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Abstract. The aim of this paper is to present a method for source de-
tection within unknown chemical mixtures using several measurement
modalities. Contrary to the well studied case of single source detection,
this approach enables simultaneous detection of multiple chemical com-
ponents by exploiting the mixing coefficients resulting from supervised
linear unmixing and thresholded non-negative least squares. The first
contribution of this work is to propose an automated procedure to com-
pute an optimized binary classifier rule for each component indepen-
dently using a database of known mixtures. The second contribution is
to propose a global decision rule based on the fusion of the multimodal
decisions using weighting schemes such as those used in multiple classi-
fier systems (MCS). A real database of Ion Mobiliy Mass Spectrometry
(IMMS) data is used to evaluate the detection performance. An increase
of the detection accuracy is reached using the multiple thresholds within
the independent classifiers approach as compared to single modality de-
tection.

Keywords: Multimodal supervided spectral unmixing · Sensor fusion ·
Chemical mixture analysis.

1 Introduction

Source detection from spectral data is at the core of several applications of signal
processing methods in physical sensing problems, such as chemical substance
analysis [6], hyperspectral imaging [17]. The concept of a source signal is defined
as the spectral signature associated to a chemical component.

Classical approaches for source detection and identification are based on the
recognition of some discriminant patterns or features of the sought sources [24].
These features can be determined empirically [13,18] or learned from a large-scale
database [10]. Often, the measured signal is interpreted as the linear combina-
tion of an unknown set of several sources. In such cases, multivariate analysis
techniques [21] such as independent component analysis and non-negative ma-
trix factorization can be used. But, even if these blind separation methods yield
estimates of the source and their relative abundances (mixing coefficients), their
identification as a physically meaningful components is not guaranteed in all
situations.
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Alternatively, one can consider a known set of sought sources and estimate the
mixing coefficients by a linear regression under non-negativity constraint. These
coefficients are then used to make a decision on the presence or the absence of
each source in the mixture. In this supervised linear unmixing framework, various
methods can be applied, such as thresholded non negative least squares [25], non-
negative orthogonal greedy algorithms [20] or constrained sparse regression [1].
The main challenge in these approaches is to estimate the sparsity level corre-
sponding to the appropriate number of mixture components. For non-negative
least-squares (NNLS), hard thresholding based methods may require a tuning
of the threshold level [25] or a setting of an appropriate stopping strategy of
the iterative process [2]. For greedy algorithms, the sparsity level should be de-
fined manually or estimated automatically by adopting an adequate stopping
rule during the decomposition. In this paper, we explore more specifically the
hard thresholding based approach for which we propose two enhancements. The
first one is to adopt a source dependent threshold which allows more accurate
detection. The second proposal is to use a training database of known mixtures
to determine an optimized detection threshold for each sought source separately.

The abundance of each source in an observed mixture data depends on the
sensitivity of the sensing modality to this source. Consequently, a lack of sensi-
tivity to some sources in one modality leads to a poor detection of these sources
using this modality and conversely an accurate detection will be achieved from
another modality more sensitive to these sources. Exploiting multi-modality will
therefore enhance detectability of all the sources present in a mixture [7,11]. In
the case of multiple measurements of the mixture recorded in the same modality,
it has been shown that joint analysis of the data can enhance performance [5,27].
In the case where different measurement modalities are available, an appropriate
fusion strategy should be defined. The second contribution of this paper is to
adopt a decision fusion method based on a multiple classifier system (MCS) [9].
Finally, the proposed approaches of component-dependent thresholding and mul-
timodal decision fusion are tested on a challenging example of chemical mixture
analysis using Ion Mobility Mass Spectrometry (IMMS) data [12, 26], where
spectral responses of the mixtures and the sources are recorded using four com-
plementary measurement modalities (ionization modes).

2 Problem Statement

Let us consider the case of a single measurement modality. The measurement
vector of the mixture is noted y ∈ RM , where M represents the number of
samples provided by the sensor. Measurement vectors associated to N sources
are gathered in a matrix S = [s1, ...sN ] ∈ RM×N . The measurement model is
assumed to be a linear mixing:

y =

N∑
i=1

aisi + e, (1)
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where the additive noise term e corresponds to measurement errors. Computing
the vector of mixing coefficients a = [a1, ..., aN ]t ∈ RN can be efficiently done
by solving the following problem:

â = arg min
a∈C
‖y − Sa‖22, (2)

where C denotes the constraint set of the coefficients. For the considered applica-
tion, measured data correspond to mass spectrometry and ion mobility spectra
and are assumed to follow a linear mixing model. The leas- squares problem
above (2) is therefore solved under the constraint of non-negativity using a non-
negative least squares algorithm (NNLS) [16] or an interior-point least squares
(IPLS) [4]. The estimated mixing coefficients in each measurement modality are
then used to retrieve the detection vector d = [d1, ..., dN ]t ∈ {0, 1}N from a
where for i ∈ 1, ..., N, di = 1 when component i is present in the mixture and
di = 0 otherwise.

