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ABSTRACT

The space-borne missions CoRoT and Kepler have revealed numerous mixed modes in red giant stars. These modes carry a
wealth of information about red giant cores, but are of limited use when constraining rapid structural variations in their envelopes.
This limitation can be circumvented if we have access to the frequencies of the pure acoustic dipolar modes in red giants, i.e.
the dipole modes that would exist in the absence of coupling between gravity and acoustic waves. We present a pilot study
aimed at evaluating the implications of using these pure acoustic mode frequencies in seismic studies of the helium structural
variation in red giants. The study is based on artificial seismic data for a red giant branch stellar model, bracketing seven acoustic
dipole radial orders around vp,x. The pure acoustic dipole-mode frequencies are derived from a fit to the mixed-mode period
spacings and then used to compute the pure acoustic dipole-mode second differences. The pure acoustic dipole-mode second
differences inferred through this procedure follow the same oscillatory function as the radial-mode second differences. The
additional constraints brought by the dipolar modes allow us to adopt a more complete description of the glitch signature when
performing the fit to the second differences. The amplitude of the glitch retrieved from this fit is 15 per cent smaller than that
from the fit based on the radial modes alone. Also, we find that thanks to the additional constraints, a bias in the inferred glitch
location, found when adopting the simpler description of the glitch, is avoided.
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1 INTRODUCTION

The space-borne missions CoRoT (Baglin et al. 2006) and Kepler
(Gilliland et al. 2010) opened a new window of opportunities to
enhance our understanding of stellar physics by providing unrivalled
high-quality data. Thanks to the high precision of space-based
photometric time series, asteroseismology has become an increasing
powertful tool to probe the internal structure and dynamics of stars.
A common way to explore the constraining power of the seismic
data is to include the frequencies of the oscillation modes or specific
combinations of these, in the set of observations used in model-
data comparisons (e.g. Cunha et al. 2007; Lebreton & Goupil
2014; Reese et al. 2016). However, this procedure suffers from
specific degeneracies that can limit the precision with which stellar
properties are inferred. In particular, the fact that the impact on
stellar observables from changing the stellar mass can be mimicked
by changes in the initial helium abundance can severely hamper
the determination of the stellar mass when the fractional helium
abundance is not well constrained, as discussed in the context of
different types of pulsating stars (e.g. Cunha, Fernandes & Monteiro
2003; Baudin et al. 2012; Lebreton & Goupil 2014). Therefore,
having a precise determination of the helium abundance can help to
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improve the precision with which the stellar properties are inferred.
In principle, the helium content of the envelope can be estimated
from the seismic signature of the glitch associated with the helium
ionization region (Gough 1990). Glitches are sharp variations in the
structure of a star, taking place on a scale comparable or smaller
than the local wavelength of the oscillation, and they introduce
a modulation in the observed oscillation frequencies — the glitch
seismic signature. This signature can be used as a diagnostic of
the region where the glitch occurs, containing information on its
location, as well as on how significantly and sharply the structure
varies at that location. The signature from the helium glitch has
been identified in the oscillation frequencies of the Sun (Monteiro
& Thompson 2005; Houdek & Gough 2007), main-sequence stars
(Mazumdar et al. 2014; Verma et al. 2014a, 2019), and red giants
(Miglio et al. 2010; Broomhall et al. 2014; Corsaro, De Ridder &
Garcia 2015; Vrard et al. 2015).

Solar-like oscillations are stochastically excited by near-surface
convection. In a star with a spherical equilibrium (thus non-rotating
and without a magnetic field), the oscillation frequencies v, are
characterized by the radial order n and the degree ¢. In main-sequence
solar-like pulsators, the observed modes have an acoustic nature and
their frequencies are approximately equally spaced in the power
spectrum (Aerts, Christensen-Dalsgaard & Kurtz 2010). However,
in red giant stars gravity waves trapped in the stellar core are coupled
with pressure waves trapped in the stellar envelope through the small
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evanescent region that separates the two cavities (Dupret et al. 2009).
This coupling is possible when the underlying perturbation is non-
radial and gives rise to mixed modes. Although mixed modes provide
valuable information about the stellar core, the information they carry
on the stellar envelope is more difficult to access than when the modes
are purely acoustic. This, in turn, limits our ability to infer informa-
tion about the helium glitch located in the envelopes of red giant stars.

