
HAL Id: hal-03269096
https://hal.science/hal-03269096v2

Preprint submitted on 25 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An extended and more practical mwp flow analysis
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller

To cite this version:
Clément Aubert, Thomas Rubiano, Neea Rusch, Thomas Seiller. An extended and more practical
mwp flow analysis. 2021. �hal-03269096v2�

https://hal.science/hal-03269096v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An extended and more practical mwp flow

analysis⋆

Clément Aubert1[0000−0001−6346−3043], Thomas Rubiano2, Neea Rusch1, and
Thomas Seiller2,3[0000−0001−6313−0898]

1 School of Computer and Cyber Sciences, Augusta University
2 LIPN – UMR 7030 Université Sorbonne Paris Nord

3 CNRS

Abstract. We improve and refine a method for certifying that the val-
ues’ sizes computed by an imperative program will be bounded by polyno-
mials in the program’s inputs’ sizes. Our work “tames” the non-determinism
of the original analysis, and offers an innovative way of completing the
analysis when a non-polynomial growth is found. We furthermore enrich
the analyzed language by adding function definitions and calls, allowing
to compose the analysis of different libraries and offering generally more
modularity. The implementation of our improved method, discussed in a
tool paper [4], also required to reason about the efficiency of some of the
needed operations on the matrices produced by the analysis. It is our
hope that this work will enable and facilitate static analysis of source
code to guarantee its correctness with respect to resource usages.

Keywords: Static Program Analysis · Implicit Computational Complexity ·

Automatic Complexity Analysis · Program Verification

1 Introduction

This work takes a step further in the implementation of static analysis methods
inspired from work in implicit computational theory [11], and more particularly
the series of work from the so-called flow analysis of the “Copenhagen school”,
notably Neil Jones, Lars Kristiansen, and Amir Ben-Amram. The Copenhagen
school approach to implicit computational complexity initiates in the celebrated
size-change principle of Ben Amram [8] to characterise termination of programs,
and evolved in more precise techniques to capture resource usage and more
particularly growth rate between variables’ sizes. The overall flow analysis ap-
proach is related in spirit to abstract interpretation [9,10]; as noted by Jones [15]
it bounds transitions between states (e.g. commands) instead of states. A first

⋆ This material is based upon research supported by the Thomas Jefferson Fund of
the Embassy of France in the United States and the FACE Foundation. Thomas
Rubiano and Thomas Seiller are also supported by the Île-de-France region through
the DIM RFSI project ”CoHOp”.

https://face-foundation.org/higher-education/thomas-jefferson-fund/
https://face-foundation.org/

2 C. Aubert et al.

work implemented this technique to develop a static analysis tool detecting loop
quasi-invariants [22,23].

One landmark result in this series of work is the precise and detailed analysis
of the relationship between the resource requirements of a computation and the
way data might flow during the computation [14]. Thanks to a typing system
resting on matrices with coefficients in the so-called mwp semi-ring, programs
in a basic imperative language could be guaranteed to have variables growing
at most polynomially with respect to their inputs. While this does not ensure
termination, it provides a certificate that if the program terminates, it will do
so in polynomial time and using at most polynomial space. We here continue in
this direction and implement this “mwp-bounds analysis” [14] on a fragment of
the C programming language [4].

Our contribution is both of practical and theoretical interest: a python pro-
gram analyzing C source code is currently being developed [4], and documented at
https://seiller.github.io/pymwp/. This implementation largely benefited
from the improvements discussed in the current paper and triggered the devel-
opment of a modified analysis allowing for the use of more efficient algorithms
to carry out the analysis. However, our theoretical contributions can be read
independently from this implementation, and answers some of the questions
asked by Jones and Kristiansen [14, Section 1.2], notably pushing further their
method. Two of those questions are 1. Can the method be extended to richer
languages? 2. How powerful and convenient is this method? We answer the first
question positively, by adding treatment of function definition and calls, and by
implementing the analysis on an actual programming language instead of a sim-
ple imperative language. Our work suggests that to answer the second question
precisely, a lot of care is needed: the analysis uses matrices in a non-deterministic
way to compute the influence of variables on each others, resulting in objects
growing exponentially in number. By altering the semi-ring at the core of the
original analysis, we show not only that more parsimonious methods can be
used, but also that the mathematical machinery can be substituted. While our
alternative approach essentially carries out the same analysis, we improved the
implementability (and in fact implemented it already), re-usability and efficiency
of the techniques while illustrating that the general method could be adapted
easily for different types of analysis.

1.1 Complexity, resource growth and implementations: a brief tour

Our approach is conceptually guided by implicit computational complexity, that
generally focus on restricting e.g. recursion [7,18] or type systems [5,17] to in-
sure that a programming language captures a particular complexity class, or
perform amortized resource analysis [13]. The particular domain concerned here,
data-flow analysis, more specifically focuses on measuring or restricting loops in
imperative programs [14,16,24] and was implemented on e.g. low level assembly-
like programs [21].

However, our work is probably best compared with approaches coming from
other communities sharing the same goal of finding worst case resource con-

https://seiller.github.io/pymwp/

An extended and more practical mwp flow analysis 3

sumption. Complexity analyzers of different languages, such as SPEED [12] for
C++, COSTA [2] for Java bytecode, RaML for OCaml [20] or Cerco [3] for C

all attempts to generate (possibly certified) cost annotation on (subsets of) pro-
gramming languages in use.

1.2 Contribution: a different take on implementing the theory

We would like to argue that the “mwp” approach we are extending and making
more practical is different from the previously mentioned implementations in
four respects: 1. it is focused on the growth of variables instead of focusing on
their possible values, 2. it is modular, in the sense that the internal machinery
can be altered – as we illustrate in this paper – without the need to re-develop
large chunks of the theory, 3. it is at the same time language-independent, as
it reasons abstractly on imperative languages, and easy to port, as we illustrate
with our implementation [4], 4. it focuses on characterizations of “chunks” of
any size of the program allowing to abstract values and their encoding.

2 Background: the original flow analysis

We here quickly recall the original syntax of the imperative language, that we
will extend with function call and definition in Sect. 4, then the original analysis
by Jones and Kristiansen and its mathematical machinery.

2.1 Language analyzed: fragments of imperative language

We will be using the following imperative programming language, where variables
range over R, X, X’, Y, Z and Xi for i ∈ N, and need not to be declared, and
given the binary operations on expression −, +, and ×, and on booleans • (such
as ∧, ∨, etc.), and a collection of comparison operators between expressions�.

e :=X ‖ e - e ‖ e + e ‖ e * e (Expression)

b :=e�e ‖ b•b (Boolean expression)

C :=X = e ‖ if b then C else C ‖ while b do {C}

loop X {C} ‖ C ; C (Command)

The semantics is straightforward, with loop X {C} meaning “do C X times”
and C;C being used for sequentiality (“do C, then C”). We generally write “pro-
gram” for a series of commands composed sequentially.

2.2 A Flow Calculus of mwp-Bounds for Complexity Analysis

The original paper [14] studies flows between variables in imperative programs,
that are of three types: maximum, weak polynomial and polynomial flows char-
acterize the three forms of controls from one variable to another, with increasing

4 C. Aubert et al.

growth rate4. The programs are written in (a variation on) the language pre-
sented in Sect. 2.1, and the bounds are represented and calculated thanks to
vector and matrices whose coefficients are elements of the mwp semi-ring.

Definition 1 (mwp semi-ring, matrix algebra). Letting mwp = {0,m,w, p}
with 0 < m < w < p, and α, β, γ range over mwp, the mwp semi-ring
(mwp, 0,m, +,×) is defined with + = max, α × β = max(α,β) if α,β 6= 0,
and 0 otherwise.

Fixing a natural number n, we use M , A, B, C, . . . to denote n×n matrices
over mwp, Mij for the coefficient in the ith row and jth column of M , + for the
component wise addition, and × for the product of matrices defined in a standard
way. The 0-element for the addition is 0ij = 0 for all i, j, and the 1-element for
product is 1ii = m, 1ij = 0 if i 6= j, and the resulting structure M(mwp) is a
semi-ring. Finally, M0 = 1, Mm+1 = M ×Mm and the closure operator ·∗ is
defined as M∗ = 1 +M + (M2) +

Although not crucial to understand our development, details about strong
semi-rings and the mwp semi-ring can be found in Sect. A.1, and the general
construction of a semi-ring whose elements are matrices with coefficients in a
different semi-ring – so, in particular, M(mwp) – is given in Sect. A.2.

