N
N

N

HAL

open science

A modular tool for automatic Soundpainting query
recognition and music generation in Max/MSP

Arthur Parmentier, Ken Déguernel, Constance Frei

» To cite this version:

Arthur Parmentier, Ken Déguernel, Constance Frei. A modular tool for automatic Soundpainting
query recognition and music generation in Max/MSP. Sound and Music Computing, 2021, Torino

(virtual), Italy. hal-03262673

HAL Id: hal-03262673
https://hal.science/hal-03262673

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03262673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A MODULAR TOOL FOR AUTOMATIC SOUNDPAINTING QUERY
RECOGNITION AND MUSIC GENERATION IN MAX/MSP

Arthur PARMENTIER (arthur.parmentier@epfl.ch) !, Ken DEGUERNEL (ken.deguernel@epfl.ch)!, and

Constance FREI (constance. frei@unil.ch)?2

'Ecole Polytechnique Fédérale de Lausanne, Switzerland
>Université de Lausanne, Switzerland

ABSTRACT

This paper presents a modular software designed for auto-
matic recognition of Soundpainting query. Soundpainting
is a musical practice and a sign language used for real-time
composition with an orchestra. A series of signs is ges-
tured by the soundpainter creating a “sentence” describ-
ing a musical idea that they want the orchestra to per-
form. We propose an open-source tool, for Max/MSP,
able to perform every task for a computer to be part of
a Soundpainting scene: motion tracking, gesture recogni-
tion, query parsing and music generation. This tool is cre-
ated in a modular way so that it can be easily modified to fit
the needs of the user, for instance, changing the type of in-
puts for the motion tracking or adapting the Soundpainting
grammar. We describe the global architecture, the differ-
ent components of this tool, and the currently implemented
methods for each of these components. We then show ex-
amples of use for this tool, from the learning of a new sign
to a performance with several virtual instruments.

1. INTRODUCTION

Soundpainting (SP) is a sign language developed in
1974 by the New York composer and saxophonist Wal-
ter Thompson for real-time composition with his orchestra
[1]. Although the language was originally used for com-
posing with musicians, it has extended to multiple artis-
tic disciplines such as dance, theatre or visual arts and is
now used worldwide by a variety of artists in diverse con-
texts and configurations. SP is not originally a language
designed for working with electronic devices and comput-
ers. It is often reported that their use in SP is made difficult
by the high reactivity requested by the soundpainter to the
set of performers that forms the orchestra. However, digital
tools have been used since the second half of the 20th cen-
tury in new forms of compositional processes and aesthet-
ics of music [2-4]. Modern methods of Human-Machine
Interaction for learning and performing in real-time [5, 6]
enables the exploration of new artistic materials with new
dynamics of creativity [7, 8].

Automatic gesture recognition is an important topic of

Copyright: © 2021 Parmentier et al. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Human-Machine Interaction aiming at interpreting human
gestures using cameras and/or motion sensors, providing
2D or 3D information. Machine learning techniques are
used in order to recognise and analyse the gestures, usu-
ally focusing either on full-body gesture recognition or
hand gesture recognition. Automatic gesture recognition is
used for many applications, such as medical diagnosis [9],
surgery analysis [10, 11], emotion recognition [12], sign
language recognition [13], etc.

Automatic gesture recognition has also been used in
many applications for computer music [14]. For instance,
Fernandez et al. [15] use Kinect camera, controller gloves
and sound mapping for audiovisual performances inspired
by percussionists movement; Dalmazzo et al. [16] use a
Myo armband to detect arms and fingers movement for a
pedagogical tool checking the bowing and fingering of a
violinist; Cavdir et al. [17] present an interface with hand
gesture recognition and haptic feedback with movement
inspired by sign language to create musical performances
that can be experienced both by people who are hard of
hearing and by those who are not; Chandran et al. [18] uses
a camera and openCV to detect facial expressions to con-
trol virtual instruments; Van Nort et al. [19, 20] proposes
a gesture database, in order to analyse and map sonic and
kinetic actions happening during performances according
to their gestural meaning, etc.

