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A Predictive Coding account for Chaotic
Itinerancy ?
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Abstract. As a phenomenon in dynamical systems allowing autonomous
switching between stable behaviors, chaotic itinerancy has gained inter-
est in neurorobotics research. In this study, we draw a connection be-
tween this phenomenon and the predictive coding theory by showing
how a recurrent neural network implementing predictive coding can gen-
erate neural trajectories similar to chaotic itinerancy in the presence
of input noise. We propose two scenarios generating random and past-
independent attractor switching trajectories using our model.

Keywords: Predictive Coding · Free Energy Principle · Dynamical Sys-
tems · Neural Networks.

1 Introduction

Chaotic Itinerancy (CI) describes the behavior of large non-linear dynamical
systems consisting in chaotic transitions between quasi-attractors [14, 7]. It was
first observed in a model of optical turbulence [4], using globally coupled map
in a chaotic system [6] and in high dimensional neural networks [14]. From a
neuroscientific point of view, this phenomenon is interesting as such systems ex-
hibit complex behaviors that usually require a hierarchical structure in neural
networks. Studying CI could help better understanding the mechanisms respon-
sible for the emergence of structure in large populations of neurons.

In cognitive neuroscience, it is believed that attractors or quasi-attractors
could represent perceptual concepts or memories, and that cognitive processes
such as memory retrieval or thinking would require neural trajectories transi-
tioning between such attractors. CI is also gaining interest in neurorobotics, as it
allows to design agents with the ability to autonomously switch between different
behavioral patterns without any external commands. Several studies have tried
to model CI with learned attractor patterns. [15, 10] propose a method where
this functional structure emerges from a multiple-timescale RNN. Behavioral
patterns are encoded in a rapidly varying recurrent population while another
population with a longer time constant controls transitions between these pat-
terns. [5] models CI, using reservoir computing techniques[9], with the interplay
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between an input RNN and a chaotic RNN where desired patterns have been
learned with innate trajectory training [8].

In this work, we try to model the attractor switching behavior of CI with a
RNN implementation taking inspiration from the Predictive Coding (PC) the-
ory. We propose a model performing random and past-independent transitions
between stable and plastic limit-cycle attractors.

According to PC [12, 2], the brain is hierarchically generating top-down pre-
dictions about its sensory states, and updating its internal states based on a
bottom-up error signal originating from the sensory level. This view can be im-
plemented by having the generative model intertwined with error neurons that
propagate the information in a bottom-up manner through the hierarchy. An
online computation of the error at each level of the generative model makes it
possible to dynamically infer the hidden states, using only local update rules.
The proposed model implements PC using the free-energy formulation [3], pro-
viding a variational Bayes frame for the inference mechanisms.

We show how an RNN implementation based on PC can be trained to gen-
erate a repertoire of limit cycle attractor trajectories, and how adding noise into
the neural dynamics causes random transitions between the learned patterns.

2 Methods

In this section, we present the proposed RNN model and the corresponding
derivations for the free-energy. We then describe the two hypothesized situations
in which our model could exhibit attractor transitions dynamics, that we label
mode A and mode B.

2.1 RNN model

Figure 1 represents our proposed RNN model implementing predictive coding.
This implementation takes inspirations from several works on RNN modeling
[11, 13, 3].

RNNs can be introduced as directed graphical models forming temporal se-
quences of hidden states ht. RNNs can also include a sequence of input variables,
and a sequence of output variables. The model we present here only considers
outputs, that we denote xt. Such RNNs are parameterized by recurrent weights
controlling the temporal evolution of ht, and output weights translating ht into
outputs xt.

