one hand, the 2D test revealed that the tail of the stretched droplet
spanning few cells was assigned to MOF method even though the curvature of this structure is not very high.
One the other hand, the 3D test showed light on the fact that even though the stretched membrane having
low curvature values is spanning few cells, the MOF method is being used to reconstruct its interfacial area.
One way to mitigate this issue is to have an another criterion | |V ¢(i,j,k)||; — 1 |[> 6 (where ¢ is the level
set function) in addition to the IRQ criterion for the cell tagging algorithm. The value of § can be chosen
appropriately similar to the procedure described for « in the following subsection. The investigation of this
combined criterion is beyond the scope of this work and is not presented here. However, the IR(Q criterion
is able to detect the thin structures as shown in Sections 2.4.2] and 2.4.3

With this premise, we now present the parametric study of « for the interface reconstruction in 2D and
3D droplet deformation tests. To that end, we have chosen 64? and 64% mesh resolutions for respective tests
to be performed using HyMOFLS method for the values of @ = 0.5,1,2, 6.
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2.5.1. 2D droplet deformation

First, we find the effect of o on the results of interface reconstruction for 2D droplet deformation test.
Figure 22| present the results with the shapes of the phase interface along with the result for o = 2 which was
also shown in Figure [[4 By qualitative inspection, we find that the result for a = 2 is matching relatively
well with the reference results than for all the other « values.

(a) « =0.5 ) a=1.0 (c) =20 (d) @« =6.0

Figure 22: Effect of o on the phase interface shape for 2D droplet deformation test using 642 grid (i.e., D/Axz = 19.2) shown
along with reference solution (black line) computed on 1024 x 1024 grid. Blue dashed line represent CLSVOF tagged regions,
red dashed line represent MOF tagged regions, and green dashed line correspond to numerical interpolation between MOF and
CLSVOF tagged label values.

The plot of the evolution of the error norms as a function of « is shown in Figure 23] with their values
summarized in Table [9] Upon quantitative comparison of the error norms for the various values of o, we
see that the a = 1,2,6 give approximately the same error. In fact, it can be seen that the error remains
constant for all values of @ > 1. This test was not conclusive in determining the exact value of a to be used,
hence, we proceed to do the test for the 3D droplet deformation.
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Figure 23: Variation of error norms (E'Symm: Fgeo: EI) with « for 2D droplet deformation test.
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Table 9: Summary of error norms for various « values for parametric study within the framework of HyMOFLS method for
2D droplet deformation test.

o
Error Nom 0.5 1.0 2.0 6.0
Esymm 1.08E-03 1.02E-03 1.01E-03 1.01E-03
Egeo 2.58E-04 1.74E-04 1.70E-04 1.69E-04

2.5.2. 3D droplet deformation

Next, we apply the same method of analysis to the 3D droplet deformation test. The shapes of the phase
interface of the droplets at the mid and the final time instant are shown in Figure for different values
of a. The plot of variation of error norms as a function of « is shown in Figure [25| while their values are

N
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(a) «=0.5 (b) a=1.0 (c) a=2.0 (d) @ =6.0

Figure 24: Effect of o on the phase interface shape for 3D droplet deformation test using 643 grid (i.e., D/Az = 19.2). Red
region represent MOF method labeled region and blue region represent CLSVOF method labeled region.

summarized in Table [[0
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Figure 25: Variation of error norms (Esymm: Fgeo: EI) with « for 3D droplet deformation test.

Evidently, it can be seen that there are no significant differences in the interface shapes for all values of
«. However, it is unsurprising to see the increase in the amount of MOF method usage (red colored regions)
in the interface with this increase in « value. In terms of quantitative comparison, it is apparent that the
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Table 10: Summary of error norms for various « values for parametric study within the framework of HyMOFLS method for
3D droplet deformation test.

o
Error Nom 0.5 1.0 2.0 6.0

Esymm 3.056E-03 2.89E-03 2.82E-03 2.92E-03
Egeo 2.75E-03 2.41E-03 2.30E-03 2.31E-03

value of @ = 2 relatively yields the lowest error, hence, validating our choice of the default value of & = 2 in
the HyMOFLS algorithm.

3. Coupling with momentum solver

3.1. Incompressible Navier-Stokes equations

In order to describe the incompressible multiphase flow, the following conservative form of the incom-
pressible Navier-Stokes equations are solved

V- u=0, (42)
opu
W+V~(pu®u):—VP—FV-(QMD)—&-B, (43)

where u is the velocity field, p is density, u is dynamic viscosity, P is the pressure field, D is the strain
rate tensor given as D = £(Vu + (Vu)T), and B is the sum of the body and surface tension forces.
B = By, + B where By, is the force due to body gravity and By is the force due to surface tension which
is given as By, = okdn. o represent the surface tension, n is the liquid/gas interface unit normal, x is the
curvature of the interface, and d; is the Dirac delta function centered on surface of the interface. In this
work, we neglect force due to gravity unless explicitly specified. The mass conservation is ensured through
the solution of Equation .

In the context of multiphase flows, an interface I' separates the liquid from the gaseous phase. The
material properties such as density and viscosity are constant within each phase, i.e., p = piiq and p = fuiq
in liquid phase and p = pgas and p = pigas in gaseous phase. But these properties are subject to a jump at
the interface; the jump condition can be written as [p|r = piiq — Pgas and (1] = iiq — flgas- The velocity
field remain continuous across the interface, hence [u]r = 0. However, the pressure is not continuous across
the interface and it is possible to write the pressure jump [I8] across an inert interface as

(Pl = or(6) + 20l (Vu - n) - n. (44)

3.2. Flow solver

The flow solver used in this work is ARCHER [48] whose capabilities have been shown in the past works
[45], 63), 64], 65]. This solver is structured, parallel, and developed for direct numerical simulations (DNS) of
complex and turbulent multiphase flows with the application to study primary breakup of liquid fuel jet. The
interface between the phases is represented through level set (see Section and the mass conservation
is ensured using volume fraction (see Section . It has been validated for various cases of complex
turbulent flow configurations [53], [64], thus, the numerical methods employed in this solver are tailored
for treating turbulence in the system. A staggered grid configuration is used with central finite difference
scheme for least numerical dissipation. The scalar variables such as liquid volume fraction, density, viscosity,
level set function, and pressure are stored in the cell center while the vector variables such as components
of velocity and vorticity are stored in cell faces. A consistent mass and momentum flux computation [48]
technique is employed in the solver that facilitates to perform simulations of large density ratio between
liquid and gas phases.
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3.2.1. Numerical method

A second-order central difference scheme is employed for discretization of the spatial derivatives to avoid
any dissipation. However, the convection term is discretized using fifth-order WENO scheme to ensure a
robust behavior of the solution. The ghost fluid method (GFM) [4] is employed for the spatial discretization
of the Poisson equation (Equation ) to take into account the force due to surface tension as a pressure
jump. The resulting linear system of symmetric and positive definite matrix with five diagonals is solved
using multigrid algorithm for preconditioning a conjugate gradient (CG) method [66]. The curvature of the
interface k (c.f. Equation ) is computed using finite difference approximation of the level set function ¢
with the interpolation to the cell-interface crossing point. The atomization process is turbulent and hence,
the turbulent inflow condition is generated in the simulations using the synthetic turbulence method [67].