In the specific case of the helium glitch, the structural variation is
best seen in the first adiabatic exponent, y |, defined by

_ (dlogP )
V= dlogp /.

where P and p are pressure and density, respectively, and the
subscript s indicates that the derivative is taken at constant entropy.
The value of y; changes rapidly with depth at the location of the
helium second ionization, inducing a rapid variation in the adiabatic
sound speed. It has been commonly assumed that the helium glitch
signature arises from the dip in y; caused by the helium second
ionization (Monteiro & Thompson 2005; Houdek & Gough 2007).
However, based on a detailed study of the glitch signatures in
main-sequence model frequencies, Verma et al. (2014a) have argued
that the local maximum of y |, between the helium second and first
ionization zones, provides a better representation of the location of
the helium glitch in main-sequence stars. A similar conclusion was
reached for red giants by Broomhall et al. (2014).

When the oscillations are purely acoustic, such as in main-
sequence solar-like pulsators, the helium glitch signature has a well-
understood oscillatory behaviour (e.g. Houdek & Gough 2007) that
is often best captured by computing the second frequency differences
(Gough 1990),

a __ .a 9,8 a
AoV o = Vg = 20 F Ve 2)

where we used the superscript ‘a’ on the frequencies to emphasize
that we are referring to pure acoustic modes. However, as previously
mentioned, in red giant stars non-radial modes are mixed (only the
radial modes are purely acoustic). Previous studies aiming at detect-
ing and characterizing the signatures of the helium glitch in red giants
have thus been based on radial modes alone (Miglio et al. 2010; Cor-
saro et al. 2015; Vrard et al. 2015). This limits significantly the num-
ber of frequencies available to constrain the properties of the glitch.
In this work, we present the results of a pilot project aimed at
understanding whether pure acoustic dipolar frequencies retrieved
from fitting the period spacing may strengthen the constraints on the
helium glitch’s properties in red giant stars. Moreover, we want to
understand if using the radial modes alone to characterize the glitch
properties, as done in previous works, may introduce biases in the
results. The study is based on model simulated data. In Section 2, we
describe the model adopted for our data simulation, the frequency
range of the modes, and the uncertainties considered on the simulated
frequencies. In Section 3, we present the method used to retrieve the
pure acoustic frequencies from the simulated period spacing. In Sec-
tion 4, we compare the helium glitch properties inferred from the sec-
ond differences using different analytical expressions and different
sets of modes, highlighting the improvement brought by the inclusion
of the pure acoustic dipolar frequencies. In Section 5, we discuss the
results and identify further tests to be carried out in future work.

2 SIMULATED RED GIANT PULSATION DATA

Based on a study of a series of red giant branch (RGB) stellar
models, Broomhall et al. (2014) concluded that for models with
Vmax > 70 uHz the £ = 1 mixed modes are not useful to constrain
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Table 1. Properties of the stellar model considered in this work. The
frequency of maximum power is Vyax = 105 pHz.

Model Mass Radius  Effective temperature ~ Luminosity — Age
Mo)  Rp) ) Lo) (Gyr)
RGB 1.0 5.8 4624 14.0 11.37

the properties of the helium glitch, since even the modes of lowest
inertia have their frequencies significantly perturbed compared to
those of pure acoustic modes. Our aim is to infer the pure acoustic
frequencies for the £ = 1 modes, and to use them to constrain the
properties of the helium glitch. Therefore, we chose to simulate
pulsation data for an RGB model with vy, ~ 105 pHz, well in the
Vmax range where the frequencies of the mixed ¢ = 1 modes cannot
be used to achieve that goal. To that effect, we used one of the models
studied by Cunha et al. (2019), whose global properties are shown in
Table 1. This model has been extracted from an evolution series of
1 M models computed with the evolution code ASTEC (Christensen-
Dalsgaard 2008a). The corresponding pulsation frequencies have
been derived with the adiabatic pulsation code ADIPLS (Christensen-
Dalsgaard 2008b).

