
HAL Id: hal-03264640
https://hal.science/hal-03264640

Submitted on 18 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing group-sparsity and orthogonality constraints
in RGCCA

Vincent Guillemot, Arnaud Gloaguen, Arthur Tenenhaus, Cathy Philippe,
Hervé Abdi

To cite this version:
Vincent Guillemot, Arnaud Gloaguen, Arthur Tenenhaus, Cathy Philippe, Hervé Abdi. Introducing
group-sparsity and orthogonality constraints in RGCCA. JdS2021 : 52èmes Journées de Statistique,
Jun 2021, Nice, France. �hal-03264640�

https://hal.science/hal-03264640
https://hal.archives-ouvertes.fr


Introducing group-sparsity and orthogonality
constraints in RGCCA

Vincent Guillemot1, Arnaud Gloaguen2, Arthur Tenenhaus2, Cathy Philippe3 and
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Résumé. RGCCA est une méthode flexible et rapide qui—généralisant de nom-
breuses méthodes existantes—permet l’analyse de données structurées en plusieurs blocs
hétérogènes. Nous présentons l’ajout dans RGCCA de deux nouvelles contraintes : une
contrainte de parcimonie de groupes et une contrainte d’orthogonalité sur les poids de
RGCCA. Ces deux contraintes ont pour but d’augmenter l’interprétabilité de l’analyse de
données de grande dimension qui possèdent une structure de groupe. Nous appliquons
cette nouvelle méthode—abrégée en gSGCCA—à l’analyse de données de gliome malin
pédiatrique structurées en trois blocs. Nous montrons sur ces données le gain en in-
terprétabilité apporté par les contraintes de parcimonie et d’orthogonalité.

Mots-clés. RGCCA, parcimonie, parcimonie de groupe, structure

Abstract. RGCCA—a fast and flexible method—generalizes many other well-known
methods in order to analyze data-sets comprising multiple blocks of variables. Here we
extend RGCCA by adding two new constraints to the RCCCA optimization problem: 1)
group sparsity and 2) orthogonality of the block weight vectors. These two constraints
facilitate the interpretability of the results when analyzing high dimensional data with a
group structure. We illustrate this new method—called gSGCCA—with the analysis of
pediatric high-grade glioma data: a set comprising three data blocks. This analysis shows
that these new constraints greatly improve the interpretability of the statistical analysis.

Keywords. RGCCA, sparsity, group-sparsity, structure

1 Introduction

Regularized Generalized Canonical Correlation Analysis (RGCCA) [8, 9, 3] is a recent
multiblock component method that generalizes traditional component-based two table
methods—such as partial least square correlation, redundancy analysis, and canonical
correlation—in order to analyze data sets comprising multiple blocks of data. Just like
with other component methods, RGCCA results are often difficult to interpret when there
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are (too?) many variables; to mitigate this problem, RGCCA has been extended to be-
come Sparse General Canonical Correlation Analysis (SGCCA) [7]: a version of RGCCA
that incorporate an `1-norm based constraint in order to generate sparse block weight vec-
tors. This sparsification constraint improves the interpretation of the results (because it
selects important variables) but at a cost: the block weight vectors are not orthogonal—a
pattern that often makes the results difficult to interpret. This trade-off between sparsity
and orthogonality is not specific to RGGCA: it affects all component based-methods, es-
pecially those based on the singular value decomposition (SVD) and its extensions (e.g.,
the generalized SVD, GSVD). Recently, however, we found that this trade-off could be
eliminated 1) for the SVD: the constrained SVD (CSVD) [4], combines orthogonality and
sparsity constraints to the plain SVD, and 2) for the GSVD (including block constraints on
observations and variables): as implemented in sparse Multiple Correspondence Analysis
(sMCA) [5].

Here, we propose to extend the approach used for the GSVD to create gSGCCA:
the version of RGCCA that includes 1) a group sparsity constraint (and it associated
group sparse projection), and 2) an orthogonality constraint on the block weight vectors.
To do so, we applied the same group projection as in sparse MCA, combined with an
orthogonality projection with projections onto convex sets (POCS) [1]. We illustrate
gSGCCA with the analysis of the pediatric glioma data used in [7].

2 Method

Group sparse GCCA (gSGCCA) is defined as the following optimization problem:

argmax
a1,a2,...,aJ

f (a1, a2, . . . , aJ) =
J∑

j,k=1
j 6=k

cjkg (cov (Xjaj,Xkak))

subject to


‖aj‖2 = 1

‖aj‖Gj ≤ sj

aj ⊥ Aj

, ∀j = 1, . . . , J.

(1)

where X1, . . . ,XJ are J centered blocks of data, the function g is defined as any continu-
ously differentiable convex function, and the design matrix C = {cjk} is a symmetric J×J
matrix of non-negative elements describing the network of connections between blocks
that are to be taken into account. Moreover, a1, . . . , aJ are block weight vectors (i.e.. the
weights applied to each block to obtain the block components), A1, . . . ,AJ are the previ-
ously estimated weight vectors combined into matrices, G1, . . . ,GJ are the groups of vari-
ables for a block, s1, . . . , sJ are positive scalars controlling the group sparsity constraint
for the block weight vectors, and the group norm is defined as: ‖x‖G =

∑G
g=1 ‖xιg‖2,

where xιg is the subvector of x that contains only the elements of group Gj. The `1,2-ball
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associated with this norm is noted B1,2(·). In the next section, we present a monotone
convergent algorithm for solving optimization Problem (1).