The viscous term is discretized using a formulation proposed by Sussman et al. [68]. This method
achieves second-order accuracy in regions away from the liquid/gas interface while first-order accuracy near
the interface. The time integration of the Navier-Stokes equations is based on a predictor-corrector scheme
with the time step size At determined based on a CFL condition similar to that of Kang et al. [69]. For a
value of CFL = ~, the time steps size is computed by satisfying the inequality

~
( (CCFL+VCFL)\/(CCFL +VerL)?+4(GorL)? +4(ScrL)? )

At < (45)

2

where Ccrr,, VorL, GorL, and Scpy, represent the CFL conditions based on convective, viscous, gravity, and

surface tension (capillary) forces, respectively. Now, considering the components of velocity u = [u, v, w]”
and acceleration due to gravity g = [¢s, gy, g-]T, each CFL number is computed as
max(|u|)  max(|v]) max(|w])
C = , 46
CFL Ax + Ay + Az (46)
//Jliq ,ugai 2 2 2
VCFL max < > X < (47)
phq Pgas (Ay) (AZ)

Gorr = \/lgT \/E \/@ (48)

omax (] k)
e (B2)?

where max(-) is the maximum value determined over all the cells in the domain.

Scrr, =

3.2.2. Projection method

The momentum conservation equation (see Equation ) is solved using a projection method using
the procedure of Vaudor et al. [48] with the predictor-corrector time integration scheme. The algorithm of
implementation of this projection method in ARCHER is given in Algorithm [6]

4. Numerical validation tests

Several two-phase flows validation tests are now presented to assess the behavior of the HyMOFLS
framework of liquid/gas interface reconstruction. First, a two-phase double shear layer under extreme
convective conditions is presented followed by the Rayleigh-Taylor instability, binary droplet collision, and
finally, the results from Rayleigh-Plateau instability are presented and compared against the experimental
observations [70].
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Algorithm 6 Projection method in ARCHER solver.
1: Compute u* (Predictor step):

u :W(pu —7(V-(u ®(pu))+V-(2uD)+B)> (50)
where V = Ax x Ay x Az is the total volume of a computational cell.
2: Solve for pressure P"*1 (Poisson equation for pressure):

1 a1 V- u*
V. <pn+1 (VP * )> = At (51)
3: Compute w1 (Corrector step):
u"tl = u —s—pnﬂ(—Vp +1h (52)

4.1. Two-phase double shear layer

The two-phase double shear layer destabilization under highly convective regime is an empirical test
used in our flow solver ARCHER to assess the stability of the numerical simulation when an interface
reconstruction method is employed. In this test, a low speed liquid layer is destabilized by the high speed
gas flowing above and below it under highly convective conditions of infinite Reynolds number (i.e., Re =
00, ¥ = 0) and infinite Weber number (We = oo, 0 = 0). Under such conditions, the chances that Navier-
Stokes equation becomes unstable are very high especially when the liquid/gas interface reconstruction is
not accurate. This is because the inaccurate interface reconstruction can lead to inaccuracy in density
computation and this error is propagated to the velocity components through Navier-Stokes equations
thereby destabilizing the entire system. This test specifically assess the accuracy of interface reconstruction
under extreme environment thereby giving the true capability of the HyMOFLS method. Furthermore,
numerical simulations of liquid jet/sheet atomization processes involve complex topological structures arising
under various flow conditions that need to be well captured.

To perform this test, we consider an L x L double shear layer configuration as shown in Figure [26] with
L = 0.003 being the length and width of the 2D domain with § = L/10 being the width of the liquid layer.
The density ratio between liquid and gas is taken to be 1000. The viscous and surface tension forces are
assumed to be many orders of magnitude smaller than the convective term, and therefore, are neglected.
Thus, the flow Reynolds number Re = oo and liquid based Weber number We = co. A divergence free initial
velocity field is prescribed in the domain given as

o oo () (£) () e (-2). -
v = 0.04sin (27er> exp (?’) , (54)

in which the value of A is taken as
30 , in gas phase
A= 1B (55)
2, in liquid phase.
Five mesh resolutions are considered in this test case ranging from 322 to 5122 with doubly periodic boundary
conditions. The simulations are performed until the physical time ¢t = 3 x 1073, The objective in this test
is to maintain the total kinetic energy and maximum velocity devoid of intermittent bursts anywhere in the
domain. The results shown for this test pertain to those obtained on a 1282 mesh resolution.
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Figure 26: Configuration of a 2D double shear layer.
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Figure 27: Time evolution of total kinetic energy and maximum cell centered velocity magnitude for 1282 mesh resolution.

First, the plots of the time evolution of the total kinetic energy (sum of kinetic energies of liquid and
gas phase) and maximum cell centered velocity magnitude in the computational domain are shown in

Figure The cell centered velocity [|u®|, is computed as ||[u®||, = /(u¢)? + (v¢)? and the maximum cell
centered velocity is computed according to the expression (||u®(l,) .. = , max. [|u°]|5. Due to the periodic
omaln

boundary conditions, the total kinetic energy Fii, must remain constant over time. From Figure it
can be observed that the kinetic energy remains almost constant over all times with a reduction in value
observed after t = 2 x 10~3. This reduction could be attributed to the artificial diffusion introduced by the
numerical discretization schemes used in the solver.

Next, focusing on Figure that shows the time evolution of the maximum cell centered velocity
magnitude, there are no intermittent velocity bursts observed. This highlights the ability of the HyMOFLS
method to reconstruct the liquid/gas interface accurately. As shown by Asuri Mukundan et al. [45], the
non-burst of the velocity goes to show that the interface reconstruction method is accurate for capturing
especially the under-resolved liquid structures even under extreme convective flow conditions.

