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Abstract—Density volumes obtained by three-dimensional
reconstruction of biomolecular complexes from cryogenic electron
microscopy (cryo-EM) images (also known as cryo-EM maps)
can be interpreted in terms of atomic positions by flexible fitting.
The fitting modifies an available atomic structure to match the
target EM map. The most accurate fitting methods are based
on atomic-coordinate degrees of freedom (e.g. Bayesian flexible
fitting) but come with high computational cost for large required
displacements. To reduce the computational cost, methods based
on Normal Modes Analysis (NMA) decrease the number of degrees
of freedom to only several collective motions (described by normal
modes). The NMA-based methods are well-suited for global
atomic displacements (large collective motions) but are suboptimal
regarding local atomic displacements. To take advantages of both
methods, we propose to combine them. We tested our method
using synthetic and experimental cryo-EM maps of a complex
with large-scale conformational changes (p97 ATPase). We show
that the combination of both approaches efficiently performs
global and local atomic displacements and that it can be more
efficient and precise than any of the two approaches alone. To
the best of our knowledge, this is the first method combining
Bayesian and normal mode flexible fitting approaches.

Index Terms—Cryo-EM, Flexible fitting, Normal Modes,
Bayesian model, Hamiltonian Monte Carlo, Molecular Dynamics

I. INTRODUCTION

For many years, cryogenic electron microscopy (cryo-EM)
has been drawing attention for its capacity to image structures
of biological macromolecular complexes in their close-to-
native conditions. Until recently, the resolution of the three-
dimensional (3D) maps reconstructed from two-dimensional
cryo-EM images of biomolecular complexes (also known as
cryo-EM density maps or cryo-EM maps) has been lower than
the resolution of structures obtained by X-ray crystallography
(the standard technique to obtain structures at high resolution
until then [1]). Recent progress in cryo-EM instruments

(particularly detector technology advances), high performance
computing technologies, and in image processing algorithms
and software enabled cryo-EM structure reconstruction at near-
atomic resolutions on a more routine basis [2].

To accomplish specific biological functions, biomolecular
complexes change their conformations. The study of conforma-
tional variability of complexes is the key to deciphering their
biological functions and to structure-based drug development.
Unlike X-ray crystallography, cryo-EM allows imaging and
reconstructing multiple different conformational states of a
complex from the same sample [3]. It requires vitrified samples
instead of high quality crystals that are required for X-
ray crystallography. The possibility of achieving near-atomic
resolution of 3D reconstruction and studying conformational
variability of complexes in near-physiological conditions make
cryo-EM a highly interesting technique complementary to X-
ray crystallography. Indeed, a cryo-EM map reconstructed from
cryo-EM images is a density volume and the atomic coordinates
of the complex are usually obtained by flexible fitting of an
available atomic X-ray crystallography structure of a similar
complex or the same complex but in a different conformation
(e.g., structures available in the public database named Protein
Data Bank - PDB, www.rcsb.org).

Flexible fitting methods displace the atoms of the reference
atomic PDB structure to achieve the best match between the
target cryo-EM map and the density map simulated from
the displaced atoms [4]–[6]. The resulting atomic structure,
corresponding to the best fit, may in its turn be deposited in the
PDB database, which is usually done when the procedure results
in the discovery of new conformations. Such procedures are
computationally challenging. Most accurate methods simulate
the physical interaction between atoms by estimating the
force field for each atom [7], [8]. Molecular Dynamics (MD)



simulation estimates deterministic trajectories based on classical
mechanics principles [6], [7]. Monte-Carlo (MC) is a stochastic
method that generates physically probable conformations [5],
[9]. In these methods, the number of the conformational degrees
of freedom is equal to the number of the atomic coordinates,
which allows well-fitting both global dynamics (collective
displacement of atoms) and local dynamics (local displacement
of atoms). This high number of degrees of freedom comes
with a high computational cost, in particular for large-scale
conformational changes (consisting of large collective atomic
motions).

