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ABSTRACT

Context. Interferometric observables are strongly correlated, yet it is common practice to ignore these correlations in the data analysis
process.
Aims. We develop an empirical model for the correlations present in Very Large Telescope Interferometer GRAVITY data and show
that properly accounting for them yields fainter detection limits and increases the reliability of potential detections.
Methods. We extracted the correlations of the (squared) visibility amplitudes and the closure phases directly from intermediate
products of the GRAVITY data reduction pipeline and fitted our empirical models to them. Then, we performed model fitting and
companion injection and recovery tests with both simulated and real GRAVITY data, which are affected by correlated noise, and
compared the results when ignoring the correlations and when properly accounting for them with our empirical models.
Results. When accounting for the correlations, the faint source detection limits improve by a factor of up to ∼2 at angular separations
>20 mas. For commonly used detection criteria based on χ2 statistics, this mostly results in claimed detections being more reliable.
Conclusions. Ignoring the correlations present in interferometric data is a dangerous assumption which might lead to a large num-
ber of false detections. The commonly used detection criteria (e.g. in the model fitting pipeline CANDID) are only reliable when
properly accounting for the correlations; furthermore, instrument teams should work on providing full covariance matrices instead of
statistically independent error bars as part of the official data reduction pipelines.

Key words. techniques: interferometric – methods: statistical – planets and satellites: detection

1. Introduction

With the first detection and characterisation of an exoplanet
by the Very Large Telescope Interferometer (VLTI) instru-
ment GRAVITY (HR 8799 e, Gravity Collaboration 2019),
infrared interferometry has proven to be a powerful technique
for high-contrast imaging at high angular resolution. Although
initially designed for observations of the galactic centre (Bartko
et al. 2009), GRAVITY’s dual-feed mode combined with the
recently installed integrated optics beam combiner (Perraut et al.
2018) enable spectroscopy and micro-arcsecond astrometry of
exoplanets with a wide range of angular separations (Gravity
Collaboration 2019).

More recently, Gravity Collaboration (2020) have used
GRAVITY observations of β Pic b in order to derive reliable
estimates for the mass and the C/O ratio of the young giant
planet using forward modelling and free retrieval of its atmo-
sphere. In the future, infrared interferometry will be a promising
opportunity for studying giant planet formation (e.g. with Hi-5,
Defrère et al. 2018) and potentially even characterising terres-
trial exoplanets from space (e.g. with a formation-flying nulling
interferometer, Léger et al. 1996; Mennesson & Mariotti 1997;
Kammerer & Quanz 2018; Quanz et al. 2018, 2019). However,
significant improvements are required on the technical side (e.g.

? Based on observations made with ESO telescopes at Paranal Obser-
vatory under programme IDs 60.A-9801(U) and 0101.C-0907(B).

kernel nulling, Martinache & Ireland 2018), in addition to on the
data reduction side in order to achieve these ambitious goals.

Because they use the dual-feed mode of GRAVITY, the
aforementioned observations are not conducted anywhere close
to the diffraction limit of the interferometer, but rather the
diffraction limit of a single telescope. Detecting a compan-
ion within the interferometer’s diffraction limit (a few λ/bmax),
where λ is the observing wavelength and bmax is the longest
baseline of the interferometer, is limited by systematic errors.
While such systematic errors that are introduced by instrumen-
tal and atmospheric effects have been studied intensively (e.g.
imperfect fibre coupling, Kotani et al. 2003; instrument vibra-
tions, Le Bouquin et al. 2011; differential atmospheric piston;
Colavita 1999), correlations are also introduced by the data
reduction and the calibration. For instance, a systematic error
might be introduced similarly to all complex visibilities mea-
sured on the science target if the instrumental transfer func-
tion obtained from the calibrator target is affected by unknown
variability (Perrin 2003) and if the closure phases measured
over telescope triplets of closing triangles are not mathemat-
ically independent (Monnier 2007). Nevertheless, most data
reduction pipelines (e.g. the PIONIER data reduction pipeline,
Le Bouquin et al. 2011; the GRAVITY data reduction pipeline,
Lapeyrere et al. 2014) and model fitting routines (e.g. LITpro1,
1 https://www.jmmc.fr/english/tools/data-analysis/
litpro
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Tallon-Bosc et al. 2008; CANDID2, Gallenne et al. 2015)
assume statistically independent observables. However, in order
to robustly detect faint companions, or place upper limits on their
brightness, a solid understanding and description of the system-
atic errors is inevitable.

While Lachaume et al. (2019) proposed to use the
bootstrapping method (i.e. sampling with replacement, Efron
& Tibshirani 1986) in order to obtain the multivariate proba-
bility density function of the squared visibility amplitudes and
the closure phases, Gravity Collaboration (2020) extracted the
covariances of the complex visibilities directly from the data.
Although the bootstrapping method is computationally expen-
sive, it enables estimating the systematic errors not only between
the different spectral channels, baselines and triangles, but also
between different observations. This enables accounting for cor-
relations introduced by sky rotation or the calibration method,
but is only applicable at a higher level when the structure of the
observing sequence is known.

In this paper, we follow a similar approach to Gravity
Collaboration (2020) by extracting the correlations between
the squared visibility amplitudes and the closure phases directly
from the data. Then, we develop an empirical model for these
correlations which can be fitted to the correlations extracted from
single GRAVITY pipeline products, even if only a small number
of measurements is available. This enables the attainment of a
systematic error estimate for every GRAVITY data set and could
ultimately be included in the GRAVITY data reduction pipeline
(Lapeyrere et al. 2014).

2. Methods

In Sect. 2.1 we show how we extract the correlations from indi-
vidual GRAVITY pipeline products and describe their nature. In
Sect. 2.2 we introduce our empirical model for these correlations
and in Sect. 2.4 we present the model fitting routines with the aid
of which we show the improvements that come from using our
empirical correlation model. The Python code that we developed
in the scope of this paper is publicly available on GitHub3.