Finally, the phase interface of the destabilized shear layer for multiple time instants using the HyMOFLS
method is shown in Figure [28 obtained on 1282 mesh resolution. It can be seen that there are few pockets
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in the computational domain away from the interface that are having higher velocity than those near the
interface. It is to be remarked that the employed mesh resolution well resolves the interface resulting in its
reconstruction using CLSVOF method indicated by blue color (see Section [2.3)).

Velocity Magnitude Velocity Magnitude
0 5 10 15 20 25 230 35 40 0 5 10 15 20 25 230 35 40

e — L —

(a) t = 1.07ms (b) t = 2.00ms

Figure 28: Phase interface (solid line) colored by interface method label and contour of magnitude of velocity for two-phase
double shear layer test using HyMOFLS method for 1282 mesh resolution. Blue color of interface indicate CLSVOF interface
reconstruction chosen within the context of HyMOFLS method.

4.2. Rayleigh-Taylor instability

Next, we employ the HyMOFLS method to simulate the the growth of a Rayleigh-Taylor instability. An
extensive number of works in the past have focused on studying and analyzing this instability, for example,
Refs. [71] [72] [73]. Although these tests were performed devoid of surface tension effect, the recent works
[19, 20, 2T] have presented the results that includes this effect for the realistic simulation of the growth of
the instability. In this test, the initial perturbed interface between the heavier (more dense) liquid on top
and lighter (less dense) liquid on the bottom is allowed to grow exponentially over time. Within the context
of this work, we follow the configuration as described by Desjardins and Pitsch [2I]. In order to study the
mesh convergence, we consider five mesh resolutions ranging from 32 x 128 to 512 x 2048 to discretize the
computational domain. The mesh convergence study is performed for an error metric of depth of penetration
of the mushroom head.

The initial interface given by the zero-level of the iso-contour of the level set function ¢ (within the
context of ARCHER solver) is expressed as

o(x,y) =y + Acos(2mx), (56)

where A = 0.05 is chosen for this test case. This initial interface is placed inside a [0, 1] X [0, 4] computational
domain with the periodic boundary condition along the horizontal direction while wall boundary condition
along the vertical direction. The densities of the top fluid and bottom fluid (denoted as fluid 1 and fluid 2,
respectively) are p; = 1.225kg/m? and ps = 0.1694 kg/m3, respectively. The dynamic viscosity of the two
fluids are taken as 1 = pe = 3.13 x 1073 kg/ms with the surface tension coefficient being o = 0.1337 kg /s?,
and the acceleration due to gravity is g = 9.81m/s?. This test is run upto a physical time of ¢ = 1.2s.
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Figure 29| shows the time evolution of the phase interface for the finest mesh resolution 512 x 2048 colored
using the URLS/RLS tagging algorithm. The blue color of the interface indicate that it is reconstructed
using CLSVOF method within the context of HyMOFLS method. Since the mesh resolution 512 x 2048 is
well resolving the interfacial regions, the URLS/RLS tagging algorithm of HyMOFLS method is determining
all the regions of the interface to be well resolved and hence tagging it with CLSVOF method of interface
reconstruction. It is to be remarked that these results agree well with the study by Desjardins and Pitsch
[21] (c.f. Figures 22 and 23 in this reference).
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Figure 29: Time evolution of phase interface for Rayleigh-Taylor instability test using HyMOFLS method with 512 x 2048
mesh resolution. Blue color of interface indicate CLSVOF tagged regions within the context of HyMOFLS method.

Due to the growing instability, the denser liquid (top liquid) accelerates and pushes its way through the
lighter liquid (bottom liquid) forming a mushroom head-like structure hereon called as spike. The depth
(in vertical y—direction) until which the denser fluid penetrates into the lighter fluid is defined as the spike
penetration within this work. An error in this spike penetration for each mesh resolution is determined as the
difference between the spike penetration of a given mesh resolution with respect to the reference solution
computed on 512 x 2048 grid. To that end, the plots of the phase interface for various mesh resolution
overlapped on each other for ¢ = 1.0,1.1, and 1.2 are shown in Figure [30] with the arrows indicating the
direction of increasing mesh resolutions. It can be clearly seen that there are overlap among the phase
interfaces for different mesh resolutions.

Next, we show the plot of mesh convergence of this spike penetration error at different time instants
along with the first-order and second-order error convergence lines in Figure We can observe that the
error converges along a second-order slope which indicates that higher the mesh resolution lower is the spike
penetration error validating our observation on overlap in phase interface (c.f. Figure .

4.3. Binary droplet head-on collision

So far, we have assessed the capability and accuracy of HyMOFLS method coupled with ARCHER
solver for 2D cases. We now test it for the binary droplet head-on collision in which two individual droplets
collide head-on such that their centers are oriented along the same axis. Such droplet collision scenarios
are physically relevant and realistically possible scenario in a typical atomization simulation. Once the two
droplets collide, there are three outcomes — droplet coalescence, bounce back with, and without satellite
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Figure 30: Overlap of phase interfaces for various mesh resolutions for Rayleigh-Taylor instability using HyMOFLS method.
Arrow indicates increasing mesh resolutions from 32 x 128 (F--)), 64 x 256 (=), 128 x 512 (=), 256 x 1024 (==, to
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Figure 31: Mesh convergence of spike penetration error for Rayleigh-Taylor instability test at ¢t = 1.0s @; t=1.1s @; t=12s
@ shown along with first-order convergence E[) and second-order convergence (= ='-)) lines.

droplet. The aim of this test is to compare the results from the simulations using HyMOFLS method
and experiments [70] in a qualitative fashion. To that end, we have chosen the configuration, initial, and
boundary conditions for this test as described by Tanguy and Berlemont [66]. Two identical droplets of
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diameter D = 800 pm are placed inside a 6D x 12D x 6D (L, x L, x L) domain with their respective
centers located at (0, L,/9,0) and (0, —L,/9,0) with Weber number We = 23. These droplets are made to
collide head-on with relative velocity of 1.44m/s and an impact parameter of 0. The computational domain
with slip wall boundary conditions on all its faces is discretized using a 128 x 256 x 128 mesh resulting
in equidistant mesh spacing of Az = Ay = Az = 37.5um leading to D/Axz = 21.33. The simulation is
performed with a CFL = 0.25. The results from the simulation are compared with the experimental study
by Ashgriz and Poo [70] with droplet Weber number We = 23 and impact parameter of 0.05 which is close
to zero.

The comparison of the results between the simulation and experiments is shown in Figure 32] The
simulation results are observed to be agreeing well with the experimental observations along with the repro-
duction of the morphology of the droplets before, during, and after head-on collision as seen in Figure
Next, it can be seen from Figure that the hybrid framework is appropriately tagging the interfacial
regions with the MOF (red regions) and CLSVOF (blue regions) methods. Overall, it can be inferred that
the HyMOFLS method demonstrates the capability and accuracy to simulate droplet collision phenomenon.