According to Mosser et al. (2012), the underlying power distribu-
tion of the observed modes in an RGB star can be described by a
Gaussian centred on v, with a full width at half-maximum of

SVeny = 0.661°:38 3)

max *

To keep a realistic approach, in our simulations we shall consider
only a limited number of radial orders within this power envelope.
Based on the stars analysed by Corsaro et al. (2015), we chose to
consider eight radial modes distributed around v,,s, which allow
us to compute six radial-mode second differences. In the case of
our model that represents modes within an envelope of 1.78veyy,
slightly larger than the 1.56v.,, considered in the theoretical work
by Broombhall et al. (2014). In addition, we consider the dipole mixed
modes with frequencies within the same range, which brackets seven
pure acoustic £ = 1 frequencies that will need to be inferred.

Based on the radial and dipolar mode frequencies for the adopted
red giant model, we generate sets of artificial data. To that end, we
perturb the mode frequencies by considering a normal distribution
for the errors on the frequencies with zero average and two possible
standard deviations, namely: (1) o = 0.005 pHz, which will be
referred to as the best-case scenario and (2) o = 0.01 uHz, which
corresponds to a more realistic scenario, considering the results from
the analysis of stars observed by Kepler for a period of 4 yr (tables 1,
A.1, and B.1-B.49; Corsaro et al. 2015; Vrard et al. 2018).

3 INFERRING THE ‘PURE’ ACOUSTIC DIPOLE
FREQUENCIES

Gravity modes of a given degree ¢ in a non-rotating star have
asymptotically equally spaced periods whose difference is given by
the asymptotic period spacing (Tassoul 1980),

2 2
APy=""", “)
Wy
where
LN
Wy = / —dr, (&)
V] r
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N is the buoyancy frequency, L* = ¢(¢ + 1), and r, and r, are the
radii at the inner and outer turning points that define the propagation
cavity of the g mode, respectively.

In red giant stars, gravity modes couple with acoustic modes
and give rise to mixed modes. At constant degree ¢, mixed modes
are not equally spaced in period, as would be expected in purely
gravity-mode pulsators (Tassoul 1980). Instead, the period spacing
shows rapid variations at the frequencies where the pure acoustic
modes would appear if no coupling existed (e.g. Mosser et al. 2012).
These pure acoustic frequencies are approximately equally spaced
in frequency by the asymptotic large frequency separation. To infer
the pure acoustic frequencies of the dipolar modes, we consider the
analytical expression derived by Cunha et al. (2015) to describe the
mixed-mode period spacing, AP, defined as the difference between
the periods of consecutive mixed modes of the same degree <.
Adopting the formulation presented in Cunha et al. (2019), the period
spacing for dipole modes (¢ = 1) in a non-rotating red giant star
without core glitches is

AP 2 — o w—o* \]!
SO . B SO i i) q* cos® [ ——=L
APy Wy wp Wp

—1
+ Q(w)} , (6)

where the function Q(w) is given by

2 a a —1
oaw w—w w—w
——— |g%cot — ) ygan [ —=L .
27T Vipax Wg wp wp

Ow) = -2
%)

In the expressions above, w = 2 v is the angular frequency and

r -1
wp=( / c’ldr) , ®)

where r; and r4 are the turning points of the p-mode cavity.
This quantity is approximately equal to twice the asymptotic large
frequency separation (and never smaller than that). Moreover, g is
the coupling factor which is allowed to depend linearly on frequency
(cf. Cunha et al. (2019)) through

qqu[a<2w —1)+1], ©)
TT Vmax

where v,y 1s the cyclic frequency at maximum power (e.g. Chaplin &
Miglio 2013). Thus, g, represents the coupling factor at the maximum
oscillation power, while « determines how strongly ¢ depends on
frequency. Finally, the frequencies wj, | are the set of pure acoustic
frequencies of radial orders n that shall be estimated through the
fitting of equation (6) to the model simulated data.

