
HAL Id: hal-03258840
https://hal.science/hal-03258840

Submitted on 11 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formulation and Evaluation of a Nonhydrostatic
Mesoscale Vorticity Model (TVM)

Philippe Thunis, Alain Clappier

To cite this version:
Philippe Thunis, Alain Clappier. Formulation and Evaluation of a Nonhydrostatic Mesoscale
Vorticity Model (TVM). Monthly Weather Review, 2000, 128, pp.3236-3249. �10.1175/1520-
0493(2000)1282.0.CO;2�. �hal-03258840�

https://hal.science/hal-03258840
https://hal.archives-ouvertes.fr


3236 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

q 2000 American Meteorological Society

Formulation and Evaluation of a Nonhydrostatic Mesoscale
Vorticity Model (TVM)

P. THUNIS

Environment Institute, Joint Research Centre, Ispra, Italy

A. CLAPPIER

Laboratoire d’Etude de la Pollution de l’Air, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

(Manuscript received 28 May 1999, in final form 21 January 2000)

ABSTRACT

This paper describes the formulation and the application of the nonhydrostatic anelastic vorticity model (TVM).
This model is constructed using a method involving two horizontal streamfunctions and two horizontal vorticity
components. The evaluation of this formulation is performed by simulating various bidimensional hydrostatic
and nonhydrostatic mountain wave cases. Results are compared with analytical solutions and in particular with
those developed by Laprise and Peltier for nonlinear forcings. The anelastic formulation is also validated with
respect to the highly nonlinear 1972 Boulder windstorm. TVM is shown to accurately reproduce these mountain
wave test cases in both its incompressible and anelastic formulations.

In the second part of this paper, the adequacy of the hydrostatic and anelastic assumptions in simulating
thermally induced circulations is investigated and compared to previous works. For a moderate surface thermal
forcing, typical geographical setups are used and show slight differences between hydrostatic and nonhydrostatic
horizontal wind speeds. For vertical wind speeds, differences are shown to be much larger and more sensitive
to changes in grid resolution. For more stringent thermal surface forcing, differences remain low for horizontal
wind speeds but increase considerably for the vertical wind component.

The comparison between anelastic and incompressible solutions for the same cases shows the adequacy of
the incompressible assumption when circulations are forced by the surface and are characterized by a relatively
shallow vertical extent. In such conditions, virtually no differences are observed between the two formulations.

1. Introduction

Although the vorticity approach in fluid dynamics
modeling is not new, it has not been frequently used in
mesoscale atmospheric flow applications. One horizon-
tal vorticity component, however, has been used to sim-
ulate circulations in vertical cross sections or for cu-
mulus cloud simulations (Orville and Sloan 1970; Pear-
son 1973; Moeng and Arakawa 1980).

The first attempt to incorporate all three space di-
mensions into a vorticity model was by Thyer (1966).
Following ideas put forth by Malkus and Witt (1959),
he successfully used a nonhydrostatic (NH) incompress-
ible model with the two horizontal vorticity and two
streamfunction components to reproduce mountain–val-
ley wind circulations. Due to contemporary computer
capabilities and to numerical scheme instabilities, how-
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ever, the equations were successfully integrated for only
120 s.

This approach was also followed by Bornstein et al.
(1986), Sievers and Zdunkowski (1986), and Schayes
et al. (1996). While the second authors applied their
nonhydrostatic incompressible model mainly to urban
canopy layer flows, the other two developed a hydro-
static (H) and incompressible formulation for mesoscale
flows (e.g., sea breezes and mountain winds). A differ-
ent approach, which retains all three vorticity and
streamfunction components, was used by Saitoh et al.
(1996) to resolve nonhydrostatic urban circulations.

One of the characteristics of the vorticity approach
is that both H and NH formulations are based on the
same set of prognostic conservation equations; that is,
the number of equations (prognostic or diagnostic) and
numerical algorithms used to solve them are strictly
identical. This is not strictly true for primitive-equation
formulations for which the number of prognostic mo-
mentum equations differs. Indeed, an additional prog-
nostic equation is required in the NH formulation for
the vertical momentum component. Resolution of this
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additional equation may add numerical bias to the phys-
ical H–NH differences, preventing strict isolation of the
impact of the hydrostatic assumption. This property is
used in the second part of this work to carry out an
intercomparison of H and NH solutions for different
atmospheric circulations.

Section 2 describes the formulation of a nonhydros-
tatic anelastic version of the hydrostatic incompressible
Thermal Vorticity Model (TVM) of Schayes et al.
(1996) and Bornstein et al. (1996) with a special focus
on the new developments (i.e., anelasticity and non-
hydrostaticity). Section 3 is devoted to the validation of
this new formulation. This is realized by simulating
mountain wave cases with different degrees of nonlin-
earity, nonhydrostaticity, and anelasticity using analyt-
ical solutions as reference. The 1972 Boulder windstorm
is also simulated and comparisons are made to both
measurements and previous model results. In section 4
comparisons of H versus NH simulations of thermally
induced circulations are presented and compared to pre-
vious studies (e.g., Yang 1991). Finally, conclusions are
presented in section 5.

2. Model formulation
a. Primitive equation formulation

One of the main characteristics of the vorticity for-
mulation is the total elimination of pressure from the
prognostic equations (Pielke 1984). As vorticity equa-
tions are constructed by taking the curl of the momen-
tum equation, the pressure gradient term drops by def-
inition, but mesoscale pressure remains in the buoyancy
term and in the thermal energy equation. Total elimi-
nation of mesoscale pressure from the prognostic vor-
ticity equations implies one supplementary assumption,
namely that thermal forcing is dominant in the atmo-
spheric flows of interest. Indeed, for such cases (sub-
class of deep Boussinesq flows), referred to as deep
thermal convection (Thunis and Bornstein 1996), it may
be shown that mesoscale pressure contributions can be
neglected in all terms.