Below, we let V1, V2 be column vectors with values in mwp, αV1 to be the
usual scalar product, and V1 + V2 to be defined component-wise. We write {αi }

for the vector with 0 everywhere except for α in its ith row, and {αi ,
β
j } for

{αi } + {
β
j }. Given a matrix M and a vector V , M

j
←− V is M with the jth

column vector replaced by V . We write {αi→ j} for the matrix M with Mij = α
and 0 everywhere else, and var(e) for the set of variables in the expression
e. In the analysis, the assumption is made that exactly n different variables
are manipulated throughout the analyzed program, n-vectors are assigned to
expressions and n× n matrices are assigned to commands using rules reminded
in Figure 1 [14, Section 5].

The intuition is that if ⊢jk C : M can be derived using these rules, then all the
values computed by C will grow at most polynomially w.r.t. its inputs: this is the
core and powerful result of the original paper [14, Theorem 5.3]. Furthermore,
the coefficient at Mij carries quantitative information about the way Xi depends
on Xj, knowing that 0- and m-flows are harmless and without constraints, but
that w- and p- flows are more harmful w.r.t. polynomial bounds and need to
be handled with care, particularly when used in loops – hence the condition on
the L and W rules. Although simple in appearance, the proof techniques are
far from trivial, but the relative simplicity of the derivation and of the matrices
manipulated make the analysis flexible and easy to carry.

In fact, the assignment may fail in case of loops—that is, some programs
may not be assigned a matrix—, as at least one of the variables used in the body
of the loop may depend “too strongly” upon another, making it impossible to
ensure polynomial bounds on the loop itself (as iterating the body can lead to
super-polynomial dependencies).

4 Note that 0 is also a possible type, corresponding to the absence of any dependency.

An extended and more practical mwp flow analysis 5

E1
⊢jk Xi : {mi }

E2
⊢jk e : {wi | Xi ∈ var(e)}

⊢jk e1 : V1 ⊢jk e2 : V2
⋆ ∈ {+,−} E3

⊢jk e1⋆e2 : pV1 + V2

⊢jk e1 : V1 ⊢jk e2 : V2
⋆ ∈ {+,−} E4

⊢jk e1⋆e2 : V1 + pV2

(a) Rules for assigning vectors to expressions

⊢jk e : V
A

⊢jk Xj = e : 1
j
←− V

⊢jk C1 : A ⊢jk C2 : B
C

⊢jk C1 ; C2 : A×B

⊢jk C1 : A ⊢jk C2 : B
I

⊢jk if b then C1 else C2 : A+B

⊢jk C : M
∀i,M∗

ii = m L
⊢jk loop Xl {C} : M∗ + {pl→ j | ∃i,M∗

ij = p}

⊢jk C : M
∀i,M∗

ii = m and ∀i, j,M∗

ij 6= p W
⊢jk while b do {C} : M∗

(b) Rules for assigning matrices to commands

Fig. 1: Original (“Jones-Kristiansen”) rules

To capture a larger class of programs, the calculus used to assign a matrix to
a program – that corresponds to a proof search in a derivation system – is non-
deterministic. As a consequence, multiple matrices—hence, multiple polynomial
bounds—may be assigned to the same program.

We will use the following example (of “iteration-dependent” loop [14, Exam-
ple 3.4]) as a common basis to discuss our improvements.

Example 1. Consider the command loop X3{X2= X1 + X2}. The body of the
loop – the expression X1 + X2 – admits 3 different derivations that we name π0,
π1 and π2:

E1
⊢jk X1 :

(

m
0
0

)
E1

⊢jk X2 :
(

0
m
0

)

E3
⊢jk X1 + X2 :

(

p
m
0

)

E1
⊢jk X1 :

(

m
0
0

)
E1

⊢jk X2 :
(

0
m
0

)

E4
⊢jk X1 + X2 :

(

m
p
0

)

E2
⊢jk X1 + X2 :

(

w
w
0

)

From π0, the derivation of loop X3{X2= X1 + X2} can be completed, but
since the L rule requires to have only m coefficients on the diagonal, π1 cannot
be used to complete the derivation, because of the p coefficient in a box below:

6 C. Aubert et al.

.... π0

⊢jk X1 + X2 :
(

p
m
0

)

A
⊢jk X2 = X1 + X2 :

(

m p 0
0 m 0
0 0 m

)

L
⊢jk loop X3{X2 = X1 + X2} :

(

m p 0
0 m 0
0 p m

)

....
π1

⊢jk X1 + X2 :
(

m
p
0

)

A

⊢jk X2 = X1 + X1 :

(

m m 0
0 p 0

0 0 m

)

Similarly, because of the w coefficient on the diagonal after applying A, π2

cannot be used to complete the derivation either, and hence only one derivation
for this command holds. Note that in general, multiple derivations can exist and
that this “indeterminacy” [14, Section 8] is needed to capture as many programs
as possible.

3 ”Taming” non-determinism and non-termination

The first two improvements over the existing analysis we offer are to:
1. “internalize” the non-determinism, so that at most one matrix per command

is produced,
2. “internalize” the failure, so that at least one matrix per command is pro-

duced.
These changes were introduced first to obtain an efficient (or, actually, to sim-
ply enable an) implementation, but they came with by-products. Indeed, the
naive approach consisting in producing a list of all possible matrices correspond-
ing to all the non-deterministic choices (and removing those matrices for which
the analysis fails) would result in a very slow implementation even for small
programs.

To represent non-determinism, we use in the matrices functions from choices
to coefficients in mwp instead of simply coefficients in mwp. This is explained by
the following remark – made formal in Sect. A.3: the overall analysis produces
a function from a space of choices C to the space M(mwp) of matrices over
the mwp semi-ring, i.e. it results in a function C → M(mwp). But there is a
semi-ring isomorphism between C → M(mwp) and M(C → mwp), i.e. matrices
whose coefficients are functions from choices to the mwp semi-ring. We use this,
together with a clever representation of the space C → M(mwp) to provide
an alternative formalism allowing for more efficient implementation. Moreover,
compacting all the possible derivations into one matrix results in a gain of space
and time as different matrices obtained from different choices aremore or less the
same, i.e. they usually differ only on a few coefficients, leading to a quite compact
representation. As a side-product, this also allows the user to be presented with
different polynomial bounds, so that they can pick the one that suits their needs.

Concerning failure, we extend the mwp semi-ring with a special value∞; one
key point is that the resulting structure is not a strong semi-ring–as opposed to
mwp or M(mwp)–because the latter structure requires the equality 0 ×∞ = 0
to hold while we need 0 ×∞ = ∞ to avoid overlooking some super-polynomial
computations: if part of the program computes an exponential value but then

An extended and more practical mwp flow analysis 7

throws it away, 0 × ∞ = 0 would hide the super-polynomial computation, re-
sulting in an incorrect analysis5. This way of representing failure also has the
advantage of being local, so that which input variable impacts which variable
in a non-polynomial way can be precisely pinpointed. We believe this feature
can be of crucial use in a situation where some variables are known to be of
small size, hence where a non-polynomial bound on particular input variables is
acceptable.

Taken together, our improvements insure that exactly one matrix will always
be assigned to a program, but also gives an opportunity to chose between “the
lesser of two evils” when it fails: if two derivations produce ∞ coefficients on
different flows, the user could decide to privilege one over the other based on
knowledge about the inputs’ sizes.

We give in Figure 2 the alternative system we are introducing in full, but
will gently discuss it though the remaining parts of this section and in Sect. 4:
note that the A, C and I rules are unchanged (even if the sum and product are
in a different semi-ring) and that the call rule is new.