Taking inspiration from [3], we introduce hidden causes into our generative
model. Hidden causes, that we denote ct, are variables influencing the temporal
dynamics of ht. Contrary to hidden states, this variable is static and doesn’t
evolve according to recurrent weights. Hidden causes differ from model param-
eters, as they are a random variable on which we can perform inference. They
also differ from inputs, as they are not an observable variable with known value.
We still use the subscript t on ct, since our model will perform inference at each
time step, providing new estimates of the hidden causes variable.
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Fig. 1: RNN model. Left: Functional block diagram of the model. The layers of
the model interact through top-down connections (blue) and bottom-up connec-
tions (green). Right: Temporally unfolded computation graph of the model.

To model the influence of the hidden causes variable ct onto the temporal
dynamics of the hidden states ht, we use a three-way tensor of shape (n, n, p)
where n is the hidden state dimension and p is the hidden causes dimension.
The outcome of the dot product of this tensor by the hidden causes ct is a
matrix of shape (n, n). We can thus see the three-way tensor as a basis of size
p in a dimensional space of recurrent weight matrices, and hidden causes as
coordinates in this basis used to select particular temporal dynamics. Following
this intuition that different hidden causes will lead to different hidden state
dynamics, we choose to have one hidden causes vector for each attractor we
want to learn with our model. To make sure these attractors don’t interfere
with each other during the training phase, we enforce one-hot embeddings for
the hidden causes, with the activated neuron corresponding to the index of the
attractor we want to learn. It ensues that the hidden causes dimension will be
equal to the number of attractors we learn with this model.

This three-way tensor comprises a large number of parameters, causing this
model to scale poorly if we increase the dimension of the hidden causes (i.e. the
number of attractor patterns we learn). To address this issue, [13] proposes to
factor the tensor into three matrices such that for all i, j, k, Wijk

rec =
∑

l<d W
il
p ·

Wjl
f ·Wkl

c . We introduce a factor dimension d that we can be set arbitrarily to
control the number of parameters. In our experiments, we used d = n/2.

The top-down, prediction pass through our network can thus be described
with the following equations:
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ht = f(ct−1,h
∗
t−1) (1)

= (1− 1

τ
)h∗t−1 +

1

τ
Wf · ((Wc

T · ct−1)(Wp
T · tanh(h∗t−1))) (2)

xt = g(ht) (3)

= Wout · tanh(ht) (4)

Where we have introduced a time constant τ for the hidden state dynamics.

2.2 Free-energy minimization

As explained in introduction, our model implements PC with a bottom-up error
propagation circuitry, represented with green lines in figure 1. The error neurons,
denoted ε and ε′, compute the difference between predicted and target values
at each layer. By propagating these errors originating from the output layer,
onto the upper layers, this architecture is able to perform online inference of the
hidden variables (states and causes) of the RNN.

Inference in the proposed model can be formulated as a free-energy mini-
mization process. The detailed derivations of our model’s equations based on
the free-energy principle are provided in annex A. We obtain the following equa-
tion for the free-energy E(h, c):

E(h, c) =
(x∗ − x)2

2σ2
x

+
(h∗ − h)2

2σ2
h

− log p(c) + C (5)

In this equation, x and h denote prior predictions while h∗ denotes the ap-
proximate posterior estimation based on bottom-up information. x∗ denotes the
observed value. C is a constant value that does not impact gradient calculations.

The probability p(c) is the prior probability on the hidden causes variable. In
this article, we use a Gaussian mixture prior, defined in the following equation:

p(c) =

p∑
k=1

πkN (c;µk, σ
2
c Ip) (6)

Note that the number of Gaussians in the mixture model is equal to p, which
is the number of attractors, also equal to the dimension of c.

The temporal dynamics of h and c can be found by computing the free-
energy gradients with regard to these variables. The bottom-up, inference pass
through our network is described by the following equations:
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εt = xt − x∗t (7)

h∗t = ht −
1

σ2
x

Wout
T · εt (8)

ε′t = ht − h∗t (9)

ct = ct−1 −
1

σ2
h

Wc · ((Wf
T · ε′t)(Wp

T · tanh(h∗t−1))) +
∂ log p(ct−1)

∂ct−1
(10)

The last term in equation 10 will pull c towards values with high prior prob-
ability.