In the case where L independent measurement modalities are available, for
each modality l ∈ 1, ..., L, the measurement vector of the mixture is noted
y(l) ∈ RMl and the spectra of the N sources are gathered in a matrix S(l) =

[s
(l)
1 , ...s

(l)
N ] ∈ RMl×N where Ml is the length of the data vector in the l-th

modality. The observation model is then expressed as:

y(l) =

N∑
i=1

a
(l)
i s

(l)
i (3)

with linearly independent abundance vectors a
(l)
i . The detection of the compo-

nents which are present in the mixture should therefore be realized by accounting
for the values of the mixing coefficients in all modalities using a decision fusion
strategy.

Figure 1 shows the proposed detection pipeline. It consists in firstly solving a
non-negative linear regression problem in each modality and then deducing the
binary detection vectors (d(1), ...,d(L)). The proposed method to compute a fused

Fig. 1. Multimodal detection pipeline

detection vector dfus from the L unimodal detection vectors (d(1), ...,d(L)) is
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presented in Section 4. Section 5 details an application of the proposed detection
method in the case of chemical mixture analysis using IMMS spectrometry data.

3 Detection from single modality measurements

A first step of the proposed approach consists in estimating the mixing coef-
ficients (ai, for i ∈ 1, ..., N) by solving Problem (2). A NNLS algorithm [16]
is used for this purpose. Dedicated optimisation algorithms [4] can be used in
order to account for additional constraints (such as sum-to-one). The detection
of each mixture components from these mixing coefficient values is addressed as
a binary classification problem between two states: presence or absence of each
source.

3.1 Detection approach

The decision rule related to the two states leads to a binary classifier hθi(ai) :
R→ {0, 1} according to:

hi(ai; θi) =

{
1 if ai ≥ θi
0 otherwise

(4)

Our proposal consists in adopting thresholds θi which are specific to each source
in the considered measurement modality. It allows to account for the different
sensitivities of the measurement modalities on the sought sources. The detection
vector is then given by di = hi(ai; θi) for i ∈ 1, ..., N . The values of the thresh-
olds θi are defined by optimization of the detection performances on a training
database of known mixtures. The best detection threshold values are chosen in
such a way to reach a balance between sensitivity and specificity of the binary
classifier.

3.2 Specification of the detection thresholds

Let Y = [y1, ...,yK ] ∈ RM×K denote a matrix of K mixtures with a subset of
known sources among a set of N sources. The detection performances for each
binary classifier corresponding to the i-th source are evaluated in terms of true
positive rate and false positive rate

TPRi (θi) =
TPi

TPi + FNi
and FPRi(θi) =

FPi
FPi + TNi

, for i = 1, . . . , N,

where TP (True Positive) and FP (False Positive), correspond to the number
of times that sources are detected as present by the binary classifier and they
are actually present (resp. absent) in the mixture. TN (False Negative) and
FN (False Negative) correspond to the cases where components are detected as
absent by the binary classifier and they are actually absent (resp. present) in
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the mixture. The best compromise between sensitivity (TPR) and specificity
(1-FPR) is achieved by defining the threshold values according to

θ̂i = arg min
θi∈R
‖(TPRi(θi),FPRi(θi))− (1, 0)‖22. (5)

Note that the ideal point (1, 0) corresponds to the detection of the source (sensi-
tivity) when it is present in the mixtures and without any false positive detection
(specificity).

3.3 Illustration on a real mixture data set

A real database of IMMS data from 85 lubricant mixtures is considered. Each
mixture contains between 5 and 7 components among 20 possible ones. More
details on this data set are given in Section 5. Figure 2-(a) gives the distance
between the receiver operating characteristic (ROC) curve for the detection of
different sources. It can be noted that the optimal detection thresholds for the
considered sources (C6, C15 and C17) are different, which suggests to use a
source dependent threshold. Moreover, the global threshold seems to be appro-
priate for C15 but it is not optimal for the two other sources (C6 and C17).

