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Abstract 

This paper presents a novel three-degree-of-freedom (3-DOF) translational parallel manipulator (TPM) by using a topological 

design method of parallel mechanism (PM) based on position and orientation characteristic (POC) equations. The proposed 

PM is only composed of lower-mobility joints and actuated prismatic joints, together with the investigations on three 

kinematic issues of importance. The first aspect pertains to geometric modeling of the TPM in connection with its topological 

characteristics, such as the POC, degree of freedom and coupling degree, from which its symbolic direct kinematic solutions 

are readily obtained. Moreover, the decoupled properties of input-output motions are directly evaluated without Jacobian 

analysis. Sequentially, based upon the inverse kinematics, the singular configurations of the TPM are identified, wherein the 

singular surfaces are visualized by means of a Gröbner based elimination operation. Finally, the workspace of the TPM is 

evaluated with a geometric approach. This 3-DOF TPM features less joints and links compared with the well-known Delta 

robot, which reduces the structural complexity. Its symbolic direct kinematics and partially-decoupled property will ease path 

planning and dynamic analysis. The TPM can be used for manufacturing large work pieces. 

Keywords: Topological Design, Symbolic Kinematics, Parallel manipulator, Singularity, Workspace analysis. 

Introduction 

The 3-DOF translational parallel mechanism (TPM) has significant potential in many industrial applications. It can be 

classified by actuating modes, i.e., linearly actuated by prismatic joints and rotary actuated by revolute joints. A well-known 

design of 3-DOF TPM is the Delta Robot, which was proposed by Clavel [1]. The Delta-based TPMs have been developed 

with alternative prismatic actuated joints [2-3] later. Design optimization of TPMs based on the Jacobian matrices have been 

carried out [Erreur ! Source du renvoi introuvable.-6] for structural design. Tsai et al. [7] proposed a 3-DOF 3-UPU1 TPM 

with three identical limbs consisting of universal-prismatic-universal joints in serial. Li et al. [8-9] proposed a new 3-DOF 3-

UPU TPM and analyzed its instantaneous motion performance. In [10, 11], the authors proposed a 3-RRC TPM and 

investigated the kinematics and workspace. Kong et al. [Erreur ! Source du renvoi introuvable.] proposed a 3-CRR 

mechanism with good motion performance, free of singular postures. Yu et al. [Erreur ! Source du renvoi introuvable.] 

carried out a comprehensive analysis of the three-dimensional TPM configurations based on the screw theory. Lu et al. 

[Erreur ! Source du renvoi introuvable.] proposed a 3-RRRP (4R) three-translation PM and analyzed the kinematics and 

workspace. Yang et al. [Erreur ! Source du renvoi introuvable.] studied 3T0R PMs based on the single opened chains 

(SOC) units, wherein a variety of new TPMs were synthesized and then classified [16]. Chablat et al. [17] proposed a 

Cartesian TPM, i.e., Orthoglide, driven by prismatic joints. After that, Pashkevish et al. [18] performed the kinematics and 

workspace analysis of this mechanism. Zeng et al. [19-21] designed a prismatic joints-actuated three-translational Tri-

pyramid PM, and designed a varieties linearly actuated variants, with their kinematic analysis. Prause et al. [22] compared the 

                                                           
1 Throughout this paper, P, R, U and C stand for prismatic, revolute, universal and cylindrical joints, respectively.  
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characteristics of a family of linearly driven 3-DOF TPMs with respect to dimensional synthesis, boundary conditions, and 

workspace, for the selection of mechanisms with better performances. Jha et al. [23] analyzed the singularity and workspace 

of four Delta-like 3-DOF TPMs. Shen et al.[24] studied a 3-DOF translational PM with partial motion decoupling and 

analytic direct kinematics, and analyzed its conditions of the singular configurations. 

Most of the previously reported TPMs have the fully symmetrical topological architectures, leads to the highly 

nonlinear kinematic models due to the coupled input-output motion, introducing the difficulties in the motion control and 

trajectory planning. On the other hand, the asymmetric architecture can ensure advantages of motion decoupling for 

mechanisms. Moreover, the parallelogram (Pa, a.k.a, Π joint) structure is an important linkage to lay out TPMs, while, this 

introduces the structural complexity due to the presence of the closed sub-loop. Thus, the fewer use of parallelogram can ease 

the structural complexity in turn. Taking into consideration the two previous aspects, the design of TPMs with decoupled 

motion and lower complexity will be the focus of this paper. Using a topological design method of parallel mechanism (PM) 

based on position and orientation characteristic (POC) equations, this paper presents a novel three-degree-of-freedom (3-

DOF) TPM. The TPM can be used for manufacturing large work pieces when the actuated joints move along a long-distance 

guide rail. 