To speed up global dynamics simulations, Normal Modes
Analysis (NMA) [10] is used in some flexible fitting methods
to reduce the number of the conformational degrees of freedom
to a small number of vectors (known as normal modes) along
which atoms move with the corresponding amplitudes (one
amplitude per normal mode) [4]. NMA only calculates the
directions of motions (normal modes) but not the normal-mode
amplitudes. In flexible fitting methods based on NMA, these
amplitudes are determined by displacing the reference atomic
structure along normal modes until it matches the target cryo-
EM map. Flexible fitting using low-frequency normal modes
proved to be well-suited for fitting between conformations of
complexes with large-scale conformational transitions (large
global dynamics). This suggests that low-frequency normal
modes describe collective (global) atomic motions well and it
was also used in other fitting contexts (e.g., NMA-based fitting
of cryo-EM images with a reference atomic or pseudoatomic
structure to determine continuous conformational variability
of complexes [11]). However, additional exploring of local
motions with NMA-based fitting methods would require
including high-frequency normal modes, either using an entire
set of modes (computationally challenging) or a subset of
modes (none of the selection criteria proposed so far is optimal
and may miss to select some relevant modes).

In this article, we propose a method that combines exploring
global dynamics with low-frequency normal modes and explor-
ing local dynamics with Bayesian fitting. Our approach is built
using a Bayesian model and sampled with Hamiltonian Monte
Carlo (HMC) [9], [12], [13]. HMC combines MD trajectory
and MC stochastic sampling to obtain a more efficient sampling.
Normal-mode amplitude displacement is added to reduce the
computational cost of the fitting. The tests of the method were
performed using synthetic and experimental cryo-EM maps of
the p97 ATPase complex [14]. We show that the combination of
the Bayesian and normal mode approaches efficiently performs
both global and local atomic displacements and that it can
be more efficient and precise than any of the two approaches
alone. To the best of our knowledge, this is the first method
combining fitting based on Bayesian inference and fitting based
on normal modes.

II. METHODS

A. Bayesian Model

Flexible fitting of a given atomic structure (reference
structure) into a cryo-EM map (target map) can be defined using

the Bayesian formalism. Notably, the posterior distribution can
be written as follows:

P(r|ρexp) ∝ P(ρexp|r)P(r), (1)

where r is the vector of N × 3 Cartesian atomic coordinates,
N is the number of atoms, and ρexp is the target map.

The most common choice for the prior distribution P(r) is
the Boltzmann distribution [7]:

P(r) = e
−Up(r)

kBT , (2)

where kB is the Boltzmann constant, T is the temperature, and
Up is the potential energy of the system. The potential energy
defines the physical interaction between atoms, which deter-
mines energetically accessible conformations. It corresponds
to a sum of bonded and non-bonded potentials.

The likelihood distribution P(ρexp|r) is the function that
assess the goodness of the match between the target map and the
reference structure that is modified (atomic positions changed)
during the fitting. To this end, a density map is simulated from
the atomic structure and compared with the target map. The
simulated map is obtained by placing a 3D isotropic Gaussian
function at the position of each atom, rn (n = 1, N ), and by
integrating these Gaussian functions over the center of each
voxel. The value of the voxel with the coordinates (i, j, k) in
the simulated map is as follows:

ρrsim(i, j, k) =

N∑
n=1

1

(2πσ2)3/2
exp

(
− 1

2σ2
‖[i j k]− rn‖2

)
,

(3)
where σ is the standard deviation of the 3D Gaussian functions.
Note here that rn is the position of the n-th atom and that r
contains the positions of all atoms.

The likelihood is assumed to be normally distributed and
centered at the simulated map, which results in the following:

P(ρexp|r) =
1√

2πσ2
ρ

Nvox∏
l=1

exp
(
− 1

2σ2
ρ

(ρexp(l)− ρrsim(l))2
)
,

(4)
where the voxel coordinates (i, j, k) of ρexp and ρrsim are, for
simplicity reasons, replaced by the voxel indexes l, Nvox is
the number of voxels (l = 1, Nvox), and σρ is the standard
deviation of the likelihood distribution that determines the
desired fitness precision.

Finally, the resulting posterior distribution can be expressed
by combining the prior (2) and likelihood (4) distributions. It
is a common practice to use the logarithm of the posterior
distribution, which simplifies the expression as follows:

log P(r|ρexp) = − 1

2σ2
ρ

‖ρexp−ρrsim‖2−
1

kBT
Up(r)+C, (5)

where C = log 1√
2πσ2

ρ

, and ρexp and ρrsim are vector versions

of the target and simulated maps, respectively (e.g., ρexp is a
vector of voxel values in the target map, ρexp(l), l = 1, Nvox).

In this model, the conformational degrees of freedom are
N×3 atomic coordinate displacements ∆r defined with respect



to their position in the reference structure, rinit:

r = rinit + ∆r. (6)

This gives the model a flexibility for global and local dynamics
but also comes with a high computational cost of sampling.