In the last few years, automatic gesture recognition for
SP started gathering some steam. Pellegrini et al. [21] pro-
posed a proof of concept with the recognition of a few SP
gestures using Kinect input classified with Hidden Markov
Models. However, at the time, they only discussed the
possibility of SP annotations and other use cases of the
recognition system theoretically without proposing a con-
crete prototype for it. More recently, Gémez Jauregui et
al. [22] used SP gesture recognition for the generation of
electronic music. They use a Kinect and decision tree clas-
sifier to recognise 9 different gestures. However, the ges-
tures are considered individually and not as part of a syn-
tactic phrase. SP gesture recognition has also been used
outside of the scope of music in order to control a swarm
of drones [23].

In this paper, we propose a new tool for Soundpainting
Query Recognition (SPQR) with two main aspects in mind.
First, the software we propose is complete, ie. it performs
every necessary task for SPQR (cf. Figure 2) motion track-
ing, real-time classification of gesture, query parsing and
music generation, and can be used by anyone with a com-


mailto:arthur.parmentier@epfl.ch
mailto:ken.deguernel@epfl.ch
mailto:constance.frei@unil.ch
http://creativecommons.org/licenses/by/4.0/

WHAT?

long tone

WHO?

whole group

HOW?

pianissimo now

WHEN?

Figure 1. Example of a Soundpainting query using the Who? What? How? When? syntax (illustration from [1]).

puter and a webcam. Second, the software is built in a
modular way: every component is independent, enabling
an advanced user to easily change them, for instance mod-
ifying the motion censors or replacing the classification
method.

The rest of the paper is structured as follows. In section
2, we introduce and discuss the key elements of SP related
to our project. Then, in section 3, we describe the architec-
ture and the different components of our SPQR software.
Then in section 4, we discuss some aspects of performance
and provide demonstrations for the use of the software. Fi-
nally, in section 5 we discuss the use of this tool in the SP
sphere and propose some perspectives for the future of this
project.

2. ELEMENTS OF SOUNDPAINTING

Soundpainting is a sign language used by a (or in some
cases, several) composer, called soundpainter, as a real-
time communication system with performers of an orches-
tra. The language is organised in “modes” of interaction
between the soundpainters and the performers, each one
having its own grammar and dictionary of signs. The most
common mode (“default mode”) uses a syntax that is com-
monly simplified as “Who” —indicating which perform-
ers should respond to the request—, “What” —what content
should they perform—, “How” —the shape of the content—
and “When” —when the request should be executed—. Fig.
1 shows an example of a SP phrase using this syntax. In
response, the performers do not sign but rather provide
artistic contents that build up the composition. The sound-
painter can then sign in reaction or not to the performers’
responses shaping the artistic material while it is being
played to the audience. In the rest of the article, we call
“query” a SP phrase. This is a bit of a play on word be-
tween the computer science definition that the software has
to deal with, and the human language definition, since in
the philosophy of SP, the soundpainter only requests things
from performers without any guarantee on the performer’s
responses. “The Soundpainter composes with what hap-
pens in the moment, whether expected or not.”

Most of the basic signs of SP involve only a combination
of dynamic gesture, e.g. arms and hands movements and
of static postures made by the soundpainter, facing the per-
formers. For instance, in the SP workbook [1] the sign for
“Whole-group” (see Fig. 1) is described as the following
posture: “Hold both arms over your head creating a cir-
cle with fingertips barely touching”, and the sign for long-

tone, is described as the following gesture: “Holding your
hands a little out in front of your body, pinch the thumb
and index finger of both hand together and pull them apart
along a horizontal plane”. However, it is to note that the
time and space span for each gesture and posture may vary.

Among the most common SP signs are the “multi-
disciplinary” signs. These signs such as “minimalism” or
“long tone” can be interpreted in several disciplines (mu-
sic, dance, acting, visual arts...). Even though the concept
they refer to usually come from one discipline only, their
interpretation in SP has been extended to the other ones by
creating relevant analogies for each one. It results in a rich
and powerful language that stimulates the creativity of the
composer and performers using it.