⋆ ∈ {+,−} EA

⊢ Xi⋆Xj : (0 7→ {mi ,pj }) + (1 7→ {pi ,
m
j }) + (2 7→ {wi ,

w
j })

EM

⊢ Xi * Xj : {wi ,
w
j }

(a) New rules for assigning vectors to expressions
⊢ e : V A

⊢ Xj = e : 1
j
←− V

⊢ C1 : A ⊢ C2 : B C
⊢ C1 ; C2 : A×B

⊢ C1 : A ⊢ C2 : B I
⊢ if b then C1 else C2 : A+B

⊢ C : M L∞

⊢ loop Xl {C} : M∗ + {∞j → j |M∗

jj 6= m}+ {pl→ j | ∃i,M∗

ij = p}

⊢ C : M W∞

⊢ while b do {C} : M∗ + {∞j → j |M∗

jj 6= m}+ {∞i → j |M∗

ij = p}

call
⊢ Xi = F(X1,. . ., XN) : 1

i
←− ((0 7→M(f)0) + . . .+ (k 7→M(f)k))

(b) New rules for assigning matrices to commands

Fig. 2: New rules

5 Here we can be a bit more detailed: while throwing away the infinite coefficient
would hide the super-polynomial computation, it would not contradict the ultimately

polynomial dependency of the values w.r.t. the inputs. As such, 0 ×∞ = 0 could
still be used to bounds values, at the cost of losing the bounds on time and space
usage for terminating programs. A modular implementation allowing to decide which
structure to use in under progress.

8 C. Aubert et al.

3.1 Choice data flow semi-rings

The first step towards our “internalization of choice” is to design the correct semi-
ring. We start by reasoning abstractly, the detail of this construction is given in
Sect. A.3. Given a strong semi-ring S, we define M(S) to be the strong semi-ring
whose elements are matrices with coefficients in S (Lemma 3), similarly to the
matrix algebra of Definition 1. We also define A → S to be the strong semi-
ring whose elements are functions from a set (of choices) A to S (Lemma 4). We
furthermore observe (Lemma 5) that for all set A and strong semi-ring S,M(A→
S) and A → M(S) are isomorphic (Definition 3). By chosing A =

∏p
i=1 Ai, it

follows that there exists an isomorphism

M(

p
∏

i=1

Ai → S) ∼=

p
∏

i=1

Ai →M(S)

for all family of sets (Ai)i=1,...,p, using the usual cartesian product of sets. This
dual nature of the semi-ring considered will be useful:
– we implement the analysis by assigning elements of M(

∏p
i=1 Ai → mwp),

this allows for a more efficient implementation by using some clever repre-
sentation of elements of

∏p

i=1 Ai → mwp detailed in Sect. 5;
– we use the representation of the resulting matrixM as an element of

∏p
i=1 Ai →

M(mwp) to produce, from an assignment α = (a1, a2, . . . , ap) ∈
∏p

i=1 Ai, a
matrix M [α] ∈ M(mwp), recovering the mwp-flow that would have been
computed by making the choices a1, a2, . . . in the derivation.

Remark 1. As the unique degree of non-determinism in the rules to assign a
matrix to commands is 3 at this point (cf. Example 1), our modification of the
analysis flow consists simply (for the moment) in recording the different choices
by letting Ai = {0, 1, 2} for all i = 1, . . . , p where p is the number of times a
choice had to be taken. Note that in a later section, other sets Ai will be used
in order to deal with function calls.

Example 2. Re-using the derivations π0, π1 and π2 from Example 1, we can now

represent the three vectors
(

p
m
0

)

,
(

m
p
0

)

and
(

w
w
0

)

with a single vector

(

{07→p,17→m,27→w}
{07→m,17→p,27→w}

0

)

Where we make the abuse of notation of writing 0 for {0 7→ 0, 1 7→ 0, 2 7→ 0}.6

Since, in particular7, M({0, 1, 2} → mwp) ∼= {0, 1, 2} → M(mwp), the obtained

vector can be rewritten as 0 7→
(

p
m
0

)

, 1 7→
(

m
p
0

)

, 2 7→
(

w
w
0

)

.

6 The implementation supports both coefficients from mwp and coefficients from
{0, 1, 2}m → mwp, cf. e.g. a simple assignment assign expression example.

7 This is a variant of Lemma 5. While the latter lemma is stated for an algebra of
square matrices, a similar result holds for rectangular matrices of a fixed size; the
algebraic structure is no longer that of a semi-ring as rectangular matrices do not
possess a proper multiplication, but the proof can be adapted to show the existence
of an isomorphism of modules between the considered spaces.

https://seiller.github.io/pymwp/demo/#basics_assign_expression.c

An extended and more practical mwp flow analysis 9

Our derivation system replaces the E3 and E4 rules with a single rule EA

(for “additive”), and imposes an additional restriction on E2, thus giving EM

(for “multiplicative”), so that it is used only when E1 followed by E2 or E3
cannot be applied.

The implementation of binary additive operators (− and +) with EA cap-
tures all possible choices for distinct operands and merges i and j into a single
coefficient when i = j. Binary multiplication is handled by applying the EM rule
– note that the application of E2 to additive operators in the original system is
still handled by the last choice present in EA. Given this need to treat binary op-
erations differently, based on operators and combinations of operands, more work
is needed to handle statements of greater arity. As the implementation already
processes abstract syntax trees of C commands recursively, handling operations
of greater arity will require implementing additional recursive steps, but we do
not expect that to be problematic conceptually or at the level of implementation.
At the light of this reflection, and knowing that there is no benefit in applying
E2 to a single variable, as it result in a w coefficient being applied in lieu of a
lesser m coefficient, it is easy to observe that EA and EM are as expressive as
E1, E2, E3 and E4 taken together – something we will be using when proving
the equi-expressiveness of our system (Lemma 1).

3.2 Representing failure with an “infinity” coefficient

The original analysis would stop whenever a non-polynomial flow was detected,
putting an end to the chosen strategy (i.e. set of choices) and restarting from
scratch with another one. We will now discuss the fact that every derivation can
be completed even in the presence of non-polynomial flows, which constitutes our
second improvement. This is done by first extending the mwp semi-ring with a
new element. While this approach results in derivations for program where some
variables are not polynomially related to their inputs, we argue that pinpointing
which variables are “faulty” from within the analysis can have benefits.

The first step is to incorporate a top element ∞ into our semi-rings to
represent undefined elements. The semi-ring mwp

∞ we will be using is hence
(mwp∪{∞}, 0,m, +∞,×∞), with ∞ > α for all α ∈ mwp, +∞ = max as before,
and α×∞ β = 0 if α,β 6=∞ and α or β is 0, max(α,β) otherwise. This different
condition in the definition of ×∞ insures that once non-polynomial flows have
been detected, they cannot be erased (as ∞×∞ 0 =∞), but comes at the price
of the strength of the semi-ring (the details are discussed in Sect. A.4).

Below, we will work with M(mwp∞), write × for ×∞ and similarly for +,
and remind the reader that we write {αi→ j} for the matrix M with Mij = α
and 0 everywhere else. The only cases where the original analysis may fail is if
the side condition of L or W (Figure 1) are not met; we now replace those by
the rules L∞ and W∞ of Figure 2, with no side condition.

Those rules, which can always be applied, simply replace the problematic
coefficients with∞. Note that in the cases for which the original rule is applicable,
the results coincide. This will be essential to prove that our modified analysis is
coherent with Jones and Kristiansen’s original approach (Lemma 1).

10 C. Aubert et al.

3.3 Merging the two improvements: illustration with operations

We introduced and discussed the deviations from the original system for the “ax-
iomatic” / “expression” (EA, EM) and “loop” rules (L∞ and W∞), but remains
to briefly discuss the rules for assignment (A), if (I) and the composition (C),
that remained unchanged. Those rules are the place where both improvements
meet. Mathematically speaking, adopting the semi-ring defined over matrices us-
ing coefficients in {0, 1, 2}m→ mwp∪{∞} is fairly simple, but computationally
speaking, simple operations like multiplication and addition of matrices become
very costly and memory-demanding. This became particularly problematic when
keeping a usable implementation in mind, and is illustrated below.