4.4. Rayleigh-Plateau instability

As a final validation case, we test the HyMOFLS interface reconstruction framework for the simulation
of Rayleigh-Plateau instability which is driven mainly by the surface tension forces. Similar to the work
of Ménard et al. [I8], we chose a L x L x L domain with L = 150 um. The initial profile for the level set
function is given according to the following expression

d(x,y,2) = ag —r + Ag cos(2mz /), (57)

where Ay is the amplitude of the initial disturbance set to 10% of the radius of ligament (i.e., cylinder) with
the radius R = 33.4pum, A being the wavelength set to A\ = 2L, a9 = kA/2w, and r = \/y? + 22 are chosen
for this test. The initial condition is chosen in order to have the wavenumber satisfying kA = 0.7 which
correspond to fastest growth rate [74]. The instability /disturbance is set along the x direction with the
boundary conditions in the computational domain chosen to be slip wall along = direction, slip wall along
the y— and z— planes, and outflow along y+ and z+ planes. The in-house Navier-Stokes solver ARCHER
[48] has been used to solve the Navier-Stokes equations in the simulations using the HyMOFLS method of
interface reconstruction. The physical properties are chosen to be piq = 1000kg/m?, puiq = 0.001 Ns/m?,
Peas = 1kg/m3, figas = 1.879 x 107°Ns/m?, and o = 0.072kg/s?. Due to the symmetry of the shape of
ligament under investigation, an eighth of the size of the cylindrical ligament is simulated using ARCHER.
The dispersion relation for this Navier-Stokes solver has been already shown in the past [I8] to be having
satisfactory agreement with the linear theory of Weber [74]. Therefore, in this paper, we investigate the
convergence of the breakup time for various mesh resolutions. To that end, we have considered the mesh
resolutions shown in Table [I1] with Az = Ay = Az for all the cases. It is to be noted that in this table, N,
represents the number of cells along x—direction.

Table 11: List of mesh resolutions and number of computational cells per diameter for the Rayleigh-Plateau instability with
L = 150 pm.

Domain size Mesh resolution Az(= Ay = Az)

323 4.6875 pm
643 2.3438 um
LxLxl 1283 1.1719 pm
2563 0.5859 um

The simulation is run for a long time for each mesh resolution to observe the breakup of the liquid
ligament into mother and satellite drops. Figure show the series of snapshots pertaining to 128% mesh
resolution displaying the development and propagation of the perturbation leading to the breakup into
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(a) Experimental snapshots from Ashgriz and Poo [70].

C =@

(b) Simulations with HyMOFLS method.

(c) Simulations with HyMOFLS method colored by cell tagging method.

Figure 32: Binary droplet collision comparison between experiments [70] and simulations performed using HyMOFLS method
with cell tagging colors — red regions represent MOF method tagging and blue region represent CLSVOF method tagging.

mother and satellite drops. The qualitative observation of these instantaneous snapshots show that the
results are agreeing with the literature [18, [10].

To quantitatively analyze this test case, the time instance of the breakup is computed. This breakup
time is defined as the time instance at which the first breakup event occurs in the simulation. A breakup
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Figure 33: Instantaneous snapshots of the breakup of liquid ligament for the simulation of Rayleigh-Plateau instability using
1282 mesh resolution.

event within this context is defined as the moment at which more than one liquid structure is formed. At
each simulation time step, the number of liquid structures are found using a connected component labelling
(CCL) algorithm [75] and the breakup event is characterized by the moment at which there exist more than
one liquid structure in the computational domain. The plot of the evolution of the breakup time is shown in
Figure [34) for four mesh resolutions ranging from 323 to 2562. From this plot, we can see that the breakup
time indeed is converged starting from NN, = 64 for the considered mesh resolutions for the HyMOFLS
framework of liquid/gas interface reconstruction.

Finally, we present the CPU time consumption for the HyMOFLS method for various mesh resolutions
considered for this test. To that end, we have compartmentalized the total time consumption per iteration
into time taken for interface reconstruction subroutines (i.e., HYMOFLS framework subroutines), velocity
solver subroutines, and Poisson solver subroutines. The literature works [10} T9] found that the Poisson solver
to be the highest time consuming subroutine. Therefore, the results presented in this paper pertain to the
relative CPU time consumption for the interface reconstruction subroutines and velocity solver subroutines
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Figure 34: Plot of breakup time for Rayleigh-Plateau instability for various mesh resolutions to observe convergence. N
represents number of cells along x—direction.

compared to the Poisson solver. The relative time consumption for interface reconstruction subroutine
is computed as the ratio of its time consumption to that of the Poisson solver while the relative time
consumption for velocity solver subroutine is computed as the ratio of its time consumption to that of the
Poisson solver. Figure[35|show the plots of the time evolution of this quantity for the interface reconstruction
subroutine (solid black line) and velocity solver subroutine (dashed red line). It can be seen that for this
3D test case, the time taken for the interface reconstruction subroutines remains predominantly lesser than
that of the Poisson solver. The intermittent spike observed around 0.2 ms in the time evolution of interface
reconstruction relative time consumption (solid black line) is attributed to the beginning of tagging of the
computational cells with MOF method near and after the breakup event. These intermittent spikes are
profoundly visible for the lower mesh resolution while not for the higher mesh resolution. This is due to the
fact that with increasing mesh resolution the interface gets well resolved thereby eliminating the need for
MOF interface reconstruction within the HyMOFLS method. Based on the presented results, the HyMOFLS
framework has demonstrated its capability as a computationally feasible numerical method to simulate liquid
breakup.

