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Abstract

Data quality assesment is a key component for many real applications, since it
can drive better modelling. In this work a methodology to asses data quality (Qs-
core) is proposed and discussed. The validation of Qscore is performed via an
interactive learning experiment related to occupancy estimation. Interactive learn-
ing has been shown to be crucial to consider and integrate occupant behavior in
smart buildings. Indeed, valuable feedback and information can be collected from
the occupants by involving them and by improving their consciousness about en-
ergy management systems. Users should feel involved to keep developing highly
energy-efficient buildings. To reach this goal, occupants should be aware of the
building features to feel more in control. This paper proposes a framework to in-
teract with occupants to estimate building occupancy. This framework is based
on an enhanced supervised learning approach that involves interaction with occu-
pants, when necessary, to keep collecting training data. The training data consist
of the measurements (i.e. features) collected from common sensors, for instance,
motion detection, power consumption, and CO2 concentration, and the label (i.e.
number of occupants) provided by the occupants during interactions. The consid-
ered learning machine in our experiments is the Multi-layer Perceptron regressor
(MLP), although other approaches could be easily integrated within the proposed
framework. In order to avoid useless interaction with users a new concept is in-
troduced, called spread rate, to measure the quality of the data to decide if an
interaction with the user is necessary or not. Extensive simulations have shown
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the merits of the proposed approach.
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performance, activities recognition, office buildings.

1. Introduction

Future building energy management systems may cover a large set of applica-
tions. It should support retrospective analyses of past periods by estimating and
correlating actions and variables such as occupancy, usage of appliances, and heat
flows through windows for instance. Using simulation, it is possible to extrapolate
future states depending on hypothetical controls or by replaying past situations.
To develop different applications in smart buildings, energy management systems
have to embed knowledge and data models of the living area system; they have
to be equipped with learning, estimation, simulation, and optimization capabili-
ties. Because living zones are both related to physics and to occupants, the state
characterizing a zone at a given time is also related to occupants such as location
of occupants, their activities, actions performed on the envelope configuration
(e.g. windows, doors, shuttles), actions performed on the HVAC (Heating, Venti-
lation and Air-Conditioning) system, and actions performed on other appliances.
The human part of the state can be helpful with different regards. For instance,
different key performance indicators could be calculated for mirroring analysis.
Examples of these indicators include comfort during presence, waste/spare of en-
ergy, consumption linked to a specific device, and consumption per activity or
person. Usage analysis measuring and estimating what cannot be measured can
help occupants to discover costly routines. It can be managed by replaying a past
period, displaying both energy impacts and human past behaviors. Occupant be-
havior modeling can ease the tuning of reactive human behavior. The resulting
models can then be co-simulated with physical models to better represent human-
physical zone systems. The model should be updated accordingly without losing
its flexibility. One of the approaches that could be used to reach this goal is online
learning which supports life-long learning (i.e. the models could be improved each
time new data are added). Unlike supervised learning, online learning, also called
incremental learning (Perner, 2003; Duda et al., 2012), is a challenging unsuper-
vised task that has to be done in an online fashion, which imposes constraints on
both strategy and efficiency (Zhang et al., 2005). Online learning techniques pro-
vide solutions addressing real-time occupancy estimation where the ground truth