2.1. Correlations extracted from GRAVITY data

In order to extract the correlations between the different spec-
tral channels, baselines and triangles from GRAVITY data we
use the P2VM-reduced files from the GRAVITY data reduction
pipeline. These files are intermediate pipeline products which
contain the individual measurements (detector read-outs) before
they are averaged together. Having access to the individual mea-
surements enables extracting the correlations from the (complex)
coherent flux VISmbλ which is stored in the P2VM-reduced file
as a data cube of shape M × B × Λ, where m = 1 . . . M is the
number of individual measurements, b = 1 . . . B is the number
of baselines and λ = 1 . . .Λ is the number of spectral channels.
From the coherent flux, we compute the squared visibility ampli-
tudes

VIS2mbλ =
|VISmbλ|

2

F1F2mbλ
, (1)

where F1F2mbλ is the product of the total fluxes, and the closure
phases

T3mtλ = K · ∠VISmbλ, (2)

2 https://ascl.net/1505.030
3 https://github.com/kammerje/InterCorr

where t = 1 . . . T is the number of triangles, K is a stack of M
matrices k which encode how the four unique triangles can be
formed from the six unique baselines of the VLTI, that is

k =


1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1

 , (3)

and ∠ denotes the argument of a complex number (i.e. the phase).
Then, we compute the sample covariance of the squared vis-

ibility amplitudes and the closure phases according to

(ΣX)i j =
1

M − 1

M∑
m=1

(Xmi − X̄i)(Xm j − X̄ j), (4)

where X is VIS2/T3 and i and j run over 1 . . . BΛ/1 . . . TΛ so that
we obtain covariance matrices of shape (BΛ) × (BΛ)/(TΛ) ×
(TΛ) that contain the covariances between the different spectral
channels and baselines/triangles. X̄ denotes the mean of X over
the individual measurements, that is

X̄i =
1
M

M∑
m=1

Xmi. (5)

The correlations between the VIS2 and the T3 then follow by
dividing the covariances by the standard deviation σi =

√
Σii of

the corresponding observables, that is

(CX)i j =
(ΣX)i j

(σX)i(σX) j
. (6)

The diagonal of the covariance matrix Σ equals the square of the
standard deviation and that the diagonal of the correlation matrix
C equals one by definition.

For developing an empirical correlation model we use data
taken with GRAVITY (Gravity Collaboration 2017) at the Very
Large Telescope Interferometer (VLTI) during technical time
(programme 60.A-9801(U)). GRAVITY operates in the K-band
(2.0–2.4 µm) and combines the light from either the four Unit
Telescopes (UTs) or the four Auxiliary Telescopes (ATs) of the
VLTI in order to perform interferometric imaging and astrom-
etry by phase referencing4. The data used here was taken with
the four UTs on the object HD 82383 (ζ Ant B) in single-field
medium resolution (R = λ/∆λ ≈ 500) mode. This object is
relatively bright (K-band magnitude of 6.698, cf. SIMBAD5),
hence the short integration time of 0.85 ms for the fringe tracker
and 1 s for the science camera. It has a companion at an angu-
lar separation of ∼8 arcsec (cf. WDS6) which is well beyond
the interferometric field-of-view. By choosing a bright target
with a short exposure time we make sure that there is a suffi-
cient number of frames to compute the sample covariance (cf.
Eq. (4)). The short exposure time of the fringe tracker (much
less than the atmospheric coherence time t0, which is typically
∼20 ms in the K-band, Kellerer & Tokovinin 2007) and spa-
tially filtered nature of the GRAVITY beam combiner means
that the fringe tracker data is less affected by systematic errors
than many other beam combiners. We extract the correlations
from a single P2VM-reduced file (GRAVI.2019-03-29T02-01-
37.193_singlecalp2vmred.fits) in order to demonstrate the direct

4 https://www.eso.org/sci/facilities/paranal/
instruments/gravity.html
5 http://simbad.u-strasbg.fr/simbad/
6 http://www.astro.gsu.edu/wds/
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Fig. 1. Correlations of the VIS2 (left panel) and the T3 (right panel) for the GRAVITY fringe tracker, extracted from a single P2VM-reduced file.
The axes run over the different baselines/triangles, with each individual baseline/triangle comprising five spectral channels. Correlations within
the same baseline/triangle are highlighted with red squares and correlations between baselines having a telescope in common are highlighted with
orange squares. We note that the correlations are computed from 46 592 individual measurements. Below each panel, the variance of the data and
the names of the telescopes forming each baseline/triangle are shown.

applicability of our method to the GRAVITY data reduction
pipeline. Correlations extracted from other P2VM-reduced files
of the same program can be found in Fig. A.1.

Figure 1 shows the correlations of the VIS2 (left panel) and
the T3 (right panel) for the GRAVITY fringe tracker. There
are six different baselines and four different triangles with five
spectral channels each, so 30 observables for the VIS2 and 20
observables for the T3 in total. Correlations within the same
baseline/triangle are highlighted with red squares and correla-
tions between baselines having a telescope in common are high-
lighted with orange squares.

The most dominant correlations of the VIS2 are between dif-
ferent spectral channels within the same baseline, with neigh-
bouring spectral channels being affected most strongly. We
suspect that these correlations are predominantly of both atmo-
spheric or instrumental origin, since all five spectral channels
follow the same optical path through the atmosphere and up to
the dispersive element behind the beam combiner and before
the science camera. Also, the five spectral channels do not
correspond to individual pixels on the detector of the fringe
tracker. In fact, the wavelengths of the five spectral channels
lie somewhere between the wavelengths corresponding to the
pixels on the detector of the fringe tracker, so that the values
recorded by two neighbouring pixels on the detector need to
be interpolated in order to find the values for the five spectral
channels of the fringe tracker. This could explain the strong
correlations between neighbouring spectral channels (one pixel
above or below the diagonal) observed for the VIS2, but also for
the T3. Furthermore, there are significant correlations between
baselines having a telescope in common. Their strength is
roughly half the strength of the correlations within the same
baseline, which makes sense if the correlations are introduced by
atmospheric or instrumental effects and affect each of the four
individual beams of the interferometer separately. Also, base-
lines having no telescope in common are essentially uncorre-
lated. Hence, we conclude that most of the correlations of the
VIS2 are caused by atmospheric or instrumental effects.

