Visualizing Classifier Adjacency Relations: A Case Study in Speaker Verification and Voice Anti-Spoofing
Tomi Kinnunen, Andreas Nautsch, Md Sahidullah, Nicholas Evans, Xin Wang, Massimiliano Todisco, Héctor Delgado, Junichi Yamagishi, Lee Kong Aik

To cite this version:
Tomi Kinnunen, Andreas Nautsch, Md Sahidullah, Nicholas Evans, Xin Wang, et al.. Visualizing Classifier Adjacency Relations: A Case Study in Speaker Verification and Voice Anti-Spoofing. INTERSPEECH 2021, Aug 2021, Brno, Czech Republic. hal-03261467

HAL Id: hal-03261467
https://hal.archives-ouvertes.fr/hal-03261467
Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Visualizing Classifier Adjacency Relations: A Case Study in Speaker Verification and Voice Anti-Spoofing

Tomi Kinnunen1, Andreas Nautsch2, Md Sahidullah3, Nicholas Evans2, Xin Wang4, Massimiliano Todisco2, Héctor Delgado5, Junichi Yamagishi4, Kong Aik Lee6

1University of Eastern Finland, Finland
2Eurecom, France
3Inria, France
4National Institute of Informatics, Japan
5Nuance Communications, Spain
6Institute for Infocomm Research, Singapore

tomi.kinnunen@uef.fi, andreas.nautsch@eurecom.fr, md.sahidullah@inria.fr

Abstract

Whether it be for challenge results summarization, or the analysis of classifier fusion, some means to compare different classifiers can often provide illuminating insight into their behaviour, (dis)similarity or complementarity. We propose a simple methodology to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers in response to a common dataset. Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores and with close relation to receiver operating characteristic (ROC) and detection error trade-off (DET) analyses. While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems. The former are produced by a Gaussian mixture model system trained with VoxCeleb data whereas the latter stem from submissions to the ASVspoof 2019 challenge.

Index Terms: classifier, multi-dimensional scaling

1. Introduction

Whether it be for challenge results summarization [1, 2, 3, 4] or the analysis of classifier fusion, some means to compare alternative classifiers can often provide illuminating insight into robustness, coherence, and generalisation [5]; (dis)similarity, and complementarity. Depending on prior knowledge (and data) available, one could compare

- the underlying working principles, features, architectures, training data properties — classifier metadata,
- empirical performance (e.g. accuracy) on a common set of evaluation data,

to name two possibilities. Often we want to understand how the two are related — what is the impact of specific modeling choices upon performance. A common approach is to fix some parameters while varying others to find out their impact on performance. Whenever one implements the classifier and has full control over the experiment, this white-box approach is relatively straightforward. There are, however, situations where one may not have access to exhaustive classifier details and configuration settings but would still like to learn about similarities between alternative solutions. One such black-box scenario are public machine learning challenges and technology benchmarks. Whether it be NIST speaker recognition evaluations [2, 3], VoxCeleb [4], ASVspoof [1], or indeed any other competitive campaigns, participants typically run their in-house systems on a common evaluation set and submit predictions (e.g. scores) for unlabeled data along with a system description. Since source codes or models are often not required, there can be uncertainty as to why specific challenge entries outperform others. The authors’ personal motivation for the presented work stems partially from difficulties encountered in our efforts to link classifier properties to their performance in a recent challenge [1]. We wanted to find out what can be learnt about classifier differences based on detection scores.

To this end, we propose a method for computing the distance between binary classifiers based on the scores produced for common evaluation data (Fig. 1). We impose a stronger notion of classifier (dis)similarity than the established methods of detection error trade-off (DET) [6] and receiver operating characteristics (ROC) analyses: to be considered identical, a pair of classifiers must agree not only in their DET profiles but relative ordering of individual trials. Similar principles are the basis for a number of statistical significance tests but our perspective is in visualizing classifiers beyond DET/ROC plots.