The corresponding set of primitive equations is thus
selected as the starting point for derivation of the TVM
vorticity equations. The Reynolds-averaged equations
(within a rectangular coordinate system) for momentum,
thermal energy, specific humidity, and mass are ex-
pressed, respectively, as follows:

]r V0 5 2= · (r VV) 2 = · (r V9V9) 2 = p0 0 H 0]t

uM2 =p 2 r g 2 2V 3 r V, (1)M 0 0u0

]u 1 1M 5 2 = · (Vr u ) 2 = · (r V9u9)0 M 0]t r r0 0

1 ]wr u 1 ]Q0 02 2 , (2)1 2r ]z r c ]z0 0 p

]q 1 1M 5 2 = · (Vr q ) 2 = · (r V9q9)0 M 0]t r r0 0

1 ]wr q0 02 , and (3)
r ]z0

= · r V 5 0, (4)0

where Reynolds-averaged quantities are unbarred for
convenience and where all symbols are defined in the
appendix. As seen from (3), this version of TVM does
not include water vapor source/sink terms (no phase
change). Also, basic-state thermodynamic variables (f 0

5 f 2 f M) are assumed stationary and in hydrostatic
balance; that is,

]p0 5 2r g.0]z

Equations (1)–(4) form a system of six equations for
the following explicitly calculated parameters: u, y , w,
pM, uM, and qM. Other unknowns, such as turbulent flux
terms (introduced by Reynolds averaging), and the dia-
batic heat source term Q in the energy equation, must
be parameterized.

b. Vorticity–streamfunction formulation

For deep Boussinesq flows, the vorticity vector j is
defined as

j 5 = 3 r0V. (5)

Prognostic vorticity equations are obtained by appli-
cation of the curl operator to (1), to produce

]j
5 2= 3 (= · r VV) 2 = 3 [= · r (V9V9)]0 0]t

uM2 = 3 r g 2 2= 3 (V 3 r V), (6)0 0u0

in which the pressure gradient term disappears by virtue
of the vector identity = 3 =p 5 0, and where V 5
(0, V cosw, V sinw) 5 (0, f*/2, f /2). Equation (6) may
be rearranged as

]j
5 2= · (Vj ) 2 = · [r V(= 3 V)]0]t

uM2 = 3 [= · (r V9V9)] 2 = 3 r g0 0u0

1 2(V · =)r V. (7)0

To recover velocities from the vorticities, a stream-
function C* is defined as

r0V 5 = 3 C*, (8)

which by definition satisfies = · r0V 5 0. Vorticity is
then related to C* by

j 5 = 3 r0V 5 = 3 = 3 C*
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5 2¹2C* 1 =(= · C*). (9)

As shown by Sievers and Zdunkowski (1986), C* in
(8) is not uniquely determined, since a gauge transfor-
mation exists, that is,

C → C* 1 =l (10)

with arbitrary scalar function l. These transformations
leave the velocity field unchanged and can be used to
specify special conditions on C. We therefore choose
l so that the third streamfunction component vanishes;
that is,

C · k 5 0. (11)

By substitution of (10) in (11), the following condition
on l must be fulfilled:

z

l 5 C* · k dz9.E
0

The resulting stream vector C 5 (C1, C2, 0) fulfills
both r0V 5 ¹ 3 C and (11) and may be used without
loss of generality. The major advantage of this choice of
l is that only two streamfunction components are nec-
essary to totally describe an arbitrary three-dimensional
flow field. In consequence, only the following two com-
ponents (horizontal ones) of (9) need to be solved:

2 2 2] F ] F ] F1 1 2v 5 1 2 and1 2 2]z ]y ]x]y
| | | |}} }}}}}}z z

H NH

2 2 2] F ] F ] F2 2 1v 5 1 2 , (12)2 2 2]z ]x ]x]y
| | | |}} }}}}}}z z

H NH

where for notational convenience, new vorticity and
streamfunction fields were defined as follows:

v 5 (2j1, j2, j3) and F 5 (C1, 2C2, 0).

Note, however that each horizontal vorticity in (12) is a
function of both streamfunction components. A further
advantage of the gauge transformation (11) is that only
the two horizontal vorticity components must be nu-
merically integrated:

]v ]uv ]yv ]wv ] ]u ]u1 1 1 15 2 2 2 2 r y 2 r w0 01 2]t ]x ]y ]z ]x ]z ]y

] ]y ]y ] ]w ]w
2 r y 2 r w 2 r y 2 r w0 0 0 01 2 1 2]y ]z ]y ]z ]z ]y

2 2 2] v ] v ] g ](r u )1 1 0 M1 K 1 K 1 (K v ) 2H H m 12 2 2]x ]y ]z u ]y0

](r u) ](r u)0 02 f 2 f * and
]z ]y

]v ]uv ]yv ]wv ] ]u ]u2 2 2 25 2 2 2 2 r u 2 r w0 01 2]t ]x ]y ]z ]x ]z ]x

] ]y ]y ] ]w ]w
2 r u 2 r w 2 r u 2 r w0 0 0 01 2 1 2]y ]z ]x ]z ]z ]x

2 2 2] v ] v ] g ](r u )2 2 0 M1 K 1 K 1 (K v ) 2H H m 22 2 2]x ]y ]z u ]x0

](r y) ](r u) ](r w)0 0 01 f 2 f * 2 f * . (13)
]z ]x ]z

(13)

The H and NH contributions in (12) were underlined
whereas (13) remains unchanged for both formulations.
The horizontal diffusion coefficient KH was assumed con-
stant in space, an approximation commonly made in
Reynolds-averaged mesoscale models since it normally
serves only as a numerical filter.

c. Coordinate transformation

In mesoscale atmospheric applications, it has become
standard practice to transform only the vertical coordi-
nate. The functional form of the resulting generalized
contravariant vertical coordinate system in terms of the
original Cartesian system is

1 1 2 2x̃ 5 x , x̃ 5 x , and

z 2 z (x, y)g3x̃ 5 s 5 z , (14)t z 2 z (x, y)t g

in which zt and zg are the model top and surface orog-
raphy, respectively. This transformation, first derived by
Gal-Chen and Somerville (1975), has the advantages of
invariance with time and application of lower boundary
conditions at the first s level. Equations (12) and (13)
become, after regrouping terms,

1 1 1 2 1 3 1]ṽ ]ũ ṽ ]ũ ṽ ]ũ ṽ ] ] ]
1 1 2 2 3 35 2 2 2 2 (r ũ ũ 2 r ũ ũ ) 2 (r ũ ũ 2 r ũ ũ ) 2 (r ũ ũ 2 r ũ ũ )0 2 ;3 0 3 ;2 0 2 ;3 0 3 ;2 0 2 ;3 0 3 ;2]t ]x̃ ]ỹ ]s ]x̃ ]ỹ ]s

1 2 1] ]z ]r ũ ] ]z ] u ]z ] u ]z ] (K ṽ )0 M M H1 11 f * r ũ 2 f 2 f * r ũ 1 g r 2 g r 10 0 0 0 21 2 1 2 1 2 1 2]s ]ỹ ]s ]ỹ ]s ]s u ]ỹ ]ỹ u ]s ]x̃0 0
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2 1 2 1 2 2] (K ṽ ) ] (K ṽ ) ] ]K ] ]K ] ]r ũH m m m 0 331 1 2 r ũ 1 r ũ 2 G K and0 3 0 3 23 m2 2 21 2 1 2 1 2]ỹ ]s ]s ]ỹ ]s]ỹ ]s ]s ]s