For the T3, we observe similar correlations between neigh-
bouring spectral channels as for the VIS2. This makes sense
since the closure phases are built from a linear combination
(encoded in the matrix k) of the phase of the complex visibil-
ities, whose absolute square are the squared visibility ampli-
tudes. Moreover, there are significant correlations of ∼±1/3
between the same spectral channels on different triangles. These
are caused by the fact that each set of two different triangles has
exactly one of their three baselines in common, that is each col-
umn of the matrix k has exactly two non-zero entries. If the com-
mon baseline is shared between the different triangles in parallel
direction (i.e. the two entries in the corresponding column of the
matrix k have the same sign), the correlation is +1/3, otherwise
it is −1/3. This structure with the side-diagonals being ±1/3 can
also be explained by assuming uncorrelated visibility phases (i.e.
a diagonal correlation matrix

C∠VIS =


1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

 (7)

of shape B × Λ for the visibility phases) and performing a basis
transform

CT3 = T · C∠VIS · TT , (8)

where T represents a matrix of shape (TΛ) × (BΛ) which maps
the vector of visibility phases to the vector of closure phases and
can be trivially obtained from the matrix k. Also, the observed
correlations between neighbouring spectral channels on differ-
ent triangles (pixels next to the side-diagonals) are naturally
explained by this basis transform given the correlations of the
VIS2 observed between neighbouring spectral channels on the
same baseline.

Figure 2 shows the correlations of the VIS2 (left panel) and
the T3 (right panel) for the GRAVITY science camera. There
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Fig. 2. Same as Fig. 1, but for the GRAVITY science camera. Each individual baseline/triangle comprises 210 spectral channels. We note that the
correlations are computed from 32 individual measurements.

are six different baselines and four different triangles with 210
spectral channels each, so 1260 observables for the VIS2 and
840 observables for the T3 in total.

Due to the much smaller number of individual measurements
if compared to the fringe tracker the correlations of the science
camera are more dominated by noise. Nevertheless, we observe
strong positive correlations between different spectral channels
within the same baseline (i.e. inside the red squares) and signif-
icant positive correlations between baselines having a telescope
in common (i.e. inside the orange squares) for the VIS2, simi-
lar to the correlations observed for the fringe tracker. Although
the atmospheric turbulence and the optical elements (i.e. mir-
rors, delay lines, optical fibres, beam combiner) seen by the
science camera are similar to those seen by the fringe tracker,
the exposure time of the science camera is much longer than
both the atmospheric coherence time t0 and the fringe tracker
inverse 3 dB bandwidth (Lacour et al. 2019), which means that
the VIS2 correlations are expected to be decreased by a term pro-
portional to the square of the fringe tracking error and the clo-
sure phase random errors are expected to be proportional to the
cube of the fringe tracking error (Ireland 2013). Therefore, since
there still are significant correlations for the science camera, they
must be introduced by the (correlated) fringe tracker, forwarding
the correlations shown in Fig. 1 to the science camera. For the
T3, we again observe significant correlations of ∼±1/3 between
the same spectral channels on different triangles. On top of this,
there are also weak positive correlations between different spec-
tral channels on the same triangle (i.e. inside the red squares) and
between different spectral channels on different triangles whose
sign depends on whether the corresponding triangles share a
baseline in parallel or anti-parallel direction. Again, these cor-
relations are naturally explained by the basis transform T given
the correlations observed for the VIS2 of the science camera.

2.2. Empirical model for the correlations

An empirical VIS2/T3 sample covariance with fewer frames than
the product of the number of baselines/triangles and spectral

channels is necessarily singular. It takes a number of frames much
greater than this to estimate a sample covariance matrix with a
condition number approaching that of the true sample covariance.
For this reason, we choose to develop an analytic model for the
covariance matrix Σ of the VIS2 and the T3. This model can
then be fitted to the (potentially under-conditioned) covariance
extracted from an arbitrary GRAVITY data set and can be used for
model fitting based on log-likelihood maximisation. Most model
fitting routines (e.g. LITpro, Tallon-Bosc et al. 2008; CANDID,
Gallenne et al. 2015) are based on χ2 minimisation, which is
equivalent to log-likelihood maximisation, where

χ2 = RT · Σ−1 · R (9)

and R = D − M is the residual between data and model (cf.
Sect. 2.4).

Our approach is to model the correlation matrices CVIS2 of
the VIS2 and CT3 of the T3 which have the relatively simple
structure observed in Figs. 1 and 2. Moreover, the observed
structure of the correlations is consistent for different data sets
with different exposure times (1 s with the UTs for programme
60.A-9801(U) and 10 s with the ATs for programme 0101.C-
0907(B), cf. also Figs. A.1 and A.2). Then, we compute

Σi j = Ci jσiσ j, (10)

where σ denotes the standard deviation of the data which can
be obtained from the VIS2ERR and the T3PHIERR columns of
the OIFITS files for example. We note that these standard devi-
ations are used to build diagonal covariance matrices in LITpro
and CANDID which assume uncorrelated data only. Of course,
assuming uncorrelated data is a simplification and we discuss the
problems that arise from this in Sect. 3.2.

A very important point is that Eq. (10) only holds if the errors
on the VIS2 (σVIS2) and the T3 (σT3) are reliably estimated by
the GRAVITY data reduction pipeline. The pipeline manual7
explains that the uncertainties are computed by bootstrapping

7 http://www.eso.org/sci/software/pipelines/index.
html#pipelines_table

A110, page 4 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038563&pdf_id=2
http://www.eso.org/sci/software/pipelines/index.html#pipelines_table
http://www.eso.org/sci/software/pipelines/index.html#pipelines_table


J. Kammerer et al.: Increasing the achievable contrast of infrared interferometry with an error correlation model

over ∼10 independent samples, so that the final error on the
mean measurement is estimated from the observed statistics at
a slightly higher temporal frequency. There is no re-scaling or
accounting for systematics in this process. In case there are less
than five frames available, Monte-Carlo realisations of the theo-
retical photon and detector noise are added to the samples, which
leads to less realistic uncertainties. However, our data sets con-
sist of 32 frames exposures for programme 60.A-9801(U) and 20
frames exposures for programme 0101.C-0907(B), respectively.
While we understand that the use of the pipeline uncertainties
is a limitation and that an incorrect noise model can reduce the
detection sensitivity or yield false positives (cf. e.g. Sect. 3 of
Delisle et al. 2020), we also note that investigating and quantify-
ing the credibility of these uncertainties is beyond the scope of
this work.