2.1 The gSGCCA algorithm

The maximization of function f over the parameter vectors a = (a1, . . . , aL), is imple-
mented using cyclic Block Coordinate Ascent (BCA [2]); a procedure that updates in turn,
each of the parameter vectors while keeping the others fixed. Specifically, let∇jf(a) be the
partial gradient of f(a) with respect to aj. We want to find an update âj ∈ Ωj = {‖aj‖2 =
1, and ‖aj‖Gj ≤ sj, and aj ⊥ Aj} such that f(a) ≤ f(a1, ..., aj−1, âj, aj+1, ..., aJ). Be-
cause f is a continuously differentiable multi-convex function and because a convex func-
tion lies above its linear approximation at aj for any ãj ∈ Ωj, the following inequality
holds:

f(a1, ..., aj−1, ãj, aj+1, . . . , aJ) ≥ f(a) +∇jf(a)>(ãj − aj) := `j(ãj, a). (2)

On the right-hand side of (2), only the term ∇jf(a)>ãj is relevant to ãj and, so, the solu-
tion maximizing the minorizing function `j(ãj, a) over ãj ∈ Ωj is obtained by considering:

âj = argmax
ãj∈Ωj

∇jf(a)>ãj = argmin
ãj∈Ωj

‖∇jf(a)− ãj‖2
2. (3)

This last equality follows from ‖aj‖2 = 1 as aj ∈ Ωj. This core optimization problem
is a projection onto the intersection between the ball defined by the groups, the `2-ball,
and the space orthogonal to the already estimated block weight vectors, assembled in Aj.
This projection on B1,2(sj)∩B2(1)∩A⊥j is performed using POCS with two components:
the projection onto the intersection of the group ball and the `2-ball, and the projection
onto the orthogonal spaces defined by the already estimated loading vectors combined in
the matrix Aj. The complete gSGCCA algorithm is presented in Algorithm 1.

3 Application on glioma data

We applied gSGCCA to the glioma data previously analyzed with SGCCA ([7, 6]). This
data-set comprises three blocks of variables: 1) gene expression data (GE), 2) comparative
genomic hybridization data (CGH) and, 3) the location of the tumor in the brain. Here,
we focused on the analysis of only six groups of genes highly associated with different
types of brain tumors and with brain tumor development. The six groups are defined
similarly for both the GE and CGH blocks. For this analysis, we used three different
versions of RGCCA: 1) a classical three-block RGCCA with a complete design (i.e., all
blocks are inter-connected); 2) a structured version of RGCCA where each group of genes
is a block (here the design is complete within each type of data, GE or CGH, and all the
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Figure 1: Comparison of the block weight vectors, summarized by groups, without sparsity
constraints (upper graphs) or with a maximum sparsity constraint (lower graphs), for the
GE block (on the left) and the CGH block (on the right).
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Figure 2: Factor scores of three different versions of RGCCA. Left: the two first dimen-
sions of RGCCA applied to a 13 block dataset, 6 blocks for the GE functional groups, 6
blocks for the CGH functional groups and 1 block for the response, followed by a principal
component analysis of the resulting GE and CGH block components. Middle and right:
the first dimension of CGH (y-axis) as a function of the first dimension of GE (x-axis).
Middle: RGCCA with no sparsity. Right: gSGCCA with maximum sparsity.
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Data: X1, . . . ,XJ , G1, . . . , GJ , ε, R, s1,`, . . . , sJ,`.
Initialization: ∀j = 1, . . . , J,Aj ← [ ];
Result: The estimated weight vectors combined into matrices A1, . . . ,AJ

for ` = 1, . . . , R do
Initialize a0

j for all j;

s← 0;

while
∥∥a(s+1)

j − a
(s)
j

∥∥ ≥ ε, ∀j = 1, . . . , J do
for j = 1, . . . , J do

Compute the inner component:

∇s
jf ←

1

n
Xt
j

[
j−1∑
k=1

cjkg
′ (cov

(
Xja

s
j ,
′Xka

s+1
k

))
Xka

s+1
k +

J∑
k=j+1

cjkg
′ (cov

(
Xja

s
j ,Xka

s
k

))
Xka

s
k

]

Compute the outer weight:

as+1
j ← proj

(
∇s
jf,B1,2(sj,`) ∩B2(1) ∩A⊥j

)
end
s← s + 1 ;

end

∀j = 1, . . . , J,Aj ←
[
Aj, a

(s+1)
j

]
;

end
Algorithm 1: General algorithm of gSGCCA implementing group-sparsity and or-
thogonality of the block weight vectors.

GE and CGH blocks are connected to the location block), and 3) gSGCCA with maximum
sparsity and a complete design (like option 1).

The block weight vectors are shown in Figure 1 for Versions 1 and 3. Each functional
group is represented by its norm. This figure shows that incorporating a group-sparsity
constraint in RGCCA greatly improves the interpretability of the block weight vectors
because with gSGCCA only a handful of groups were selected for each dimension of GE
and CGH.

The block components are shown on Figure 2, which shows that the improvement
in interpretability for the loadings–––observed on the block weight vectors—comes at
the cost of a diminished class separation observed on the observations (this effect occurs
because sparsifying the loadings automatically reduces the variance of the observations
factor scores).
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4 Conclusion and perspectives

We present in this paper a new method—called gSGCCA—that adds group-sparsity and
orthogonality constraints to RGCCA. The application of gSGCCA to a medical example
illustrates that, compared to the original RGCCA, gSGCCA provides results easier to
interpret.

Future work will focus on developing a user friendly framework for the selection of
the sparsity parameters to achieve some optimum trade-off between sparsity and predic-
tion performance. We will also work on including metrics in gsGCCA to generalize its
application to a wider range of data types.
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