(a) Distance to ideal point (0,1) (b) ROC curves

Fig. 2. Influence of the threshold values on the detection performance

Figure 2-(b) shows a comparison between the average ROC curve obtained
when applying a source dependent threshold and the ROC curve obtained by
using the same threshold for all the sources. Both the Area Under Curve (AUC)
and the average performance at the optimal point are higher in the case of source
dependent thresholds.
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4 Detection strategy in the multimodal case

This section addresses the detection in the case where L > 1 independent mea-
surement modalities are available. To illustrate the relevance of this strategy
let us compare the ROC curves, shown in Figure 3, obtained with two different
sources C1 and C3 in the four modalities offered by the IMMS spectrometer.
The ROC curves of modality M2 (to the left) yields the best performance and
M3 the worst performance for source C1. In contrast, for component C3, the
best detection is obtained by modality M1 and the worst detection is obtained
with modality M4. This example illustrates the complementarity of the different
modalities and the need for a decision fusion strategy for an accurate detection
of the entire set of sources.

(a) Source C1 (b) Source C3

Fig. 3. ROC curves for source detection in four modalities

4.1 Weighting schemes

The fusion of the independent binary classifiers (h
(1)
i , . . . , h

(L)
i ) in the L modal-

ities is performed using a linear combination rule according to

gi

(
a
(1)
i , . . . a

(L)
i

)
=

L∑
l=1

ω
(l)
i h

(l)
i

(
a
(l)
i ; θ

(l)
i

)
, (6)

where θ
(l)
i and ω

(l)
i correspond to the detection threshold and the decision weight

associated to the detection of i-th component in the l-th measurement modality.
A resulting fused decision corresponds to a Multiple Classifier System [9] defined
subsequently as:

dfusi =

{
1 if gi

(
a
(1)
i , . . . a

(L)
i

)
≥ 0.5

0 otherwise
(7)
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Depending on the values assigned to the decision weights, one can distinguish
mainly three different fused classifiers.

a) Majority Vote (MV). It consists of retaining the decision taken by the
absolute majority of classifiers [3]. It is defined as below:

ω
(l)
i =

1

L
. (8)

However, the MV classifier doesn’t account for the performance of the binary
classifiers in the different measurement modalities.

b) Weighted Majority Vote (WMV). Weighted Majority Vote [15], [19] is
a decision fusion rule in the case of independent classifiers and the weights are
defined as:

ω
(l)
i = log

µ
(l)
i

1− µ(l)
i

(9)

where µ
(l)
i is the considered measure of the i-th classifier performance (distance

to ideal point, global accuracy, balanced accuracy, etc.) in the l-th modality.

c) Dynamic Classifier Selection (DCS). DCS [8] is a simple and powerful
multiple classifier fusion strategy consisting in selecting the most efficient clas-
sifier for each source and discarding the others. The chosen decision weights in
(6) depend on the performance index of the binary classifiers in each modality.

The values of ω
(l)
i are set according to:

ω
(l)
i =

{
1 if µ

(l)
i = maxk∈[[1,L]]{µ

(k)
i }.

0 otherwise.
(10)

4.2 Performance index

The weighting schemes for decision fusion are based on classifier performance.
The most commonly used performance measure is the detection accuracy (ACC),
defined as:

µacc
i =

TPi + TNi

TPi + TNi + FPi + FNi
. (11)

This index is commonly used for evaluation of classifiers with balanced occur-
rences of presence/absence of the sources.

In the case of our application, the source component are more often absent
than present in the mixtures which leads trivial classifiers with high rejection
rate to yield good global accuracy scores. This phenomenon called ”curse of
accuracy” [14] is avoided by choosing a more adapted performance index such
as the Mathews Correlation Coefficient (MCC) [23], which is defined as

µmcc
i =

TPi × TNi − FPi × FNi√
(TPi + FPi)(TPi + FNi)(TNi + FPi)(TNi + FNi)

. (12)
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This index is considered as one of the best binary classifier performance metrics
since it is not affected by class imbalances in the training set. An ideal classifier
leads to µmcc

i = 1, a random classifier gives µmcc
i = 0 whether or not the train-

ing set is balanced, meanwhile a classifier systematically predicting the exact
opposite of the ground truth will hace an MCC value µmcc

i = −1.

5 Application to mixture analysis by IMMS spectrometry

In this section, detection performances of the presented MCS are compared to
the performance obtained separately on each modality on a supervised chemical
mixture analysis by an IMMS spectrometer.