Compared to the RNN proposed in [11], our model comprises hidden causes
in the generative model. Additionally, the feedback connections perform gradient
descent on the free-energy, instead of being additional parameters to be learned.

2.3 Training

Algorithm 1: RNN Training

Initialize the RNN model;
hinit ∼ N (0, 1);
for 0 ≤ i < I do

for 0 ≤ k < p do
h0 ← hinit;
c0 ← one hot(k);
(x0, . . . ,xT )← RNN(h0, c0);
L ← MSE((x0, . . . ,xT ), (x∗

0, . . . ,x
∗
T ));

backprop(L, RNN.parameters());

end

end

The model can be trained with gradient descent on the free-energy functional
using only local update rules. The output weights Wout can be trained in order
to reduce the discrepancy between the observed value x∗t and its prediction
xt. Similarly, all the weights Wp, Wf and Wc, responsible for the temporal
dynamics of h, can be trained in order to reduce the error between the posterior
estimation h∗t and its prior estimation ht.

However, such learning rules would not consider the delayed influence of the
recurrent weight parameters onto the trajectory. In this article, we instead use
the backpropagation through time algorithm for the training of the model param-
eters, using only the forward pass described in equations (2) and (4) for gradient
computations (all the bottom-up updates are detached from the computation
graph).
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For each limit cycle attractor (x∗0,k,x
∗
1,k, . . . ,x

∗
T,k) of the p trajectories we

want to learn, we initialize the hidden causes to the one-hot encoding of k (all
coefficients set to 0 except for the k-th coefficient that is set to 1). All trajectories
start from a same random initial hidden state hinit. The training method is
described in algorithm 1.

Where I denotes the number of training iterations, T denotes the length of
the target trajectories. During our training, we used the Adam optimizer with
a learning rate of 0.01, and a batch size of p corresponding to the inner loop in
the previous algorithm.

2.4 Mode A

(a) σc = 0.4 (b) σc = 0.6 (c) σc = 0.8

Fig. 2: Gaussian mixture probability distributions with p = 2. The Gaussians
centers µ0 = (1, 0) and µ1 = (0, 1) are represented in black. The red points
represent the minima of the distributions. In the general case, the prior means
µk will correspond to the one-hot vectors activated on the k-th dimension, and
the mixture coefficients πk will be set uniformly : πk = 1/p.

Here we describe one way to simulate attractor switching behavior using the
proposed model. This method, that we label mode A, varies the parameters σc
used to dynamically infer hidden causes during the trajectory.

First, we are in a situation where no target x∗ is provided by the environ-
ment, in other words, the RNN performs a closed-loop trajectory generation. In
this situation, we replace the error in the bottom level by low amplitude noise.
This noise propagates in the RNN with feedback connections and in particular,
influences the hidden causes variable.

As represented in figure 2, the parameter σc determines the shape of the
prior distribution on hidden causes. With low values of σc, the complexity term in
equation (10) will pull the hidden causes variable towards one of the prior means
µk. These values for c correspond to temporal dynamics that have previously
been trained to match each of the desired attractors. With high values of σc, the
Gaussians merge into a concave function with a global maximum corresponding
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to the average of all the prior means µk. In this situation, the complexity term
in equation (10) will pull the hidden causes variable towards this average value,
for which no training was performed.

The idea of mode A is to periodically vary σc in order to alternate between
phases where the hidden causes are pulled towards learned attractor dynamics
values, and phases where the hidden causes are pulled towards the average of
the prior means.

2.5 Mode B

We describe a second method to simulate attractor switching behaviors, that we
label mode B. In mode B, the parameter σc remains constant and equal to 0.4,
instead we vary the parameter σh.