The full grammar of SP is not yet fully described and
involves many other syntactic categories that are learned
during practice, therefore, for the rest of this article, we are
only considering the “default” mode for which the syntax
is established and described in details in [1].

3. SOFTWARE ARCHITECTURE

SPQR is built with several independent layers, emulating
the different structural levels of SP, from the creation of
signs to the parsing of its grammar and music generation.
We have identified five layers:

* input management, computing features from dif-
ferent input systems (webcam, gloves, etc.),

e sign and dictionary management, defining and
storing the SP gestures and postures,

* real-time classification, performing SP sign recog-
nition,

* parsing and request-forming automata, creating a
query out of a series of signs,

* orchestra simulation, performing music according
to the query.

An illustration of these components and their interactions
is given in Figure 2.

Each layer was conceived as a specific function that the
user should easily be able to identify and interpret. Inside
each layer are different processes and objects that the user
interacts superficially with from the interface of the pro-
gram.

At the interface level, all layers are implemented in-
side Max/MSP. The user can see the whole patcher in



Computer integrated or external hardware

‘ | Other user hardware.

1
]
] (Web-) camera ‘ ‘ Kinect | ‘ Hi5 Gloves
1
1

Sends video data
) H

H 1. Input management
¥ v v ¥
Kinect software layer Hi5 Gloves software

(data receiver) layer (data receiver)

!
!
!
!
' Input-to-model routing matrix
. Routes real time input data to each mode!
Data files

’ PoseNet model ‘ ’ HandPose model

2. Signs & dictionary management

Record motion racking data for Multi-dimensional labeled buffer Load pre-recorded signs motion)
each sign example (computer dictionary) - MuBu object tracking data

3. Real-time classification

Wekinator

Hands model

sther DSCI Real time hands skeleton data
| from input management layer

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

1 Fast training (high speed '

1 playback of Mubu buffers} !
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Full-body model

Real time body skeleton data
from input management layer
Fast training (high speed
playback of MuBu buffers)

4. Parsing & request-forming automata

[N

Grammatical parse : soundpainting automata
L2
Structured request in OSC format ]

5. Orchestra simulation

{ 0SC parsing } ,,,,,,,,, .[

.
1
.
'I
il
.
h
"
i}
" Virtual instruments
3
i

Midi translation ]

Figure 2. Schematic overview of the different modules and
their interactions in SPQR. Blue components come inte-
grally or partially from other works while white compo-
nents have been designed during this project.

the main window and is also able to access specific func-
tionalities of each layer by using tabs. At the process-
ing level, Max/MSP itself has three different threads that
it uses for processing the data passing through its com-
piled objects. For these threads, Max guarantees the syn-
chronicity/ordering of events. However, Max also inter-
prets Node.js code that is processed in external threads
asynchronously to Max internal threads.

In this part, we describe the different components imple-
mented in the current version of this software, but each
module could be easily replaced by an experienced user.

3.1 Input management

The role of the motion tracking layer is to compute a set
of motion features from the movement of the user. There
exist several motion tracking systems with different tech-
nologies that can be used to model the human body from
the position of characteristic points. These points can then
be transformed into features of a classifier to identify ges-
tural signs. In SP, some body parts such as the hands are

used much more frequently to sign than others, therefore
they require more precise tracking than the latter to classify
amongst the signs. However, all motion tracking systems
available have a finite range of operation, i.e. they can only
track motion at a certain scale (just like the human cog-
nition system). We integrated two models to respectively
track signs from the full-body and from the hands.

For these scales, we use respectively PoseNet [24] —an
open-source computer-vision model that can be used to
estimate the pose of a person in an image or video by
estimating where key body joints are in 2D space— and
HandPose [25] —it’s equivalent for modelling the hand—.
For PoseNet, the available features are the position coor-
dinate for ears, eyes, shoulder, elbows, wrists, hips, knees
and ankles with the nose considered as a fixed point. For
HandPose, the available features are the position coordi-
nate of every finger tip and knuckles with the centre of the
palm considered as a fixed point. For our experiments, we
only used the positions of elbows and wrists for PoseNet,
and the positions of every fingertip as well as the second
knuckle for the index and middles fingers.