Our models for the correlation matrices equal one on the
diagonal according to the definition of a correlation matrix (cf.
Eq. (6), that is every observable is 100% correlated with itself)
and have one free parameter which can be determined by fit-
ting the model to the correlations extracted from the P2VM-
reduced files. For the correlation matrix of the VIS2 CVIS2, the
free parameter x represents the correlations between spectral
channels within the same baseline and between baselines hav-
ing a telescope in common. There are correlations of x between
different spectral channels within the same baseline, correlations
of x/2 between baselines having a telescope in common, and no
correlations between baselines having no telescope in common
(cf. left panel of Fig. 2), that is

CVIS2 =



X1 X2 · · · · · · · · · X2 0

X2
. . .

. . . . .
.

. .
.

X2
...

. . .
. . . X2 0 . .

. ...
... X2

. . . X2
...

... . .
.

0 X2
. . .

. . .
...

X2 . .
.

. .
. . . .

. . . X2
0 X2 · · · · · · · · · X2 X1


, (11)

X1 =


1 x · · · x

x
. . .

. . .
...

...
. . .

. . . x
x · · · x 1

 , (12)

X2 =


x/2 · · · x/2
...

. . .
...

x/2 · · · x/2

 . (13)

The correlation matrix is a block matrix consisting of B × B
blocks, where each individual block is a Λ × Λ matrix. For the
correlation matrix of the T3 CT3, the free parameter y represents
the correlations between spectral channels within the same tri-
angle. Moreover, as illustrated by the basis transform T, this nat-
urally leads to correlations of ±1/3 between the same spectral
channel of different triangles and ±y/3 between different spec-
tral channels of different triangles (cf. right panel of Fig. 2), that
is

CT3 =


Y1 Y2 · · · Y2

Y2
. . .

. . .
...

...
. . .

. . . Y2
Y2 · · · Y2 Y1

 , (14)

Y1 =


1 y · · · y

y
. . .

. . .
...

...
. . .

. . . y
y · · · y 1

 , (15)

Y2 =


±1/3 ±y/3 · · · ±y/3

±y/3
. . .

. . .
...

...
. . .

. . . ±y/3
±y/3 · · · ±y/3 ±1/3

 . (16)

The correlation matrix is a block matrix consisting of T × T
blocks, where each individual block is a Λ×Λ matrix. The sign is
positive if the two triangles share a baseline in parallel direction
and negative if they share a baseline in anti-parallel direction.

We fit the previously described model to the correlations of
the VIS2 and the T3 which we extracted from the single P2VM-
redcued file of GRAVITY introduced in Sect. 2.1. Figure 3
shows the extracted and the model correlations (top panels) and
the extracted and the model covariances (bottom panels) for the
VIS2. The free parameter x takes a value of ∼3.2e−1. Figure 4
shows the same for the T3 and the free parameter y takes a value
of ∼7.4e−2.

2.3. Simulated and real data

In order to demonstrate the improvement that comes from taking
into account the correlations between the data we perform com-
panion injection and recovery tests with simulated and real data.
Therefore, we use GRAVITY data of ζ Ant B from the techni-
cal time programme 60.A-9801(U) and of HIP 78183 from the
normal programme 0101.C-0907(B), PI M. J. Ireland, listed in
Table 1. Both objects were observed in single-field medium res-
olution mode, but the former one with the four UTs and the latter
one with the four ATs (medium configuration D0-G2-J3-K0).

From the file GRAVI.2019-03-29T02-01-37.193_single-
calp2vmred.fits we have already extracted the covariances
and correlations and fitted our empirical models to them (cf.
Sect. 2.2). For the companion injection and recovery tests with
simulated data, we simply use these models and the uv-tracks u
and v of the files belonging to programme 60.A-9801(U) listed
in Table 1 in order to obtain a realistic uv-coverage over ∼20 min
(cf. Fig. 5). We simulate the complex visibility of a uniform disc
with an unresolved companion according to

VISbin =
VISud + f exp

(
−2πi

(
∆RAu
λ

+
∆Decv
λ

))
1 + f

, (17)

VISud =
2J1(πθb)
πθb

, (18)

where 0 ≤ f ≤ 1 is the relative flux of the companion, ∆RA and
∆Dec are the on-sky separation in the direction of the celestial
north and the celestial east between the companion and its host
star, λ is the observing wavelength, J1 is the first order Bessel
function of first kind, θ is the angular diameter of the uniform
disc and b =

√
u2 + v2 is the distance between the two telescopes

observing the object. The squared visibility amplitudes and the
closure phases follow according to

VIS2bin = |VISbin|
2, (19)

T3bin = k · ∠VISbin. (20)

Then, we add correlated noise to the VIS2bin and the T3bin by
drawing from a multivariate normal distribution with covariance
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Fig. 3. Correlations of the VIS2 for the GRAVITY science camera, extracted from a single P2VM-reduced file (upper left panel) and our one-
parameter model fitted to them (upper right panel). The bottom panels show the corresponding covariances obtained by multiplying the correlation
Ci j with the product of the standard deviations σiσ j. Correlations/covariances within the same baseline are highlighted with red squares and
correlations/covariances between baselines having a telescope in common are highlighted with orange squares.

ΣVIS2,fit and ΣT3,fit, which we obtain from our correlation model
CVIS2,fit and CT3,fit (cf. Sect. 2.2) and assuming a standard devia-
tion of σVIS2 = 0.01 and σT3 = 1 deg.

For the companion injection and recovery tests with real
data, we extract the correlations of the visibility amplitudes
VISAMP (instead of the squared visibility amplitudes VIS2) and
the closure phases T3 from the P2VM-reduced files belonging
to programme 0101.C-0907(B) listed in Table 1, fit our empiri-
cal models to them and compute the covariances using Eq. (10)
and the errors from the corresponding final GRAVITY pipeline
products (the “singlesciviscalibrated” files). Using the VISAMP
instead of the VIS2 can yield better results in some cases where
the normalisation of the VIS2 is not done properly by the GRAV-
ITY data reduction pipeline. From the final GRAVITY pipeline
products, we also extract the VISAMP and the T3 and inject an
unresolved companion according to

VISAMPinj = VISAMP · |VISbin|, (21)
T3inj = T3 + k · ∠VISbin, (22)

where we set VISud to one. The VISAMP are simply the square
root of the VIS2, so that our correlation model and fitting rou-
tines can be equivalently applied in the high signal-to-noise
regime.