2 1 2 2 2 3 2]ṽ ]ũ ṽ ]ũ ṽ ]ũ ṽ ] ] ]
1 1 2 2 3 35 2 2 2 2 (r ũ ũ 2 r ũ ũ ) 2 (r ũ ũ 2 r ũ ũ ) 2 (r ũ ũ 2 r ũ ũ )0 1 ;3 0 3 ;1 0 1 ;3 0 3 ;1 0 1 ;3 0 3 ;1]t ]x̃ ]ỹ ]s ]x̃ ]ỹ ]s

3 2]z ]r ũ ] ]z ]r ũ ] ]z ] u ]z ] u ]z0 0 M M2 12 f * 2 f * r ũ 1 f 2 f * r ũ 1 g r 2 g r0 0 0 01 2 1 2 1 2 1 2]s ]s ]s ]ỹ ]s ]x̃ ]s ]s u ]x̃ ]x̃ u ]s0 0

2 2 2 2 2 2 2 2] (K ṽ ) ] (K ṽ ) ] (K ṽ ) ] ]K ] ]K ] ]r ũH H m m m 0 331 1 1 2 r ũ 1 r ũ 2 G K ,0 3 0 3 13 m2 2 2 21 2 1 2 1 2]x̃ ]ỹ ]s ]s ]x̃ ]s]x̃ ]s ]s ]s

in which the only approximation made has consisted of neglecting topographical second-order derivatives in estimating
the turbulent diffusion contribution. Elliptic equations (12) linking streamfunctions to vorticities become

2 2 22 2 2˜ ˜ ˜ ˜] F ]s ]s ] F ]s ] F ]F ] ]s ]s ] ]z1 1 1 11 1 1 2 1 2
2 21 2 1 2 1 2 1 2[ ] [ ]]ỹ ]z ]y ]s ]y ]s]y ]s ]s ]y ]z ]ỹ ]ỹ

| | | |]}} ]}}z z

2 2 2 2˜ ˜ ˜ ˜ ˜]s ]s ]s ] F ] F ]s ] F ]s ] F ]F ] ]s ]s ]s ] ]z2 2 2 2 215 ṽ 2 2 2 2 2 2 and (15)
2 1 2 1 2[ ]]z ]y ]x ]s ]ỹ]x̃ ]y ]s]x̃ ]x ]s]ỹ ]s ]s ]y ]x ]z ]ỹ ]x̃

2 2 22 2 2˜ ˜ ˜ ˜] F ]s ]s ] F ]s ] F ]F ] ]s ]s ] ]z2 2 2 21 1 1 2 1 2
2 21 2 1 2 1 2 1 2[ ] [ ]]x̃ ]z ]x ]s ]x ]s]x ]s ]s ]x ]z ]x̃ ]x̃

| | | |]}} ]}}z z

2 2 2 2˜ ˜ ˜ ˜ ˜]s ]s ]s ] F ] F ]s ] F ]s ] F ]F ] ]s ]s ]s ] ]z1 1 1 1 125 ṽ 2 2 2 2 2 2 . (16)
2 1 2 1 2[ ]]z ]y ]x ]s ]ỹ]x̃ ]y ]s]x̃ ]x ]s]ỹ ]s ]s ]x ]y ]z ]x̃ ]ỹ

Following Pielke (1984), covariant and contravariant
tensors are represented by subscripts and superscripts,
respectively. Note that only the underlined quantities in
Eqs. (15) and (16) contribute in hydrostatic flows.

Velocities are finally recovered from the streamfunc-
tions, via (8) now applied to :F̃

˜ ˜]s ]F ]s ]F2 11 2r ũ 5 , r ũ 5 , and0 0]z ]s ]z ]s

˜ ˜]s ]F ]F1 23r ũ 5 1 . (17)0 1 2]z ]ỹ ]x̃

d. Thermal energy, specific humidity, and TKE
equations

The thermal energy and specific humidity equations
(2) and (3), respectively, can be transformed in a similar
manner:

]u 1 ]s ] ]z 1 ]s ] ]zM 1 25 2 r ũ u 2 r ũ u0 M 0 M1 2 1 2]t r ]z ]x̃ ]s r ]z ]ỹ ]s0 0

1 ]s ] ]z ]s ] ]z ]uM32 r ũ u 1 K0 M H1 2 1 2r ]z ]s ]s ]z ]x̃ ]s ]x̃0

]s ] ]z ]u ] ]uM M1 K 1 KH h1 2 1 2]z ]ỹ ]s ]ỹ ]s ]s

31 ]ũ r u ]s 1 ]Q0 02 2 and1 21 2r ]s ]z r c ]s0 0 p

]q 1 ]s ] ]z 1 ]s ] ]zM 1 25 2 r ũ q 2 r ũ q0 M 0 M1 2 1 2]t r ]z ]x̃ ]s r ]z ]ỹ ]s0 0

1 ]s ] ]z ]s ] ]z ]qM32 r ũ q 1 K0 M H1 2 1 2r ]z ]s ]s ]z ]x̃ ]s ]x̃0

]s ] ]z ]q ] ]qM M1 K 1 KH h1 2 1 2]z ]ỹ ]s ]ỹ ]s ]s

31 ]ũ r q0 02 .
r ]s0

TVM applies a 1.5-order closure scheme (Therry and
Lacarerre 1983) to predict vertical diffusion coefficients
(Schayes et al. 1996), which leads to a supplementary
prognostic equation for turbulent kinetic energy (TKE).
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e. Boundary conditions

1) SURFACE BOUNDARY CONDITIONS

1) 5 5 constant (zero for convenience).˜ ˜F F1 2

2) For thermally forced circulations, a no-slip boundary
is chosen (friction). In the vicinity of the surface,
vertical velocities disappear and vorticities simplify
into vertical gradient of horizontal velocities, that is,

]ũ ]ũ2 11 2ṽ ; , ṽ ; , (18)
]s ]s

for which an analytical SBL expression is obtained:

]V (z) u*H 5 F .m]z k z0 0

Vorticity boundary conditions (18) therefore become

ũ u* ũ u*2 11 2ṽ 5 F , ṽ 5 F .m mV k z V k zH 0 0 H 0 0

For dynamically forced circulations, a free-slip
boundary condition (no friction) is necessary for
comparison with analytical solutions. The resulting
boundary conditions for vorticities transform into

5 5 0.1 2ṽ ṽ

3) For thermally forced circulations, temperature and
specific humidity in TVM are calculated either by a
modified force restore model of Deardorff (Schayes
et al. 1996) or by the Institut d’Astronomie et de
Géophysique Georges Lemaı̂tre land surface model
(De Ridder and Schayes 1997). For dynamically
forced circulations, temperature and specific humid-
ity are fixed.