Fig. 1 shows the result from the fit of the analytical expression
given by equation (6) to the unperturbed model data. The fit was
performed using the PYTHON module EMCEE implementation of the
affine-invariant ensemble sampler for Markov chain Monte Carlo
(Foreman-Mackey et al. 2013) with the likelihood defined by

1 1
¢ Gy (26): w

fit

where the uncertainty o4 was left as a free parameter and
AP — APypisi \°
2 i ADIPLS, 1
X = E —_— (11
F ( Ofit )

with the subscript ‘ADIPLS’ indicating the period spacing derived
from the frequencies returned by ADIPLS.
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Figure 1. Top: Comparison between the period spacing derived from the
frequencies returned by the pulsation code ADIPLS (filled triangles, black)
and those obtained from equation (6) with the parameters of the best-fitting
model (open triangles, red). The dotted vertical lines show the position of the
frequencies of the pure acoustic modes for the best-fitting model. Bottom: The
residuals computed as (‘ADIPLS period spacing’ — ‘analytical period spacing’).
The frequencies used in the fit lie in the range [74.98, 141.54] puHz.

4 INFERRING THE PROPERTIES OF THE
GLITCH

4.1 Glitch properties in the error-free analysis

According to the analysis by Houdek & Gough (2007), the glitch
properties can be inferred from the second differences through the
fit of the frequency-dependent function,

Ay = Ave 2207 cos[2 2Ty + €) ] + F(v), (12)

where A and Ay are related to the glitch amplitude and width,
respectively. Here, € is a phase parameter and 7 is the acoustic depth
of the glitch defined by

R
d
r=/ < (13)
rg c

where R is the seismic radius of the star (see Gough 1990, for
a discussion) and ry is the radius at which the glitch is located.
Moreover, F is a smooth function of frequency that incorporates
effects from the near surface, the hydrogen ionization zone and
the wave refraction in the stellar core. Polynomial expansions in
either 1/v or v are usually adopted for F (e.g. Houdek & Gough
2007; Verma et al. 2014a) when modelling acoustic glitches in main-
sequence stars. However, given the limited number of radial modes
observed in RGB stars, studies of the helium glitch in these evolved
stars have so far considered only the first term in the expansion,
assuming that the function F is a constant offset, B. In that way,
these works constrained the 5 parameters {A, Ay, 7, €, B}, with
typically six radial-mode second differences. The extraction of the
frequencies of the purely acoustic dipole modes, if successful, would
allow for the consideration of additional terms in that expansion. We
shall discuss the impact on the inferred glitch parameters of the
addition of such acoustic dipole-mode second differences to the fit.

In Fig. 2, the second differences computed from the £ = 0 mode
frequencies of our model are shown along with those computed from
the purely acoustic £ = 1 modes extracted in Section 3. For compar-
ison, the second differences computed from the dipole mixed modes
of lowest inertia are also shown (open symbols). Arrows connect
the two sets of £ = 1 second differences. It is clear from simple
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Figure 2. The second differences computed from the radial-mode frequen-
cies (red, filled circles), from the purely acoustic dipole-mode frequencies
(blue, filled squares), and from the frequencies of the dipole mixed modes
with lowest inertia (blue, open squares). The arrows connect the two sets
of dipole-mode second differences. The red-dotted curve shows the function
described by equation (12) with F taken as a constant, for the parameters
producing the most likely fit to the radial-mode second differences only.

eye inspection that the second differences computed from the purely
acoustic dipole frequencies follow closely the oscillatory signature
seen in the second differences computed from the radial modes,
unlike the second differences computed from the mixed modes.