5.1 Mixture synthesis

A database of 85 mixture made from 20 different chemical components has been
designed. Each mixture contains 5, 6 or 7 components randomly chosen from a
set of 20 classical components involved in lubricant formulation [22]. Samples
from each mixture and each source components have been analysed twice with
an IMMS spectrometer [12]. This spectrometer ionizes the analyte sample to
create a swarn of ions. In a second step, bidimensional maps corresponding to
distribution of drift times and time of flight of the ions through two separation
chambers are recorded. The distribution of drift time through the first chamber
is called the ion mobility spectrum and the distribution of time of flight in the
second chamber leads to the mass spectrum. Mass spectra and ion mobility
spectra are considered as the spectral signatures of the analyte sample.

(a) Mixture 10 (b) Source C16

Fig. 4. Spectral responses of a mixture and one source in four measurement modalities
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Two distinct ionization modes have been used, therefore 4 one-dimensional
spectra are recorded for each sample. Those modalities are called M1, M2, M3
and M4, corresponding to positive ionisation mass spectra, negative ionisation
mass spectra, positive ion mobility spectra and negative ion mobility spectra.
The spectral signatures of one of the mixture are presented in Figure 4-(a).
Figure 4-(b) shows the spectral signatures of one component of this mixture.

5.2 Mixture analysis

The IPLS algorithm [4] is used for the mixing coefficient estimation under non-
negativity constraint. Among the 85 observed mixtures, a set of randomly chosen
60 mixtures, with balanced occurrences of each component, are retained for
training the algorithms in terms of optimal threshold values setting and decision
weights calculation. The remaining set of 25 observed mixtures are retained for
the performance evaluation. This procedure is repeated with 60 independent
realizations to get statistically robust global performance indexes.

5.3 Unimodal detection and majoruty vote

Global performance of each optimized unimodal classifier and the majority vote
of the 4 modalities on the database are presented in Table 1. It can be noted
that modality M2 seems to present the best global performance in terms of true
positive rate, false negative rate and overall accuracy. It can be noted that a
naive global fusion scheme such as MV leads to an improvement of specificity
(lower TPR) but at the expense of sensitivity (higher FPR). This results suggests
adopting alternative fusion strategies

Table 1. Performances of unimodal detection

Modalities Fusion

Score M1 M2 M3 M4 MV

TPR (%) 74.2 77.7 59.8 63.8 62.5

FPR (%) 21.5 18.4 26.3 29.2 8.2

MCC 0.50 0.57 0.31 0.32 0.57

ACC (%) 77.4 80.8 69.7 69.3 83.9

5.4 Decision fusion for multimodal detection

The results of the application of the two fusion strategies based on binary classi-
fier performances are reported in Table 2. Two weighting strategies based either
on ACC and MCC indices are considered. For all the presented metrics, one
can notice that these weighted methods (WMV and DCS) outperform the best
of unimodal classifiers. More specifically, a significant improvement in ACC and
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MCC indices is achieved. An accuracy value of 87.9 % for the MCC based WMV.
It notably reduced the rate of false positives (5.1%) while being less sensitive
than the modality M2. However, the MCC based DCS classifier is the most
sensitive one (82.3 %) and presents a moderate rate of false alarms (13.2 %).

Table 2. Performance of fusion strategies based on either ACC or MCC measures.

ACC MCC

Score WMV DCS WMV DCS

TPR (%) 77.3 81.5 68.3 82.3

FPR (%) 11.8 12.5 5.1 13.2

MCC 0.65 0.67 0.62 0.67

ACC (%) 85.5 86.0 87.9 85.6

5.5 Discussion on component detection

Figure 5 shows the detection results of two groups of sources. In the first group,
the sources are well detected by positive ionization mode while in the second
group, the sources are better detected using negative ionization mode. For each
group of components, unimodal detection results are compared to the multi-
modal detection. In both cases, the performance of the fused decision is equiv-
alent to the best of all the unimodal classifiers. The proposed framework has
therefore been able to fully exploit the complementarity of the modalities.

Fig. 5. Detection performance using measurements with two ionization modes
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6 Conclusion

The concrete problem of identifying chemical components in an unknown mix-
ture from multi-model spectrometric data, while being an instance of the well-
known source separation problem, poses many challenges among which the source-
dependent response sensitivity and need to derive robust decision fusion strate-
gies to combine information provided by the different modalities. It has been
shown on real data that a more accurate detection is achieved by proposing a
component-specific threshold in each modality and adopting a decision fusion
scheme exploiting the detection performances in each modality, measured in a
training database. We also noted that DCS classifiers tend to be very sensitive
while WMV are more specific. Future works will be directed at investigating
methods based on greedy sparse recovery, proposing adequate rules for the joint
decomposition of the observed data with multiple modalities. Another perspec-
tive proposal of decision rules based on machine learning approaches and that
will not requite the linear mixing model hypothesis.
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