2.4. Model fitting

We search for faint companions in the data by fitting the model
for a uniform disc with an unresolved companion (cf. Eq. (17)) to
it. We maximise the log-likelihood of the model by minimising
its χ2 in order to find the best fit parameters pfit of the model,
that is

pfit = argminp(χ2) = argminp(RT · Σ−1 · R), (23)

where R = D − M is the residual between data and model and
p = ( f ,∆RA,∆Dec, θ) is the four-dimensional parameter vector of
the model.

In order to find the global minimum of the χ2 within a given
range of companion separations, we first find a prior for the uni-
form disc diameter θ0 by fitting the corresponding model (cf.
Eq. (18)) to the data. Then, we perform a set of minimisations
with priors on a ∆RA − ∆Dec grid, the uniform disc diameter θ0,
and a small relative flux f0 = 1e−3. This is necessary since
the χ2 hyper-surface is bumpy (i.e. has many local extrema)
if projected onto the ∆RA − ∆Dec surface and the BFGS algo-
rithm which is used to minimise the χ2 converges on local min-
ima. The bumpiness is a result of the sparse uv-coverage of a
long-baseline optical interferometer which causes the sensitivity
to vary substantially over the FOV.
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Fig. 4. Same as Fig. 3, but showing the correlations/covariances of the T3 and our one-parameter model fitted to them for the GRAVITY science
camera.

Table 1. GRAVITY data used for the companion injection and recovery tests.

Programme Filename OB date OB time (UT)

60.A-9801(U) GRAVI.2019-03-29T01-42-55.145_singlecalvis.fits 2019-03-29 01:42:53
GRAVI.2019-03-29T01-51-13.167_singlecalvis.fits 2019-03-29 01:51:09
GRAVI.2019-03-29T02-01-37.193_singlecalvis.fits 2019-03-29 02:01:35

0101.C-0907(B) GRAVI.2018-04-18T08-08-19.739_singlescip2vmred.fits 2018-04-18 08:08:16
GRAVI.2018-04-18T08-12-10.749_singlescip2vmred.fits 2018-04-18 08:12:08
GRAVI.2018-04-18T08-20-04.769_singlescip2vmred.fits 2018-04-18 08:20:02

The above method relies on the covariance matrix Σ being
invertible. This is not the case for a sample covariance that is
estimated from a small number of frames, which is usually sin-
gular, and is the reason why we develop an empirical covari-
ance model. However, our empirical model for the covariances
of the closure phases is also singular, since the fourth trian-
gle can be written as a linear combination of the other three.
There are multiple solutions to this problem, and for simplicity
we decide to completely ignore the data recorded on the fourth
triangle since it theoretically is redundant anyway8. There are
more sophisticated methods to keep the data recorded on the

8 In practice, this is not the case since the data is affected by different
errors originating from different optical paths through the instrument
and different detector noise.

fourth triangle, such as the “jackknife” method (i.e. averaging
over four model fits using data recorded on different sets of three
triangles), projection into a sub-space that preserves the infor-
mation in the covariance matrix (Blackburn et al. 2020), and the
approach from Kulkarni (1989) which is adding a small numeri-
cal value ε � 1 to the diagonal of the covariances of the closure
phases, that is

ΣT3,invertible = ΣT3,fit + ε · id, (24)

where id is the identity matrix, so that the covariance matrix
becomes numerically invertible.

Finally, in order to determine the statistical significance of a
detected companion, we compute the probability that the binary
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Fig. 5. Fourier u- and v-baselines of our simulated data extracted
from three on-sky observations of GRAVITY using the four UTs over
∼20 min.

model is preferred over the uniform disc model according to

P = 1 − CDFNd.o.f

Nd.o.fχ
2
red,ud

χ2
red,bin

 , (25)

where CDFNd.o.f is the χ2 cumulative distribution function with
Nd.o.f degrees of freedom, χ2

red,ud is the reduced χ2 of the best fit
uniform disc model and χ2

red,bin is the reduced χ2 of the best fit
binary model (cf. Gallenne et al. 2015).

If the host star is essentially unresolved (i.e. θbλ � 1) and
the companion is at high contrast (i.e. f � 1) one can linearise
the VIS2bin and the T3bin as a function of the relative flux of the
companion f according to

VIS2bin ∝ 1 + f , (26)
T3bin ∝ f . (27)

A more detailed derivation of this relationship can be found in
Appendix B. Let D be the data, Mref a reference binary model
which is normalised to the relative flux of the companion fref ,
and Σ the covariances between the data, that is

D =

(
VIS2 − 1

T3

)
, (28)

Mref =

(
(VIS2bin,ref − 1)/ fref

T3bin,ref/ fref

)
, (29)

Σ =

(
ΣVIS2 0

0 ΣT3

)
, (30)

where VIS2bin,ref and T3bin,ref are the binary model VIS2 and T3
evaluated at a reference relative flux fref = 1e−3. Then, the best
fit relative flux ffit and its uncertainty σ ffit follow according to

ffit =
MT

ref · Σ
−1 · D

MT
ref · Σ

−1 · Mref
, (31)

σ ffit =
1√

MT
ref · Σ

−1 · Mref

, (32)

(cf. Le Bouquin & Absil 2012; Kammerer et al. 2019). Equa-
tion (31) can be computed on a ∆RA − ∆Dec grid, and the best fit
parameters pfit follow from the grid position which minimises

χ2
red =

χ2

Nd.o.f
=

RT · Σ−1 · R
Nd.o.f

, (33)

where Nd.o.f is the number of the degrees of freedom. This grid
search technique is commonly used in order to find the global
minimum of the ( f ,∆RA,∆Dec, θ) parameter space and its cor-
responding χ2

red (e.g. Absil et al. 2011; Gallenne et al. 2015).
However, the statistical structure of the grid is complex due to
redundancy and periodicity in sensitivity originating from the
very limited uv-coverage of a sparse interferometer such as the
VLTI (cf. Fig. 5). Therefore, the detection significance is derived
using Eq. (25) which yields the probability that the binary model
is preferred over the uniform disc model (without any compan-
ion).