Their performances on modern CPUs and GPUs allow
them to run in real-time using a webcam or alternative
low-latency video input devices, making them usable by
anyone without needing special hardware. We use the
TensorFlow version of these tools which are ported into
Max/MSP using a Node.js server. Therefore, the patch pro-
vides a simple user interface (cf. Figure 3). PoseNet and
HandPose allow the user to choose different models and
internal parameters that will affect its performance, such
as the architecture of the model (MobileNet or ResNet),
the input resolution of the video, the size or the depths of
the model, etc. With these settings, the user can adapt the
model to its hardware easily to get the best performance.

The different inputs can be attributed to the different
models using the input manager. We opted for a modu-
lar approach with a design that allows the user to add its
own inputs and models in from the Max patcher. Because
inputs have different data rates and dimensions, it is in gen-
eral not possible to route more than one input to a single
model. If two inputs are compatible (typically with simi-
lar data rates) the user simply can create a new input and
merge the two original ones.

3.2 Signs and dictionary management

Once the inputs and models are defined in the program, the
user can start recording signs and building its sign dictio-
naries for each model. Users can either create their own
signs or use pre-recorded signs, that would have been cre-
ated or recorded by other users. A sign can be defined by
two properties: its name or its category, in analogy with
the syntactic model of SP (identifier, content, etc.) These
properties are sufficient to allow the program to parse the
sign, i.e. to construct a meaningful request from the tem-
poral flow of signs.

In order for the sign to effectively be identified, two steps
are required after the sign has been defined: record train-
ing examples and program the virtual instrument itself to
interpret the sign. While the recording of training exam-



xage (once)

A X |

Figure 3. User interface for PoseNet in the Max/MSP
patch. The left part shows the input from a webcam with
the PoseNet key body joints. The right part shows the dif-
ferent coordinate for each key body joints. The user can
select here which features to take into consideration in the
system.

ples is an automated process that simply involves pushing
one button, the programming of the virtual instrument or
device that the sign should control is outside the scope of
the program.

The user can choose to either define one sign at a time and
record one or several training examples for it, then saving
the training data and adding another sign, or directly de-
fine a list of signs and recording all of them in the same
session. Each recording takes place in a different buffer
of the Multiple Buffer (MuBu) objects (one Mubu object
per model) [26] and each active input data is saved into a
different track. The recordings can then be saved to build
a dictionary of MuBus corresponding to different signs. It
is also possible to load pre-recorded signs by dragging and
dropping data files in the dedicated zone.

3.3 Real-time classification

For the system to be able to “recognise” the signs, we de-
cided to focus on lightweight, interpretable models that can
be trained fast and identify the signs that are performed in
real-time. In our case, the identification is a simple clas-
sification process, in which we ask the classifier to predict
the “class” of the motion sequence performed among a set
of classes that have been previously learned by the model
—the SP signs.

After a few experiments with the gesture follower from
MuBu based on Hierarchical Hidden Markov Models, we
decided to use the external software Wekinator [27] per-
forming better by offering a very efficient Dynamic Time
Warping implementation based on the FastDTW library
[28] with additional improvements for real-time perfor-
mance and several internal parameters for its DTW model.
Wekinator is integrated into Max through communication
with the Open Sound Control (OSC) protocol. Although
the user must launch Wekinator separately and perform
basic operations on its GUI, the most important parts of
Wekinator can be controlled remotely via OSC, allowing
Max to automatise certain operations, such as its training

process.

Once the model is running, Max receives in real-time the
set of DTW distances from the real-time sequence to each
recorded sign sequence. By finding the minimal value in
that set and comparing this value to a confidence threshold,
we can identify when a sign is being performed in real-
time.

3.4 Parsing and request-forming automata

From the models introduced in the previous section, we
can recognise individual signs, forming a sequence in time,
just like words form a phrase in oral languages. The next
step is therefore to implement the grammar of SP with a
parsing mechanism that would then allow us to create re-
quests or commands to each device that acts as an individ-
ual performer in the system. To that purpose, we imple-
mented an automaton inside Max using Node.js. A visual-
isation of the automaton is provided inside the patch for a
clear description of the SP grammar and also for more ex-
perienced users to have direct feedback on their grammat-
ical implementation, for instance when adapting the gram-
mar to their own purpose (cf Figure 4).