S

w
T
I
T
I
T
I
T
I

—
T
I
T
I
T
I
T
I

Relative CPU time taken
[\

=
(=)
[=}
v}
L
=
L
(=2}
o
oo
o
o
v}
L
[=2]
[=1
oo
o
<
=F
ot
o
=
f=]
=k
ot
o
v}
(==}
o
=F
&
(=1
=
[=1
=
ot
o
v}

. 0.4 .
t (ms) t (ms) t (ms) t (ms)

(a) 32° (b) 643 (c) 1283 (d) 256

Figure 35: Relative CPU time consumption per iteration for interface reconstruction subroutine E[) and velocity solver
subroutine ED relative to the time consumption of Poisson solver subroutine for Rayleigh-Plateau instability.
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5. Engineering applications

The HyMOFLS method is developed with the objective to accurately and (computationally) efficiently
simulate the fuel injection scenarios for real-time engineering applications. So far, the computational compar-
ison tests and validation tests have been performed for simple velocity profiles, flows under high convection,
and those that are dominated by surface tension under confined setting and environment. In order to assess
the capability of the HyMOFLS method to simulate the flows with fully developed turbulence, we now
present two injection simulations — turbulent liquid jet injection into quiescent gas and planar pre-filming
Airblast atomization. The simulation conditions for the former are inspired from the case presented by
Ménard et al. [I8] which is Diesel-like liquid jet injection condition while the latter is inspired from the
simulations from the work of Warncke et al. [76]. On one hand, in the case of the Diesel fuel injection in a
quiescent gaseous environment, the shear between the liquid and the gas phase and subsequent liquid fuel
breakup is caused solely due to the high speed of the liquid Diesel fuel. On the other hand, the liquid fuel
sheet on the pre-filmer plate is destabilized due to the high speed gas in the case of Airblast atomization.

5.1. Turblent liquid jet atomization

First, we apply the HyMOFLS method to the simulate turbulent liquid jet atomization inspired from the
Diesel injection systems. In choosing the operating conditions for this case, we have reduced the Reynolds
and Weber numbers compared to the real-time Diesel injection for the sake of computational feasibility of
the simulations. The operating conditions for this simulation are given in Table [I2]

Table 12: Operating condition for the turbulent liquid jet atomization simulation.

pliq/pgas Nliq/ﬂgas o Reliq Weliq Re, D]/A.’IJ lt/Ax
27.84 120 0.06 5800 11,600 58 42.74 4

A 3D x 3D x 24D domain is considered where D = 100 pm is the diameter of the liquid jet. A uniform
Cartesian grid of about 17 million cells is used to discretize the domain resulting in an uniform mesh spacing
of D/Ax = 42.67 throughout the domain. Although the smallest liquid structure might not be captured
with this employed mesh resolution, no sub-grid scale (SGS) models have been used in the simulations. The
liquid fuel is injected at a velocity of Ujiq = 100m/s. A fully developed turbulent pipe flow velocity profile
is imposed on the liquid inlet as the inflow conditions with the velocity fluctuations v’ = O.IOUHQ and the
turbulent integral length scale I, = 0.1D;. The turbulent inflow boundary conditions are generated using
the synthetic turbulence generation method of Klein et al. [67] in which correlated random velocities with a
prescribed length scale are generated. We considered this length scale to be equal to l;. For the considered
mesh resolution, we have I;/Az ~ 4 and the turbulent Reynolds number at injection Re, = p;u’l;/p; = 58.
The simulation is run upto a time of t* = tUj;q/D = 20.

Figure [36 show several instantaneous snapshots from the simulations representing the time evolution of
the jet penetration in the domain with a time spacing of At* = AtUyq/D = 2.5 between each image. We
observe that small ligaments and droplets are being ejected from the mushroom head of the liquid jet due to
the Rayleigh-Taylor and Rayleigh-Plateau instabilities. Furthermore, we can observe the three dimensional
waves on the surface of the liquid column in the Figure 36| caused by the transverse velocity gradients. These
instability waves are vital in the detachment or breakup of the liquid column of the jet into ligaments and
droplets.

Upon further analysis of the jet, we find three zones of instability and breakup as shown in Figure
First zone is the near nozzle zone which is upto five jet diameters downstream in which there is no observation
of breakup but only generation of waves on the liquid column. In the second zone (or the transition zone),
the gas enters the dense part of the liquid jet causing the waves to roll up and leading to first breakup of
the liquid ligaments. The third and final zone is chaotic in nature in which many ligaments and drops are
ejected from the liquid core thereby leading to primary atomization.

Since we have used HyMOFLS which uses MOF and CLSVOF methods of interface reconstruction, it is
interesting to see the regions where these methods are activated/used. To that end, we present snapshots
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Figure 36: Time evolution of turbulent atomization of liquid diesel jet. The temporal spacing between each consecutive snapshot
(from left to right) is A¢* = 2.5.
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Figure 37: Zones of instabilities on surface of atomizing turbulent liquid jet.

from the simulations of the liquid jet at multiple time instants with each region colored with red (MOF
tagged region) and blue (CLSVOF tagged region) in Figure It can be observed that the MOF method
is used appropriately for both high curvature regions (waves formed on the liquid column) and the small
(under-resolved) liquid structures (ligaments and droplets near the mushroom head breakage). In fact, the
initial conditions of this simulation pushes our Navier-Stokes solver towards its limits of operation. Moreover,
it can be seen that the results are comparable to those observed in experimental investigation [77] as well
as previous numerical studies [I8], [0} [19].

On observing Figure we see that as the jet grows downstream, the number of cells tagged with MOF
(red cells) are increasing. Therefore, in order to assess the efficiency of the HyMOFLS method with the MOF
method, the time evolution of percentage of total number of interfacial cells in the computational domain
tagged with MOF method (red regions) and CLSVOF method (blue regions) would be a good metric. To
that end, the Figure shows the plot of the time evolution of the percentage of number of MOF and
CLSVOF tagged cells for the total simulation duration. It can be seen that when using the HyMOFLS
framework, a maximum of 4% the total number of computational cells containing interface are tagged with
MOF method [45]. In our previous study [45], we have demonstrated the ability of the MOF method to
simulation primary atomization of turbulent liquid injection, however, yielding higher computational cost.
The result presented in Figure [39| demonstrates a significant step-up in terms of computational efficiency for
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Figure 38: Turbulent atomization of liquid diesel jet with temporal spacing At* = 3 between each image. Red regions
correspond to MOF interface reconstructed regions and blue regions correspond to CLSVOF interface reconstructed regions.

the HyMOFLS method compared to the MOF method. This justifies the motivation and development of an
accurate and robust numerical method for simulating primary atomization at a low to modest computational
cost.

w

—_

Percentage of number of cells
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Figure 39: Time evolution of the percentage of number of MOF cells E]) and CLSVOF cells E]) in the computational
domain in the simulation duration.
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5.2. Airblast atomization

Finally, we apply the HyMOFLS method to perform simulations of a fuel injection configuration and
operating condition relevant for aircraft engine called planar pre-filming Airblast atomization technique. In
this technique, a thin film of liquid fuel is injected on a solid plate which is then destabilized by the high
speed gas flowing above and below the plate. The simulations of the Airblast atomization presented in this
work follows the work of Warncke et al. [76]. The computational domain as well as the inlet phase velocity
profiles considered in this work are shown in Figures [40] and
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Figure 40: Computational domain. Figure 41: Inflow velocity profile with zoomed liquid profile

view.