3. Results

We evaluate the impact of our full covariance model by perform-
ing model fitting and companion injection and recovery tests
with both simulated and real GRAVITY data. In Sect. 3.1, we
simulate data without any astronomical object, that is correlated
noise only, and use model fitting to determine the fundamental
detection limits when assuming uncorrelated data (i.e. a diagonal
covariance) and correlated data (i.e. our full covariance model).
In Sects. 3.2 and 3.3 we inject companions with different rel-
ative fluxes and separations into simulated and real GRAVITY
data and try to recover them, again assuming both uncorrelated
and correlated data.

3.1. Model fitting to correlated noise

In order to compare the fundamental detection limits when
assuming uncorrelated and correlated data, we simulate 100
GRAVITY data sets of an unresolved host star without any com-
panion (i.e. θ = f = 0 in Eq. (17)) affected by realistic correlated
noise (ΣVIS2,fit and ΣT3,fit, cf. Sect. 2.3). Then, we use Eq. (31) in
order to compute the best fit relative flux ffit on a ∆RA − ∆Dec
grid for each of the 100 simulated data sets, first assuming
uncorrelated data (i.e. a diagonal covariance diag(ΣVIS2,fit) and
diag(ΣT3,fit)) and then assuming correlated data (i.e. our full
covariance model) in Eq. (31). Since no companion was injected
into the data, the best fit flux ratios of these grids represent the
fundamental contrast floor. Any companion with a higher con-
trast (i.e. smaller flux) would not be distinguishable from the
noise. By computing an azimuthal average of these grids, we
obtain a fundamental 1−σ contrast curve (i.e. best fit relative
flux vs. angular separation curve).

The mean of the 100 azimuthal averages obtained for each of
these two scenarios (model fitting assuming uncorrelated data in
blue and correlated data in orange) is shown in the left panel of
Fig. 6. The contrast floor remains roughly constant at a contrast
of ∼6e−4 outward of an angular separation of ∼5 mas for the
scenario assuming uncorrelated data. This is because at a con-
trast of ∼6e−4 one is dominated by the systematic (i.e. the cor-
related) errors. However, for the scenario assuming correlated
data, the fundamental 1−σ detection limit continues to decrease
with increasing angular separation. At an angular separation of
∼10 mas it is already a factor of four better than the limit assum-
ing uncorrelated data (cf. dashed black curve). We note that
such a behaviour has already been observed by Ireland (2013)
for orthogonal kernel phases and statistically independent ker-
nel phases, which are obtained by projecting the orthogonal ker-
nel phases into an eigenspace with zero covariances. Its reason
is that at small angular separations, the detection limits rely on
the average of the VIS2 and the T3 over the spectral channels,
while with increasing angular separations the VIS2 and T3 vary
within the spectral bands and the impact of the correlations is
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Fig. 6. Left panel: contrast curve (i.e. azimuthal average of the best fit relative flux) for simulated data of an unresolved host star without any
companion affected by correlated errors, computed with model fitting assuming uncorrelated data (blue curve) and correlated data (orange curve).
Both curves show the mean contrast curve over 100 simulated data sets and the shaded region highlights its standard deviation. The dashed
black line shows the ratio of the blue and the orange curve, representing the improvement (i.e. the factor by which the detection limits improve)
when using our correlated error model instead of the classical uncorrelated one. Right panel: same, but for the real GRAVITY data introduced in
Sect. 2.3.

growing. A flat uncorrelated contrast curve (as a function of
angular separation) is further consistent with previous works
on interferometric observables assuming uncorrelated data (e.g.
Absil et al. 2011; Gallenne et al. 2015).

Furthermore, when using our full covariance model, the con-
trast floor is also more stable for different representations of
the noise (highlighted by the shaded regions in the left panel of
Fig. 6 which show the standard deviation of the contrast curves
over the 100 simulated data sets) meaning that the derived detec-
tion limits can be regarded more robust (i.e. independent of the
exact representation of the noise which is a random component).
Hence, if an observer is only working with a small number of
data sets, they will still be able to derive universally valid detec-
tion limits.

The right panel of Fig. 6 shows the same plot, but for model
fitting to the real GRAVITY data consisting of the three files
belonging to programme 0101.C-0907(B) listed in Table 1. Since
there is only one real GRAVITY data set we cannot compute
or show any standard deviation. The plot looks similar, except
for the fundamental detection limits being about two orders of
magnitude worse and the ratio between the two scenarios being
a lot smaller due to much weaker correlations being present in
the real data if compared to the simulated data (cf. Fig. A.1).

3.2. Injection and recovery tests (simulated data)

As a next step, we perform companion injection and recovery
tests with simulated data, in order to compare the empirical
detection limits when assuming uncorrelated and correlated data.
Therefore, we simulate GRAVITY data sets (affected by corre-
lated noise) of a 1 mas uniform disc (the host star) and inject
companions with a range of relative fluxes and at different posi-
tions around the host star, that is

f ∈ [10−4, 10−3.75, 10−3.5, . . . , 10−1.5], (34)
∆RA ∈ [−30,−25,−20, . . . , 30] mas, (35)
∆Dec ∈ [−30,−25,−20, . . . , 30] mas, (36)

using Eq. (17). Then, we perform model fitting with priors on a
∆RA − ∆Dec grid in order to find the global minimum of the χ2

(cf. Eq. (23)). We note that this method is similar to how CAN-
DID searches for companions for example. Similar to before

(cf. Sect. 3.1), we perform the model fitting once assuming
uncorrelated data (i.e. a diagonal covariance diag(ΣVIS2,fit) and
diag(ΣT3,fit)) and once assuming correlated data (i.e. our full
covariance model). We classify an injected companion as recov-
ered if the best fit relative flux ffit differs by no more than 10%
from the injected one finj and the best fit position (∆RA,fit,∆Dec,fit)
differs by no more than one resolution element of the interferom-
eter from the injected one (∆RA,inj,∆Dec,inj), that is

| ffit − finj|/ finj < 0.1, (37)√
(∆RA,fit − ∆RA,inj)2 + (∆Dec,fit − ∆Dec,inj)2 <

λmean

2bmax
, (38)

where λmean is the mean of the observed wavelength range
(∼2.2 µm for GRAVITY) and bmax is the longest baseline of the
interferometer (∼130 m for observations with the VLTI UTs).