The remaining of the paper is organized as follows. In Section 1, the kinematic structure of a novel TPM is proposed 

referring to the topology design theory of PM based on position and orientation characteristics (POC) equations [25, 26]. This 

3-DOF TPM includes fewer joints and links compared with Delta robot. Section 2 deals with an effective kinematic modeling 

of the TPM based on its topological characteristics, in context of POC, degree of freedom and coupling degree, from which 

its symbolic direct kinematic solutions are readily obtained, together with the evaluation of decoupled properties of the input-

output motion without Jacobin analysis. In Section 3, with aid of the inverse kinematic solutions, the singular configurations 

of the parallel manipulator are identified, wherein the corresponding singular surfaces are graphically presented by using a 

Gröbner based elimination operation in Maple software. Section 4 presents the evaluation on the workspace of the proposed 

parallel manipulator by means of the 3D visualization. Finally, conclusions are drawn in the last part.   . 

1. Topological design  

Figure 1 depicts the proposed 3-DOF TPM, of which the base platform 0 is connected to the moving platform 1 by two 

hybrid chains that contain closed loop(s) and joints in serial. The structural and geometric constraints of the two hybrid 

chains (HC) of the TPM are given in such a way below. 

                   

(a) . Kinematic chain                             (b). Actual 3D CAD modelling 

Figure 1. The proposed 3-DOF TPM 

 

1) For the hybrid chain guided by linear rail (I), the six-bar planar mechanism loop (i.e., P11R12R13R23R22P21, denoted as 

2P4R planar mechanism) with the motions confined in a plane that is perpendicular to another plane in which the motions of 
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4R parallelogram mechanism① (i.e., Ra1Rb1Rc1Rd1, shortly written as ◊(a1b1c1d1), and denoted as Pa①) exist. These two 

linkages are arranged in serial to connect the moving platform 1 at point O’ to form the hybrid chain A (HCA). It is noted that 

the axes of the revolute joints R12, R13,R23,R22 and Ra1, Rb1, Rc1, Rd1 are all parallel to the X-axis. Two P-joints P11 and P21 

of the six-bar planar mechanism are seen as the actuated joints. 

2) For the hybrid chain moving along linear guide rail (II), the actuated P-joint P31 rigidly connects to R-joint R32 and a 4R 

parallelogram mechanism②(i.e., Ra2Rb2Rc2Rd2, shortly written as ◊(a2b2c2d2), and denoted as Pa②) in serial, of which the 

link end in the Pa② is connected to the moving platform 1 at point T by revolution joint R33 to form the hybrid chain B (HCB).  

3) The linear guide rails (I) and (II) are parallel. When the TPM moves, link 6 is the output element of the six-bar planar 

mechanism with two translations that will be proved in a plane normal to the base platform plane.  

This novel TPM can have three advantages below. 

① The numbers of total joints and components of the proposed mechanism equal to 17 and 16, respectively, while for 

Delta robot, the corresponding numbers are equal to 21 and 17. Therefore, compared with the well-known Delta robot, 

the proposed TPM has is simpler structure for rapid prototyping. 

② The guide rails to support the actuated P-joints can have finite lengths according to actual needs, which ensures 

larger workspace than Delta robot, to extend its industrial applications.  

③ The TPM has symbolic solutions to the direct and inverse kinematic problems and partially decoupled motion that is 

verified in the following sections. The symbolic direct position solution is beneficial for error analysis, workspace 

analysis, and velocity/acceleration and dynamics analysis. Moreover, partial motion decoupling is helpful to trajectory 

planning and mechanism control. Regarding these two issues, the proposed TPM outperforms in operation compared to 

Delta robot. 

 

2. Kinematics modelling method based on topological characteristics 

In this section, an effective kinematic modeling method of TPM based on its topological characteristics, with respect to 

the POC, DOF and coupling degree, is proposed, from which the symbolic direct kinematic solutions are easily obtained, and 

the decoupled properties of input-output motion are also directly evaluated without Jacobian calculation and analysis. 