4) For thermally forced circulations, TKE is fixed at
, following Therry and Lacarrère (1983), where-24u*

as TKE is not used for dynamically forced circula-
tions.

2) UPPER BOUNDARY CONDITIONS

1) Wind is assumed to be in geostrophic equilibrium:
˜ ˜]F ]z ]F ]z1 25 r y , 5 r u .0 g 0 g]s ]s ]s ]s

2) Vorticities are fixed to zero.
3) Temperature and specific humidity are fixed at large-

scale values (kept constant for the cases presented
hereafter).

4) For vertically propagating perturbations, a damping
Rayleigh friction layer similar to that of Tripoli and
Cotton (1982) is used (for temperature only) in the
highest several layers to avoid reflection.

3) LATERAL BOUNDARY CONDITIONS

1) Topography is assumed to be constant in directions
perpendicular to boundaries.

2) Zero-gradient boundary conditions were selected for
all variables.

Note that this set of boundary conditions is only rep-
resentative of the idealized bidimensional applications
considered in the present study.

f. Numerics

The procedure by which TVM solves the PBL hy-
drodynamic and thermodynamic transport equations at
each time step in the calculation is described in Schayes
et al. (1996). For each prognostic equation, first each
one-dimensional advection term is successively solved,
then the three one-dimensional diffusion equations, and
finally the remaining body force or source/sink terms.
Finite-difference calculations are performed on the non-
uniformly spaced, three-dimensional staggered Araka-
wa C grid, which locates TKE values at the center of
horizontal cell faces.

Advection terms are approximated by the piecewise
parabolic method (Collela and Woodward 1984; Car-
penter et al. 1990), which may be classified as a ‘‘finite
volume’’ scheme that possesses third-order accuracy in
both time and space. As it was originally developed for
astrophysical flows with strong shocks and disconti-
nuities, it is especially designed to reduce explicit nu-
merical diffusion without creating numerical instabili-
ties, that is, over- and undershooting. This characteristic
that was valid for 1D applications has been extended to
multidimensional applications by Clappier (1998). The
diffusion, vorticity tilting, and buoyancy terms are ap-
proximated by classical forward in time, centered in
space differencing, which possesses second-order ac-
curacy in space and first in time.

The elliptic streamfunction equations (12) are solved
through an iterative smoothly converging variant of the
biconjugate gradient method (van der Vorst 1992), using
the hydrostatic solution as the initial guess at each time
step.

While the change from an H to an NH formulation
in primitive equation mesoscale models requires one
additional prognostic equation for w, the current vor-
ticity formulation contains the same equations [there are
only a few additional terms in the elliptic equation (12)],
solved by identical numerical methods. In addition, the
current formulation only requires solution of two bi-
dimensional elliptic equations for streamfunctions, as
opposed to a similar three-dimensional equation for
pressure in primitive equation formulations. The re-
quired storage is reduced approximately by a factor N/2,
where N is the number of vertical grid levels. Additional
advantages, as well as disadvantages, of the vorticity
approach are provided in Schayes et al. (1996).

3. Evaluation of the nonhydrostatic anelastic
vorticity formulation

The objective of this section is to evaluate the ability
of the TVM formulation to reproduce different types of
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atmospheric circulations that differ by their degree of
nonhydrostaticity, nonlinearity, and anelasticity. Moun-
tain wave circulations constitute a good evaluation test
for mesoscale models since analytical solutions are
available. A brief summary of the linear mountain wave
theory is first given. Comparison to linear hydrostatic
mountain waves is then used to evaluate the anelastic
and incompressible formulations. The behavior of the
incompressible version of TVM to nonlinear types of
forcings is then investigated by use of the nonlinear
analytical solutions proposed by Laprise and Peltier
(1989). Finally, the Boulder windstorm is used to test
the anelastic formulation to a highly nonlinear forcing.

a. Hydrostatic linear mountain waves

Fundamental properties of mountain flows have been
mainly studied with an assumption of a two-dimen-
sional, nonviscous, adiabatic flow. Solutions for such
linear flows are reviewed by Smith (1979) and Durran
(1990). Combination of the five basic governing equa-
tions (u and w momentum, continuity, the ideal gas law,
and the first law of thermodynamics) yields the follow-
ing deep Boussinesq equation for perturbation vertical
velocity wM:

r (z) r (z)0 02 2] w ] wM M1 2 1 2! !r (0) r (0)0 0 r (z)021 1 , (z) wM2 2 1 2!]x ]z r (0)0

5 0. (19)

The Scorer parameter ,, defined by

22 2N 1 d U 1 d lnr dU 1 d lnr0 02, (z) 5 2 2 2
2 2 1 2U U dz U dz dz 4 dz0 0 0

21 d lnr
2 ,

22 dz

represents an inverse intrinsic vertical scale and deter-
mines whether wave modes can propagate vertically.
Note that only the first two terms remain when the in-
compressible approximation is invoked.

Standard practice is to solve (19) for flows with uni-
form wind speed [U0(z) 5 U0] and stability [N(z) 5 N]
profiles over a bell-shaped mountain described by

2h amz (x) 5 . (20)g 2 2x 1 a

Solutions are governed by two dimensionless quan-
tities. The first, Fx 5 a,, is the ratio between the hor-
izontal obstacle length scale a and the intrinsic vertical
flow length scale (inverse Scorer parameter) ,21, and
the second, Fz 5 hm,, is the ratio between the vertical
obstacle length scale hm and ,21. While Fx defines the
degree of nonhydrostaticity of the flow, Fz gives infor-
mation about its nonlinearity. If Fx k 1, the flow is

virtually hydrostatic, while nonhydrostatic effects be-
come important when Fx ; 1 (Schumann et al. 1987).
If Fz K 1, the flow is essentially linear, while nonlinear
effects become important when Fz ; 1.

Hydrostatic mountain wave numerical simulations
constitute a standard evaluation case of mesoscale mod-
els (Durran and Klemp 1983; Yang 1993). For such
cases, Fx K 1, the solution of (19) simplifies to

2 2r (0) (x 2 a ) sin,z 2 2xa cos,z0w (x, z) 5 U h a .M 0 m 2 2 2!r (z) (a 1 x )0

(21)

Relation (21) is illustrated in Fig. 1a for a mountain
and atmosphere having the following characteristics: a
5 10 km, hm 5 50 m, U0 5 10 m s21, and N 5 0.01
s21. These parameters yield Fx 5 10 and Fz 5 0.05,
with the latter ratio indicating that topography height
hm is small enough to ensure mostly linear flow. For
clarity, both analytical and numerical results are am-
plified by a factor of 10. The figures clearly show in-
ternal gravity waves propagating vertically and affecting
the atmosphere through its entire depth. When density
variations are accounted for (Fig. 1b), the anelastic an-
alytical solution shows an intensification of the vertical
velocities with height.