is required to build the initial model that we will continously update. Generally,
video cameras are used to determine the actual occupancy required for super-
vised learning (Milenkovic and Amft, 2013), which limits highly the application
implementation because of privacy issues. Consequently, an interactive learning
approach has been investigated for estimating occupancy with a set of sensors and
self-labeling by occupants (Amayri et al., 2016b).
Interactive learning estimates the number of occupants by questioning occupants
when relevant, by limiting the number of interactions and maximizing the infor-
mation usefulness about the actual occupancy. Occupancy estimation algorithms
use information collected from occupants together with common sensors. Interac-
tive learning approach depends mainly on the interaction methodology to define
when it is necessary to ask occupants. The ask is a question displayed on the
screen with its order, date and time i.e. (Question1, 05/09/2019 15:42:12 How
many occupants in last 30 minutes? (0...7)), while in a response area, there are
different options to answer, defined according to a minimum and a maximum pos-
sible number of occupants with a timeout of 3 hours for each question.
Three criteria have been taken into account to determine the interaction time. The
first one is the density of the neighborhood which is defined as the number of ex-
isting records (i.e. vectors of sensor features) in the neighborhood of a potential
ask (i.e. interaction with the occupant). The second criterion is the classifier esti-
mation error in the neighborhood of the potential ask which leads to the concept
of neighborhood quality that will be defined later in this paper via a novel concept
called spread rate. This methodology is based on the following. If the classifier
estimation error is too high for a record, this record is removed from the neigh-
borhood. However, an acceptable estimation error leads to updating the training
set with the new record. The third criterion is based on the minimum class weight
which consists of the minimum acceptable number of records for each class (see
figure 1). Spread rate replaces the density of neighborhood. It moves from a local
criterion to a global one (instead of counting the records, it checks how records
are globally distributed).
The main goal of this paper is to investigate further the concept of interactive
learning by introducing the concept of spread-rate which is basically a global
measure of data quality. The primary objective of the introduced spread-rate tech-
nique is reducing the number of interactions with occupants by considering the
whole database space instead of a local neighborhood.
The rest of this paper is organized as follows. Section 2 presents a review of the
research about occupancy estimation. Section 3 investigates the proposed spread
rate methodology. Section 4 discusses interactive learning for occupancy esti-



Figure 1: Interactive learning process with neighborhood approach

mation. Section 5 points out an implementation and experimentation with the
interactive learning application and section 6 concludes the paper.

2. State of the art

Existing methods for occupancy estimation depend on the data sources. (Jin et al.,
2018) proposed an occupancy detection using sensing by proxy, where the infer-
ence depends on proxy measurements such as CO2 concentration, and indoor
temperature. In (Minor et al., 2017) the authors investigated a solution for occu-
pancy and activity prediction (eating, sleeping, and taking medicine) by imitation
learning and reduce it to a simple regression problem. Moreover, data coming
from sensors have been used in this work (i.e. location sensors, window, and posi-
tion). Numerous studies in smart homes have used sound processing for activities
recognition such as (Sehili et al., 2012) which used Gaussian Mixtures Model
(GMM) and Support Vector Machine (SVM), in order to classify sound data se-
quences in order to be used in elderly people monitoring systems. In (Valle, 2016)
the author has proposed an algorithm for audio-based occupancy analysis, which
depends on GMM and Hidden Markov Model (HMM). Moreover, (Ordonez and
Roggen, 2016) proposed an action recognition approach based on Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). This model



is suitable in case of using wearable sensors. Besides, it does not require ex-
pert knowledge to design the required features but still suffers from the drawback
that deep learning algorithms need a large quantity of training data. In (Amayri
et al., 2016a) supervised learning approach is investigated, it starts by determining
the common sensors that shall be used to estimate and classify the approximate
number of people (within a range) in a room and their activities. Means to esti-
mate occupancy include motion detection, power consumption, CO2 concentra-
tion sensors, microphone or door/window positions. It starts by determining the
most useful measurements in calculating the information gains and removes the
ones which, when added to the classification algorithm, make no difference to the
overall output. Then, estimation algorithms are proposed: they rely on decision
tree and random forest learning algorithms because they yield decision rules read-
able by humans, which corresponds to nested if-then-else rules, where thresholds
can be adjusted depending on the considered living areas. An office has been
used for testing and 2 video cameras have been deployed in this approach. This
limits highly the application implementation because of privacy issues. More-
over, in (Amayri et al., 2019b) a knowledge-based approach using sensor data and
knowledge coming respectively from observations and questionnaires has been
proposed. It relies on a hidden Markov model and Bayesian network algorithms
to model human behavior with probabilistic cause-effect relations and states based
on knowledge and questionnaire. Different applications have been studied for val-
idation: an office, an apartment and a house with different levels of complexity
according to their context, available sensors, occupancy or activities feedbacks,
the complexity of the environment, etc. Better results have been obtained from
the Bayesian network as compared with Hidden Markov model by taking into
account the relations between the state’s model. Using knowledge domain and
questionnaire with data sensors in unsupervised learning method is more flexible
and open for different types of applications, with an acceptable average error for
occupancy estimation. In addition, avoiding the use of video cameras has been
achieved. This knowledge-based approach can be used widely in different con-
texts but may lead to poor performance during some periods (Wang and Liu, 2011;
Wang and Shi, 2009).
In (Amayri et al., 2019a), an interactive learning approach is proposed to estimate
the number of occupants in a room by questioning occupants when relevant, by
limiting the number of interactions and maximizing the information gains, about
the actual occupancy. The density of the neighborhood, average error estimation,
and the weight of each class are used to define the valuable time to interact with the
end users. The results lead to the conclusion that the interactive approach is more