We can see from equation (10) that this parameter controls the importance
of the bottom-up signal in the hidden causes update. In our case, since the error
that is propagated up into the model is pure noise, the parameter σh can be
seen as controlling the noise level that we add to the hidden causes at each
time step. For high values of σh, the additive noise level will remain too low
to pull the hidden causes outside of the basin of attraction created by the last
term of equation (10) and represented in figure 2a. For values of σh that are low
enough, the additive noise can make the hidden causes c escape from its basin
of attraction.

Similarly to mode A, the idea behind mode B is to periodically vary σh in
order to alternate between low noise phases where hidden causes remain close to
a value corresponding to the learned attractor dynamics, and high noise phases
where the hidden causes escape their attraction basin.

3 Results

In this section, we present the results we obtained with the proposed model. We
analyze the simulations of our network in mode A and mode B for the generation
of attractor switching trajectories.

3.1 Training

We initialize our model with an output dimension of 2, a hidden state dimension
of n = 100, and a hidden causes dimensions of p = 3, equal to the number
of attractor trajectories we want to learn. The network has a time constant of
τ = 5. Finally, we set σo = 1, σh = 10 and σc = 0.1 during training. Note that
the parameters σh and σc will be varying during the simulations in mode A and
B.

The three target trajectories are periodic patterns representing a circle, a
square, and a triangle, with a period of 60 time steps, repeated to last for 1000
time steps.

The model was trained during 1000 iterations using the method described in
Algorithm 1.
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3.2 Mode A

Fig. 3: Simulation in mode A. Left: Output trajectory generated by the model
in mode A. The line colors in RGB values correspond to the activations of
the three neurons of c throughout the trajectory. Top-right: Average velocity
of the hidden state according to its average value throughout the trajectory.
Middle-right: Evolution of the three hidden causes neuron activations over time.
Bottom-right: Evolution of the σc coefficient over time.

We now use the trained network in mode A, with the parameters settings
σo = 10, σh = 0.1, and σc varying according to the function σc(t) = 0.2 ∗
exp{2 sin(t/100)}. The results are recorded in figure 3.

We can observe that the RNN switches between the three attractors. When
σc is high, the hidden causes converge towards the center value. This center
value corresponds to the hidden state dynamics and output dynamics depicted
in gray. This value of the hidden causes seems to correspond to a point attractor,
which was not something directly enforced by the training procedure. Starting
from this configuration, when σc decreases, the hidden causes falls into one of
the three attracting configurations that were trained to correspond to the three
limit cycle attractors.

3.3 Mode B

We now use the trained network in mode B, with the parameters settings
σo = 10, σc = 0.4 and σh varying according to the function σh(t) = 0.04 ∗
exp{2 sin(t/300)}. The results are recorded in figure 4.
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Fig. 4: Simulation in mode B. Left: Output trajectory generated by the model
in mode B. The line colors in RGB values correspond to the activations of the
three neurons of c throughout the trajectory. Top-right: Average velocity of the
hidden state according to its average value throughout the trajectory. Middle-
right: Evolution of the three hidden causes neuron activations over time. Bottom-
right: Evolution of the σh coefficient over time.

We can observe that the RNN again switched between the three attractors.
When σh is high, the hidden causes remain in a stable position corresponding
to the learned limit cycle attractor dynamics. When we decrease σh, the noise
level applied onto the hidden causes at each time step increases to the point
where c escapes its basin of attraction, to fall back into one of the three stable
configuration once the noise level resettles.

3.4 Transition matrices

In this section, we want to verify whether the attractor switching behavior follows
a uniform probability distribution or if some transitions are more likely to occur
than others. We view the RNN as a Markov chain with three configurations.
For modes A and B, we record 2000 attractor transitions that we use to build
an estimation of the transition matrix of that Markov chain. The results are
displayed in figure 5.

For mode A, we can see that the probability of switching to a certain state
seems independent from the previous state. This result can be explained by the
fact that the intermediary, neutral configuration that the networks reaches before
switching to a new configuration corresponds to a fixed point. If we let enough
time for the hidden state to reach this fixed point, it would no longer hold any
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(a) Transition matrix for mode A. (b) Transition matrix for mode B.