2.1 The kinematics modeling method based on topological characteristics 

The basic problem-solving idea of the kinematics modeling method based on topological characteristics is depicted as 

follows. Firstly, according to the mechanism topological decomposition method, a PM can be decomposed into several sub-

kinematic chains(SKC) with a coupling degree of ki. Meantime, the PM can be grouped into two categories, namely, the PM 

with only one SKC and the PM with multiple SKCs. Secondly, according to the availability of topological characteristics of 

the PM, the position equations of each SKCi can be established one after another. Finally, the algebraic method or numerical 

method is applied to solve the position equations, and the symbolic solutions or closed-form solutions or numerical solutions 

of these problems of three types can be obtained, respectively. In detail, this method can be implemented in two steps: 

1) Topological analysis[27]. In this step, the first two important topological characteristics, i.e., position and orientation 

characteristic (POC) and degree of freedom(DOF) of the PM can be obtained. In addition, the PM is decomposed into a series 

of single-open-chain (SOC) with constraint degree of three types, i.e., positive, zero and negative one, then the constraint 

degree value (Δ) of each SOC can be obtained. These SOCs can be further divided into several sub-kinematic-chains (SKC), 

and the coupling degree ki of each SKC is calculated (ki = Δ+j = |Δ-j |). Now the PM that contains only one SKC or multiple 

SKCs can be determined. 

2) Establishment and solutions of the position equation. According to the availability of the topological characteristics of the 

PM, the position equations of each SKCi can be easily established. Since the position equation of each SKCi is simple, 

conventional mathematical methods can be applied to calculate the direct solutions of these SKCs and then the whole PM. 

In the following, the kinematics modelling method based on topological characteristics are illustrated in two steps. 

The first step is to analyze the topology characteristics of the PM. The next one lies in position analysis in terms of both 
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direct and inverse kinematic solutions. In this kinematic modeling method, the number of virtual variable is assigned 
according to the coupling degree obtained from topological analysis. 

2.2 Analysis of topological characteristics 

2.2.1 Analysis of the POC set 

The POC equations for serial and parallel mechanisms are expressed respectively as follows[26]: 

 
m

i

Jibi MM

1

                                              (1) 

bi

n

i

Pa MM 
1

                                              (2) 

where  

 JiM - POC set generated by an i-th joint. 

 biM - POC set generated by the end link of i-th branched chain. 

 PaM - POC set generated by the moving platform of PM. 

 POC- position and orientation characteristics 

 ∪ -union operation 

 ∩-intersection operation 

Accordingly, the output motions of the intermediate link 6 in the 2P4R six-bar planar mechanism inside the hybrid chain 

A include two translations and one rotation (2T1R), which is denoted by 
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Where )( 13
2 Rt   means that there are two translations lying in a plane normal to the axis of joint R13, and, )(|| 13

1 Rr

means that there is one rotation with the axis of rotation parallel to the axis of joint R13. The other notations in the formulas 

above can be found in [26,27]. 

Therefore the output motions of the end link of the hybrid chain A (denoted as HCA) turns out to three-translation and 

one-rotation (3T1R), since the output motion of the Pa① is 1-DOF translation. Similarly, the output motions of hybrid chain B 

(denoted as HCB) are three-translation and one-rotation (3T1R) too.  

Thus, the POC sets of the end of the two hybrid chains HCA and HCB are determined according to Eqs. (1) and (2) as 

follows. 
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As a consequence, the POC set of the moving platform 1 of this TPM is determined from Eq. (2) below 
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This formula implies that the hybrid chain HCB constrains the rotational output of link 6 of six-bar planar mechanism 

around the axis of joint R13 in the hybrid chain HCA, which leads to Eq. (8) in Section 2.3.2. This is very important 

topological constraint property of the TPM, which will significantly simplifies the process of the direct solutions that are 

described in the last paragraph of Section 2.2.3.  

Moreover, the hybrid chain A also constrains the rotational output of the end of the hybrid chain B around the axis 

of joint R33 too. Therefore, the moving platform 1 of the TPM can generate only three translational motions. 

2.2.2 Determining the DOF 

The general and full-cycle DOF formula for PMs proposed in [26] is given by 
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where 

F - DOF of PM. 

fi - DOF of the ith joint. 

m - number of all joints of the PM. 

v - number of independent loops of the PM, and v=m-n+1. 

n - number of links.  

jL - number of independent displacement equations of the jth loop.  


j

i
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M
1

- POC set generated by the sub-PM formed by the former j branches. 

( 1)b jM  - POC set generated by the end link of j+1 sub-chains.  