The automaton that we implemented corresponds to the
grammar for the “default mode” of SP explained in section
2 (the “Who—What—-How—When” syntax). The automaton
allows us to represent such a sequence and understand each
sign as a particular function in the query. It also recognises
“wrong” signs and allows for feedback for the user about
the correctness of their query. Details about the grammar
of SP and its implementation can be found in [29].

Once parsed, the query is structured by collecting each
sign during the state transitions and assembling them into
several hierarchical objects. The query is then converted in
OSC format that can be used to communicate with a virtual
performer.

3.5 Orchestra simulation

From the OSC commands created by the automaton, there
is an unlimited panel of tools and ways to create an orches-
tra of virtual performers, using DAWs, OSSIA [30], etc. In
order to provide a complete usable tool in Max/MSP, we
decided to use bach [31]. bach implements both classical
music notation and proportional music notation, with sup-
port for accidentals of arbitrary resolution, rhythmic trees
and grace notes, polymetric notation, MusicXML, MIDI
files, etc. The orchestra simulation with bach is imple-
mented in a different patcher than the recognition tool and
receives the commands from the automata with OSC. We
decided to build fixed contents into the bach.roll and
bach.score objects that allow the user to place notes
into a score, just like any score editing program. These
objects are then connected to virtual instruments through
Midi.

In more general approaches, the recognition program can
be connected to a variety of devices that interpret OSC. In
our case, the companion program works as follows: each
instrument is simulated by a vst that can receive midi notes.
The midi notes are sent from the reading of bach.score
and bach.roll objects that each corresponds to a given



4.2. SOUNDPAINTING AUTOMATA

script npm install Install once if needed
script start Restart the automata

Reload the graph html page

identifier modifier

Current state

identifier

modifier

content

Figure 4. Finite-state automaton representing the grammar for the “default mode” of Soundpainting. The graph shows the
different states of the automaton and the possible transitions between them.

musical content of a given instrument and that the user can
write and edit just like a normal score. When an OSC
command is received from SPQR, a simple regexp rout-
ing allow the command to be sent to a given type of mu-
sical content (for instance “long tone”) of a given instru-
ment (for instance “percussions”). If several long tones are
implemented for a single instrument, one is chosen ran-
domly when the command “start” is received. By default,
a medium tempo and volume is chosen. But if the com-
mands “tempo” or “volume” followed by a value are re-
ceived, the bach.roll and bach.score objects are
set to change their values. Therefore, the tempi and vol-
umes of the different instruments can be adjusted in real-
time. Once a “stop” command is received, the values of
tempo and volume are set back to their default values. This
implementation allows us to predefined a set of possible
musical elements with Bach objects that are then chosen
randomly in the play. Future approaches could rather rely
on probabilistic generation models and models of interac-
tion between the different instruments [32].

4. PERFORMANCE AND DEMONSTRATION

The Soundpainting Query Recognition tool is fully avail-
able under GPLv3 licence on its Github repository ' . De-
tailed informations about the installation process of this
SPQR tool can be found on the Github repository as well
as in [29].

After installation, even though the number of layers is
high, the end-user only manipulates high-level elements on
the program: buttons and text elements. Being released by
default with webcam inputs, it is easy for the user to run
it on a personal computer without any setup on the input
part. As for now, we only provide the companion patcher
that runs the basic orchestra simulation with bach objects.
However, the setup of the devices that are controlled at the
input and output of SPQR can be modified and added by
an experimented users.