As Fig. 1 suggests, we conjecture that distances derived from scores may provide information on (possibly unknown) classifier metadata differences. After describing the background and methodology, we report an example application of our methodology to automatic speaker verification (ASV) and voice anti-spoofing. The former includes classifiers constructed by the authors (known classifier metadata) while the latter represents the less controlled case of submissions to the ASVspoof 2019 challenge. Note, however, that the proposed methods are not in any way specific or limited to the speech domain. To this end, we provide an open-source reference implementation1.

2. Trade-offs in Characterizing Classifiers

There are various ways to describe a classifier. The coarsest description might include the general model class — such as ‘a linear classifier’ or ‘a deep neural network.’ A more refined description might detail the features and their dimensionality, the type and number of layers, the software toolkit, loss function, validation

1https://github.com/asvspoof-challenge/classifier-adjacency (referenced June 10, 2021).
or training corpus to name a few possibilities.

Depending on the target group (e.g., general public, scientists, students, software engineers) one may prefer different levels of detail. What is in common is that the descriptions are designed for communicating key principles rather than enabling perfect reproducibility. The description is a human-readable tuple, h. For instance, our automatic speaker verification (ASV) systems described below are characterized by triplets $h = (\text{TrData};F;G)$ where $\text{TrData} \in \{\text{VoxCeleb, LibriSpeech}\}$ indicates the training corpus while F and G are integers that indicate the number of mel filters and Gaussians, respectively. Each choice (attribute value in h) impacts results but there is no expectation for such triplets to be a complete description; it is a description intended for a particular audience (here, Interspeech attendees).

At the other extreme, the most precise description is a packaged/trained model — a list of all parameters, $\theta \in \mathbb{R}^D$. For instance, θ could represent all the weights of a deep neural network (DNN), D being potentially in the order of millions. If scoring is deterministic (as is usually the case), θ and the functional form $g(X; \theta)$ completely specify how an arbitrary input X maps to an output (predicted class label or score), $X \mapsto Y = g(X; \theta)$. This leads to perfect reproducibility — one obtains the same scores, and hence also results, every time. Unlike h, however, θ is not intended to be comprehensible to the human: eyeballing the numerical values of DNN weights (an exercise which could take a while) is not particularly helpful in understanding how the system works or why it may work/fail in specific cases. Another problem is incomparability of the parameter vectors of different models. They could have different dimensionalities and there may be no meaningful correspondence between dimensions.

One more level of description are the scores that can be used to derive detection error trade-off (DET) profiles [6] and metrics such as the equal error rate (EER). Unfortunately, being based on score distributions, DETs or EERs are not informative of classifier responses to individual trials. A common compromise is to define a limited number of evaluation conditions — subsets of trials with characteristics useful for diagnostics (e.g., ‘telephony’, ‘short-duration’, ‘attack S10’, ‘females’). Performance breakdown by condition is useful in analysing trends.

In summary, there are different abstraction levels to characterize classifiers. We aim at learning about their differences in terms of human-targeted descriptions without the precise knowledge of the attribute values themselves. We conjecture that classifiers that are similar in their h descriptions may produce similar outputs when executed on common data. In this case, one can learn about classifier design differences from their scores. To this end, we propose a method to compute pairwise classifier distances for common evaluation data. The distances can then be used for different purposes, such as agglomerative clustering or visualisation, to help in demonstrating trends or diagnosing classifier complementarities.

3. Proposed Classifier Adjacency Visualizer

3.1. Assumed input data

Let X and Y denote some input space and (binary) labels, respectively. We use $D = \{(X_i, Y_i)\}_{i=1}^N \sim \text{id} \ p(X, Y)$ to denote a labeled (supervised) evaluation set of N trials. In an ASV set-up, each X_i corresponds to an enrollment-test pair and $Y_i \in \{0, 1\}$ indicates whether the speaker identities in the two utterances are the same (target trial) or different (non-target trial). In voice anti-spoofing, in turn, each X_i corresponds to a test file and Y_i indicates whether X_i represents bonafide audio or a spoofing attack (such as computer-generated speech).