efficient for occupancy estimation than the other methods taking into account the
context. Active learning is an important tool for many real-time applications. The
main idea behind active learning is that a machine learning algorithm can perform
higher accuracy with fewer training labels if it is permitted to determine the data
from which it learns, (Tong and Chang, 2001), (Quionero-Candela et al., 2009).
The main difference between active learning and our approach is that interactive
learning has no ground truth to build the model before interacting with the user. In
general, the accuracy of the training database is the main important factor to build
an accurate model. The problem of taking into account the quality of the training
data was rarely discussed. In fact, as the available information is dynamic and
changes over time, the structure of the training data should be readjusted to deal
with such dynamic aspects. In (Ardgna et al., 2018), the authors have evaluated
big data quality using different factors: accuracy, completeness, consistency, dis-
tinctness, precision, timeliness, and volume. An existing data quality method has
been proposed in the case of classification in order to avoid having overlapping
classes (Wang et al., 2009) and (Wang and Shi, 2009). This concept of data qual-
ity is different than the one which is proposed in this paper. Spread rate considers
the global space of the data and does not look at each class alone.

3. Spread rate principle

3.1. Problem statement
Let’s define an ask(t), called simply point in the following, by a list of feature
values coming from various sensors ask(t) = P (t) = (f1(t), . . . , fp(t)) related
to a living place at the same time t, where fi(t) ∈ (f̌i, f̂i). Let’s define a label
l(t) as a user feedback corresponding to a number or a text label. A record is
defined as an ask and a label related to the same time: r(t) = (ask(t), l(t)). An
ask ask(t) for which there is no corresponding label l(t) is called a candidate ask
because no label has yet been collected from user feedback. Conversely, when l(t)
exists, ask(t) is called a ”recorded” ask. A database Pr is a collection of records
collected at different times whereas an ask database P is a collection of recorded
asks. In the next, ”database” will refer to recorded ask-database and a point will
refer to a p-dimensional ask having value in a p-dimensional feature subspace
F . Generally speaking, let P = {P1, . . . , Pn} be a normalized ask-database of
n p-dimensional points (asks) distributed in a p-dimensional normalized space
S = (0, 1)p.
Consider a set of asks from a database P distributed in a non-normalized feature
subspace F = [f̌1, f̂1]× · · · × [f̌p, f̂p]. The corresponding normalized database is



given by P ′ with ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , p}, (f ′j)i =
(fj)i−f̌j
f̂j−f̌j

.
The main problem in interactive learning is to determine when a candidate ask
P should be considered for collecting occupant feedback considering an existing
database P . Let’s assume that score(P) assesses the quality of the database P .
A new point P should be considered for an ask if score(P ∪ {P}) > score(P)
where score(.) ∈ (0, 1); 0 for the lowest quality and 1 for the highest. Therefore,
the main question of the paper raises: how to assess the quality of a database i.e.
how should be the score function?

3.2. Intuitive approach for the quality assessment of a database
Intuitively speaking, it can be said that a database P of good quality means that its
points are regularly spread all over the normalized feature subspace S = [0, 1]p.
For instance, when all the points are same, the poorest quality is met (score(P) =
0), (see figure 2), but what corresponds to the highest quality? The 2D-patterns
in figure 3 should correspond to the highest quality because spreading cannot be
improved further.

3.2.1. Perfect spreading
Generally speaking, a perfect spreading P∗p,λ;λ ∈ N in a p-dimensional space is
met when: 1) the number of points n = (1 + λ)p , and 2) the infinite distance
between each point and its closest neighbor is 1

λ
.

As a reminder, the infinite-distance is based on the infinite-norm, which is defined
by: ‖P‖∞ = max

(
|P1|, . . . , |Pp|

)
. It is used in this work because it satisfies:

∀Pi ∈ (0, 1)p,∀Pj ∈ (0, 1)p, ‖Pi − Pj‖∞ ≤ 1.