The tool was tested using a relatively high-end home
computer with 16GB of RAM, an i7-8750H processor and

'https://github.com/arthur-parmentier/
soundpainting-signs—-gestures-recognition

an Nvidia 1060 GTX as a dedicated GPU. For PoseNet,
we used the parameters for ResNet50 at quantbytes = 1
and input size = 350, achieving 15 FPS. For Wekinator,
we set the default max sequence length to 30, achieving
again 15 FPS, which has proven to be more than enough
for SPQR. It is to note that PoseNet is very sensitive to
light conditions and contrast. Although it is difficult to
describe the perfect environment in those terms, the user
should pay attention to both camera settings (luminosity or
ISO, contrast, saturation profiles, etc) and the position of
the lights in the configuration to ensure that the models can
work with the best accuracy. A rather uniform background
will probably result in good recognition when in high con-
trast with clothes and skin colour. For our tests, we used
two cameras (computer webcam and phone camera) run-
ning in parallel. The computer camera is then routed to
the full-body model with PoseNet and the phone camera
to the model for the hands with HandPose. In general, the
choice of the inputs (number, type...) is left to the user
and will greatly influence the performance of the recogni-
tion. In our case, we worked with a computer camera for
simplicity of usage. However, one could reach higher per-
formance and better gesture discrimination with gloves or
full body suit 3D tracking systems for instance.

We also released a series of videos, showing the different
aspects of this work accessibleathttp://deguernel.
discordia.fr/spqr/. The first video explains the
gesture and query recognition task using PoseNet, Wek-
inator DTW, and the SP automaton. We demonstrate the
training part of the model using several gestures that are
repeated very few times. We compare then the perfor-
mance of MuBu’s gesture follower using Hierarchical Hid-
den Markov Models and of Wekinator, using DTW, for the
classification task, and finally, show how the gesture recog-
nition is used to navigate the SP automaton to form a SP
query. The second video shows how to use two cameras
(here a webcam and a phone camera) to model both full-
body and hand gestures simultaneously with PoseNet and
HandPose. Finally, the third video shows a full demonstra-
tion of SPQR for music generation using bach as a virtual
orchestra.


https://github.com/arthur-parmentier/soundpainting-signs-gestures-recognition
https://github.com/arthur-parmentier/soundpainting-signs-gestures-recognition
http://deguernel.discordia.fr/spqr/
http://deguernel.discordia.fr/spqr/

5. DISCUSSION

From the point of view of the soundpainter, the recogni-
tion is an exploratory and creative instrument that can also
push for new ways of signing and thinking SP as a di-
rect relation to the instrument (or device) itself. Learning
this sign language with a band is not offered to everyone
and most orchestras are interested in practising with ex-
perimented soundpainters only. In practice, most sound-
painters first learn the language as performers before sign-
ing themselves, such that they have already internalised
most of the language and compositional propositions be-
fore endorsing the “role” of soundpainter as a composer.

Feedback is one of the most important aspects of learn-
ing. One will for instance learn how to correct himself
from errors when he will be able to perceive those as such
and understand what the cause of the error is. Even though
in the SP design, nothing is considered a mistake on the
side of the performer who interprets the sign, the sound-
painter can make syntactic mistakes. In a learning tool im-
plementing a grammar, it is important to let the user know
why a particular sentence is wrong or what did the pro-
gram recognize that is not intended. In our SPQR tool,
the user can already receive these types of feedback from
the automaton, which on top of outputting its actual state
and how the request is created also provides error messages
that indicate if an unexpected or illegal sign has been ob-
served. For instance, if the user signs “rest of the group,
long tone, whole group, minimalism, play”, the automaton
will output an error message when receiving “whole group,
minimalism” , stating that “rest of the group” has already
been requested as a content previously in the sentence and
that the request of a new content is ambiguous.

Another type of feedback is the ability to hear the con-
tents that are produced by the program and how they react
to the different requests, even when the user is making mis-
takes or the program does not recognize the intended signs.
Feedback is one form of incentive to explore more of the
tool and learn with it. They can be classified into two cat-
egories: external or internal to the program. Some artists
are already interested in using the recognition tool in their
own installations: they have external incentives. However,
some users may not be familiar with digital tools nor with
SP and will not take to create something of their own if
they are not pushed to it by the program’s mechanics that
form its internal incentives. Typically, games are good ex-
amples of programs with a lot of internal incentives. They
have gamified features, such as a score, elements of com-
petition or collaboration, rewards, etc., which push the user
to explore more of the game and performing better at it.
For future work, there is probably some potential to be
explored with SPQR for the implementation of gamified
elements or feedback through interactive designs and vi-
sualisations. Moreover, we also plan to reach testers to
make a more collaborative and musician-oriented develop-
ment plan and to assess the performances of SPQR more
quantitatively. Finally, we also plan to release a compiled
version of the system that will simply run as an executable
file, simplifying the installation process a lot.