We assume a set $\mathcal{G} = \{g_1, \ldots, g_M\}$ of M binary classifiers (detectors), $g_j : X \to \mathbb{R}$, each of which assigns a numeric membership value (detection score) to each trial, with the convention that high scores indicate support towards the positive class (e.g. target speaker). Unless we construct the classifiers ourselves, we do not have access to the scoring functions $\{g_j\}$ but only to their outputs for the shared evaluation data D (in turn, in a challenge setting, only the organizer knows the ground truth values $\{Y_i\}$ while the participants produce predictions on the test trials $\{X_i\}$ blindly). We use $s_{i,j} = g_j(X_i)$ to denote the response of the jth classifier to the ith trial. The data used for our modeling consists of the responses of all classifiers to all the test trials — an $N \times M$ matrix $S = [s_{1,1}, \ldots, s_{N,M}]$ where $s_i = [s_{i,1}, \ldots, s_{i,M}]^T$ is a column vector of size $N \times 1$.

Optionally, one may have additional trial metadata. In this case, we assume that each trial can be uniquely assigned to one member of a mutually exclusive set of groups (conditions), $c \in \{1,2, \ldots, C\}$. In our experiments, for instance, groups in the ASV application correspond to the specific pair of speaker identities in the trial. We denote the number of trials in group c by N_c. As the groups are mutually exclusive, $N = \sum_{c=1}^{C} N_c$. We use either the original $N \times M$ score matrix or the smaller $C \times M$ matrix $S' = [\mu_1, \ldots, \mu_C]$ where each group is represented using its average score. Here, $\mu_c = [\mu_{c,1}, \ldots, \mu_{c,M}]^T$ is a column vector of size $C \times 1$ for the jth classifier.

3.2. Classifier Adjacency

To identify similar (and dissimilar) systems, we define a distance function between classifiers, indicated by $D(i,j)$, where $i, j \in \{1, \ldots, M\}$. It is computed either from S or S'. We
first note that, since the numerical range of detection scores can be arbitrary, a direct comparison of scores (e.g. using Euclidean distance) is usually not meaningful. In the ASV field, ‘correction’ for the range of scores is typically addressed through calibration (e.g. [7]) that converts arbitrary scores into calibrated log-likelihood ratios (LLRs). Here, however, since score calibration is not our main concern, we opt for more straightforward scale- and translation-invariant distance computation. To this end, we define classifier distance through order statistics as opposed to raw scores. This choice stems from the knowledge that any two classifiers which yield the same order of trial scores on common data will share the same detection error trade-off (DET) curve and equal error rate (EER) [8, p.81].

We use Kendall’s τ [9, 10, 11] as the rank correlation measure between classifiers i and j:

$$\tau(i, j) = \frac{N_{con} - N_{dis}}{\sqrt{(N_{con} + N_{dis} + T_i) \times (N_{con} + N_{dis} + T_j)}}$$

(2)

where N_{con} and N_{dis} are, respectively, the number of concordant and discordant pairs between i and j. Further, T_i is the number of ties only in i, and T_j is the number of ties only in j. Concordance of a pair of trials means that the sort order agrees across the classifiers. For instance, if the ai and bi trial scores are ordered $s_{a,i} < s_{b,i}$ in classifier i, the trial pair (a, b) is cor-
dordant with classifier j, if similarly $s_{a,j} < s_{b,j}$. Likewise, if $(s_{a,i} > s_{b,i})$ AND $(s_{a,j} > s_{b,j})$, pair (a, b) is again cor-
dordant. If concordance is not satisfied, the pair (a, b) is discordant. A tie within either classifier means that there identical scores pro-
duced for different trials. With real-valued scores stored in float or double precision this is generally a rare case.