For the following simulations, identical (to the ana-
lytical) values of stability, wind speed, and topography
aspect ratio were used to initialize TVM. The simulation
domain (81 3 28 grid points) covers 121 km horizon-
tally with a constant grid resolution of 1500 m, whereas
the model top is fixed at 25 km with a resolution ranging
from 100 m near the surface to 1000 m near the model
top.

TVM results reach a quasi-stationary state after a di-
mensionless time of t* 5 tU0/a 5 14 (required for ad-
justment between thermal and dynamic fields). Wave
amplitude is well represented for both the incompress-
ible (Fig. 1c) and anelastic (Fig. 1d) solutions as seen
from the vertical velocity cells and the simulated vertical
wavelength is close to the analytical value (i.e., 6.3 km).

In summary, TVM produces hydrostatic linear wave
results that are in close agreement with the analytical,
incompressible, and anelastic solutions.

b. Nonlinear mountain waves

Both H and NH analytical solutions to the incom-
pressible mountain wave problem have been presented
by Laprise and Peltier (1989) for nonlinear types of
forcing. In their work, the correct nonlinear surface
boundary condition is introduced iteratively through a
numerical procedure. One of the parameters they looked
at in their study is the maximum steepness of the stream-
lines. The steepness predominantly reflects the ampli-
tude of the internal waves launched by flow over the
obstacle and, as such, it scales almost linearly with ob-
stacle height. Figure 2a (from Laprise and Peltier) dis-
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FIG. 1. (a), (b) Analytical and (c), (d) TVM nonhydrostatic solutions for vertical wind velocity (cm s21) for the hydrostatic
linear mountain wave (MW) case. The left (a)–(c) and right (b)–(d) columns illustrate the incompressible and anelastic
solutions, respectively.

plays the maximum steepness as a function of the ob-
stacle height (Fz) and half-width (Fx), in nondimen-
sional terms for different types of flows. As seen from
this figure, some attenuation occurs in NH conditions,
as lee waves start to develop and progress horizontally
ahead of the vertically propagating H waves discussed
earlier. An example of such NH type of circulation (Fx

5 1, Fz 5 0.5) is given in Fig. 3a for the vertical wind
speed fields. The nonhydrostaticity of such flow is clear
when comparing with the solution obtained with the H
formulation (Fig. 3b). Comparisons of H versus NH
solutions for various mountain wave cases are also dis-
cussed by Keller (1994), Elkhaffi and Carissimo (1993),
Sharman et al. (1988), or Yang (1993).

In this section, different simulations corresponding to
hydrostatic (Fx 5 10) and nonhydrostatic (Fx 5 2) cir-
culation types will be made for different degrees of
nonlinearity (Fz 5 0.25, Fz 5 0.5, and Fz 5 0.75) and
the maximum steepness of the streamlines for each of
those six cases is compared to the analytical values. For
the NH forcing (Fx 5 2), the parameters a 5 2000 m,
N 5 0.01 s21, and U 5 10 m s21 have been selected
for three mountain heights [hm 5 250 m (Fz 5 0.25),

500 m (Fz 5 0.5), and 750 m (Fz 5 0.75)]. The hori-
zontal and vertical grids are stretched and have as high-
est resolution 1 km and 200 m (in the first 7 km), re-
spectively. The grid domain covers 85 km by 24 km
with 61 by 72 grid points, respectively. For the H cases
(Fx 5 10), the parameters a 5 5000 m, N 5 0.01 s21,
and U 5 5 m s21 have been selected for three mountain
heights [hm 125 m (Fz 5 0.25), 250 m (Fz 5 0.5), and
375 m (Fz 5 0.75)]. The horizontal domain covers 80
km with a uniform resolution of 1 km whereas the ver-
tical grid has a maximum resolution of 100 m (90 grid
points). All cases were simulated without any explicit
horizontal and vertical diffusion, the only extra filter
being the diffusive layer at the top of the model to damp
vertically propagating waves. Values of the maximum
steepness are obtained at a height corresponding to ¾
of the vertical wavelength of the flow, that is, at 4700
and 2350 m for the NH and H forcings, respectively.
The time evolution of the nondimensional steepness val-
ues for those six cases may be seen in Fig. 2b. As can
be seen from this figure, convergence is achieved much
faster for moderately linear forcings for both NH and
H forcings. For the same level of nonlinearity, conver-
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FIG. 2. (a) Time evolution of the maximum nondimensional steep-
ness (hz) as a function of the obstacle width (Fx) and of the obstacle
height (Fz). (b) Analytical maximum steepness (from Laprise and
Peltier 1989) in terms of Fx and Fz. TVM numerical values for the
six cases in (a) are indicated by solid circles.

FIG. 3. (a) TVM nonhydrostatic and (b) hydrostatic incompressible
solutions for vertical wind velocity (m s21) for conditions character-
ized by Fz 5 0.5 and Fx 5 1, corresponding to a nonhydrostatic,
moderately nonlinear type of surface forcing.

gence is achieved in a smoother manner for NH sim-
ulations. The resulting convergence values are over-
plotted on the analytical curves of Laprise and Peltier
(1989) in Fig. 2a.

As can be seen, TVM results agree well with the
analytical values indicating the good behavior of the
code for both H and NH nonlinear circulations.

c. The Boulder windstorm

In January 1972, Boulder, Colorado, on the eastern
slope of the Rocky Mountains, experienced a severe
chinook windstorm. Although similar winds have been
observed in the lee of other mountain ridges, this storm
is unique for the richness of its experimental in situ
dataset (Lilly and Zipser 1972; Lilly 1978). During the
storm, a train of lee waves propagated in the lower part

of the atmosphere east of the Rockies, and even more
spectacularly, a strong stratospheric air descent devel-
oped in the lee of the Continental Divide. The corre-
sponding wind field (Fig. 4a) shows a strong maxima
of over 60 m s21 on the downslope edge, and near-zero
wind speed regions above and farther downwind.

Initial conditions in previous simulations (e.g., Dur-
ran and Klemp 1983) were selected for the TVM sim-
ulation, for example, a simplified bell-shape mountain
with an elevation change of 2000 m and a half-width
of 10 000 m. Initial temperature and wind soundings
(Figs. 4b,c) were obtained at Grand Junction, 300 km
west (upstream) of Boulder. The temperature sounding
indicates two stable layers: the first from 0 to 10 km,
which includes a shallow weak inversion layer near
3000 m and the isothermal lower stratosphere above 10
km. The simulation domain (54 3 25 grid points) has
a constant grid resolution of 1500 m horizontally,
whereas the vertical resolution ranges from 100 m near
the surface to 1000 m near the model top (fixed at 21
km).