This simulation is performed in a 6.6 mm x 3.3 mm x 3.3 mm domain that is discretized using a 256 x
256 x 512 mesh with Shellsol D70 fuel which has similar properties of a Jet A-1 fuel with the liquid velocity
uliq = 0.5m/s and gas velocity ugas = 50m/s. The operating conditions of the simulations corresponding
to altitude relight conditions are presented in Table A turbulent flat velocity profile is imposed on the

Table 13: Operating condition for the turbulent liquid jet atomization simulation.

pliq/pgas ,ulliq/,UJgas % Regas Weliq.ﬁlm
641.67 86.83 0.0275 13,333 10.69

liquid and gas phase with their respective velocities as shown in Figure The turbulence is generated only
in the gas phase using the synthetic turbulence generation method of Klein et al. [67] with the fluctuations
kept to 10% of the bulk gas velocity and the turbulent integral length scale set to 3% of the total gas channel
height of 8.1 mm. The faces of the solid pre-filmer plate on which the liquid fuel is injected is modeled using
staircase immersed boundary method (SIBM).

Figure[2show the instantaneous snapshots of the top and side views of the atomizing liquid film from the
simulation. It can be seen in the top view (Figure that instability waves are formed on the liquid film on
top of the pre-filmer plate. It is speculated that these waves are due Kelvin-Helmholtz instability, however,
a more detailed investigation is needed to verify this conjecture. In fact, the simulations accurately captures
these waves especially near the edge of the pre-filmer plate when compared to the experimental investigations
[78, [76]. These waves carry the liquid to the edge of the pre-filmer solid plate thereby forming either a bag
which then breakups into droplets or form finger-like ligament structures which then subsequently breakup
into droplets due to Rayleigh-Plateau instability. Furthermore, the ligaments and varying sized cluster of
droplets produced downstream of the domain are visible in these instantaneous snapshots. Finally, the
zoomed portions beside the side view (Figure with the underlying computational mesh (vertical and
horizontal lines in the background) are shown to give insights into the thickness of liquid sheet as well as
size of a liquid ligament. It can be seen that for this instantaneous time step, the liquid sheet thickness is
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spanning about 4Az to 7Ax while the liquid ligament size varies in the range 7Ax to 10Ax demonstrating
that these liquid structures are well resolved in the simulation.

-

(a) Top view of liquid film. (b) Side view of pre-filmer plate.

Figure 42: Top and side views of the solid pre-filmer plate in Airblast atomizer. Flow direction is from top to bottom. The
zoomed subfigures show the Cartesian grid in the background depicting the computational thickness of the liquid sheet (top
subfigure in (b)) and size of a liquid ligament (bottom subfigure in (b)).

Hence, based on these results presented, HyMOFLS method is proved to be a viable interface reconstruc-
tion method that captures both resolved and under-resolved liquid structures for an atomization application.
Moreover, it was observed to strike a balance between the accuracy and computational cost as well as pre-
vent the artificial/numerically induced premature breakup of the liquid structure from the coherent liquid
structure. These are the prominent desirable characteristics for a numerical method especially when used
for simulating practically relevant injection configuration and operating conditions.

6. Conclusions

A hybrid moment of fluid-level set (HyMOFLS) method has been developed for the purpose of the
liquid/gas interface reconstruction within the context of multiphase flows. This hybrid framework involves
the usage of an accurate moment of fluid (MOF) method coupled with the computationally cost effective
coupled level set volume of fluid (CLSVOF) method for interface reconstruction. The advantage of the
HyMOFLS method is that the accurate MOF method has been used only for reconstructing the under-
resolved liquid structures while the CLSVOF method is used for the resolved liquid structure. Within this
method, a narrow band of cells around the interface is tagged (or labeled) with either MOF or CLSVOF
method based on the interface resolution quality (IRQ) criterion proposed within the framework of the
HyMOFLS method. This criterion relates the interface curvature and mesh spacing to the resolution of the
interface thereby identifying the under-resolved regions in the flow. The results from canonical academic
verification tests such as Zalesak’s notched disk, 2D, and 3D droplet deformation have been presented which
compared the performance of the HyMOFLS, MOF, and CLSVOF methods. A parametric study has been
performed for the cell tagging (with MOF or CLSVOF) criterion within the framework of HyMOFLS method
for these verification tests.
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Then, the HyYMOFLS method has been applied to simulate the evolution of the double shear layer under
high convective conditions which yielded stable velocity results without any intermittent bursts thereby
deeming to be employed for the real-time engineering applications. This method is then assessed to simulate
the growth of Rayleigh-Taylor instability for which a second-order spike penetration error was observed.
The HyMOFLS method is then put to work to simulate the binary droplet collision wherein the simulation
results agreed with the experimental study. As a final validation test, the HyMOFLS method has been
employed to simulate the Rayleigh-Plateau instability which is a purely surface tension-driven instability.
The qualitative analyses of the results agreed well with the literature. On the quantitative aspect, first, we
observed that the breakup time is converged for the mesh resolutions considered and the time taken by the
interface reconstruction subroutines are lesser than the Poisson solver which is a typical trend observed in
the literature.

Finally, this hybrid framework has been employed to simulate primary atomization of liquid for two
configurations — turbulent jet atomization under diesel engine-like condition and planar pre-filming Airblast
atomization under aircraft altitude relight operating condition. Despite the complexity of the flow structures,
the method is found to be robust and stable in terms of simulating the high speed fuel injection scenarios. In
fact, this method is able to capture the surface waves formed on the liquid column for the Diesel jet injection.
Furthermore, a good qualitative agreement was found between the simulations and the experiments for the
Airblast atomization configuration. For many complex cases of liquid fuel atomization, the HyMOFLS
method has been shown to produce accurate results in a computationally cost effective manner thereby
making it a viable numerical method for simulations of liquid fuel atomization processes.
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Appendix A. Algorithm of coupled level set volume of fluid (CLSVOF) method

The CLSVOF method employed in this paper corresponds to that developed by Ménard et al. [I§] which
was inspired from the work of Sussman and Puckett [I7]. This method uses both the liquid volume fraction
F' as well as level set signed distance function ¢ for interface reconstruction. In fact, the reconstruction of
the interface as well as its geometric properties are both accurate (due to level set function) and volume con-
servative (due to volume fraction function). From the level set representation, the interface is reconstructed
as a plane in 3D whose expression is given as

ik = gk (@ = 20) + by (y — y5) + iz = 21) + ik, (A1)
with n = [a, b, c]T being the normal to the interface and d being the shortest distance of the interface from
the computational cell centre.