An intuitive feeling of (2) can be developed by first assum-
ing there are no ties ($T_i = T_j = 0$). Now, if the two classifiers place all trials into the same sort order, $N_{dis} = 0$ and $\tau(i, j)$ reaches the maximum value of 1. The other extreme is obtained when the sort order of trials of one classifier is the reverse of the other. This corresponds to $N_{con} = 0$ and yields the mini-
mum value of -1. Finally, $\tau = 0$ indicates lack of statistical association between the two. To sum up, $\tau(i, j)$ can be considered as a degree of agreement in the sort order of classifiers. Whenever $\tau(i, j) = 1$, the classifiers have identical DET or ROC profiles. For the purposes of visualization, we map τ into distances

as $D(i, j) = \frac{1}{2}(1 - \tau(i, j))$. Hence, identical systems (in the sense of their Kendall τ) map to a distance of 0 while reverse ordering yields a maximum distance of 1. Finally, visualizations of classifier adjacency relations are obtained using classical (non-metric) multidimensional scaling (MDS). Each classifier is represented by a point in 2D space so that between-classifier distances approximate those in the given distance matrix (here, the $M \times M$ matrix containing all pairwise distances).

4. Experimental set-up

We demonstrate the proposed methods with two different tasks: automatic speaker verification (ASV) and voice anti-spoofing. The former consists of classifiers constructed by the authors with controlled parameters. The latter consists of countermeasures submitted to the ASVSpoof 2019 challenge. Even if the system descriptions are known, we cannot interact with these systems nor do we know all their implementation nuances.

The analysis of ASV methods uses the publicly available Vox-

Celeb dataset. We use the standard trial list of 40 test speakers in VoxCeleb [12]. It consists of 18860 target trials and the same number of nontarget trials. We form the groups (see Section 3) from the cross-product of speaker identities in the trials. With 40 speakers, this yields $(40 \times 41)/2 = 820$ groups.

We use Gaussian mixture model-universal background model (GMM-UBM) based ASV system with an MFCCs front-end. While there are better ASV methods, we opt for the computationally light GMM-UBM as we want to generate a large number of classifiers. The focus of this study is in classifier adjacency rather than performance.

Following standard practice, extracted MFCCs are aug-
mented with delta features and processed with RASTA and utterance-level cepstral mean and variance normalization (CMVN). For MFCCs, we include filterbanks comprising 12, 16, 20 and 24 filters. For UBMs, we vary the number of com-
ponents in the powers of 2 between 2 and 1024. For UBM training, we select two different datasets: VoxCeleb2 [4] and LibriSpeech [13]. In total, we have 80 ASV systems.

4.2. Anti-spoofing

The analysis of voice anti-spoofing methods, or spoofing coun-
termeasures (CMs), uses ASVSpoof 2019 challenge submission en-
tries. Details of the dataset [14] and challenge results [1] are provided elsewhere. Here we focus on aspects relevant for the novel classifier adjacency analysis.

The challenge data consists of two different scenarios. The evaluation set of the logical attack (LA) scenario contains 13 different text-to-speech or voice conversion attacks (labeled A07 … A19). The physical attack (PA) scenario, in turn, con-

sists of simulated replay attacks from 27 different environments and 9 replay configurations. Both sets also contain additional bona fide (human speech) utterances. The participants pro-
cessed the corresponding audio files blindly to obtain detection scores. In the LA scenario, the 3-class evaluation set consists of 5 370 bona fide/target, 1 985 bona fide/non-target, and 63 882 spoofed trials. For the PA scenario, the corresponding numbers are 12 960 bona fide/target, 5 130 bona fide/non-target, and 116 640 spoofed trials. For the LA scenario, the groups (see Section 3) are formed from the 13 attacks plus the bona fide class.
Figure 3: CM similarity on ASVspoof 2019 LA test set. The CM systems are single systems (no fusions) submitted by participants; an uncontrolled setting is showcased (raw scores). The ASVspoof 2019 primary metric is shown, the so-called min t-DCF [16]. Colours show different frontend transforms & feature types and backend classifiers.

(a) Performance (b) Frontend (c) Backend
(d) Grouped/BE

Figure 4: Visualisation of CMs on ASVspoof 2019 PA task; single systems. Frontends (FEs) and backends (BEs) are compared for raw and grouped scores. Legend as in Fig. 3.