Acknowledgments

A. Parmentier and K. Déguernel share first authorship for
this article. This work was made possible thanks to Sarah
Kenderdine, the eM+ Lab and the DHLAB at EPFL. We
would also like to thank Walter Thompson for his support
and the interesting conversations.

6. REFERENCES

[1] W. Thompson, Soundpainting: the art of live composi-
tion. Workbook 1, 2006.

[2] Guy E. Garnett, “The Aesthetics of Interactive Com-
puter Music,” Computer Music Journal, vol. 25, no. 1,
pp. 21-33, 2001.

[3] D. Keislar, “A historical view of computer music tech-
nology,” in The Oxford Handbook of Computer Music,
R. Dean, Ed. Oxford: Oxford University Press, 2011,
ch. 2, pp. 11-43.

[4] J.-C. Risset, “Computer music: why,” Songes, Pas-
sages, Computer Suite from the Little Boy, Sud. Mainz:
Wergo, vol. 2050, 2013.

[5] D. Herremans, C.-H. Chuan, and E. Chew, “A func-
tional taxonomy of music generation systems,” ACM
Computing Surveys, vol. 50, no. 5, pp. 1-30, 2017.

[6] J. Nika, K. Déguernel, A. Chemla-Romeu-Santos,
E. Vincent, and G. Assayag, “DYCI2 agents: merg-
ing the “free”, “reactive”, and “scenario-based” music
generation paradigms,” in Proceedings of the Interna-

tional Computer Music Conference, 2017.

[7]1 E. A. Edmonds, “Human computer interaction, expe-
rience and art,” in Interactive experience in the digital
age:evaluating new art practice, L. Candy and S. Fer-
guson, Eds. London: Springer, 2014, ch. 2, pp. 11-23.

[8] P. Esling and N. Devis, “Creativity in the era of ar-
tificial intelligence,” in Proceedings of the Journées
d’Informatique Musicale, 2020.

[9] F. Negin, P. Rodriguez, M. Koperski, A. Kerboua,
J. Gonzalez, J. Bourgeois, E. Chapoulie, P. Robert, and
F. Bremond, “PRAXIS: Towards automatic cognitive
assessment using gesture recognition,” Expert Systems
with Applications, vol. 106, pp. 21-35, 2018.

[10] I. Funke, S. Bodenstedt, F. Oehme, F. von Bechtol-
sheim, J. Weitz, and S. Speidel, “Using 3D convolu-
tional neural networks to learn spatio-temporal features
for automatic surgical gesture recognition in video,” in
Proceedings of the International Conference on Med-
ical Image Computing and Computer-Assisted Inter-
vention, 2019, pp. 467-475.

[11] X. Gao, Y. Jin, Q. Dou, and P.-A. Heng, “Automatic
gesture recognition in robot-assisted surgery with re-
inforcement learning and tree search,” in Proceedings
of the IEEE International Conference on Robotics and
Automation, 2020, pp. 8440-8446.



[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

F. Noroozi, D. Kaminska, C. Corneanu, T. Sapinski,
S. Escalera, and G. Anbarjafari, “Survey on emotional
body gesture recognition,” IEEE Transactions on Af-
fective Computing, 2018.

M. M. Islam, S. Siddiqua, and J. Afnan, “Real time
hand gesture recognition using different algorithms
based on american sign language,” in Proceedings of
the IEEE International Conference on Imaging, Vision
Pattern Recognition, 2017.

A. R. Jensenius and M. J. Lyons, Eds., A NIME reader
: Fifteen years of New Interfaces for Musical Expres-
sion. Springer, Cham, 2017.

J.-M. Fernandez, T. Koppel, G. Lorieux, A. Vert, and
P. Spiesser, “GeKiPe, a gesture-based interface for au-
diovisual performance,” in Proceedings of the New In-
terfaces for Musical Expression Conference, 2017, pp.
450-455.