The list of steps involved in CLSVOF method employed in this work are given in Algorithm As
explained in Section [2.1.3] in order to maintain the accuracy and the volume conservation property of the
CLSVOF method, mutual correction of level set and volume fraction is implemented which is evident from
the lines 1 and 3 in this algorithm. The following paragraphs elucidates the implementation methodology
of the steps shown in this algorithm.
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Algorithm 7 Steps in CLSVOF algorithm in ARCHER solver.

Volume fraction restriction (using level set function)
Interface reconstruction

Level set correction (using volume fraction)
Redistancing level set function

Volume fraction and level set advection

Appendiz A.1. Volume fraction restriction

Quite often, the Fulerian interface reconstruction method such as CLSVOF method can generate jetsam
and flotsam which can cause inaccuracies in the conservation of mass in the simulations. Since a directional
splitting advection of the quantities is implemented in our in-house ARCHER solver, a natural way to
remove these jetsams and flotsams is through volume restriction. We perform this restriction operation as
shown in Algorithm [§

Algorithm 8 Volume fraction restriction algorithm.

1 if (F>¢) or (¢ <—x)) then pe=10""x=(3)V3Az
2: F=0

3: elseif (F<1l—¢) or (¢>x)) then

4: F=1

5: end if

Appendiz A.2. Interface reconstruction

Once the volume fraction is cleaned up, the interface is then reconstructed. The interface reconstruction
is performed using the method of minimization of the least square error following the work of Sussman and
Puckett [T7]. The first step in reconstructing the interface is to compute the coefficients a, b, ¢, (coefficients
of the unit normal n) and d which are obtained by minimizing the least square error computed as

ECLSVOF /Zk+1/2 /y7+1/2 / i+1/2 /
R Zk—1/2 Yj—1/2 Ti—1/2
(Dige — (@ — 23) + biju(y — y;) + cign(z — 2) + dijp)” dw dy dz
(A.2)

which in the discrete form is given as

k+1 Jj+1 1+1

CLSVOF, A /
E; ik > YD wiigga—n KU (ir jop) X

k'=k—1j'=j—1i'=i—1

(i g — @i (@i — @) + by (Y — y5) + cije(zw — zi) + dijx)?
(A.3)

where the weights w;/—; js_j x—r are chosen such that the Equation (A.3) approximates Equation (A.2))
(similar to that of Sussman and Puckett [I7]) and K. represents a smoothed delta function with thickness
€ = V/3Ax (with Az = Ay = Az in our solver) expressed as

1 T -
K'(p) = 2(1+COS(.E)), if |pl<e (A4)
0, otherwise

Once the coefficients for the interface are obtained, the value of d is corrected to conserve the liquid
volume (upto the machine precision) under reconstructed interface by solving

’Foriginal o Freconstructed(n’ d)| _ O, (A5)
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using geometric method [56] where the superscript “original” represent the original liquid volume fraction
in the mixed computational cell.

Appendiz A.3. Level set correction

As seen in the Algorithm [8] the level set function at time ¢ is used for correcting the volume fraction
at time ¢t™ and subsequently for the next time steps. However, the loss of mass occurred from the level set
function is not taken into account in the positioning and orientation of the interface. Moreover, the presence
of liquid volume fraction is to reduce such mass loss, hence, it is required to correct the level set function in
the vicinity of the interface. The important criterion to keep in mind in designing the correction procedure
is to avoid the spurious oscillations in the values of interface curvature. To that end, we have employed the
below correction formula for the level set function ¢

¢ wh+ (1 —w)d (A.6)

where the < represents the assignment operator, d is the exact signed distance function, i.e., the shortest
distance of the interface from the computational cell center, and w is a parameter obtained based on the
difference between ¢ and d according to Le Chenadec and Pitsch [I9].

Appendiz A.j. Redistancing level set function

Due to the correction of the level set function, its signed distance property gets eroded and does not
represent the accurate location of the liquid/gas interface anymore. In order to regain the signed distance
property, redistancing of this level set function is required and is performed using the method inspired from
the work of Sussman et al. [49]. The highlight of our redistancing algorithm is that, unlike Sussman et al.
[49], we apply it only to the cells which are not corrected by the level set correction algorithm.

Appendiz A.5. Volume fraction and level set advection

A directional splitting advection approach is employed for the transport of the liquid volume fraction F
and level set function ¢ whose procedure, numerical methods and schemes are explained in Sections 2:1.1]
and [2.1.2] the details of which are not recalled here. It is to be noted that this directional splitting advection
approach, based on the corrected values of F' and ¢ computed from the previous steps of the CLSVOF
algorithm, involves interface reconstruction after advection along each Cartesian direction.

This algorithm for liquid/gas interface reconstruction within the context of CLSVOF method is coupled
with the Navier-Stokes equations for the time advancement of the velocity and pressure fields.

Appendix B. Discretization of centroid advection equation

This appendix details the numerical method behind the discretization of equation of the advection of the
phase centroid (see Equation ) The advection of the phase centroid is performed in tandem with that
of the liquid volume fraction. The advection equation of the phase centroid (liquid and gas phase centroids)
is given as

dzcom
ot
This equation is discretized using Eulerian Implicit-Lagrangian Explicit (EI-LE) scheme.

Now, consider a 2D computational cell shown in Figure [B:43] with the velocity on the cell faces,
x—coordinate of the left and right edges of the cell, and the centroid of liquid and gas phase marked.
Before proceeding to the presentation of discretization of Equation , let ;41,2 = v+ and the subscript
“COM” will be dropped hereon (i.e., xcom = x). For the sake of simplicity, the subscript “COM” will be
dropped for the remainder of this appendix. Without loss of generality, the presentation of the discretization
of the advection equation is for the u—component of the velocity specifically for the liquid phase centroid
advection. The advection along y— and z—directions and for the gas phase are fairly straightforward to be

= U(:ECOM). (B'l)
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Figure B.43: Tllustration of 2D computational cell with liquid centroid for discretization of phase centroid advection equation.

derived similar to that for the liquid phase. Now, discretizing the advection equation using explicit Euler

scheme for temporal derivative, we get
mn—i—l — "

At
The velocity u(x) is obtained as an interpolated velocity from those at the cell faces according to

= u(x). (B.2)

-~ uiy (T — o) Huy p(ey — )