At the time of fully developed windstorm, the NH-
anelastic version of TVM produces horizontal wind
speeds on the lee slope that reach 70 m s21 (Fig. 5a),
the stratospheric air descent goes down to 6 km, and
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FIG. 4. (a) West–east aircraft cross section through 1972 Boulder windstorm for horizontal speed (m s21), and Grand
Junction rawinsonde soundings for 1972 Boulder windstorm for (b) temperature (K) and (c) for horizontal speed (m
s21) (from Peltier and Clark 1979).

the train of waves propagating in the lee of the mountain
is well developed. These results exhibit similar quali-
tative and quantitative patterns to the observations as
well as to the results obtained by Durran and Klemp
(1983) and Buty et al. (1988), both of whom used non-
hydrostatic models, although slight small-scale differ-
ences exist.

This test case was mainly performed to test the be-
havior of TVM in highly nonlinear conditions but also
to check its anelastic formulation. Indeed, anelasticity

capability is required to correctly simulate the Boulder
case due to the vertical extent of its circulation. To il-
lustrate this fact, the incompressible version has been
run on the same case (Fig. 5b). The results show a
pattern that is qualitatively similar to the anelastic one
but underestimated. In this configuration, the model only
produces a maximum horizontal velocity of 55 m s21,
the negative speed area in altitude is not present, and
the stratospheric air descent is limited here to 9 km. It
should be pointed out that the differences among dif-
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FIG. 5. (a) TVM nonhydrostatic anelastic and (b) nonhydrostatic
incompressible Boulder windstorm solutions for horizontal speed (m
s21).

ferent models (all being anelastic) for a similar test case
(although initial conditions were slightly different) can
also be quite significant, as illustrated by Doyle et al.
(2000) who presented an intercomparison among 11 dif-
ferent anelastic models for the 1972 Boulder windstorm.
In their work, differences are shown to be relatively
large and to arise from factors such as subgrid-scale
diffusion or lateral boundary conditions. Note also that
the different levels of refinement that can be used in the
same model to approximate anelasticity may also lead
to significant differences, as shown by Nance and Dur-
ran (1994).

In conclusion, TVM has been shown capable of ac-
curately simulating one of the most nonlinear observed
atmospheric situations. Results were similar to observed
values and to those from comparable primitive equation
models.

4. Evaluation of the hydrostatic and
incompressible approximations for thermally
induced circulations

As introduced in the previous section, one of the char-
acteristics of the vorticity formulation is to keep a quasi-
identical formulation for both the H and NH sets of
equations. Indeed, the two prognostic vorticity equa-
tions remain unchanged. The only differences appear in

the elliptic equations that link streamfunctions and vor-
ticities where extra terms are present for the NH for-
mulation. In such a configuration, the numerical
schemes used in the two formulations (H and NH) are
identical. This feature of the vorticity formulation en-
sures us that only the physical aspects of the approxi-
mation are isolated without any interference that could
result from numerical treatment. In primitive equation
models, this is not so straightforward since the set of
equations differs for the H and NH formulations (one
supplementary prognostic equation is required for w).

Throughout this work, all mentioned relative errors
between NH and H solutions are obtained through the
following relation (Martin and Pielke 1983):

|A | 2 |A |NH HP(%) 5 200 ,
|A | 1 |A |NH H

where |ANH| and |AH| represent, respectively, the maxi-
mum NH and H absolute amplitudes (over space) for
this variable.

Previous studies have investigated the importance of
NH effects in thermally induced circulations (e.g., Mar-
tin and Pielke 1983; Yang 1991). Yang (1991) consid-
ered the special case of two bidimensional sea breezes
converging over an island and tested the validity of the
H assumption for several situations by varying critical
parameters, that is, the geostrophic wind, the thermal
stability, or the Coriolis forcing. This section is devoted
to repeating one of the previous study test cases and
comparing the vorticity H–NH differences for this spe-
cific case. Note that the objective here is not to present
an exhaustive study that would investigate the NH im-
pact of a series of significant parameters. The first se-
lected test case is one of Yang’s (1991) in which he
investigated the importance of the horizontal heating
scale (island extension) on the circulation. A second
series of tests is then carried out to check the validity
of the hydrostatic assumption in the presence of com-
plex terrain. In this second configuration, sea breezes
interact with slope winds and the effect of mountain
height and slope on the validity of the H assumption is
investigated. As the validity of the incompressible ap-
proximation is often not known for thermally induced
mesoscale circulations, differences between incom-
pressible and anelastic solutions are also shown here-
after (for the two geographical setups), although the
vorticity formulation is comparable to a primitive equa-
tion approach to establish the validity of this approxi-
mation. Note that all results presented below are valid
only for dry conditions. An investigation of the impact
of the hydrostatic assumption on moist convection can
be found in Kato (1997).

a. Sea breezes convergence over an island

This case is designed as follows: a 16-km-wide island
is bordered on each side by a 20-km-wide water surface
(this case is denoted SB). For island surface grid points,
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a sinusoidal wave temperature variation is calculated
via

u(t) 5 a sin(2pt/t d) 1 u0, (22)

in which a 5 8 and t d 5 86 400 s. Water temperature
is kept constant at u0 during the entire simulation. All
parameters are kept similar to those of Yang, that is, an
horizontal grid resolution of 1 km, a potential temper-
ature gradient of 4 K km21, and a zero geostrophic wind,
except for the vertical grid, which is stretched differently
in this study. Note that ensuring an identical grid con-
figuration will not ensure better comparisons since im-
plicit and explicit diffusion (both horizontally and ver-
tically) could be significantly different and modify the
effective grid resolution used in the two studies.

The time evolution of the generated circulations is
the following: at 0300 LST, shallow land breezes are
initiated on the two sides of the island with maximum
wind speeds of about 1 m s21. By 0900 LST those land
breezes have turned into sea breezes of the same inten-
sity, which converge around 1200 LST. Sea breezes then
reach their maximum intensity and progressively damp
afterward as the surface heat supply decreases. The sea
breezes at maximum intensity (13:00 LST) are shown
in Fig. 6a. Note that left and right breeze cells are sym-
metric with respect to the middle of the island as the
large-scale wind is zero.

A time comparison of (NH-anelastic), (H-anelastic),
and (NH-Incompressible) maximum horizontal (Fig. 6c)
and vertical (Fig. 6e) velocities indicates that NH cir-
culations are weaker than H ones. This observation
agrees with results obtained by both Martin and Pielke
(1983) and Yang (1991). For this spatial resolution
(1000 m), however, no major difference is observed in
the horizontal or vertical wind components. Indeed, the
first are virtually identical whereas vertical speeds ex-
hibit differences that do not exceed 10% during the
maximum convergence period (from 1200 to 1400
LST).