The TPM can be decomposed into two independent loops, and their independent displacement equations are expressed as 

follows: 

① The first loop, denoted as LOOP1, consists of the 2P4R planar mechanism in the hybrid chain A. Thus, the number of 

independent displacement equation of the 2P4R planar mechanism is 3
1
L . 

② The aforementioned 2P4R planar mechanism and the 4R parallel mechanism Pa①, plus hybrid chain B will form the second 

loop, denoted as LOOP2. According to Eq. (4), the number of independent displacement equation 
2L of the second loop can 

be obtained as below. 
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Thus, the DOF of the TPM is calculated from Eq. (3) expressed as 
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Therefore, the DOF of the TPM is equal to 3. The prismatic joints P1, P2 and P3 on the base platform 0 are selected as the 

actuated joints. 

2.2.3 Determining the coupling degree 

According to the mechanism composition principle based on single-opened-chains (SOC) units[25,26], any PM can be 

decomposed into several sub-kinematics chains (SKC), and a SKC with v independent loops can be further decomposed into 

v SOC. The constraint of the jth SOC, △ j, is defined by[26] 
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Where 

△ j - constraint degree of the jth SOC. 

jm - number of joints contained in the jth SOCj.  

jI - number of actuated joints in the jth SOCj . 

if ,
jL - the same definition as in Eqs.(3) and (4). 

For a SKC, it must be satisfied with the following equation. 
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Sequentially, the coupling degree of a SKC is then defined as[25,26]  
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The physical meaning of the coupling degree κ can be interpreted in this way. The coupling degree k describes the 

complexity of the topological structure of a PM, which can indicate that the kinematic and dynamic analysis is complex or 

not. It has been proved that the higher the coupling degree κ is, the more complex the kinematic and dynamic solutions of the 

PM are [26, 27]. 

The number of the independent displacement equations of LOOP1 and LOOP2 have been calculated in Section 2.2.2, i.e.,

3
1
L , 5

2
L , thus, the constraint degree of the two independent loops are calculated by Eq. (5), respectively, with the 

solution below: 
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Thus, according to Eq. (6), the TPM contains only one SKC. The coupling degrees of the SKC is calculated by Eq. (7) as 
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In general, when solving the direct position solutions of the PM, only one virtual variable will be assigned in the first 

loop whose constraint degree is positive one ( =+1)j . Then, one constraint equation with this virtual variable is established 

in the second loop with the negative constraint degree ( = -1)j . Further, the real value of this virtual variable can be 

obtained by the one-dimensional numerical method, thus, the direct position solutions of the PM are obtained finally. 

However, the proposed TPM is a special case of 3-translational PM, the second loop with the negative constraint degree 

( = -1)j  directly exerts a special topological constraint to the first loop with the positive constraint degree is one 

( =+1)j , which means that the output motion of the link 6 in the first loop is always parallel to plane that the base platform 

0 lies in. Therefore, the virtual variable is easily obtained from the first loop directly, and there is no need to solve the virtual 

variable by one-dimensional numerical method, which significantly simplifies the process of the direct solutions. Thus, the 

symbolic direct position solutions of the TPM can be directly obtained as depicted in the following Section 2.3.2. 

2.3 Position analysis  

2.3.1 The coordinate system and parameterization 

The kinematics architecture of the TPM is shown in Fig.2. The base platform 0 is rectangular with a width of 2b. The 

global coordinate system O-XYZ is established on the base platform 0, with the origin located at the geometric center. The X-

axis and Y-axis are perpendicular, parallel to segment A1A2, respectively, and the Z-axis is normal to the base plane pointing 

upwards. The moving coordinate system O'-X'Y'Z' is established with the coordinate axes parallel to those of the global 

frame with the origin located at the geometric center O' of the moving platform 1. 

 

Figure 2. Kinematic modelling of the TPM  

Let A1B1=A2B2=A3B3=l1, B1C1=B2C2=l2, B3C3=l9, C1C2=l3, D1D2=l4, D2E2=l6, E2S=l7, ST=2d, TC3=l8  

In order to simplify the structure and improve the kinematic and dynamic performance of the TPM, we let D1D2=l4=0, 
E2S=l7=0 and TC3=l8=0 when prototyping, such as the actual 3D model shown in Fig. 1(b). 

Further, the angle between the vectors B1C1 and the Y-axis is α, and let α be the virtual variable. The angle between the 

vectors D2E2 and the negative X-axis is β. 
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2.3.2 Direct kinematic problem 

For the direct kinematics, the values of the actuated joint variables ( 1Ay , 2Ay , 3Ay ) are known, and the objective is to 

find the tool center point location O'(x,y,z) that is determined by the given joint parameters.  