Example 3. In our new system, consider the following derivation:
EA

⊢ X1 + X2 : V A
⊢ X1 = X1 + X2 : 1

1
←− V

EA

⊢ X1 - X3 : V ′
A

⊢ X1 = X1 - X3 : 1
1
←− V ′

I
⊢ if b then {X1= X1+ X2} else {X1= X1- X3} : (1

1
←− V) + (1

1
←− V ′)

with

V = 0 7→ {m1 ,p2 }+ 1 7→ {p1 ,
m
2 }+ 2 7→ {w1 ,

w
2 }

V ′ = 0 7→ {m1 ,p3 }+ 1 7→ {p1 ,
m
3 }+ 2 7→ {w1 ,

w
3 }

1
1
←− V =

(

m 0 0
0 m 0
0 0 m

)

1
←− V ∼=

(

(07→m)+(1 7→p)+(27→w) 0 0
(07→p)+(1 7→m)+(27→w) m 0

0 0 m

)

1
1
←− V =

(

m 0 0
0 m 0
0 0 m

)

1
←− V ′ ∼=

(

(07→m)+(1 7→p)+(27→w) 0 0
0 m 0

(07→p)+(1 7→m)+(27→w) 0 m

)

Now, to perform the addition required by the I rule, some care is needed: indeed,
the choices in the left branch of the derivation are independent from the choices
in the right branch, and we must use coefficients in {0, 1, 2}2→ mwp to represent
the 23 choices. Assuming the choice in the left branch is first, we obtain e.g. for
the beginning of the top-left coefficient (the complete coefficient will be given
below, once we introduced a more compact notation):

(0 7→ (0 7→ (m+m = m)))+(0 7→ (1 7→ (m+p = p)))+(0 7→ (2 7→ (m+w = w)))

Writing ab 7→ for a 7→ b 7→, with a, b ∈ {0, 1, 2}, and a� 7→ (resp. �a 7→) if the
second (resp. first) choice has no impact on the resulting coefficient, we can let:

A = 00 7→ m+ 01 7→ p+ 02 7→ w + 1 7→ p+ 20 7→ w + 21 7→ p+ 22 7→ w

to obtain

(1
1
←− V) + (1

1
←− V ′) =

(

A 0 0
(0� 7→p)+(1� 7→m)+(2� 7→w) m 0
(�07→p)+(�1 7→m)+(�27→w) 0 m

)

Although the presentation and numbering diverge a bit, the example at
https://seiller.github.io/pymwp/demo/#improvement_paper_example3.c can
help the curious reader to check that the implementation reflects this derivation
correctly.

https://seiller.github.io/pymwp/demo/#improvement_paper_example3.c

An extended and more practical mwp flow analysis 11

Example 4. Re-using Example 1, we now obtain in our new system a derivation
that assign to loop X3{X2 = X1 + X2} the unique matrix

(

m (07→p)+(1 7→m)+(27→w) 0
0 (07→m)+(1 7→∞)+(27→∞) 0
0 (07→p)+(1 7→0)+(27→0) m

)

where we observe that 1. only one choice (0) – one assignment – gives a matrix
without∞ coefficient, corresponding to the fact that, in the original system, only
π0 could be used to complete the proof, 2. the choice impact the matrix only lo-
cally, the coefficients beingmostly the same, independently from the choice, 3. the
influence of X2 on itself is where possible non-polynomial growth rates lies, as the
∞ coefficient are in the second column, second row. This example was not imple-
mented, as loop is not a standard C operator, but is currently being implemented
as a restricted form of for loop (cf. https://github.com/seiller/pymwp/issues/5).

We are now in possession of all the material and intuitions to state the
correspondence between our approach and the one of Jones and Kristiansen.

Lemma 1. Given a program P , there is a single matrix M ∈ M({0, 1, 2}p →
mwp∞) such that P ⊢ M , i.e. the system is deterministic. Moreover, for any
assignment α = (a1, . . . , ap) ∈ Ap, we have that

P ⊢jk M [α] if and only if M [α] ∈M(mwp).

This shows that the performed analyses coincide, as M [α] ∈M(mwp) implies
that no ∞ coefficient occurs in it. However, our alternative definition should be
understood as an important improvement, as it allows for a more efficient imple-
mentation (Sect. 5). But before discussing the efficiency of the implementation,
we will now explain the natural but important extension to function calls enabled
by our alternative formalism.

4 Extending the analysis with function calls

We begin by extending the syntax presented in Sect. 2.1 by adding function
declarations F := f(X1, . . ., XN){C; return R} and a command that performs
a function call and assign its return value to a variable Xi = F(X1, . . ., XN)8.
A program is now a series of function declarations, with one of them called main

with N = 0, and such that all the commands of the form Xi = F(X1,. . ., XN)

refers to a function previously declared. A chunk is simply a series of commands
inside a function declaration9.

One of the key points of our contribution is the extension of the analysis to
function calls, in a way that can be used in practice, as we handle a function f

8 Function calls that discard the output could also be dealt with easily, but are vacuous
in our effect-free language

9 Note that this implies that if a loop belongs to a chunk, then the entire loop body
belongs to the chunk.

https://github.com/seiller/pymwp/issues/5

12 C. Aubert et al.

with a single analysis that stores a minimal amount of data for latter calls. The
principle is the following: given the matrix M(f) obtained from the analysis of
the program computing f , we store only the k choices for which no∞ coefficients
appear, and then project them to only keep track of the different input/output
behaviors, merging choices leading to the same result. After this operation, we
are left with a family M(f)0,M(f)1, . . . ,M(f)k of matrices10 that should be
understood as providing quantitative (i.e. polynomial, weak polynomial, maxi-
mum, or zero) information about the dependency of output values w.r.t. input
values. Now, the analysis of the command calling the function f is dealt with by
the call rule of Figure 2.

Formally, we show that our definition of composition is coherent with the
initial analysis as follows. We consider two chunks : the first chuck P contains
a call to a function f , the second is obtained by replacing within P the call to
the function f by inserting in its place the sequence of commands F computing
f . This second chunk is called P [F]. We then prove that the matrix associated
to P is “the same”11 Intuitively, this mechanism provides the expected result
because the choices made in the chunk F do not affect the context P [·], and the
variables used in the chunk F are not used in the context P [·] except for the
return variables.

More formally, let P be a chunk of program, containing a call to the function
f , and let F be the chunk computing the function f . We define from P the
context P [·], a chunk containing a hole [·] to be filled with the chunk F , obtained
as follows (supposing f has a single output variable).

– We remove the line with the function call, say Xi=f(X1, . . ., XN);.
– We add in place the following lines, where R, Y1, . . ., Yn are fresh variables:

Y1 = X1;

. . .
YN = XN;

[·]
Xi = R;

The code P [F] is then obtained by defining a chunk F̃ , and inserting it in
place of the symbol · in P [·]. The chunk F̃ is obtained as follows from F :

– the header is removed,
– the input variables of F are renamed to Y1, Y2, . . ., YN,
– the variable returned by f is renamed to R, the return statement is removed,
– all other variables are renamed if needed to avoid using the same names as

the variables in P [·]. We write the set of these variables VF .

10 To ease the presentation, the syntax considered here is restricted to functions with
a single output value, so we actually have vectors in place of matrices here. But it
is more natural to think in terms of matrices here, as the overall approach is valid
in the more general setting in which functions may have several output values, and
then the obtained objects are indeed matrices.

11 Here one has to consider equality up to some projections as the chuck F inserted in
P may introduce new choices and use additional variables.

An extended and more practical mwp flow analysis 13

Example 5. Refer to Figure 3 for a simple example of the code transformation
for in-lining a function call.

P =

int main (){

X3 = X1 + X2;

X2 = X3 + X1;

X1 = f(X2);

}

P [·] =

int main (){

X3 = X1 + X2;

X2 = X3 + X1;

Y1 = X2;

[·]
X1 = R;

}

Q =

int f(int X1){

loop X1{X2 = X2 + X3};

return X2;

}

Q̃ = loop Y1{R = R + X4};

Fig. 3: A simple example of “inlining” a function call

Now, we can compute both matrices:
– M(P) where the line Xi=f(X1, . . ., XN); is analysed using the call rule,

and
– M(P [F]).

We write ΠP (M(P [F])) the projection of M(P [F]) onto the variables in P and
(1 −ΠP)(M(P [F])) the projection of M(P [F]) onto the variables not in P .

Some non-deterministic choices may appear within the (modified) chunk F̃
inside P [F], i.e.

– the coefficients of the matrix M(P) are elements of the semi-ring
∏p+1

i=1 Ai →
M(mwp), with one particular choice corresponding to the call rule – we write
the corresponding index i0;

– the coefficients of P [F] are elements of the semi-ring
∏p+k

i=1 Bi → M(mwp),

where k choices are made within the chunk F̃ – we write the corresponding
indexes j1, j2, . . . , jk (note these are in fact consecutive indexes).

We note π : {1, . . . , p+ k} → {1, . . . , p+1} the projection of the choices in P [F]
onto the corresponding choices in P , i.e.