= B.3
u(z) N (B3)
Now, substituting Equation (B.3)) in Equation (B.2)) and rearranging the terms, we get
ul 4 At u oAt
=t (@) + (e - ) (B4)
Now, let v} = uii&—fm which becomes the local cell-based CFL number. Hence, we get,
"M ="+l (z— o) +u (zy — ), (B.5)

where z,z_ are constants, ul} are taken from time step ¢". We have two choices for the = to be taken
either from time instant t™ or t"*! — leading to Lagrangian Explicit (LE) or Eulerian Implicit (EI) schemes,
ie.,

. 2" = Lagrangian Explicit (LE) scheme (B.6)
x* = .
z"! = Eulerian Implicit (EI) scheme
Appendiz B.1. Lagrangian Ezxplicit (LE) scheme: x = 2™
When the choice is made to take x™ for the centroid x—coordinate, the equation simplifies to

" =" by (2" — 2 ) Fu_(z, —2™). (B.7)

Upon grouping the terms that belong to x™, we get the final expression
2" = La" — (upx_ —u_xy), (B.8)

where L =1+ (us — u_) is the Lagrangian coefficient.
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Appendiz B.2. Eulerian Implicit (EI) scheme: x = x"*1

With o = 2! choice for the discretization of the advection equation, we get
"M =" fuy (2" ) fu (v — 2. (B.9)
Now, we group the terms belonging to ™!, we get the final expression as
"M =Ex (2" — (upx_ —u_xy)) (B.10)

where £ =1/(1 — (uy —u_)) is the Eulerian coefficient.

In order to be consistent with the liquid volume fraction advection within the framework of directionally-
split advection operations, we switch between the EI and LE schemes between the coordinate directions of
advection and also between consecutive time steps in the simulation.

Appendix C. Liquid structure resolution criteria

This appendix details and derives the interface resolution quality (IRQ) criterion (see Algorithm [3]) used
within the hybrid moment of fluid-level set (HyMOFLS) framework for tagging cells with moment of fluid
(MOF) and coupled level set volume of fluid (CLSVOF) methods of interface reconstruction. In the context
of HyMOFLS method, the differentiation between the resolved liquid structures (RLS) and under-resolved
liquid structures (URLS) is made using this criterion. The rationale behind the development of HyMOFLS
method is to use MOF method for capturing URLS and CLSVOF method for capturing RLS. To that end,
let us first consider the expression of IRQ as given in Equation ,

1
IRQ = —— C.1
Q= (€
where k is the local curvature of the interface and Az is the local grid spacing. Albeit the IRQ identifies
the resolution of the liquid structure, following the work of Canu [58], the expression in Equation (C.2)) is
applied to regions of the flow, i.e., it is evaluated in each computational cell containing liquid/gas interface.

Hence, Equation (C.2)) within the context of ARCHER solver becomes,

1

IRQ(i, 4, k) = (i, j, k)As = {

< a, = under-resolved region 7 (C.2)

> «, = resolved region

where 14, j, k are the computational cell indices. Since ARCHER solver has constant mesh spacing, i.e.,
Ax = Ay = Az throughout the domain, therefore, the mesh spacing parameter becomes independent of
the cell indices. In order to give a context on the IRQ for different computational cells (and regions of the
domain), Figure shows the illustration of an interface topology containing to different curvature regions
marked by their respective (approximate constant) radii of curves Ry and Ry. The size of the dashed and
dashdotted circles in this figure pertains to these radii values. From the concept of geometry, it is known
that curvature is the reciprocal of the radius of the curve, hence, the smaller the radius of the curve, large
is the curvature, and hence, according to Equation smaller is the IRQ value. When this IRQ value
passes below the threshold of «, this cell present in this region is termed as the under-resolved region (URR)
else it is in the resolved region (RR).

Now, let us derive Equation from a geometrical and physical point of view. In a typical atomization
simulations, numerous liquid structures of varying sizes and shapes are produced. For the sake of simplicity
of the derivation and without loss of generality, consider a sphere (as shown in Figure as an idealized
scenario of the RR and URR presented above in Figure [C.:44] In mathematical terms, this sphere is set to
be under-resolved, when D < fAx, where D is its diameter. As shown in Equation , the x is computed

as V¢
k=-V. [ —"— C.3
(|v¢||2) ’ (©3)
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Figure C.44: Radii of curves (approximate constant values) at Figure C.45: Radius of sphere for illustration of IRQ.
two regions of interface (black solid line) showing resolved re-

gion (RR) and under-resolved region (URR) on an underlying

computational grid.

where ¢ is the level set signed distance function. Now, we have

D < Az = URR, (C.4)
Therefore, 2R < Az = URR, (C.5)
2R
— <1 .
=~ 3a5 <1= URR, (C.6)
1
Therefore, E T < 1= URR. (C.7)

Now, from the knowledge of geometry, we know the following relation between the local principal curvatures
and local radius of a sphere given as

1 1

T A Toext (C.8)

Hl(iaj7 k) =

For the sake of clarity, these indices 4, j, k will be dropped hereon for the remainder of this derivation. We
also know that the total curvature of an object is computed as k =| K1 + k2 |. Therefore, we get

1 1 2 2
= | — — == = = t R 0
K ’R+R ‘R’ R(. > 0), o)
K 1 '
Therefore, — = —.
erefore, 5 = —
We substitute in this relation into Equation (C.7) to get
2
—= < 1= URLS
BEAz
a1 < 1= URLS
B KAz
C.10
! 6 = URLS ( )
/@Ax
B

Therefore, IRQ < 1 = URLS

Therefore, IRQ < a« = URLS
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where o« = /4. In this work, we choose 8 = 8 thereby obtaining o = 2. The value of 8 = 8 corresponds
to the scenario, when there are 8 or less than 8 computational cells spanning the diameter of the sphere, it
is considered under-resolved region otherwise resolved region [58]. Therefore, the final under-resolved liquid
structure/resolved liquid structure (URLS/RLS) criterion for distinguishing the derivation of the criterion
for detecting URLS arrives to the following condition,

IRQ — 1 _ < 2,= Under—res?lve.d structure, (C.11)
kAx > 2,= Resolved liquid structure.

Since the value of IRQ is computed from the local curvature x and the local mesh spacing Az, the URLS/RLS
criterion is checked in every computational cell that contains liquid structure, i.e., liquid/gas interface. This
means that for each computational cell containing a non-zero value of liquid volume fraction (deeming
it belonging to a liquid structure), the IRQ value is computed based on local x and local Az in that
cell. The computed value for IRQ is then checked for the URLS/RLS criterion (Equation (C.11)) for the
purposes of tagging cells with MOF or CLSVOF method within the context of HyMOFLS method of interface
reconstruction.
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