3.2.2. Definition of spread rate
The spreadrate score (Sscore) measures how much the points Pi of a normalized
database regularly cover the space [0, 1]p. ∀p ∈ N∗ and ∀n ∈ N∗\{1}, it is defined
as:

Sscore(Pn) =
(
n1/p − 1

)
×
∑n

i=1

(
minj∈{1,..,n}‖Pi − Pj‖∞

)
n

(1)

The spreadrate score aims at assessing the quality of a n × p table of features
values. It corresponds to the average distance (according to infinity norm to avoid
exceeding one) per dimension separeting each point of a normalized database to
its closest neighbor (see figure 3). It satisfies: a) Sscore ∈ [0, 1], b) Sscore = 0 if
all the points in the normalized database are the same (null distance between all
points), c) Sscore = 1 if all the points are perfectly distributed over the normalized



Figure 2: Different 2-dimensional spread databases

Figure 3: Spread rate definition



Figure 4: Perfect spreading and interpolated best distances for different dimen-
sions

space (0, 1)p. The last property is straightforward to show using the definition of
a perfect spreading P∗p,q presented above.
Because of the infinite distance, the spreading (c) to (e) yields the same spread
rate (0.366), ( 2). Indeed, infinite distance is isotropic. The spread rate score can
also be seen as a ratio of:

Sscore = average of each point minimum distances between itself and its closest neighbor(=a)
best theoretical distance between 2 points for a perfect distribution (=a∗)

with a =
∑n

i=1(minj∈{1,..,n}‖Pi−Pj‖∞)
n

and a∗ = 1
n1/p−1

.

Let’s calculate the best theoretical distance between 2 points for a perfect spread-
ing. As seen before, perfect spreadings are known only when n∗ = (1 + λ)p with
λ ∈ N∗ with at least 2 points per dimension. λ stands for the number of points
per dimension. The distance between 2 points in a perfect distribution is equal to
a∗ = 1

λ
. For a given n, the interpolated best theoretical distance between 2 points

is given by a∗ = 1
n1/p−1

. This distance is exact for n∗ only. Figure 4 shows the
distance a as a function of n and p (a(n, p)).
In order to see how the average distance a(n, p) interpolates the distance between
points in perfect spreadings, let’s look at different examples in figure 5. Accord-
ing to this figure, it is clear that spreadrate score is not enough because it doesn’t
take into account the density of points. Let’s introduce the expected frequency of



Figure 5: 2-dimensional databases examples

points per dimension f . For a p-dimensional database Pn, the expected number
of points is pf . The accomplishment is: A = 1 − e

−3n

pf with A ∈ (0, 1); A = 1
means expected resolution is met and 0, not at all.
For a normalized database P ′n, the Qscore (in (0, 1)) is defined as the product of
spreadrate and resolution accomplishment:

Qscore(P ′n, f) =
(n1/p−1)

(
1−e

−3n

pf

)
n

×
∑n

i=1

(
minj∈{1,..,n}‖Pi − Pj‖∞

)
Best database quality is obtained when Qscore=1, and worst when Qscore=0.

For illustration purposes and ease of representation, let’s now focus on a 2-dimensional
database with 8 random points and compute the spreadrate scores, see figure 6.
The spread rate score changes by changing the location and the number of the
points. A genetic algorithm (differential evolution) is used to maximize the spread
rate score by adjusting the locations of the 8 points, see figure 7. Let’s analyze ex-
perimentally the maximum spread rate values depending on the number of points
in a database in a 2-dimensional space. Figure 8 shows the location of the points



Figure 6: spreadrate for 2-dimensional database with 8 random points

with the best spread rate score (i.e, 4 points give a Sscore=1 while we can not
acheieve this value with 7 points). Note that the minimum number of points in the
database is: nmin = 2p.

3.2.3. Complexity

Complexity is related to the combinations of distances i.e. O(n) =

(
n
2

)
=

n!
2(n−2)!

= n(n−1)
2

=∝ n2

Complexity of the spread rate score calculation does not depend on the dimension
p but only on the number of points n. This proposed score about the increase of
the database’s quality fits well the interactive learning approach, where the main
issue in this methodology is when to interact with the end user and how many asks
to collect in order to build a good training database.