π(j) =







j if j < j0
i0 if j0 6 j < jk
j − k + 1 if jk < j

We note that each matrix used as axiom in the function call corresponds to a
specific assignment on indexes j1, . . . , jk. We write Ψ : Ai0 →

∏jk
i=j1

Bi the cor-

responding injection. This is extended to Ψ̄ :
∏p+1

i=1 Ai →
∏p+k

i=0 Bi in a straight-
forward way.

We can now state the main theorem showing that the call rule adequately
analyses function calls.

14 C. Aubert et al.

Theorem 1. For all assignment α of
∏p+1

i=1 Ai,

M(P)[α] = (1 −ΠP)(M(P [F]))[Ψ̄ (α)]

Moreover, for all assignment β of
∏p+k

i=0 Bi not in Im(Ψ̄), the matrix (1−ΠP)(M(P [F])[β])
contains an infinite value.

Proof. To prove this, we first notice that it is sufficient to prove it for the simplest
chuck P containing only one command: Xi = f(X1, . . ., XN). This is explained
by the compositional nature of the analysis (a sequence of commands is simply
assigned the product of the matrices of each individual command). Then, check-
ing that the theorem holds in this case is a straightforward, though tedious (due
to keeping track of all indices), computation.

5 Implementation of the analysis

The formulation of the extended mwp analysis exposed in the previous sections
was also intended for implementation. As such, the choice of the representation of
non-determinism – for instance – was also guided by our wish for a faster analysis,
something not discussed in depth in our tool paper [4], or our documentation. In
this section, we expose some of the specific choices made in the implementation.

5.1 Non-determinism, and the challenges to efficient calculations

As explained in the above sections, the result of the analysis is a matrix with
coefficients in a semi-ring of the form

∏p

i=1 Ai → M(mwp)– setting aside ∞
coefficients for a moment. To implement this correctly, we represent elements
of this semi-ring as polynomials w.r.t. the generating set given by the functions
δ(i, j) :

∏p

i=1 Ai → mwp defined by δ(i, j)(a1, a2, . . . , ap) = m if aj = i and
δ(i, j)(a1, a2, . . . , ap) = 0 otherwise. i.e. an element of

∏p
i=1 Ai → mwp is repre-

sented as a polynomial
∑n

i=1 αi

∏ki

j=1 δ(ai,j , bi,j) with αi ∈ mwp.

This basis have an important property: the monomials αi

∏ki

j=1 δ(ai,j , bi,j)
in a polynomial can be ordered in such a way that the product with another
monomial is ordered. i.e. if m 6 m′ and both m × n and m′ × n are non-zero,
then m × n 6 m′ × n. This order is leveraged to obtain efficient algorithms
for computing operations on the representation of coefficients, similar to what
is done using Gröbner bases for computation of standard polynomials. For in-
stance, the algorithm for multiplication of polynomials makes use of the property
above and proceeds as follows to compute the product of a polynomial P with
∑n

i=1 αi

∏ki

j=1 δ(ai,j , bi,j) (supposing the representation of P is ordered):

1. compute the products Pi = P × αi

∏ki

j=1 δ(ai,j , bi,j) for all i;
2. compare and order a list L of all the first elements of those polynomials;
3. append the smallest element to the result and remove it from the correspond-

ing Pi;
4. insert the (new) first element of Pi to the list L if it exists;

https://seiller.github.io/pymwp/
https://github.com/seiller/pymwp/blob/746da71a5490c5f21ebc5643ea20822f78876959/pymwp/polynomial.py#L199

An extended and more practical mwp flow analysis 15

5. if L is non-empty, go back to step 3.

This clever method has some very concrete consequences. As an example, our
explosion.c program calls the multiplication 11,907 times and could not be
completed with a naive multiplication implementation. More precise profiling
further exposes the need for this optimization.

5.2 Infinite values cluttering the analysis, and difficulties to
evaluate

One very costly aspect of the analysis is the evaluation step which takes a ma-
trix with coefficients in

∏p

i=1 Ai → mwp and checks all possible assignments
(a1, . . . , ap) ∈

∏p
i=1 Ai to look for infinite coefficients. While this step is neces-

sary (in one form or another) if one wishes to produce the actual mwp matrices
certifying polynomial bounds (something needed at least once to allow for func-
tion calls), we implemented a specific data structure allowing to keep track of
infinite assignments on the fly, thus allowing the analysis to provide a qualitative
answer quickly. I.e. the analysis can ensure the existence or not of mwp-bounds
without computing the corresponding matrix.

This is implemented by a structure we called delta graphs. This is a graph
whose vertices are monomials; the graph is populated during the analysis by
adding those monomials that appear with an infinite coefficient – i.e. possible
choices leading to ∞ in the resulting matrix. This graph is structured in layers:
each layer corresponds to the size of the monomials it contains (the number of
deltas δ(i, j) is contains). The intuition is that a monomial – or rather a list
of deltas δ(,)– defines a subset of the space

∏p

i=1 Ai; the less deltas in the
monomial, the greater the subspace represented. (Note here that our intuitions
come from the standard topological structure of spaces of infinite sequences,
where such a monomial represents a “cylinder set”, i.e. an element of the standard
basis for open sets.) As we populate the delta graph, we create edges within a
given layer to keep track of differences between monomials: we add an edge
labeled i between two monomials if and only if they differ only on one delta
δ(, i) (i.e. one is obtained from the other by replacing the first index of δ(, i)).
This is used to implement a “fusion” method on delta graphs which simplifies the
structure: as soon as as a monomialm in layer n has Card(Ai)−1 outgoing edges
labelled i, we can remove all these monomials and insert a shorter monomial in
layer n− 1 (obtained from m by simply removing δ(, i)). This implements the

fact that
∑Card(Ai)−1

k=0 mδ(k, j) = m.

Remember the delta graph represents the subspace of assignments for which
an infinite coefficient appeared. So if at some point the delta graph is completely
simplified (i.e. “fusions” to the graph with a unique monomial consisting in an
empty list of δ(,)), it means the whole space of assignments is represented
and no mwp-bounds can be found. On the contrary, if the analysis ends with a
delta graph different from the completely simplified one, it means at least one
assignment exists for which no infinite coefficients appear, and therefore at least
one mwp-bound exists.

https://seiller.github.io/pymwp/demo/#other_explosion.c
https://seiller.github.io/pymwp/utilities/
https://github.com/seiller/pymwp/blob/946a5b44692325095392694950ed03807f059b52/pymwp/delta_graphs.py
https://github.com/seiller/pymwp/blob/946a5b44692325095392694950ed03807f059b52/pymwp/delta_graphs.py#L274

16 C. Aubert et al.

6 Future work

We here provide some details on extensions of this work that we are currently
working on, or that will be tackled in the near future.

The first natural line of work is the extension of the language analysed, in
particular to accommodate other data structures. While structures such as lists
should not be problematic, dealing with pointer will certainly require more in-
volved work, in particular to ensure the theoretical results obtained by Jones and
Kristiansen hold, i.e. that the obtained mwp-bounds are indeed correct. These
extensions, together with the extension to function calls discussed in this paper,
will then be added within our implementation of the analysis.

A second line of work that was already started is to implement the analysis
in the Compcert compiler [19], which would allow for a formal certification of the
polynomial bounds computed by the analysis using the Coq proof assistant [1].
Some preliminary work in this direction was already done. In particular, it seems
natural to use compcert-ssa [6] to be later used as stepping stone towards an
implementation within llvm – and if possible certified-llvm [25] – which would
enable the analysis to programs written in other languages than C.