Fig. 5: Transitions matrices for modes A and B. Lines correspond to previous
states and columns to next states. For instance, the estimated probability of
switching from circle to triangle attractors in mode B is 0.23.

memory of the previous configuration. Additionally, the probability distribution
is not uniform, as rectangle states happen more often than others.

For mode B, this bias is still present but contrary to mode A, the probability
to reach a certain state depends on the previous state. The transitions are thus
past-dependent.

4 Conclusion

In this study, we have shown how an RNN model implementing PC could exhibit
attractor switching behaviors using an input noise signal. Here, we compare our
results with other works aiming at modeling this behavior.

The approach described in [15] requires to train a separate RNN for each
primitive. In opposition, we have shown that our model can embed different
dynamics within one RNN, and as such should scale better to an increased
number of primitives. On the other hand, one limitation of the model presented
by [5] is that quasi-attractors have a set duration, and the behaviour they yield
can’t last longer than this trained duration. In contrast, since our model relies
on real trained limit-cycle attractors, any periodical behavior can be maintained
for as long as desired.

In this article, we have tried to propose mechanisms that will provide random
transitions between attractors, regardless of the past attractor state. However,
if we were to model cognitive mechanisms such as memory retrieval, it could be
interesting to have such a dependency. Following this idea, we could envision a
mode C where we would periodically set the parameter σc to a very large value.
When σc is very high, the prior probability over c converges to a flat function,
thus making the last term of equation 10 negligible. In such a setup, c would
evolve following a Gaussian random walk. When σc is reset to its initial value,
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c should converge to the closest mixture mean. Alternating between low values
of σc and very high values would thus result in a succession of random walk and
convergence phases for c, that should maintain information about the previously
visited attractor configurations.
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A Free-energy derivations

In this section, we provide the derivations for equation 5. We start from the
following probabilistic graphical model:

p(c) =

p∑
k=1

πkN (c;µk, σ
2
c Ip) (11)

p(h|c) = N (h; f(c,ht−1);σ2
hIn) (12)

p(x|h) = N (x; g(h);σ2
xI2) (13)

Where f and g correspond to the top-down predictions described respectively
in equation 2 and 4. Note that here, c, h and x denote random variables, and
should not be confused with the variables of the computation model presented in
the main text. Since free-energy will be used to perform inference on the hidden
variables, and that it’s not possible to update the past hidden variable ht−1,
we treat it as a parameter of function f and only perform inference on c and
h = ht, where we have dropped the subscript.

We introduce approximate posterior density functions q(h) and q(c) that are
assumed to be Gaussian distributions of means mh and mc. Given a target for
x, denoted x∗, the variational free energy is defined as :

E(x∗,mh,mc) = KL(q(c,h)||p(c,h,x∗)) (14)

= −Eq[log p(c,h,x∗)] + Eq[log q(c,h)] (15)

The second term of equation 15 is the entropy of the approximate posterior
distribution, and using the Gaussian assumption, does not depend on mh and
mc. As such, this term is of no interest for the derivation of the update rule of mh

and mc, and is replaced by the constant C1 in the remaining of the derivations.
Using the Gaussian assumption, we can also find simplified derivations for the
first term of equation 15, and grouping the terms not depending on mh and mc

under the constant C2, we have the following result:

E(x∗,mh,mc) = − log p(x∗|h)− log p(mh|c)− log p(mc) + C1 + C2 (16)

=
(x∗ − g(h))2

2σ2
x

+
(mh − f(c,ht−1))2

2σ2
h

− log p(mc) + C (17)

Where C = C1+C2+C3 and C3 corresponds to the additional terms obtained
when developing log p(x∗|h) and log p(mh|c).

[1] provides more detailed derivations and a deeper hindsight on the subject.

B Linked videos

Here is the link to a video showing animated example trajectories in modes A
and B (https://youtu.be/LRJQr8RmeCY).