To explore the impact on the inferred glitch location of adding
the pure acoustic dipole modes to the fit, we compare the results
from fitting equation (12) to the second differences computed from
the radial modes alone with those obtained from fitting, in addition,
the inferred purely acoustic dipole modes. For the latter case, we
consider two options for the smooth function F, namely, one in which
F = B + Dv?, where B and D are constant parameters, and another
in which F = B. We did not consider a term varying proportionally
to v in the first option because we verified that taking this linear
term into consideration would not improve the quality of the fit.
Since considering such a term would add another free parameter
without improving the fit, we decided not to include it. To quantify
the goodness of the fits, we compute the reduced x? for each case,
defined by

N 2
1 Ayv i — Ay
2 2VADIPLS, i 2Vi
= o) 14
KRN m ( > (9

o
i=0 !

where N is the number of data points, m is the number of free
parameters in the model in equation (12), and o; are the uncertainties
on the data points. Note that our data points are derived from the
adiabatic pulsation code ADIPLS, thus, in the error-free case discussed
in this subsection they do not have associated uncertainties. As our
aim is solely to compare the goodness of the fits, we choose to set o;
=1 for all i. The results from the fits are shown on the left-hand panel
of Fig. 3 and the values of )3 obtained in each case are summarized
in Table 2. They show that the inclusion of the second differences
derived from the pure acoustic dipolar frequencies improves the fit,
in particular when the quadratic term is also included in the function
F.Inaddition, we calculate x 3 for the solution found when fitting the
radial modes alone, now including the purely acoustic £ = 1 modes.
This allows us to assess how far this solution is from reproducing the
dipolar-mode second differences which were not accounted for in the
fit. We find x 2 = 0.0041, a value comparable to the value found when
only the radial modes are considered in the x 3 computation and much
larger than the value of x 2 obtained for the best case shown in Table 2.

Helium glitches in red giant stars 1011

The right-hand panel of Fig. 3 shows a comparison of the glitch
location inferred in the three cases illustrated on the left-hand panel
of the same figure. We present the glitch location in terms of its
acoustic radius, fyey,! rather than acoustic depth, 7, so that it can
be directly compared with the results from the study of Broomhall
et al. (2014). That is achieved by making the transformation fyey
= T — 1, where T is the total acoustic radius of the star estimated
by (2(Av))~!. Here, (Av) is the average large frequency separation
which we compute by determining the slope of the linear fit to the
¢ = 0 mode frequencies expressed as a function of radial order. The
acoustic radius computed in this way provides an estimator of the
location of the glitch that is less biased by the unknown exact position
of the surface radius (Christensen-Dalsgaard, Monteiro & Thompson
1995; Ballot, Turck-Chi¢ze & Garcia 2004).

The results from the theoretical studies by Broomhall et al. (2014)
and by Verma et al. (2014b) both indicate that the glitch position
corresponds to the local maximum of y;. Fig. 3 shows that only
when both radial and dipole modes are considered and the smooth
function is allowed to vary with the square of the frequency, the
expected position of the glitch is accurately recovered for this mode.
That is quantified in Table 3 where the relative distance of the glitch
location from the local maximum in y, is provided for each of the
three cases shown in Fig. 3.

As the abundance of helium is expected to be directly related to
the glitch amplitude, we also consider the impact on the inferred
amplitude from fitting different sets of observables or using different
fitting expressions. Different proxies for the glitch amplitude are
adopted by different authors. Here we follow Verma et al. (2019),
and use the average glitch-signature amplitude defined by

2 2
v Av 672AH(2111)) dv

(A) = R : (15)

where v; = 85.09 uHz and v, = 132.74 uHz are the smallest
and largest radial-mode frequencies that limit the frequency range
considered in the study. The results are shown in Table 3. We find
that the average amplitude varies by a maximum of 26 per cent when
the three different cases are considered. The difference between the
average amplitudes from the fit with the most complete expression
(blue line in Fig. 3, left) and the fit to the radial-order second
differences only (red line in the same figure) is 15 per cent.