1) Solving the first loop 

2221111 : ABCCBALOOP   

The coordinates of points Ai and Bi (i=1, 2, 3) on the base platform 0 are derived, respectively     

T
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3 )0,,-(
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13 ),,-(
3
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Since the output link 6 of the 2P4R planar mechanism is always parallel to the base platform 0 without rotational output, 

as described in the last paragraph of Section 2.2.1, we have C1C2||A1A2. Then the following constraint equation is derived. 

21 CC zz                                             (8) 

Therefore, the coordinates of points C1 and C2 are calculated as 

T
2121 )sin,cos,(

1
 lllybC A  ,       

T
21322 )sin,cos,(

1
 llllybC A   

With the link length constraints defined by B2C2=l2, two constraint equations can be deduced as below, 

0cos2 2
2  BlB  

Thus      

 2

2 cos1sin  while2/cos  mlB ，
                   (9) 

with  

312 lyyB AA   

It is noteworthy that the constraint equation 
21 CC zz   is the key to directly solving the virtual variable α, leading to the 

symbolic direct position solutions. 

2) Solving the second loop 

3332212 : ABCTSEDDLOOP   

The coordinates of the points D1 and D2 obtained from points C1 and C2 are calculated as 

T
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T
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The coordinates of the points E2 can be obtained directly 































sinsin

2/cos

cos

6421

32

6

2 1

llll

lly

lb

E A  

For the calculation of the coordinates of point O' : 
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















































sinsin

2/cos

cos

'

62741

32

6

1

lllll

lly

dlb

z

y

x

o A                                (10) 

Further, the coordinates of point C3 are represented with the known coordinates of point O' as below: 

T
83 ),,( lzydxC   

With the link length constraints defined by C3B3=l9, the constraint equation can be deduced:  

0cossin 321  GGG   

resulting in the solutions below 

23

2
3

2
2

2
11

arctan2
GG

GGGnG




                                (11) 

where  

631 2 lFG  ， 612 2 lFG  ， 2
9

2
6

2
3

2
2

2
13 llFFFG  ; 

dbF 221  ， 2/cos 322 31
llyyF AA   ， sin28743 llllF   

Consequently, by substituting the values of α and β obtained from Eqs. (9) and (11) into Eq. (10), the coordinates of 

point O' in the global coordinate system can be obtained, namely, 















)(

)(

)(

321

21

321

2

2

1

AAA

AA

AAA

yyyfz

yyfy

yyyfx

，，

，

，，

                                     (12) 

Therefore, from Eq.(12), the TPM not only has symbolic solutions to the direct kinematic problems, but also has input-

output partial motion decoupling property, i.e., the y value at the output is determined only by the inputs yA1 and yA2. This is 

very useful for trajectory planning and motion control of moving platforms. Here, the coefficients m and n, respectively, 

correspond to two different values, i.e., m=±1 and n=±1. Therefore the number of the direct position solutions is equal to 

4. 

The preceding calculation process can be expressed in Fig.3. 

 

Figure 3. Calculation of direct position solutions. 
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2.3.3 Inverse kinematic problem 

For the inverse kinematics, the position of the end-point O'(x, y, z) is known, and the objective is to find the actuated 

joint variables ( 1Ay , 2Ay , 3Ay ) that yield the given location of the tool.  

The coordinates of the points E2 and C3 can be obtained from the point O'. 

T
72 ),,( lzydxE  ；   T

83 ),,( lzydxC  ； 

Thus, the coordinates of points C1 and C2 are defined from that of point D2 and D1 in sequence as:  

T
6762 )sin,,cos(  llzyldxD  ,   T

46761 )sin,,cos( lllzyldxD    

T
467361 )sin,2/,cos( lllzlyldxC    

T
467362 )sin,2/,cos( lllzlyldxC    

The x coordinates of points D2, D1, C2, and C1 are all equal to b, thus the cosine of the β angle can be obtained as. 

 2

6

cos1sin;cos 


 v
l

xdb
                               (13) 

Therefore, with the length constraints defined by B1C1=l2, B2C2=l2 and B3C3=l9, there are three constraint equations 

below. 