5. Results

The proposed method is demonstrated in a controlled-classifier setting (ASV) and in a setting of unconstrained classifiers (CMs).

5.1. Speaker Verification

Fig. 2 illustrates ASV results with varying number of filters, mixtures, and training data. The indicated C_{lin} performance [7, 15] is demonstrated for the lowest and highest number of mixture components to provide nominal guidance only. For the top-5 systems, C_{lin} varies between 0.466 and 0.481 (for visual clarity, we do not show all the C_{lin} values in Fig. 2).

Differences in classifier parameters expose observable trends. For 12 filters, decision boundaries resulting from different training data become closer for as few as 4 components. Similar trajectories are followed as the number of components increases (as does the discrimination performance). Then, while the LibriSpeech trajectory continues, the VoxCeleb trajectory makes a sudden jump into the area of the top classifiers (at 512/1024 components and 20/24 filters). Adjacent classifiers (to the top ones) have less filters but more components; the top classifiers use more filters but less components. Our visuals supplement conventional DET plots: they provide insights into how decision boundaries are affected by data and parameters.

5.2. Anti-spoofing

Figs. 3 and 4 show visualisations for the LA and PA scenarios, respectively. Note that the location of points in each panel for each dataset (left-to-right) are identical. In each panel, circles indicate a CM, whereas diamonds signify top-5 CMs. Colours indicate performance and frontend/backend meta-data.

The plots give an indication of the diversity among systems. Differences between the top-5 systems are reasonably representative of the full set of systems. The diversity may imply that the top-performing single systems are complementary. This hypothesis is supported by fusion results discussed in [1] which shows that the combination of top-performing single LA and PA systems leads to improved performance. One can presume that the reason for the ineffective fusion strategies for PA primary system submissions might be due to lack of complementary of the systems involved in the ensemble.

5.3. Adjacency from raw vs. grouped scores

Finally, we address classifier adjacency through score averaging by groups and subsequent use of the proposed method. Figs. 2 and 4 illustrate a comparison of the proposed method for raw and grouped scores. Classifier adjacency is viewed through an alternative lens. In the ASV task, a clear separation between the two training is apparent. The VoxCeleb-trained classifiers (comparatively in-domain) become more alike. By using raw scores, trajectories by number of components (design parameters) are more alike. Feature resolution (the number of filters) corresponds to clear trajectories. In the uncontrolled CM setting, frontends as well as backends are more alike after grouping: the separation of non-GMM and GMM classifiers becomes oblivious.

Originally, we had two motivations for the grouped approach. First, the highly-compressed per-group average was hypothesized to give potentially a stable high-level classifier signature. Second, there is a computational advantage for very large trial sets. However, one needs additional metadata (domain knowledge) to define the trial grouping. As we see, raw vs. grouped scores produce different findings. We prefer not to recommend either variant without a further study. A related approach, convex optimisation of error trade-offs, resonates with the Bayesian decision framework; see use of the ROC convex hull instead of the corresponding ‘steppy’ profile [7].

6. Conclusions

We proposed a simple approach to visualise classifier adjacency on common data. An example application under controlled conditions show that the tool renders classifiers adjacent, when they are similar in metadata. In the absence of unified metadata, analyses for uncontrolled, challenge conditions prove more challenging. The proposed tool nonetheless reveals intriguing, new visual insights into classifier adjacency not provided by any existing tools.

7. Acknowledgements

This work was supported by a number of projects and funding sources: VoicePersonae, supported by the French Agence Nationale de la Recherche (ANR) and the Japan Science and Technology Agency (JST) with grant No. JPMICR18A6; Academy of Finland (proj. 309629); Region Grand Est, France.

In preliminary experiments, we used the proposed method in combination with the pool adjacent violators algorithm [17]. System dependently, 37720 ASV scores are reduced to 61 to 98 groups of same rank: visual differences are minimal; we spare comparisons.
8. References