4.2 Impact of uncertainties on the glitch location

So far we have fitted the model data without uncertainties to quantify
the biases on the inferred glitch location introduced by the use of
different sets of data and different fitting expressions. In reality the
errors on the measured oscillation frequencies will propagate to the
second differences. The errors in the second differences computed
from the radial modes could be easily derived by linearly propagating
the errors in the radial-mode frequencies. However, in the case of
the dipolar modes the situation is more complex, because the purely
acoustic dipole modes are not directly observed, but rather inferred
from the fit of equation (6) to the mixed-mode period spacing. To
properly account for this, we perform Monte Carlo simulations on the
radial and the mixed modes, under the best-case and the more realistic
scenarios described in Section 2. For the radial modes we compute
the second differences for each simulation directly from equation (2).
In addition, we use the mixed modes generated in each simulation

'Hell indicates second helium ionization.
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Figure 3. Left: Best fits of equation (12) to the second differences (symbols as in Fig. 2). Results are shown for three different cases, namely: fit to the second
differences computed from radial and purely acoustic dipole modes for F = B + Dv? (blue, continuous curve) and for F = B (yellow, dashed-dotted curve).
The red-dashed curve is the same as in Fig. 2. Right: The first adiabatic exponent around the region of helium ionization, with the identification of the position
of the helium glitch inferred from the fits shown on the left-hand panel (vertical lines; colour and line style as in left-hand panel).

Table 2. Values of the )(,2e computed with equation (14), for the three cases
discussed in the text.

Fitting conditions x,ze
£ = 0, constant F 0.0054
£=0and ¢ =1, constant F 0.0016

¢ =0and ¢ = 1, quadratic 0.00050

Table 3. Average glitch-signature amplitude, (A), and glitch acoustic radius,
tyerr, inferred from the fits to the second differences, for the three cases
discussed in the text. Also shown is the relative distance of the glitch to the
local maximum of 1, RD = (t,; max — fHen)/ T, where t,, max = 33069 s
and T = 52576 s. The last row concerns the results for the median values
derived from the Monte Carlo simulations discussed in Section 4.2.

Fitting conditions (A) THert (8) RD

£ =0, constant F 0.122 31435 0.0311
£ =0and ¢ = 1, constant F 0.094 31947 0.0213
¢ =0and ¢ = 1, quadratic 0.105 33297 —0.0043
¢ =0and ¢ = 1, quadratic 7, MCS 0.111 33236 —0.0032

to compute the corresponding period spacing which we then fit with
equation (6), leaving all parameters in this equation free to vary,
to derive a simulated set of purely acoustic dipole modes. These
purely acoustic modes are then used to compute the dipole second
differences for each simulation. We repeat the procedure for a total of
200 simulations and for each simulation we fit the resulting radial and
dipolar second differences simultaneously with equation (12), taking
F = B + Dv?. For a few simulations (7 out of the 200) the returned
T was larger than the Nyquist period and the fits were rejected.
From the remaining fits, we obtain the probability distributions for
the parameters in the fitted expression. The results are shown in
Fig. 4. The uncertainties in the dipole-mode second differences are
significantly larger than those in the radial-mode second differences
(left-hand panel), reflecting the additional error introduced by the
fit of the analytical expression (equation 6) to the period spacings.
All but one second-difference values are within 1o of the median
curve, represented by equation (12) with F = B + Dv? and the
parameters taken to be the median values of the distributions resulting
from the Monte Carlo simulations in the best-case scenario. The
exception is a radial-mode second difference found at 2.730 away

MNRAS 497, 1008-1014 (2020)

from the median curve. Moreover, when uncertainties are considered,
the median value of the glitch acoustic radius inferred from the fitting
of the combined radial-mode and dipole-mode second differences
still lies near the local maximum of y; (right-hand panel), at arelative
distance of —0.0032 (Table 3).