4. Interactive learning for occupancy estimation

Interactive learning is a process involving an exchange of information with the
users in order to collect some important data according to the problem context.



Figure 7: The spread rate score by adjusting the locations of the 8 points using a
genetic algorithm

Figure 8: The points location for maximum spread rate values



In supervised learning methods, which are widely used in a lot of applications,
the problem of the required target arises in the determination of the number of
occupants i.e. the labeling issue is usually tackled using video cameras. Using
cameras is generally not acceptable in many places to respect the privacy of occu-
pants. Interactive learning is an adaptation of supervised learning that determines
the occupancy by collecting the required labels from the occupants themselves.
The problem statement of occupancy estimation has been explained in (Amayri
et al., 2019a).

4.1. Multi-layer Perceptron regressor (MLP) with interactive learning
In order to evaluate the interactive approach, Multi-layer Perceptron regressor is
deployed. MLP is trained using backpropagation with no activation function in
the output layer, which can also be seen as using the identity function as acti-
vation function. Therefore, it uses the square error as the loss function, and the
output is a set of continuous values. Supervised algorithms need a training period
(labeling) which is usually obtained from video cameras in the case of occupancy
estimation. In regression algorithms, the better the data are distributed (spread all
over the space) the better the prediction that will be achieved. Because of that
MLP regressor is chosen to validate the occupancy estimation problem. Indeed,
the training is based on the stochastic gradient descent with mini batches which
fits exactly the interactive learning with spread rate approach since the data are
collected one by one.

4.2. Spread rate score with interactive learning for occupancy estimation

Let Qscore(P ′n+1) be the new spread rate when adding one point to a normal-
ized database Sscore(P ′n) of recorded asks. Considering a new candidate ask in
interactive learning depends either on:

• The spread rate improvement i.e. how well points are distributed.

• The number of points n and n + 1: a decrease in the spread rate can be
compensated by a relative increase of the number of points i.e. a higher
density of points.

4.3. Case study for one zone office
In order to evaluate the interactive learning experiments with Qscore, a one zone
office context is used. This office is equipped with 30 sensors i.e, temperature, rel-
ative humidity (RH), motions, CO2 concentration, power consumption, door and



window positions. Besides, there is a centralized database with a web application
for continuously collecting data from different sources. The data cover 10 days
from 04-May-2015 to 13- May-2015. During these days a simulation has been
done to evaluate the proposed approach. At this step, Human Machine Interface
(HMI) interaction with end users in the office is simulated, while the answers of
asks are coming from the data labels are obtained from video cameras. Multi-
layer Perceptron regressor (MLP) has been applied with the interactive learning
process. According to (Amayri et al., 2016a) the set of interesting features to
work on are motion counting, acoustic pressure, and occupancy from power. Re-
sults presented in this work are based on a period of time Ts = 30 minutes.

4.4. Results
The first step for the validation starts by applying interactive learning with a
spread rate concept. The results show a limitation in interactive process because
it stopped after 4 asks which causes a high occupancy estimation error equal to
0.42 people, see figure 9. Obviously, the number of collected asks is not suffi-
cient for building a good training database and generate an accurate model. These
results lead to conclude that spread rate is not enough because it doesn’t take into
account the density of points and it will reach a maximum value, smaller than the
best possible one, before collecting all required data.
In the following experiment Qscore is used, table (1) illustrates how the 23 asks
are distributed along the days by applying Multi-layer Perceptron regressor. Four
days are needed to collect the 23 answers, in case the user answers directly to
each question. Indeed the number of days may change due to the interest of the
occupants.
For this reason, we proceed randomly with a reply probability equal to 50%, the
collecting process needs 14 days. In both experiments, an average error equal to
0.04 person has been achieved which is clearly better than the result achieved with
spread rate.
The blue curve in figure 10 shows how the spread-rate increases with each record
added to the dataset. It reaches 0.14 with the whole dataset.
The estimation process starts with a high average error on the first day which is
equal to 0.65 person for 480 samples. After collecting the required training data,
the estimation results are improved with an average error equal to 0.1 person, this
can be seen on the fourth day (for the same number of samples while the training
dataset contains 23 samples). Obtaining all the required answers (training data)
decreases the average error of occupancy estimation and it starts to be almost
stable with an average error equal to 0.012 person, see figure 11.