The left panel of Fig. 7 shows the fraction of recovered com-
panions as a function of the relative flux of the companion for
model fitting assuming uncorrelated data (blue points) and cor-
related data (orange points). These values are summed over all
positions around the host star with 5 mas ≤ ρ ≤ 45 mas, where
ρ =

√
∆2

RA,inj + ∆2
Dec,inj is the angular separation, so to avoid any

significant influence from the 1 mas uniform disc (the host star).
Although one of the findings in this paper is that the contrast
curve is not flat outward a few λ/bmax when accounting for the
data correlations (cf. Fig. 6), it is still a reasonable simplification
to sum over positions with different angular separations.

The overplotted blue and orange curves are logistic growth
functions

g(x) =
L

1 + e−k(x−x0) , (39)

fitted to the data points (in log-space), where L = 1 is the upper
growth barrier, k is the logistic growth rate and x0 is the mid-
point. The fact that the orange curve is shifted towards the left
compared to the blue curve means that the detection limits are
fainter when assuming correlated data instead of uncorrelated
data. This could be expected since the data is affected by cor-
related noise and correctly accounting for these correlations in
the model fitting should lead to fainter detection limits. For any
given fraction of detections (i.e. any point on the y-axis), the ratio
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Fig. 7. Left panel: fraction of correctly recovered companions as a function of the relative flux of the injected companion from injection and
recovery tests with simulated GRAVITY data (cf. Sect. 3.2), assuming uncorrelated data (blue points) and correlated data (orange points) for the
model fitting. The blue and the orange curves are logistic growth functions fitted to the data points. Right panel: same, but from injection and
recovery tests with real GRAVITY data (cf. Sect. 3.3).

of the contrasts (i.e. the x-values) of the blue and the orange
curve gives the improvement that comes from our full covari-
ance model over the conventional diagonal covariance model.
This ratio varies between ∼3 and ∼4, depending on the fraction
of detections, with an average value of ∼3.5. This means that
the detection limits improve by a factor of ∼3.5 when assuming
correlated data instead of uncorrelated data.

In order to check the validity of our detection criterion (cf.
Eq. (25)) we count the number of companions in different cate-
gories, which we represent in a confusion matrix

ζ =

(
# of true positives # of false negatives
# of false positives # of true negatives

)
, (40)

where positive/negative refers to a detection being classified
as significant/insignificant according to our detection criterion.
Hence, in an ideal world, there would only be true positives or
true negatives and ζ would be a diagonal matrix. Obviously, this
is not the case in the real world where the data is affected by
noise. If we choose an optimistic detection criterion (e.g. the sig-
nificance needs to be above 1−σ) there will be many false pos-
itives (i.e. many detections that are classified as significant, but
which are no true companions) and if we choose a pessimistic
detection criterion (e.g. the significance needs to be above 5−σ)
there will be many false negatives (i.e. many detections that are
classified as insignificant, but which are true companions).

The confusion matrices from our companion injection and
recovery tests for a 3−σ detection criterion are

ζdiag =

(
674 3
517 654

)
, (41)

ζfull =

(
826 213
12 797

)
, (42)

for assuming uncorrelated data (ζdiag) and correlated data (ζfull).
In the former case, there is a large fraction of false detections
being classified as significant (517/1171 ≈ 44%), whereas in
the latter case this fraction (12/809 ≈ 1%) is roughly consistent
with a 3−σ result. The number of true detections is higher when
assuming correlated data (1039 = 826 + 213) than when assum-
ing uncorrelated data (677 = 674 + 3) because the detection lim-
its are fainter, and although the number of false negatives (i.e.
true companions being classified as insignificant) is a lot higher,
the number of true positives is still higher when assuming cor-
related data. In summary, when using our full covariance model

there are less detections above 3−σ significance than when using
the conventional diagonal covariance model (838 = 826 + 12 vs.
1191 = 674 + 517), but the number of true positives (i.e. true
companions being classified as significant) is still higher and sig-
nificant detections are much more reliable since there are almost
no false positives. Accounting for the correlations is therefore
clearly preferred over ignoring them.

Before proceeding to the injection and recovery tests with
real data we also assess the robustness of our correlation model
with respect to errors in the model parameters x and y. There-
fore, we repeat the injection and recovery tests with wrong cor-
relation and covariance matrices where x and y are only 50%
and 25% of their true values respectively. We find that the num-
ber of false positives or false negatives increases slightly, but
not significantly. This was expected since the detection of asym-
metric structure (such as a companion) is governed by the T3
whose correlations are dominated by the correlations of ±1/3
originating from shared baselines among different triangles. For
scenarios where the VIS2 have a larger impact on the model (e.g.
measuring stellar diameters) we expect that errors in the model
parameters, especially x, have a more significant impact.

3.3. Injection and recovery tests (real data)

In the previous section it is obvious that our full covariance
model would outperform the conventional diagonal covariance
model, since we simulated data affected by correlated noise.
Therefore, the crucial next step is to validate our methods with
real GRAVITY data sets. For this purpose, we extract the cor-
relations of the VISAMP and the T3 from the files belonging
to programme 0101.C-0907(B) listed in Table 1, fit our empiri-
cal models to them and use the VISAMP and the T3 data from
the corresponding final GRAVITY pipeline products as noise
model.

Since the real data is affected by bright speckles arising from
an imperfect calibration, for which our correlation model does
not account, we subtract the theoretical VISAMP and T3 of the
best fit companion from the data before performing the injec-
tion and recovery tests. This also helps us to enter the medium-
contrast regime ( ffit / 10%) where the linearisation of the binary
model (see Appendix B) holds. The parameters of the subtracted
best fit companion are

psub = ( f ,∆RA,∆Dec, θ) = (0.0383, 0.20,−5.46, 0), (43)
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and the corresponding detection map is shown in Fig. C.1. The
parameters were obtained assuming correlated errors. An exten-
sion of our correlation model to inter-observation correlations,
for instance arising from the calibration process, is left for future
work.

Then, we compute the covariances from the correlations,
the VISAMPERR, and the T3ERR from the final GRAVITY
pipeline products using Eq. (10) and inject companions with

f ∈ [10−3, 10−2.75, 10−2.5, . . . , 10−0.5], (44)
∆RA ∈ [−30,−25,−20, . . . , 30] mas, (45)
∆Dec ∈ [−30,−25,−20, . . . , 30] mas, (46)

using Eqs. (21) and (22). In order to obtain empirical detection
limits when assuming uncorrelated and correlated data, we then
repeat the model fitting described in the previous Section.