5 DISCUSSION

The analysis of space-based asteroseismic data has brought the study
of acoustic glitches to a new standard. A number of recent works
(Mazumdar et al. 2012, 2014; Verma et al. 2014a, 2019) have shown
that the properties of the glitch associated with the helium ionization
zone can be successfully inferred in main-sequence stars through
the fitting of the frequencies, or combinations of frequencies, from
radial and non-radial, low-degree modes. However, in the case of
red giant stars the situation is more complex due to the mixed
character of the non-radial modes. Since their frequencies deviate
from those of pure acoustic modes they cannot reliably be used to
infer the glitch parameters. The problem is more significant for stars
with vy, > 70 uHz, as discussed by Broombhall et al. (2014). One
possible solution is to use only radial modes in the inference process.
However, as discussed in Section 4, considering only the radial modes
in the fit of the second differences limits the number of parameters
allowed in the smooth component of the model, which, in turn, bias
the inferred glitch parameters: the acoustic radius of the glitch #yey
inferred from the fit deviates from the glitch expected location, at
the local maximum in y,, and the average amplitude of the glitch
signature can be affected (in the case of the present model, by about
15 per cent). Although the authors do not discuss it, inspection of
the results from Broomhall et al. (2014) seems to indicate that the
bias in the location inferred for the glitch is amplified towards more
evolved red giants, with lower Av (cf. comparison of the two panels
in their fig. 3).

In our study, we have tested a new procedure aimed at improving
the characterization of the glitch, which consists in first inferring what
the frequencies of pure acoustic dipole modes in a red giant star would
be, if no mode coupling existed, and then using those frequencies to
construct the coupling-free dipole second differences. To infer the
pure acoustic dipole frequencies, we followed the method proposed
by Cunha et al. (2019). We have shown that the second differences
computed from the pure acoustic dipole-mode frequencies inferred
by this method follow the same oscillatory function as the second
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Figure 4. Results from the Monte Carlo simulations on the radial and mixed modes. Left: The blue curve represents the expression given by equation (12)
with F = B + Dv? where the parameters in the equation are taken to be the median values of the distributions resulting from the Monte Carlo simulations in
the best-case scenario described in Section 2. The red dots and the blue squares are the median values of the sets of second differences computed for radial and
purely acoustic dipolar modes, respectively. The errorbars represent the 1o interval around the median values. Right: The adiabatic exponent around the region
of the helium ionization. The vertical solid line corresponds to the median value of the inferred position of the glitch and the dotted vertical lines show the +
1o uncertainties around the median value, in darker blue for the best-case scenario and in lighter blue for the more realistic scenario described in Section 2.

differences computed from the radial modes. The end product of
this process is an additional set of observational constraints that, in
turn, allows us to adopt a more complete description for the smooth
component F of the fitting function given in equation (12). Indeed,
this study brings to light that the use of a constant smooth component
in the fitting expression is not appropriate. A significant curvature
in the smooth component is not entirely surprising because in red
giants the observed frequencies are further away from the asymptotic
limit than in main-sequence stars. Thus, one of the main advantages
of the addition of the dipolar modes is indirect, in that it allows us
to fit a more complete expression (i.e. to give the necessary freedom
for the smooth part to be properly accounted for and the actual glitch
signature to be extracted). With the addition of the pure acoustic
mode dipole frequencies and the modified smooth term in the fitting
function, the inferred acoustic radius of the glitch is less biased than
when only radial modes are used. This remains true, when uncertain-
ties on the simulated frequencies are included in the fitting process.

The results from this pilot project reveal the potential of the
proposed approach to use the dipolar modes to characterize the
helium glitch in red giants, as well as the drawbacks of using the
radial modes alone to that end. The success of this approach depends
on the ability to recover the pure acoustic dipole frequencies from
the fit to the period spacings that, in turn, is likely to deteriorate
as the number of mixed modes per radial order decreases with
decreasing stellar luminosity (Jiang et al. 2020). Future work will
aim at understanding the extent of applicability of this method both
to model data, by exploring a grid of red giant models with a range
of masses, luminosities and metallicities, and to real data.
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