B. Normal Modes Analysis

Instead of N×3 conformational degrees of freedom (atomic
displacements ∆r), one can consider using a less detailed
model, which is particularly interesting when dealing with
lower-resolution data. One popular model is the elastic network
model [10], where the potential energy is described by simple
harmonic potentials between close atoms and the dynamics is
estimated by Normal Mode Analysis (NMA) of the reference
structure [10]. NMA consists of diagonalizing a Hessian matrix
of second derivatives of the potential energy function of size
(N × 3)2. This produces a matrix of normal modes and their
associated frequencies. The total number of normal modes is
N×3 and the length of each normal mode is N×3. Usually, a
small subset of M lowest-frequency normal modes (describing
global, collective motions) is selected to displace atoms to fit
the target map. The atomic displacement with respect to the
reference structure is determined by a linear combination of
the selected modes, as follows:

∆r(q) = q ·A, (7)

where A = {ai} is the matrix of the selected M normal modes
(size M×(N×3)) and q = {qi} is the vector of M coefficients
of the linear combination (M normal-mode amplitudes). The
displaced coordinates are r = rinit + ∆r(q).

The optimal value of q to fit the target map is usually
obtained by optimizing a cost function like the Correlation
Coefficient (CC) [4], [8].

CC =

√∑Nvox
l=1 ρrsim(l)ρexp(l)√∑Nvox

l=1 ρrsim(l)
2
√∑Nvox

l=1 ρexp(l)
2
. (8)

NMA-based fitting is much faster than fitting with other
methods as the number of degrees of freedom is reduced to
M (M normal-mode amplitudes qi, where M << N and,
usually, M < 10). However, the selected lowest-frequency
normal modes fit well global motions but not local motions.

C. Combined Bayesian and Normal Mode Flexible Fitting

In this article, we propose to combine normal mode flexible
fitting (small number of degrees of freedom describing well
global motions) with Bayesian flexible fitting (large number of
degrees of freedom describing well local motions). With this
model, we expect to reduce the computational cost of fitting
large-scale conformational transitions, thanks to NMA-based
fitting, while maintaining the precision of fitting local dynamics
with Bayesian fitting.

To this end, we propose to modify the atomic coordinate
displacement ∆r in equation (6) as follows:

r = rinit + ∆rglobal(q) + ∆rlocal, (9)

where ∆rglobal(q) is the atomic displacement by normal mode
fitting (∆r(q) in equation (7), M unknown parameters, M <<
N ), ∆rlocal is the atomic displacement by Bayesian fitting
(∆r in equation (6), N × 3 unknown parameters).

In this model, the total number of parameters is M +N ×
3. These parameters correspond to q and ∆rlocal and will
be estimated simultaneously by sampling from the resulting
posterior distribution P(r|ρexp). In the next section, we focus
on methods for sampling such posterior distributions.

D. Sampling Conformational Space

a) Monte-Carlo methods: Monte-Carlo (MC) are stochas-
tic approaches that are designed to generate samples from
posterior distributions. One of the most popular algorithm
is the Metropolis algorithm [15]. This method is an iterative
algorithm that performs the sampling in two steps. First, random
displacements are applied to atomic positions rn at the current
n-th iteration, from a transition distribution T (generally a
Gaussian distribution), and a candidate structure r̃ is generated.
Then, the transition kernel is adjusted to the target distribution
by accepting or rejecting this candidate structure with the
acceptation probability α:

α = min

(
1,

P(r̃|ρexp)/T (r̃|rn)

P(rn|ρexp)/T (rn|r̃)

)
. (10)

This acceptation probability means that the candidate structure
is always accepted if it increases the posterior probability, and
sometimes accepted if the posterior probability is not too much
decreased.

The main problem of the Metropolis algorithm comes
from his random walk behavior. In many cases, random
displacement of atoms is very likely to be rejected, especially
in high density regions where atoms are very close and
small displacements make them overlap. In such cases, the
acceptation rate becomes dramatically low, which results in
high inefficiency of the sampling.

b) Molecular Dynamics: One of the most widely used
simulation approaches to exploring conformational dynamics
is Molecular Dynamics (MD) [7]. Unlike MC methods, MD
generates deterministic trajectories based on classical mechan-
ics, which describe the evolution of the structure over time. In
a typical MD simulation, the motion of atoms is estimated by
numerical integration of Newton equation by setting the force
field to be the gradient of the potential energy, Up(r):

F = ∂Up(r)/∂r. (11)