If the dimensions of the island are now reduced by
a factor of 2 (Fig. 6b), that is, the island and water
surfaces now have widths of 8 and 10 km, respectively,
and if the grid resolution is refined to 500 m [this cor-
responds exactly to a second case presented in Yang
(1991)], the comparison of H and NH results leads to
the following comments. 1) The NH breezes are still
weaker than H ones, but despite the relatively fine res-
olution, horizontal wind fields look quantitatively and
qualitatively similar (P , 10%). 2) Significant differ-
ences are now observed for vertical speeds for which
peak values of P ; 20% are reached between 1100 and
1400 LST when breezes are at their maximum inten-
sities.

Qualitatively similar results were presented in Yang
(1991) although differences between H and NH fields
were much larger. Indeed, he obtained at maximum sea-
breeze development the following values: for the 1-km
resolution case, P values of 6% for horizontal velocity,

and 28% and 10% for downward and upward velocities,
respectively, and the corresponding TVM values are 1%,
5%, and 7%; and for the 500-m resolution case, P values
of 38% for horizontal velocity, and 76% and 28% for
downward and upward velocities, respectively, and the
corresponding TVM differences are 2%, 5%, and 14%.

The large discrepancies between H and NH simula-
tions shown by Yang probably arise partially from dif-
ferent numerical treatment in the H and NH formula-
tions.

In Figs. 6c–f, a comparison with the incompressible
version of TVM is also provided. Almost no difference
is observed when density variations are neglected as
could be expected since the vertical extent of the cir-
culations is limited.

Although the two test cases presented above, corre-
sponding to a 5 8 in (22), were among the most NH
cases proposed by Yang (they indeed range from a 5
4 to a 5 10), H–NH differences obtained with the vor-
ticity formulation remain small. To test the behavior of
the H approximation in more stringent cases, the same
tests (two island cases) with a 5 16 are realized, and
all other parameters remaining unchanged. This dou-
bling of the thermal forcing still leads to differences
below 10% for the horizontal wind component for both
the 500- and 1000-m horizontal resolutions, whereas
differences in the vertical wind field now reach 21%
and 52% for the 1000- and 500-m horizontal resolutions,
respectively. Differences between the incompressible
and anelastic formulations do not exceed 10% for all
fields and resolutions. Table 1 summarizes the quanti-
tative differences for the different tests presented above
(denoted as SB).

In conclusion, although differences in vertical veloc-
ity fields are well marked, they do not significantly in-
fluence other variable fields as the grid resolution re-
mains large enough. The hydrostatic assumption seems
to remain valid even for relatively small scales when
thermal forcing is not too strong. Similar conclusions
were given by Martin and Pielke (1983) who, by use
of NH and H models, stated that the hydrostatic as-
sumption was valid for sea breeze when the heating
scale is as small as 6 km over flat terrain. For strong
forcings, however, significant errors in the calculation
of the vertical wind field are present and could be of
importance in air pollution modeling.

b. Sea breezes over complex terrain

Another possible way to generate NH effects is the
presence of complex terrain. In this section, we con-
struct an idealized case that consists of a mountain (hm

5 500 m, a 5 10 km) boarded on its left by a 25-km-
wide water surface (this case is denoted MSB). A si-
nusoidal wave temperature identical to (22) with a 5
8 is prescribed for land grid points while water tem-
perature remains constant. The grid configuration (75
3 24 grid points) has a resolution of 1 km horizontally
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FIG. 6. (a), (b) Horizontal wind speed obtained with TVM nonhydrostatic at full sea-breeze development for the (a), (c),
(e) 1-km and (b), (d), (f ) 500-m grid spatial resolutions. The shaded part of the horizontal axis is indicative of the land area.
(c), (d) The time evolution of the maximum horizontal wind speeds and (e), (f ) the time evolution of the maximum vertical
wind speeds. The nonhydrostatic anelastic, hydrostatic anelastic, and nonhydrostatic incompressible results are represented
by the continuous line, dashed line, and squares, respectively.
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TABLE 1. Quantitative summary table of the H 2 NH and anelastic
2 incompressible (A 2 I) differences (factor P) for the eight ther-
mally induced circulation cases presented in section 4. Values of P
are representative of the fully developed sea-breeze period.

Case UH2NH WH2NH UA2I WA2I

SB1000 (a 5 8)
SB1000 (a 5 16)
SB500 (a 5 8)
SB500 (a 5 16)
MSB500 (a 5 8)
MSB500 (a 5 16)
MSB1000 (a 5 8)
MSB1000 (a 5 16)

,10%
;10%
,10%
,10%
,10%
,10%
,10%
,10%

,10%
;20%
;20%
;50%
;15%
;45%
,10%
;25%

,10%
;10%
,10%
,10%
,10%
,10%
,10%
;10%

,10%
,10%
,10%
,10%
,10%
;15%
;15%
;30%

and is stretched along the vertical direction. The initial
lapse rate is 4 K km21.

At 0400 LST, slope winds develop on each side of
the mountain and converge on its western side with the
land breeze. At 0900 LST, both a sea-breeze cell on the
coastline and two anabatic cells on the mountain slopes
have formed. Their respective intensities are 1.5 and 0.9
m s21. At 1500 LST, the sea-breeze cell, which has then
reached an intensity of 3.5 m s21, merges with the left
upslope wind cell. At 1800 LST, the sea-breeze core
has passed the ridge (Fig. 7a) and is then subject to a
strong downslope acceleration to finally reach a maxi-
mum velocity of 4.8 m s21.

Differences between NH and H simulations in the
along-slope velocity (Fig. 7c) component are surpris-
ingly weak. The H winds generally overestimate NH
ones but errors remain under 5%. For vertical wind
speeds (Fig. 7e), the error also remains below 10% ex-
cept when the sea breeze overcomes the ridge and is
subject to a strong downslope acceleration (it then
reaches 15%). If the mountain has a height of 1000 m
(Figs. 7b,d,f), differences remain very weak and, for
vertical wind speed, they are even weaker since the sea
breeze then never overcomes the ridge.

As in the previous section for sea breezes over flat
terrain, the two tests with different mountain heights are
repeated for a 5 16, that is, when the thermal surface
forcing is doubled. In those two cases, differences re-
main below 10% for the horizontal wind whereas they
reach 45% and 25% for the vertical wind speed for
mountain heights of 500 and 1000 m, respectively. Note
that in this case the two sea breezes have enough energy
to pass over the ridge but do not prevent the maximum
differences occurring for the lowest hill.