The fraction of correctly recovered companions as a function
of the relative flux of the companion for both scenarios (uncor-
related noise: blue points and correlated noise: orange points) is
shown in the right panel of Fig. 7, again overplotted with logistic
growth functions fitted to the data points (cf. Sect. 3.2). The plot
looks similar to the one from the injection and recovery tests
with simulated data and confirms the applicability of our full
covariance model to real GRAVITY data. Of course, the empir-
ical detection limits are about one to two orders of magnitude
worse and the improvement that comes from our full covariance
model (i.e. the lateral shift of the orange curve with respect to
the blue curve) is only a factor of ∼2 (consistent with the right
panel of Fig. 6 which also shows an improvement by a factor of
∼2) due to weaker correlations being present in the data used for
the injection and recovery tests with real data. In summary, our
full covariance model still brings a singificant improvement over
the convential diagonal covariance model.

4. Conclusions

Correlated noise is placing fundamental detection limits on inter-
ferometric data. From on-sky VLTI/GRAVITY data, we extract
and illustrate the correlations present in the data and develop
an empirical model in order to describe them. This empirical
model is sufficiently simple for it to be fitted to the correla-
tions extracted from a single GRAVITY data product and could
therefore be directly integrated into the GRAVITY data reduc-
tion pipeline and made available to the community as part of the
OIFITS 2 file (which has a well-defined standard for providing
covariance matrices Duvert et al. 2017).

Then, we evaluate the impact of our full covariance model
by performing model fitting and companion injection and recov-
ery tests with both simulated and real GRAVITY data. Our
methods are based on χ2 = RT · Σ−1 · R minimisation, where
we compare the scenarios assuming uncorrelated data (i.e. a
diagonal covariance matrix diag(Σ)) and correlated data (i.e.
a full covariance matrix Σ following from our empirical cor-
relation model). We show that accounting for the correlations
that we find to be present in GRAVITY data could yield to an
improvement in the detection limits by a factor of up to ∼3.5
over ignoring them. Moreover, the obtained detection limits (and
therefore also potential detections) can be regarded more robust
in the former case. We also highlight the problems which arise
from ignoring the correlations, as it is done in model fitting
pipelines such as LITpro (Tallon-Bosc et al. 2008) and CANDID
(Gallenne et al. 2015) so far, and discuss that conventional detec-
tion criteria based on χ2 statistics are strongly biased towards
false positives (i.e. detections that are no true companions).

The empirical correlation model presented in this paper is a
simple one-parameter model derived from GRAVITY data, but
is arguably also applicable (with small modifications) to other
instruments such as VLTI/PIONIER for example. It only treats
the correlations between the different observables, but not yet
between different frames or targets (such as the science and the
calibrator target). We choose this approach in order to enable a
simple implementation into existing data reduction and model
fitting pipelines. Especially with the increasing availability of
computing power, the use of full covariance matrices for describ-
ing the correlated noise in interferometric data should become a
standard. Collaborations around future instruments should pro-
vide estimated data covariances as part of the official data reduc-
tion pipelines.

In the future, we aim to compare our empirical correlation
model with the data covariances derived from bootstrapping (e.g.
Lachaume et al. 2019) and extend our model in order to account
for correlations between different frames and targets. Finally,
we will re-analyse several marginal detections of companions
around Cepheid stars from Gallenne et al. (2013, 2014, 2015) by
properly accounting for the correlated noise.
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Appendix A: Collection of correlations

Fig. A.1. Same as Fig. 2, but extracted from three other P2VM-reduced files from programme 60.A-9801(U). From top to
bottom: GRAVI.2019-03-29T01-46-28.155_singlecalp2vmred.fits, GRAVI.2019-03-29T01-57-13.182_singlecalp2vmred.fits, GRAVI.2019-03-
29T01-59-31.188_singlecalp2vmred.fits.
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Fig. A.2. Same as Fig. 2, but showing the correlations of the VISAMP instead of the VIS2, extracted from the three P2VM-
reduced files used for the injection and recovery tests with real data in Sect. 3.3 (programme 0101.C-0907(B)). From top to bottom:
GRAVI.2018-04-18T08-08-19.739_singlescip2vmred.fits, GRAVI.2018-04-18T08-12-10.749_singlescip2vmred.fits, GRAVI.2018-04-18T08-20-
04.769_singlescip2vmred.fits.
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Appendix B: Linearised model

If the host star is essentially unresolved (i.e. θbλ � 1) and the
companion is at high contrast (i.e. f � 1) one can linearise the
VIS2bin and the T3bin as a function of the relative flux of the
companion.

Consider the complex visibility of the binary model VISbin
in the case where θ → 0 ⇔ VISud → 1 and f � 1, then the
VIS2 of this model is

|VISbin|
2 ≈

1
(1 + f )2

[
(1 + f cos(x))2 + f 2 sin2(x)

]
(B.1)

=
1

(1 + f )2

[
1 + 2 f cos(x) + f 2

]
(B.2)

=
(
1 − 2 f + O( f 2)

) [
1 + 2 f cos(x) + f 2

]
(B.3)

= 1 + 2 f cos(x) − 2 f + f 2 − 4 f 2 cos(x) + O( f 3) (B.4)

= 1 + f (2 cos(x) − 2) + O( f 2) (B.5)

and the phase (or argument) of this model (and therefore any
linear combination of phases such as the T3) is

∠VISbin = arctan
ImVISbin

ReVISbin
(B.6)

≈
ImVISbin

ReVISbin
(B.7)

=
− f sin(x)

1 + f cos(x)
(B.8)

≈ f
− sin(x)

1
(B.9)

for x = −2πi(∆RAu/λ + ∆Decv/λ). Hence, in the high-contrast
regime, one has VIS2bin ∝ 1 + f and T3bin ∝ f .

Appendix C: Detection map for real data
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Fig. C.1. Detection map for the GRAVITY data used for the injection
and recovery tests in Sect. 3.3. The host star is located in the centre
of the map and the cyan circle highlights the position of the best fit
companion. Its parameters and reduced chi-squared are shown at the
top and the bottom of the map. North is up and east is left.
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