References

1. Coq documentation, https://coq.github.io/doc/
2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Costa: Design and

implementation of a cost and termination analyzer for java bytecode. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Com-
ponents and Objects. pp. 113–132. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

3. Amadio, R.M., Ayache, N., Bobot, F., Boender, J.P., Campbell, B., Garnier, I.,
Madet, A., McKinna, J., Mulligan, D.P., Piccolo, M., Pollack, R., Régis-Gianas,
Y., Sacerdoti Coen, C., Stark, I., Tranquilli, P.: Certified complexity (cerco). In:
Dal Lago, U., Peña, R. (eds.) Foundational and Practical Aspects of Resource
Analysis. pp. 1–18. Springer International Publishing, Cham (2014)

4. Aubert, C., Rubiano, T., Rusch, N., Seiller, T.: An implementation of flow calculus
for complexity analysis (tool paper). In: Submitted to APLAS 2021 (2021)

5. Baillot, P., Terui, K.: Light types for polynomial time computation in
lambda-calculus. In: LICS. pp. 266–275. IEEE Computer Society (2004).
https://doi.org/10.1109/LICS.2004.1319621

6. Barthe, G., Demange, D., Pichardie, D.: Formal verification of an ssa-based middle-
end for compcert. ACM Trans. Program. Lang. Syst. 36(1), 4:1–4:35 (2014).
https://doi.org/10.1145/2579080

7. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of
the polytime functions (extended abstract). In: Kosaraju, S.R., Fellows,
M., Wigderson, A., Ellis, J.A. (eds.) STOC. pp. 283–93. ACM (1992).
https://doi.org/10.1145/129712.129740

8. Ben-Amram, A.M., Jones, N.D., Kristiansen, L.: Linear, polynomial or ex-
ponential? complexity inference in polynomial time. In: Beckmann, A., Dim-
itracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms, 4th

https://compcertssa.gitlabpages.inria.fr
https://www.cis.upenn.edu/~stevez/vellvm/
https://coq.github.io/doc/
https://doi.org/10.1109/LICS.2004.1319621
https://doi.org/10.1145/2579080
https://doi.org/10.1145/129712.129740

An extended and more practical mwp flow analysis 17

Conference on Computability in Europe, CiE 2008, Athens, Greece, June
15-20, 2008, Proceedings. LNCS, vol. 5028, pp. 67–76. Springer (2008).
https://doi.org/10.1007/978-3-540-69407-6_7

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Confer-
ence Record of the Fourth ACM Symposium on Principles of Pro-
gramming Languages, Los Angeles, California, USA, January 1977.
pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973,
http://dl.acm.org/citation.cfm?id=512950

10. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Neuhold, E.J. (ed.) Formal Description of Programming Concepts:
Proceedings of the IFIP Working Conference on Formal Description of Program-
ming Concepts, St. Andrews, NB, Canada, August 1-5, 1977. pp. 237–278. North-
Holland (1977)

11. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI. LNCS, vol. 7388, pp. 89–109.
Springer (2011). https://doi.org/10.1007/978-3-642-31485-8_3

12. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: Precise and efficient static esti-
mation of program computational complexity. In: Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
p. 127–139. POPL ’09, Association for Computing Machinery, New York, NY, USA
(2009). https://doi.org/10.1145/1480881.1480898

13. Hofmann, M., Moser, G.: Multivariate amortised resource analysis
for term rewrite systems. In: Altenkirch, T. (ed.) 13th International
Conference on Typed Lambda Calculi and Applications, TLCA 2015,
July 1-3, 2015, Warsaw, Poland. LIPIcs, vol. 38, pp. 241–256. Schloss
Dagstuhl (2015). https://doi.org/10.4230/LIPIcs.TLCA.2015.241,
http://www.dagstuhl.de/dagpub/978-3-939897-87-3

14. Jones, N.D., Kristiansen, L.: A flow calculus of mwp-bounds for com-
plexity analysis. ACM Trans. Comput. Log. 10(4), 28:1–28:41 (2009).
https://doi.org/10.1145/1555746.1555752

15. Jones, N.D., Nielson, F.: Abstract Interpretation: A Semantics-Based Tool for Pro-
gram Analysis, Handbook of Logic in Computer Science, vol. 4, pp. 527 – 636.
Oxford University Press (1995)

16. Kristiansen, L., Niggl, K.H.: On the computational complexity of imperative
programming languages. Theor. Comput. Sci. 318(1–2), 139–161 (Jun 2004).
https://doi.org/10.1016/j.tcs.2003.10.016

17. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1),
163–180 (2004). https://doi.org/10.1016/j.tcs.2003.10.018

18. Leivant, D.: Stratified functional programs and computational complexity. In:
Van Deusen, M.S., Lang, B. (eds.) POPL. pp. 325–333. ACM Press (1993).
https://doi.org/10.1145/158511.158659

19. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

20. Lichtman, B., Hoffmann, J.: Arrays and references in resource aware ML. In: Miller,
D. (ed.) 2nd International Conference on Formal Structures for Computation and
Deduction, FSCD 2017, September 3-9, 2017, Oxford, UK. LIPIcs, vol. 84, pp. 26:1–
26:20. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.26,
http://www.dagstuhl.de/dagpub/978-3-95977-047-7

https://doi.org/10.1007/978-3-540-69407-6_7
https://doi.org/10.1145/512950.512973
http://dl.acm.org/citation.cfm?id=512950
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1145/1480881.1480898
https://doi.org/10.4230/LIPIcs.TLCA.2015.241
http://www.dagstuhl.de/dagpub/978-3-939897-87-3
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1016/j.tcs.2003.10.016
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1145/158511.158659
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.4230/LIPIcs.FSCD.2017.26
http://www.dagstuhl.de/dagpub/978-3-95977-047-7

18 C. Aubert et al.

21. Moyen, J.Y.: Resource control graphs. ACM Trans. Comput. Logic 10(4) (Aug
2009). https://doi.org/10.1145/1555746.1555753

22. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk detection. In:
D’Souza, D., Kumar, K.N. (eds.) ATVA. LNCS, vol. 10482. Springer (2017).
https://doi.org/10.1007/978-3-319-68167-2_7

23. Moyen, J., Rubiano, T., Seiller, T.: Loop quasi-invariant chunk motion by
peeling with statement composition. In: Bonfante, G., Moser, G. (eds.) Pro-
ceedings 8th Workshop on Developments in Implicit Computational Complex-
ity and 5th Workshop on Foundational and Practical Aspects of Resource
Analysis, DICE-FOPARA@ETAPS 2017, Uppsala, Sweden, April 22-23, 2017.
EPTCS, vol. 248, pp. 47–59 (2017). https://doi.org/10.4204/EPTCS.248.9,
http://arxiv.org/abs/1704.05169

24. Niggl, K., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006).
https://doi.org/10.1137/S0097539704445597

25. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formal verification
of ssa-based optimizations for LLVM. In: Boehm, H., Flanagan, C. (eds.) ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013. pp. 175–186. ACM (2013).
https://doi.org/10.1145/2491956.2462164

A Technical Appendix on Semi-rings

A.1 The mwp semi-ring

This subsection briefly recall semi-ring definition and proves that the mwp semi-
ring is indeed a semi-ring.

Definition 2 (Semi-ring). A semi-ring S = (S, 0, 1, +,×) is specified by a
set S and two binary operations + (addition) and × (multiplication) such that
{0, 1} ∈ S and

1. (S, 0, +) is a commutative monoid: the operation + is associative, commu-
tative, and has 0 as the identity element,

2. (S, 1,×) is a monoid: the operation × is associative and has 1 as the identity
element,

3. the operation × distributes with respect to +: for all a, b, c ∈ S, a× (b+ c) =
a× b+ a× c and (b+ c)× a = b× a+ c× a

We call S a strong semi-ring if, additionally, 0 annihilates S, i.e.

4. 0× a = a× 0 = 0 for all a ∈ S.

Lemma 2 (mwp-semi-ring). The tuple ({0,m,w, p}, 0,m, +,×), with

– 0 < m < w < p,

– α+ β =

{

α if α > β

β otherwise

https://doi.org/10.1145/1555746.1555753
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.4204/EPTCS.248.9
http://arxiv.org/abs/1704.05169
https://doi.org/10.1137/S0097539704445597
https://doi.org/10.1145/2491956.2462164

An extended and more practical mwp flow analysis 19

– α× β =

{

α+ β if α 6= 0 and β 6= 0

0 otherwise

is a strong semi-ring.

Proof. We prove that ({0,m,w, p}, 0,m, +,×) as defined respects the conditions
of Definition 2. The proof is straightforward but detailed nevertheless.

({0,m,w, p}, 0, +) is a commutative monoid We prove that ({0,m,w, p}, +)
is a commutative monoid by showing that it is associative, commutative, and
has 0 as identity.