Figure 9: Occupancy estimation with interactive learning by applying MLP and
spread rate

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of
asks with 100%
replies

18 1 2 1 0 0 0 0 0 0 0 0 0 0 0

Number of asks
with 50% replies

8 0 0 2 1 1 3 2 1 0 2 0 1 2 0 0

Table 1: Number of asks each day



Figure 10: Interactiv learning process

The average error has been calculated for 480 samples, based on a period of time
30 minutes during the 10 days.
Figure 12 presents the results obtained from the learned Multi-layer Perceptron
regressor (MLP) considering 4 features as input to the model (motion detection,
power consumption, door position and acoustic pressure from a microphone),
where both actual and estimated occupancy profiles are plotted with relation to
time (quantum time was 30 min). The accuracy achieved from MLP was 93%,
and the average error was 0.15 persons.
Additionally, density approach with MLP for occupancy estimation is applied to
compare it with spread rate algorithm, the asking process leads to almost the same
number of asks as the Qscore, while the average error is increased to 0.27 person,
see figure 13.
Applying the interactive learning approach with density increased the complexity
of the estimation process. Several parameters should be adjusted with each new
context in order to minimize the number of asks and the estimation average error.
Contrary, the spread rate is not restricted to any parameter. It depends on the
global improvement on the quality of the database in the whole normalized space
while density relies directly on the defined neighborhood. For deeper analyses
other factors have been investigated for both algorithms (Qscore and density of
the neighborhood) with interactive learning: sensitivity to the initialization time,
and sensitivity to the features bounds. These factors cause a small effect on the



Figure 11: MLP estimation error with each new ask using 480 samples

results of interactive learning with Qscore, which can be ignored. While with
density approach the error increased to 0.36 person when changing the initial time
from the midnight to working time where the occupant’s number is more than one.
The MLP model doesn’t have the required dataset in order to give good estimation
results. In addition, the model is sensitive to the bounds of the features because
changing the bounds will affect directly determining the neighborhood, which is
the main factor in the ask process. The occupancy estimation results suggest that
the Qscore of improved spread rate can be simply generalized to any context.

5. Conclusion

In this paper, a novel approach to assess the quality of training data has been pro-
posed and successfully applied to occupancy estimation via an interactive learning
approach, which allows model training via continuous interactions with the users.
In particular, two scores (Sscore and Qscore) are calculated depending on a new
concept, called spread rate, in order to assess the quality of training data when col-
lected continuously. Extensive simulations have shown that the developed quality
assessment approach improves significantly the estimation results while reducing



Figure 12: Occupancy estimation with interactive learning by applying MLP and
Qscore



Figure 13: Occupancy estimation from MLP and density of the neighbourhood



the number of interactions with the occupants (around 16 asks). Although, only
MLP has been considered as a supervised learning approach, it is obvious that
the proposed approach could integrate easily other learning machines (e.g. SVM,
decision trees, etc.). Additionally, the comparison between the current approach
of interactive learning using spread rate and the previous one using local neigh-
borhood density shows improvement in the occupancy estimation results, besides
simplifying the model because of the less number of parameters. Indeed, the
spread rate concept can be used in many different machine learning and automatic
control application where the quality of the data is of crucial importance. There
are several interesting potential future works. For instance, the research presented
in this paper could be extended further to consider online learning where the pa-
rameters of the learning machine could be updated online each time new training
data are introduced. In this context, making the overall framework robust to out-
liers would be a potential work in order to avoid compromising the overall training
model. Other potential future works could be devoted to integrate streaming fea-
ture selection in case new sensors are introduced. The overall goal would be to
propose a unified occupancy estimation approach that takes into account simulta-
neously the quality of the data and the relevance of the features.
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work of the ” Investissements dávenir program (ANR-15-IDEX-02) ECO-SESA,
COMEPOS projects. The authors would like to thank the associate editor and the
reviewers for their helpful comments.

REFERENCES

Amayri, M., Arora, A., Ploix, S., Bandhyopadyayc, S., Ngod, Q.-D., Badarla,
V. R., October 2016a. Estimating occupancy in heterogeneous sensor environ-
ment estimating occupancy in heterogeneous sensor environment. Energy and
Buildings 129, 46–58.