MD simulations have been applied to flexible fitting by
adding a biasing potential to Up(r) i.e., by modifying the force
field F [6]. In these approaches, the biasing potential is a
measure of the goodness of the fit that leads the simulation to
the target density map. The biasing potential measures include
CC (8) and mean square error. When the mean square error is
used as the biasing potential, the MD-based fitting approach is



equivalent to the one with the force field set to be the gradient
of the log-posterior distribution in the Bayesian model (5):

F = ∂ log P(r|ρexp)/∂r. (12)

MD is very time consuming. The time step of the integrator
must remain very small in order to maintain the stability of the
trajectory. This results in high computation times, especially
for large-scale conformational changes [9].

c) Hamiltonian Monte Carlo: Hamiltonian Monte-Carlo
(HMC) method aims at generating samples more efficiently
than MD and MC methods. HMC was originally called
Hybrid Monte-Carlo [12] since it combines deterministic MD
trajectories and stochastic Metropolis acceptation scheme. At
each iteration of the algorithm, a standard MD simulation
is performed and the candidate structure is accepted with
the probability acceptance α as in Metropolis algorithm (10).
As HMC is based on MD, it uses the gradient of the log-
posterior distribution in the Bayesian model (12) to generate
the trajectories. HMC has been successfully applied to flexible
fitting [5] but only using all (N×3) atomic degrees of freedom
(search for unknown parameters ∆r in equation (6)). This
article shows the first HMC application to a combined Bayesian
and normal mode flexible fitting (search for M+N×3 unknown
parameters, which includes M normal-mode amplitudes). We
have implemented the log-posterior gradient calculation and
the HMC sampler for this combined model in Python. Our
method searches for q and ∆rlocal (9) so as to efficiently fit
global and local dynamics.

III. RESULTS

In this section, we use synthetic and experimental data of
the human p97 ATPase complex, involved in various cellular
processes, to compare the proposed combined HMC-based
Bayesian and normal mode flexible fitting approach (atomic
coordinates determined by r = rinit + ∆rglobal(q) + ∆rlocal
(9)) with the HMC-based Bayesian and HMC-based normal
mode flexible fitting approaches alone (atomic coordinates
determined by r = rinit+∆rlocal and r = rinit+∆rglobal(q),
respectively). To reduce the computational complexity of each
approach, we here use Carbon Alpha (CA) atoms only, which
is a common practice (coarse-grain approaches).

The three approaches are compared using the data of two
out of several p97 conformations solved by cryo-EM [14].
The most striking difference between the two conformations
is in the position of one of the p97 domains (known as N
domain), which is clearly ”up” in one and ”down” in the other
[14]. We use the following data of these two conformations,
publicly available in the PDB database and the EMDB database
(www.ebi.ac.uk/pdbe/emdb): 1) atomic structure of the ”down”
conformation (PDB code: 5ftm); and 2) cryo-EM map of the
”up” conformation (EMDB code: EMD-3299).

The results of the following two tests are shown here: 1)
fitting of the PDB-5ftm CA-atom structure of the p97 ATPase
”down” conformation into a synthetic target map obtained from
the 5ftm structure (the mode that lifts up the N domain of

5ftm was identified and 5ftm was displaced along this mode,
namely mode 9, with the amplitude of -1500 and, then, energy-
minimized with MD, to synthesize large global and small
local displacements, respectively, and the resulting structure
was used to synthesize the map); and 2) fitting of the PDB-
5ftm CA-atom structure of the ”down” conformation into the
experimental EMD-3299 map of the ”up” conformation. In
both cases, flexible fitting was performed using the first four
non-rigid-body modes (modes 7-10), arbitrarily chosen so as to
include mode 9 (N domain lifting). Note that the first six normal
modes are related to combinations of rigid-body motions and
are not used for flexible fitting. The current implementation
of our approach does not perform rigid-body alignment and,
thus, the reference (initial) atomic structure and the target map
are required to be rigid-body aligned before the flexible fitting
can be performed with our approach.

For the first test (test 1), the synthetic target map was
obtained by converting the modified PDB-5ftm structure into
a map of size of 1283 voxels using the method of atomic
scattering factors [16]. For the second test (test 2), the EMD-
3299 map was slightly low-pass filtered and size-reduced to
1283 voxels, which reduces noise and speeds up calculations.
Recall that the simulated maps during the fitting are obtained
using our Gaussian kernel method (3). The use of the atomic
scattering factors [16] for the synthesis of the target map was
decided to get better resolution of the density in the target map
(closer to the density resolution in the experimental cryo-EM
maps) and, at the same time, to make the fitting more difficult
as trying to fit a map whose density resolution is slightly
different from the one that can be simulated with our Gaussian
kernel method (3) during the fitting. The target maps used in
test 1 and test 2 are superposed with the reference (initial)
CA-atom structure in Fig. 1a and Fig. 2a, respectively. The
N domain in both figures is displayed in orange color and is
clearly in ”down” conformation.

