Big data meet deep data: Characterizing spatial navigation in hippocampal amnesia
Sara Pishdadian, Antoine Coutrot, Michael Hornberger, Hugo Spiers, Shayna Rosenbaum

To cite this version:
Sara Pishdadian, Antoine Coutrot, Michael Hornberger, Hugo Spiers, Shayna Rosenbaum. Big data meet deep data: Characterizing spatial navigation in hippocampal amnesia. Cognitive Neuroscience Society, Mar 2021, Virtual Meeting, Canada. CNS 2021 Abstract Book. hal-03268852

HAL Id: hal-03268852
https://hal.archives-ouvertes.fr/hal-03268852
Submitted on 23 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Background

New Spatial Learning & Hippocampal Damage

- The hippocampus is hypothesized to be critical to episodic memory and new spatial learning.¹
- Individuals with hippocampal damage are generally impaired in new spatial learning.²,³,⁷
- Allocentric spatial navigation: navigation with a cognitive map of the environment in mind, hippocampally reliant.¹
- Allocentric spatial navigation performance in hippocampal amnesia can be variable and it is possible patients with similar lesion profiles may be impaired for different reasons.
- Path integration: referring to one’s starting location after navigating.
- Combines both allocentric and egocentric (person-based) aspects of navigation.
- It has been shown to require the hippocampus but also heavily involves other brain regions.²,⁷
- Given variability in spatial ability performance, research on these processes would be enhanced by large control samples and dynamic tests.

Study Question

- What is the role of the hippocampus in new spatial learning and does episodic memory impairment correspond with task performance?

Method

Participants

- **Patient BL**
 - Age: 59
 - YOE: 13
 - Endothelial damage: Bilateral damage of the DG/CA3 in hippocampus
 - Medial temporal lobe damage: Left hemisphere volume loss in the superior parietal lobe, right hemisphere volume loss in the precuneus
 - Clinical profile: Mild anterograde amnesia, weaknesses in complex attention and inhibition.
 - IQ: Average

- **Patient DA**
 - Age: 68
 - YOE: 17
 - MTL Damage: Bilateral MTL damage, more severe in right hemisphere
 - MTL Damage: Left hemisphere damage with volume reduction in the posterior temporal, ventral frontal, occipital regions, anterior cingulate and posterior thalamus.
 - Clinical profile: Graded retrograde amnesia, severe anterograde amnesia and intact other domains.
 - IQ: High Average

Map Levels

- Overall trial performance for distance traveled and time taken was below controls.
- Trials with best performance (3) were closed and without decision point.
- Poor wayfinding performance (e.g. level 56, 11), was marked by a pattern of repeated travel down an incorrect path, including backtracking to starting location.

Flare Levels

- Missed 4-5/7 of trials (29-43% overall accuracy), with variability in performance across testing days.
- Control performance across trials is 58.46% (SD = 0.07).

Results

Patient BL

Patient DA

Discussion

References

1. Burgess, Magram, O’Keefe, 2002; Neuron
2. Rosenbaum, Gibos & Moscovitch., 2014; Annals of the New York Academy of Sciences
3. Rosenbaum et al., 2000; Science
4. Coutrot et al., 2018 Current Biology
5. Coutrot et al., 2019; PloS One
6. Coulthard et al., 2018; Nature Reviews Neurology
7. Sepulcre, Square & Clarke, 2016; Hippocampus

Contact: sarapish@yorku.ca