Amayri, M., Ploix, S., Bouguila, N., Wurtz, F., 2019a. Estimating occupancy
using interactive learning with a sensor environment: Real-time experiments.
IEEE Access 7, 53932–53944.

Amayri, M., Ploix, S., Kazimi, H., Ngo, Q., Safadi, A., 2019b. Estimating occu-
pancy from measurements and knowledge using bayesian network for energy
management. Sensor 7, 53932–53944.



Amayri, M., Ploix, S., Reignier, P., Bandyopadhyay, S., 2016b. Towards Interac-
tive Learning for Occupancy Estimation. In: ICAI’16 - International Confer-
ence on Artificial Intelligence (as part of WORLDCOMP’16 - World Congress
in Computer Science, Computer Engineering and Applied Computing). Las Ve-
gas, United States.
URL https://hal.archives-ouvertes.fr/hal-01407401

Duda, R. O., Hart, P. E., Stork, D. G., 2012. Pattern classification. John Wiley &
Sons.

Helmbold, D. P., Long, P. M., 1994. Tracking drifting concepts by minimizing
disagreements. Machine learning 14 (1), 27–45.

Jin, M., Bekiaris-Liberis, N., Weekly, K., Spanos, C. J., Bayen, A. M., April
2018. Occupancy detection via environmental sensing. IEEE Transactions on
Automation Science and Engineering 15 (2), 443–455.

Kuh, A., Petsche, T., Rivest, R. L., 1991. Learning time-varying concepts. In:
Advances in Neural Information Processing Systems. pp. 183–189.

Lanquillon, C., 2001. Enhancing text classification to improve information filter-
ing.

Milenkovic, M., Amft, O., 2013. Recognizing energy-related activities using sen-
sors commonly installed in office buildings. Procedia Computer Science 19,
669–677.

Minor, B. D., Doppa, J. R., Cook, D. J., Dec 2017. Learning activity predictors
from sensor data: Algorithms, evaluation, and applications. IEEE Transactions
on Knowledge and Data Engineering 29 (12), 2744–2757.

Ordonez, F. J., Roggen, D., 2016. Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition. Sensors 16 (1).
URL http://www.mdpi.com/1424-8220/16/1/115

Perner, P., 2003. Incremental learning of retrieval knowledge in a case-based
reasoning system. In: International Conference on Case-Based Reasoning.
Springer, pp. 422–436.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N. D., 2009.
Dataset Shift in Machine Learning. The MIT Press.



Sehili, M. A., Istrate, D., Dorizzi, B., Boudy, J., Aug 2012. Daily sound recog-
nition using a combination of gmm and svm for home automation. In: 2012
Proceedings of the 20th European Signal Processing Conference (EUSIPCO).
pp. 1673–1677.

Tong, S., Chang, E., 2001. Support vector machine active learning for image re-
trieval. In: Proceedings of the Ninth ACM International Conference on Multi-
media. MULTIMEDIA ’01. ACM, New York, NY, USA, pp. 107–118.
URL http://doi.acm.org/10.1145/500141.500159

Valle, R., Dec 2016. Abroa: Audio-based room-occupancy analysis using gaus-
sian mixtures and hidden markov models. In: 2016 Future Technologies Con-
ference (FTC). pp. 1270–1273.

Wang, J.-D., Liu, H.-C., 2009. Evaluating the ambiguities between two classes
via euclidean distance. Asian Journal of Health and Information Sciences 4 (1),
21–35.

Wang, J.-D., Liu, H.-C., 2011. An approach to evaluate the fitness of one class
structure via dynamic centroids. Expert Systems with Applications 38 (11),
13764–13772.

Wang, J.-D., Liu, H.-C., Shi, Y.-C., 2009. A novel approach for evaluating class
structure ambiguity. In: 2009 International Conference on Machine Learning
and Cybernetics. Vol. 3. IEEE, pp. 1550–1555.

Wang, J.-D., Shi, Y.-C., 2009. Evaluating the ambiguity of non-linear separable
class structure via instance neighbor entropy. In: The 20th Workshop on Object-
Oriented Technology and Applications. p. 54.

Zhang, J., Ghahramani, Z., Yang, Y., 2005. A probabilistic model for online doc-
ument clustering with application to novelty detection. In: Advances in Neural
Information Processing Systems. pp. 1617–1624.