We performed 10 HMC runs over 100 iterations. The
structures fitted to the target maps in test 1 and test 2, using the
proposed method (averaging over 10 HMC runs), are shown
in Fig. 1b and Fig. 2b, respectively. We can observe that, in
both tests, the N domain moves from ”down” conformation at
the beginning (initial structure) to ”up” conformation at the
end of the fitting (fitted structure). Fig. 1c and Fig. 2c show
the evolution of the CC (8), averaged over 10 HMC runs, as a
function of HMC iterations, for test 1 and test 2, respectively.
These figures show that the two approaches explicitly fitting
global dynamics (incorporating normal-mode displacements)
converge faster to the equilibrium than the approach based
on fitting local dynamics. This can be interpreted by a fast
large-scale displacement generated by normal modes in the
first iterations, which we observed in the resulting normal-
mode amplitudes. More importantly, Fig. 1c and Fig. 2c show
that the method proposed here (combining fitting global and
local dynamics) achieves the highest CC value in the smallest
number of HMC iterations compared to the other two methods,
in both tests (with synthetic and experimental target maps).
However, in the case of the experimental map, the local fitting



(a) Initial (b) ∆rglobal + ∆rlocal

(c) Evolution of CC

Fig. 1: Fitting of the PDB-5ftm CA-atom structure of the p97
ATPase ”down” conformation into a synthetic map using three
approaches (the details on the map synthesis are in the text).
(a,b) Superposition of the target map (transparent gray) with
(a) the initial structure and (b) the fitted structure using the
method proposed here that combines global and local fitting
(100 HMC iterations). (c) Evolution of the CC (average of 10
HMC runs over 100 iterations) for the three fitting approaches.

method achieves a slightly worse CC value than the proposed
method, which suggests that the fitting by the proposed method
strongly depends on local fitting in this specific data case. An
explanation for this is that the selected normal modes may not
describe the global dynamics sufficiently well in this particular
data case. Other sets of normal modes may be used in the
future to investigate their contributions. It should be noted that
the search for normal-mode amplitudes takes negligible time
with respect to the search for local fitting parameters.

IV. CONCLUSION

In this article, we proposed a method for flexible fitting of
atomic structures into cryo-EM maps that combines global
and local atomic displacements to speed up the fitting. Global
displacements are performed with normal modes while local
displacements are the three Cartesian coordinate displacements
of each atom. The model is described in the Bayesian formalism
and sampled using Hamiltonian Monte-Carlo sampler. To the
best of our knowledge, this is the first combined Bayesian and
normal mode fitting method. We demonstrated its performance
with synthetic and experimental data. We showed that it is faster
and achieves better fitting precision than the classical method
that does not take into account normal modes. In the future, we
will perform tests with experimental cryo-EM maps of other
biomolecular complexes, investigating particularly the cases
where normal modes may be more critical to use to accelerate
fitting. The software will be available as open-source after it
is tested with other data.

(a) Initial (b) ∆rglobal + ∆rlocal

(c) Evolution of CC

Fig. 2: Ftting of the PDB-5ftm CA-atom structure of the p97
ATPase ”down” conformation into the experimental EMD-3299
map of the ”up” conformation using three approaches. (a,b)
Superposition of the target map (transparent gray) with (a) the
initial structure and (b) the fitted structure using the method
proposed here that combines global and local fitting (100 HMC
iterations). (c) Evolution of the CC (average of 10 HMC runs
over 100 iterations) for the three fitting approaches.
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structure of human p97 and mechanism of allosteric inhibition. Science,
351(6275):871–875, 2016.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[16] L-M Peng, G Ren, SL Dudarev, and MJ Whelan. Robust parameterization
of elastic and absorptive electron atomic scattering factors. Acta
Crystallographica Section A: Foundations of Crystallography, 52(2):257–
276, 1996.


	Introduction
	Methods
	Bayesian Model
	Normal Modes Analysis
	Combined Bayesian and Normal Mode Flexible Fitting
	Sampling Conformational Space

	Results
	Conclusion
	References

