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Abstract: Individual grip force profiling of bimanual simulator task performance of experts and novices using a robotic control 

device designed for endoscopic surgery permits defining benchmark criteria that tell true expert task skills from the skills of novices 

or trainee surgeons. Here we show that grip variability in a true expert and a complete novice executing a robot-assisted surgical 

simulator task reveal statistically significant differences as a function of task expertise, predicted by the output metric of a Self-

Organizing neural network Map (SOM) with a bio-inspired functional architecture that maps the functional connectivity of the 

somatosensory neural networks of the primate brain. 
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I. Introduction 
Current state of the art in robotic assistance for surgical 

procedures [1,2] has a considerable potential for 

augmenting the precision and capability of physicians, but 

technological challenges still need to be met in terms of 

optimized system architecture, software, mechanical 

design, imaging systems, and user interface design and 

management for maximum safety. Moreover, objective 

quantitative performance criteria need to be worked out 

for defining gold standards of true expert performance in 

this emerging realm of assistive technology for pushing 

optimal training programs for novice surgeons [3,4]. In 

Previous work by ourselves and other [3-8] has exploited 

sensor data and, most recently, wireless wearable sensor 

technology to demonstrate how individual grip force 

profiling of bimanual simulator task performance of 

experts and novices using a robotic control device 

designed for endoscopic surgery permits to find 

benchmark criteria for telling true expert task skills from 

the skills of novices or trainees. Important universal 

criteria for expert performance are a stable speed-

precision trade-off aimed at maximal precision, not speed, 

while executing a surgical task [9], and minimized 

variability in performance scores relative to precision [8-

10], task execution speed [3-5,8-10], and hand grip forces 

[4-7], which by definition exhibit optimal prehensile 

synergy in a true expert. In this work here we show that 1) 

the variability of the bimanual grip forces of a true expert 

and a complete novice executing a robot-assisted surgical 

simulator task reveals a statistically significant difference 

as a function of task expertise, and 2) this difference is 

captured by a SOM with a bio-inspired functional 

architecture that maps the functional connectivity of the 

somatosensory hand-to-brain-and-back circuitry in the 

human primate [11]. The data-driven approach has 

potential for a parsimonious, economic, and functionally 

meaningful automated analysis of surgical task skill 

evolution. 

 

Figure 1: Sensor locations corresponding to mechanoreceptor 

regions generating thousands of grip forces ( expert and novice 

data), exploited and modeled here.  

II. Material and methods 
The robotic task system, the simulator task, and the 

wearable wireless grip force sensor gloves used here are 

described in full detail in [4,5]. We analyzed a total of 239 

710 grip force data sampled at the millivolt (mV) scale 

every 20 milliseconds from a surgical expert and a 

complete novice performing the robot-assisted simulator 

task in ten repeated sessions with their dominant or non-

dominant hands. The neural network architecture 

exploited for modeling the grip force data here follows 

from some of our previous work [12-14] on functional 

properties of the Quantization Error (QE) in the output of 

a Self-Organizing Map (SOM), which is described 

formally as a nonlinear, ordered, smooth mapping of high-

dimensional input data onto the elements of a regular, 

low-dimensional array. The set of input variables is 

definable as a real vector  , of n-dimension. With each 

element in the SOM array we associate a parametric real 

vector    of n-dimension as a model. Assuming a general 
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distance measure between   and    denoted by d( ,   ), 

the map of an input vector   on the SOM array is defined 

as the array element     that best matches   (smallest 

d(  ,    )). During the learning process, models 

topographically close in the map up to a certain geometric 

distance, denoted by     will activate each other to learn 

something from their shared input  . This will result in a 

local relaxation or smoothing effect on the models in this 

neighborhood, which in continued learning leads to global 

ordering. SOM learning is represented by the equation 

  (t+1)=    (t) +α(t)        [  (t)-    (t)]     (1) 

where t =1,2,3...is an integer, the discrete-time coordinate, 

   (t) is the neighborhood function, a smoothing kernel 

defined over the map points which converges towards 

zero with time,  (t) is the learning rate. At the end of the 

winner-take-all learning process, each input vector   

becomes associated to its best matching model on the map 

mc. The difference between   and   ,       is 

reflected by the quantization error QE. The QE of   is 

given by 

              
  

          (2) 

where N is the number of input vectors  . The SOM 

implemented to map the mechanoreceptor-to-brain 

network for this study here was a 7 by 7 map creating a 

fully connected network of 49 neurons where each of the 

ten sensors from which data were exploited here (Fig. 1) 

contributes to the synaptic weight of each neuron. The QE 

in the SOM output (SOM-QE) is used to model the 

variability in thousands of grip force data of a true expert 

and a novice. 

 

 

Figure 2: The variability (STD in mV) of individual grip forces 

in the task sessions of a true expert and a complete novice is 

reliably predicted by a functionally pertinent neural network 

metric from the brain-inspired Self-Organizing Map (SOM-QE). 

III. Results and discussion 
Data variability was computed in terms of the standard 
deviations (STD) of the means per condition and session 
(Figure 2, top). The SOM-QE from the neural network 
analyses of the same data for each condition and session 

was computed (Figure 2, bottom). Further statistical 
analyses of the data yield significant effects of task 
expertise on STD (t(1,18)=22.34; p<.001 for dominant; 
t(1,18)=7.43; p<001 for non-dominant), mirrored by 
similar significant effects on the SOM-QE (t(1,18)=9.27; 
p<.001 for dominant; t(1,18)=4.09; p<.001 for non-
dominant), showing that task skill-related grip forces are 
reliably predicted by the brain-inspired SOM-QE. 

IV. Conclusion 
Combining grip force sensor technology with predictive 

modeling [13-15] by Artificial Intelligence, as shown 

here, promises for an economic, functionally meaningful 

automated analysis of surgical task skill evolution. 
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