Associativity (α + β) + γ = α+ (β + γ)
Case 1: α > β > γ

α = α

=⇒ α+ γ = α+ β

=⇒ (α+ β) + γ = α+ (β + γ)

Case 2: α > γ > β

α = α

=⇒ α+ γ = α+ γ

=⇒ (α+ β) + γ = α+ (β + γ)

Case 3: β > α > γ

β = β

=⇒ β + γ = α+ β

=⇒ (α+ β) + γ = α+ (β + γ)

Case 4: β > γ > α

β = β

=⇒ β + γ = α+ β

=⇒ (α+ β) + γ = α+ (β + γ)

Case 5: γ > α > β

γ = γ

=⇒ α+ γ = α+ γ

=⇒ (α+ β) + γ = α+ (β + γ)

Case 6: γ > β > α

γ = γ

=⇒ β + γ = α+ γ

=⇒ (α+ β) + γ = α+ (β + γ)

20 C. Aubert et al.

Commutative Property Both cases are immediate:

Case 1: α > β =⇒ α+ β = α = β + α
Case 2: β > α =⇒ α+ β = β = β + α

Identity element is 0

0 + 0 = 0 0 +m = m 0 + w = w 0 + p = p

({0,m,w, p},m,×) is a monoid We now prove that ({0,m,w, p},m,×) is a
monoid by showing that it is associative, has m as identity, and has 0 as the
annihilator.

Associativity (α × β)× γ = α× (β × γ)

Case 1: α,β, γ ∈ {m,w, p}
α× β = α+ β Associativity of operation + is shown in the proof of
the commutative monoid, ({0,m,w, p}, +).

Case 2: α, β, or γ equals 0
By definition of multiplication, the product is 0.

Identity element is m

0×m = 0 = m× 0

m×m = m = m×m

w ×m = w = m× w

p×m = p = m× p

0 annihilates {0,m,w, p}

0× 0 = 0 = 0× 0

m× 0 = 0 = 0×m

w × 0 = 0 = 0× w

p× 0 = 0 = 0× p

Distribution of multiplication over addition We conclude by proving that
× distributes over +.

Right Distribution α× (β + γ) = (α× β) + (α × γ)

Case 1: β > γ

=⇒ α× β = α× β

=⇒ α× (β + γ) = (α× β) + (α× γ)

Case 2: γ > β

=⇒ α× γ = α× γ

=⇒ α× (β + γ) = (α× β) + (α× γ)

Left Distribution (α+ β)× γ = (α× γ) + (β × γ)

An extended and more practical mwp flow analysis 21

Case 1: α > β

=⇒ α× γ = α× γ

=⇒ (α+ β) × γ = (α× γ) + (β × γ)

Case 3: β > α

=⇒ β × γ = β × γ

=⇒ (α+ β) × γ = (α× γ) + (β × γ)

A.2 Matrix Semi-ring

This subsection explains and details how matrices with coefficients in a semi-ring
can be used to construct semi-rings.

Lemma 3. Given a strong semi-ring S = (S, 0, 1, +,×), we define the tuple
M = (M , 0, 1, +,×), with

– M the set of all n× n matrices over S, for all n ∈ N,
– 0 defined by M = 0 iff Mij = 0 for all i and j,
– 1 defined by M = 1 iff Mij = 1 for i = j, Mij = 0 otherwise,
– + defined by C = A+B iff Cij = Aij +Bij ,
– × defined by C = A×B iff Cij =

∑n

k=1 Aik ×Bkj ,

is a strong semi-ring.

Proof. We prove that M = (M , 0, 1, +,×) as defined respects the conditions of
Definition 2. Let A,B,C be n× n matrices over S where n ∈ N.

(M , 0, 1, +) is a commutative monoid We first prove that (M , +) is a com-
mutative monoid by showing that it is associative, commutative, and has 0
as identity.

Associativity (A+B)+C = A+(B+C) iff ((A+B)+C)ij = (A+(B+C))ij
for all i, j.

((A+B) + C)ij = (A+B)ij + Cij

= (Aij +Bij) + Cij

= Aij + (Bij + Cij) (by associativity of +)

= Aij + (B + C)ij

= (A+ (B + C))ij

Commutative Property A+B = B+A iff (A+B)ij = (B+A)ij for all
i, j.

(A+B)ij = Aij +Bij

= Bij +Aij (by commutativity of +)

= (B +A)ij

22 C. Aubert et al.

Identity element is 0 Let A = 0, then Aij = 0 for all i, j, and 0 is the
identity element iff Aij +Bij = Bij for all i, j

(A+B)ij = Aij +Bij

= 0 +Bij (by identity of +)

= Bij

(M , 1,×) is a monoid We now prove that (M ,×) is a monoid by showing that
it is associative and has 1 as identity.
Associativity (A×B)×C = A×(B×C) iff ((A×B)×C)ij = (A×(B×C))ij

for all i, j.

((A×B)× C)ij = (

n
∑

k=1

Aik ×Bkj)× C

=

n
∑

l=1

(

n
∑

k=1

Aik ×Bkj)il × Clj

=

n
∑

l=1

n
∑

k=1

(Aik ×Bkl)× Clj

=

n
∑

k=1

n
∑

l=1

Aik × (Bkl × Clj) (by assoc. of ×)

=

n
∑

k=1

Aik × (

n
∑

l=1

Bil × Clj)kj

= A× (

n
∑

l=1

Bil × Clj)

= (A× (B × C))ij

Identity element is 1 A×B = B and B×A = B where A = 1 iff Aij = 1
for i = j and Aij = 0 otherwise.

(A×B)ij =

n
∑

k=1

Aik ×Bkj

= (Aii ×Bij) +

n
∑

k=1,k 6=i

Aik ×Bkj

= (1 ×Bij) +

n
∑

k=1,k 6=i

0×Bkj (by def. of 1)

= (1 ×Bij) +

n
∑

k=1,k 6=i

0 (by annihilation prop. of 0)

= (1 ×Bij) (by identity of +)

= Bij (by identity of ×)

An extended and more practical mwp flow analysis 23

(B ×A)ij =

n
∑

k=1

Bik ×Akj

= (Bij ×Ajj) +
n
∑

k=1,k 6=j

Bik ×Akj

= (Bij × 1) +

n
∑

k=1,k 6=j

Bik × 0 (by def. of 1)

= (Bij × 1) +

n
∑

k=1,k 6=j

0 (by annihilation prop. of 0)

= (Bij × 1) (by identity of +)

= Bij (by identity of ×)

0 annihilates M A×B = 0 and B ×A = 0 where A = 0 iff Aij = 0 for all
i, j.

(A×B)ij =

n
∑

k=1

Aik ×Bkj

=

n
∑

k=1

0×Bkj (by def. of 0)

=

n
∑

k=1

0 (by annihilation prop. of 0)

= 0

(B ×A)ij =

n
∑

k=1

Bik ×Akj

=

n
∑

k=1

Bkj × 0 (by def. of 0)

=

n
∑

k=1

0 (by annihilation prop. of 0)

= 0

Distribution of multiplication over addition

Right Distribution A×(B+C) = (A×B)+(A×C) iff (A×(B+C))ij =
((A×B) + (A× C))ij for all i, j.

24 C. Aubert et al.

A× (B + C))ij =

n
∑

k=1

(

Aik × (Bkj + Ckj)
)

=

n
∑

k=1

(

(Aik ×Bkj) + (Aik × Ckj)
)

(by right distribution of ×)

=

n
∑

k=1

(Aik ×Bkj) +

n
∑

k=1

(Aik × Ckj)

= (A×B)ij + (A× C)ij

= ((A×B) + (A× C))ij

Left Distribution (A+B)×C = (A×C)+ (B×C) iff ((A+B)×C)ij =
((A× C) + (B × C))ij for all i, j.

((A+B)× C)ij =

n
∑

k=1

(

(Aik +Bik)× Ckj

)

=

n
∑

k=1

(

(Aik × Ckj) + (Bik × Ckj)
)

(by left distribution of ×)

=

n
∑

k=1

(Aik × Ckj) +

n
∑

k=1

(Bik × Ckj)

= (A× C)ij + (B × C)ij

= ((A× C) + (B × C))ij

For simplicity, we will write M as M(S) = (M(S), 0, 1,+,×).

A.3 Choices Semi-ring

This subsection explains and details how functions into semi-ring coefficients can
be used to construct semi-rings, and the interplay between this construction and
the matrix semi-ring from the previous subsection.