Differences between incompressible and anelastic
simulations are below 10% for the horizontal compo-
nents whereas they reach 15% and 30% for the vertical
wind speed for the 500- and 1000-m heights, respec-
tively

Note that all results presented in sections 3 and 4
were obtained by neglecting Coriolis forcing. No ra-
diative lateral boundary conditions were used but a
damping layer was present in upper vertical layers for
the mountain waves and Boulder windstorm cases. The

horizontal and vertical diffusion coefficients were fixed
at zero for all dynamically forced circulations. For ther-
mally induced circulation, the horizontal diffusion co-
efficient was fixed at a value proportional to the grid
size (.200 m s22) while vertically, they were obtained
through the TKE closure.

5. Conclusions

This paper described the formulation and application
of the NH anelastic vorticity model (TVM). Evaluation
of the new formulation was realized by simulations of
2D H and NH mountain wave cases with different de-
grees of nonlinearity. Various types of topography-in-
duced waves, including the well-known 1972 Boulder
windstorm, were numerically simulated, and results
compared to available analytical solutions, measure-
ments, and/or results from other primitive equation me-
soscale models.

The change from an H to an NH formulation in prim-
itive equation mesoscale models requires one additional
prognostic equation for the vertical velocity, whereas
the current vorticity formulation contains the same prog-
nostic and diagnostic equations (additional terms are
present in the streamfunction NH elliptic equation only),
solved by identical numerical schemes. The model was
constructed for deep thermal convection flows using a
method involving only two horizontal streamfunctions
and two horizontal vorticity components, shown to be
sufficient to totally describe three-dimensional wind
fields. In addition, the current anelastic formulation only
requires solution of two bidimensional elliptic equations
for streamfunctions, as opposed to a similar three-di-
mensional equation for pressure in primitive equation
formulations. The decrease in required storage in TVM
over primitive equation models for the same 3D grid is
thus approximately 2/N, where N is the number of ver-
tical grid levels. A generalized vertical coordinate sys-
tem was introduced to account for complex terrain.

TVM in both its NH and H formulations was shown
to accurately (qualitatively and quantitatively) repro-
duce H and NH mountain wave behavior for both linear
and nonlinear forcings. As noted, results were obtained
without any explicit diffusion.

The adequacy of the hydrostatic assumption in sim-
ulating thermally induced circulations has also been in-
vestigated. For a moderate surface thermal forcing, typ-
ical geographical setups were used and showed very
slight differences between H and NH horizontal wind
speeds. Indeed, a decrease in grid resolution (down to
500 m) or an increase in mountain slopes (up to 15%)
did not generate differences over 10%. For vertical wind
speeds, differences were shown to be much larger and
more sensitive to changes in grid resolution. In fact, an
increase in mountain slope even reduced the differences
between H and NH simulations since in the steeper case,
the slope prohibited the passage of the core of the sea
breeze over the ridge and prevented the successive
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FIG. 7. Same as Fig. 6 except for the case MSB. (a), (b) The wind field for the (a) 500- and (b) 1000-m mountains, at
1800 LST.

downslope acceleration in which significant NH effects
are present. When a more stringent thermal surface forc-
ing was imposed, differences remained low for hori-
zontal wind speeds but considerably increased for the
vertical wind component (above 20% for all cases) il-

lustrating the failure of the hydrostatic assumption in
reproducing those circulations.

The comparison between anelastic and incompress-
ible solutions for the same cases showed the adequacy
of the incompressible assumption in simulating ther-
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mally driven circulations that are forced by the surface
and that are characterized by a relatively shallow vertical
extent. In such conditions, virtually no differences are
observed between the two formulations. The only ex-
ception being the 1-km-high mountain with a strong
thermal surface forcing for which differences reached
30% in the calculation of the vertical wind speed.

The comparison of this work with previous numerical
studies related to the impact of assumptions on atmo-
spheric conservation equations incites prudence in in-
terpreting the results. Indeed, the use of different nu-
merical treatments for different formulations could lead
to an overestimation of the impact of a given assump-
tion. As long as an identical numerical treatment is not
used for the comparison of different formulations, the
impact of a given approximation will remain doubtful.

Although the different tests presented here were all
bidimensional in order to better evaluate the importance
of the hydrostatic assumption, validation studies of this
vorticity formulation on three-dimensional coastal, ur-
ban, and/or complex terrain conditions have also been
performed. Applications over the Athens basin (Greece)
and over the Valencia area (Spain) incorporating pho-
tochemistry are presented in Clappier et al. (2000),
Grossi et al. (2000), and Thunis and Cuvelier (1999).

Acknowledgments. The help of Prof. G. Schayes, Dr.
G. Graziani, Prof. R. Bornstein, and Dr. B. Piraux is
deeply acknowledged.

APPENDIX

List of Symbols

a. Roman

a Mountain half-width
cp Specific heat at constant pressure (51005 J

kg21 K21)
f, f* Coriolis parameters
Fx Nondimensional mountain width
Fz Nondimensional mountain height
g Vector acceleration of gravity (magnitude 5

9.81 m s22)
hm Maximum mountain height
KH Horizontal turbulent diffusion coefficient
Kh, Km,

Kq

Heat, momentum, and specific humidity tur-
bulent diffusivity

k Vertical unit vector
k0 Von Kármán constant (50.40)
l Scorer parameter
LH Mountain horizontal length scale
N Brunt–Väisälä frequency
p Pressure
q Specific humidity
Q Radiative flux
t Time
t* Dimensionless time
T Temperature

u* Friction velocity
u, y , w East, north, and upwind component
V Three-dimensional wind vectors
x, y, z Eastward, northward, and upward coordinates
zg Topography height
z0 Roughness length
zt Model-top height
FTCS Forward in time, centered in space
PBL Planetary boundary layer
PPM Piecewise parabolic method
SBL Surface boundary layer
TKE Turbulent kinetic energy
TVM Thermal Vorticity Model

b. Greek

hz Maximum streamline steepness
u Potential temperature
j, v Vorticity vectors
r Density
s Topography transformed vertical coordinate
w Latitude
Fm SBL stability function for momentum
F, F* Vector streamfunctions
V Earth rotation vector (magnitude 5 7.292 3

1025 rad s21)

c. Subscripts

g Geostrophic
M Mesoscale perturbation
m Momentum
0 Static reference state

d. Special

( ) Reynolds decomposed mean value (no over-
symbol)

( )9 Turbulent perturbation
(˜) Topography coordinate system variable
= 3D del operator
=H Horizontal del operator
( )i Covariant tensor component (i 5 1–3, for x,

y, z)
( )i Contravariant tensor component (i 5 1–3, for

x, y, z)
( );i Covariant derivative in the ith direction
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