D. Dalmazzo and R. Ramirez, “Air violin: a machine
learning approach to fingering gesture recognition,” in
Proceedings of the International Workshop on Multi-
modal Interaction for Education, 2017, pp. 63-66.

D. Cavdir and G. Wang, “Felt Sound: a shared mu-
sical experience for the deaf and hard of hearing,” in
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2020.

D. Chandran and G. Wang, “InterFACE: new faces for
musical expression,” in Proceedings of the Interna-
tional Conference on New Interfaces for Musical Ex-
pression, 2018.

D. V. Nort, I. Jarvis, and M. Palumbo, “Towards a map-
pable database of emergent gestural meaning,” in Pro-
ceedings of the International Conference on New Inter-
faces for Musical Expression, 2016.

D. V. Nort, I. Jarvis, and K. Maraj, “Performing gesture
and time via an emergent database,” in Proceedings of
the 2020 International Conference on Movement and
Computing, 2020.

T. Pellegrini, P. Guyot, B. Angles, C. Mollaret, and
C. Mangou, “Towards Soundpainting gesture recogni-
tion,” in Proceedings of the Audio Mostly: A Confer-
ence on Interaction With Sound, 2014.

D. A. G. Jauregui, I. Dongo, and N. Couture, “Auto-
matic recognition of Soundpainting for the generation
of electronic music sounds,” in Proceedings of the In-
ternational Conference on New Interfaces for Musical
Expression, 2019.

N. Couture, S. Bottecchia, S. Chaumette, M. Cec-
conello, J. Rekalde, and M. Desainte-Catherine, “Us-
ing the Soundpainting language to fly a swarm of
drones,” in Advances in Intelligent Systems and Com-
puting,J. Chen, Ed. Springer, Cham, 2017, pp. 39-51.

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

G. Papandreou, T. Zhu, N. Kanazawa, A. Tosheyv,
J. Tompson, C. Bregler, and K. P. Murphy, “Towards
accurate multi-person pose Estimation in the wild,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, pp. 4903—4911.

F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka,
G. Sung, C.-L. Chang, and M. Grundmann, “Medi-
aPipe Hands: On-device real-time hand tracking,” in
Proceedings of the Workshop on Computer Vision for
Augmented and Virtual Reality, 2020.

N. Schnell, D. Schwarz, J. Larralde, and R. Borghesi,
“PiPo, A plugin interface for afferent data stream pro-
cessing modules,” in Proceedings of the International
Symposium on Music Information Retrieval, 2017.

R. Fiebrink and P. R. Cook, “The Wekinator: A system
for real-time, interactive machine learning in music,”
in Proceedings of the International Society for Music
Information Retrieval Conference, 2010.

S. Salvador and P. Chan, “FastDTW: Toward accurate
Dynamic Time Warping in linear time and space,” In-
telligent Data Analysis, vol. 11, no. 5, pp. 70-80, 2004.

A. Parmentier, “Soundpainting Language Recogni-
tion,” Master’s thesis, EPFL, 2020.

J.-M. Celerier, P. Baltazar, C. Bossut, N. Vuaille, J.-M.
Couturier, and M. Desainte-Catherine, “OSSIA: To-
wards a unified interface for scoring time and interac-
tion,” in Proceedings of the International Conference

on Technologies for Music Notation and Representa-
tion, 2015.

A. Agostini, D. Ghisi, and J.-L. Giavitto, “Program-
ming in style with bach (extended version),” in Pro-
ceedings of the International Symposium on Computer
Music Multidisciplinary Research, 2019.

K. Déguernel, E. Vincent, and G. Assayag, ‘“Prob-
abilistic factor oracles for multidimensional machine
improvisation,” Computer Music Journal, vol. 42,
no. 2, 2018.



	 1. Introduction
	 2. Elements of Soundpainting
	 3. Software architecture
	3.1 Input management
	3.2 Signs and dictionary management
	3.3 Real-time classification
	3.4 Parsing and request-forming automata
	3.5 Orchestra simulation

	 4. Performance and demonstration
	 5. Discussion
	 6. References