Lemma 4. Given a strong semi-ring S = (S, 0, 1, +,×) and a set A, the tuple
F = (F , 0, 1,⊞,⊠), with

– F the set of functions from A to S,
– 0 the constant function 0(a) = 0 for all a ∈ A,
– 1 the constant function 1(a) = 1 for all a ∈ A,
– ⊞ defined componentwise: (f ⊞ g)(a) = (f(a))+ (g(a)), for all f , g in F and

a ∈ A,

An extended and more practical mwp flow analysis 25

– ⊠ defined componentwise: (f ⊠ g)(a) = (f(a))× (g(a)), for all f , g in F and
a ∈ A,

is a strong semi-ring.

Proof. (F , 0,⊞) is a commutative monoid We first prove that (F , 0,⊞) is
a commutative monoid by showing that it is associative, commutative, and
has 0 as identity.
Associativity

((f ⊞ g)⊞ h)(a) = (f(a) + g(a)) + h(a)

= f(a) + (g(a) + h(a)) (by assoc. of +)

= (f ⊞ (g ⊞ h))(a) (by def. of ⊞)

Commutativity

(f ⊞ g)(a) = f(a) + g(a)

= g(a) + f(a) (by commutativity of +)

= (g ⊞ f)(a) (by def. of ⊞)

Identity element is 0

(0⊞ f)(a) = 0(a) + f(a)

= 0 + f(a) (by def. of 0)

= f(a) (by identity prop of +)

(F , 1,⊠) is a monoid We now prove that (F , 1,⊠) is a monoid by showing that
it is associative and has 1 as identity.
Associativity

((f ⊠ g)⊠ h)(a) = (f(a)× g(a))× h(a)

= f(a)× (g(a)× h(a)) (by assoc. of ×)

= (f ⊠ (g ⊠ h))(a) (by def. of ⊠)

Identity element is 1

(1⊠ f)(a) = 1(a)× f(a)

= 1× f(a) (by def. of 1)

= f(a) (by identity prop of ×)

Distribution of multiplication over addition We conclude by proving that
⊠ distributes over ⊞.
Right Distribution

(f ⊠ (g ⊞ h))(a) = f(a)× (g(a) + h(a))

= (f(a)× g(a)) + (f(a)× h(a))
(by right distribution of ×)

= ((f ⊠ g)⊞ (f ⊠ h))(a)

26 C. Aubert et al.

Left Distribution

((f ⊞ g)⊠ h)(a) = (f(a) + g(a))× h(a)

= (f(a)× h(a)) + (g(a)× h(a))
(by left distribution of ×)

= ((f ⊠ h)⊞ (g ⊠ h))(a)

0 annihilates F

(0⊠ f)(a) = 0(a)× f(a)

= 0× f(a) (by def. of 0)

= 0 (by annihilation prop of 0)

(f ⊠ 0)(a) = f(a)× 0(a)

= f(a)× 0 (by def. of 0)

= 0 (by annihilation prop of 0)

For simplicity, we will write F as A→ S = (A→ S, 0, 1, +,×).

Definition 3. We say two semi-rings S = (S, 0, 1, +,×) and T = (T , 0, 1,⊞,⊠)
are isomorphic and write S ∼= T if there exists g : S → T such that

– g is a bijection,
– g(0) = 0,
– g(1) = 1,
– g(s1 + s2) = g(s1)⊞ g(s2) for all s1, s2 ∈ S
– g(s1 × s2) = g(s1)⊠ g(s2) for all s1, s2 ∈ S

For simplicity, we write g : S→ T for such morphisms.

Lemma 5. For all set A and strong semi-ring S, M(A→ S) ∼= A→M(S).

Proof. First, observe that by Lemmas 3 and 4, both A→ M(S) and M(A → S)
are strong semi-rings, and we write 0f (resp. 0M) and 1f (resp. 1M) for the 0
and 1 elements of A → M(S) (resp. of M(A → S)). Now we have to prove that
we can construct a bijection g : M(A → S) → (A → M(S)) that respects the
conditions of Definition 3.

We define g and g−1 at the same time, then show that they are indeed
inverses:

g : M(A→ S)→ (A→M(S)) Given M ∈ M(A → S) of size n × n, we let
g(M) ∈ A→M(S) be the function that maps a ∈ A to M where the same
argument a has been applied to the functions f1,1, . . . , fn,n. Graphically:

An extended and more practical mwp flow analysis 27

g(M)a = g(







M1,1 . . . M1,n

...
. . .

...
Mn,1 . . . Mn,n






)a =







M1,1a . . . M1,na
...

. . .
...

Mn,1a . . . Mn,na







Below, we write fM for g(M).
g−1 : (A→M(S))→M(A→ S) Given f ∈ A → M(S), we define g−1(f) ∈

M(A → S) to be the matrix of size n× n, for n × n the size of the matrix
returned by f , such that (g−1(f))i,j is the function that maps a ∈ A to
(f(a))i,j for all i, j. Graphically:

g−1(f)a =







(fa)1,1 . . . (fa)1,n
...

. . .
...

(fa)n,1 . . . (fa)n,n







Below, we write Mf for g−1(f).

g is a bijection We first prove that g ◦ g−1 = g−1 ◦ g = id.
(g−1 ◦ g)(M) = M

(g−1 ◦ g)(M) = g−1(g(M))

= g−1(fM) (where (fM (a))ij = Mij(a))

= M

(g ◦ g−1)(f) = f

(g ◦ g−1)(f) = g(g−1(f))

= g(Mf) (where (Mf)ija = (f(a))ij)

= f

g(0M) = 0f Let f = g(0M), then f = 0f iff f(a)ij = 0S for all i, j.

f(a)ij = (0M)ij(a)

= 0f(a) (by def. of 0M)

= 0S (by def. of 0f)

g(1M) = 1f Let f = g(1M), then f = 1f iff f(a)ij = 1S for all i = j and
f(a)ij = 0S otherwise.
Case 1: i = j

f(a)ij = (1M)ij(a)

= 1f (a) (by def. of 1M)

= 1S (by def. of 1f)

Case 2: i 6= j

f(a)ij = (1M)ij(a)

= 0f (a) (by def. of 1M)

= 0S (by def. of 0f)

28 C. Aubert et al.

g(M1 +M2) = g(M1) + g(M2)

g(M1 +M2) = g(M1) + g(M2)

⇐⇒ fM1+M2
= fM1

+ fM2

⇐⇒ fM1+M2
(a) = (fM1

+ fM2
)(a)

⇐⇒ fM1+M2
(a) = fM1

(a) + fM2
(a)

⇐⇒ (fM1+M2
(a))ij = (fM1

(a) + fM2
(a))ij

⇐⇒ (M1 +M2)ij(a) = (M1)ij(a) + (M2)ij(a) (by assoc. of +)

g(M1 ×M2) = g(M1)× g(M2)

g(M1 ×M2) = g(M1)× g(M2)

⇐⇒ fM1×M2
= fM1

× fM2

⇐⇒ fM1×M2
(a) = (fM1

× fM2
)(a)

⇐⇒ fM1×M2
(a) = (fM1

)(a) × (fM2
)(a)

⇐⇒ (fM1×M2
(a))ij = ((fM1

)(a)× (fM2
)(a))ij

⇐⇒ (

n
∑

k=1

(M1)ik × (M2)kj)(a) =

n
∑

k=1

(M1)ik(a)× (M2)kj(a)

(by assoc. of + and ×)

A.4 Partiality

In our improvement of the analysis, we add an∞ element to the mwp-semi-ring,
but reason abstractly below with an arbitrary semi-ring and a ⊥ element.

Lemma 6. Given a strong semi-ring S = (S, 0, 1, +,×) and an element ⊥ /∈ S,
S⊥ = (S ∪ {⊥}, 0, 1, +⊥,×⊥) with, for all a, b ∈ S ∪ {⊥},

a+⊥ b =

{

a+ b if a, b 6= ⊥

⊥ otherwise

a×⊥ b =

{

a× b if a, b 6= ⊥

⊥ otherwise

is a semi-ring.

Proof. The proof is immediate, but note that S⊥ is not strong, as ⊥×0 = ⊥.

A good intuition on this construction comes from partial functions. Indeed,
we can define A ⇀ S as the semi-ring of partial functions from A to S, i.e. of
functions from A to S⊥. Furthermore, if we identify a matrix in M(S⊥) where at
least a coefficient is ⊥ with the matrix ⊥, then we get that M(A ⇀ S) ∼= A ⇀
M(S). However, note that none of those semi-rings are strong.

	An extended and more practical mwp flow analysis