2
9

2
33

2
33

2
33

2
2

2
22

2
22

2
22

2
2

2
11

2
11

2
11

)()()(

)()()(

)()()(

lzzyyxx

lzzyyxx

lzzyyxx

BCBCBC

BCBCBC

BCBCBC







                         (14) 

From Eqs. (14), yAi (i=1, 2, 3) are calculated as following 

3,2,1,  iNLwMy iiiAi
                                  (15) 

where 

2
621 )cos( bldxLL   ,  

2/,2/ 3231 lyMlyM  ,  

2
2

2
146721 )sin( lllllzNN   ,  

In summary, when the coordinates of point O' on the moving platform 1 are known, v and w correspond to two different 

values, i.e., v=±1 and w=±1. Thus, each input value yAi (i=1, 2, 3) has two sets of solutions. Therefore, the number of the 

inverse position solutions is equal to 16. 

2.3.4 Numerical simulation for direct and inverse kinematics 

To verify the correctness of the direct and inverse kinematics models, the structural parameters of the TPM are given in 

unit of millimeter as shown in Table 1. 

 

 

2

3 )( dbxL 

yM 3

2

9

2

183 )( lllzN 
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Table 1. The structural parameters of the TPM.  

a b d l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 

360 90 45 70 160 120 0 90 180 0 0 300 150 

 

1) Direct solutions 

According to the structural parameters given in Table 1, the CAD model of the TPM is shown in Fig.1(b). A set of input 

values and the corresponding output values measured from the actual 3D model are yA1 = -111.24, yA2 = 244.70, yA3 = 246.92, 

and x = -80.39, y = 66.73, z = 307.23 (mm), respectively. 

These parameters are substituted into Eqs. (9) to (11), and the corresponding four direct solutions are calculated, as 

shown in Table 2, for which the four corresponding configurations are shown in Fig. 4(a)~(d). 

Table 2. Theoretical calculation of direct kinematic solution. 

NO. m n x y z 

 1* +1 +1 -80.3862 66.7300 307.2328 

2 +1 -1 194.7183 66.7300 78.1662 

3 -1 +1 194.7183 66.7300 61.8338 

4 -1 -1 -80.3862 66.7300 -167.2328 

 

       

(a) m=+1, n=+1                                (b) m=+1, n=-1 

    

(c) m=-1, n=+1                                 (d) m=-1, n=-1 

Figure 4. The four configurations corresponding to the four direct solutions 

Removing the mechanism architectures of mechanical collision, only the first configuration exists, which means 

the direct kinematic solution are correct. So the coefficient m equals +1 (see Eq.(9)), and n equals +1(see Eq.(11)). 
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2) Inverse solution 

Substituting the measured end position values of the direct position solution into Eqs. (13) and (15), when the sine value 

of the β angle is negative (v=-1), the corresponding input value is a complex number, so there are only 8 sets of inverse 

solutions exist, as shown in Table 3. It can be seen from the structure of the TPM that in the positive direction of the Y axis, 

the value of active joint yA2 is always greater than the value of yA1. Therefore, the third and fourth cases do not exist 

mechanically. Thus, there are only six actual inverse solutions. 

Table 3. Theoretical calculation of inverse kinematic solutions. 

Fig.5(a)-5(f) shows the six actual configurations corresponding to the six correct inverse solutions in Table 3. 

              

(a) No.1                                       (b) No.2 

                      

(c) No.5                                      (d) No.6 

                   

  (e) No.7                                        (f) No.8 

No. 1 2 3 4 5* 6 7 8 

1Ay  124.6992 124.6992 124.6992 124.6992 -111.2392 -111.2392 -111.2392 -111.2392 

2Ay  244.6992 244.6992 8.7608 8.7608 244.6992 244.6992 8.7608 8.7608 

3Ay  246.9229 -113.4629 246.9229 -113.4629 246.9229 -113.4629 246.9229 -113.4629 



 13  

Figure 5. The six actual configurations corresponding to the six correct inverse solutions  

Among these six inverse solutions, the observations are given as follows. 

(1) The fifth inverse solution in Table 3 is consistent with the measured values of the three inputs. Similarly, the other 

forward solution data in Table 1 also verifies the correctness of the forward and inverse solution formulas.  

(2) Only the fifth and sixth sets corresponding Fig.5 (c), (d) respectively are non singular solutions. The fifth set of 

values corresponds to the value of the TPM taken in 3D model shown in Fig.1 (b).  

(3) The first, second, seventh and eighth solutions are singular configurations, shown in Fig.5 (a), (b), (e) and (f) 

respectively, which will be explained by Fig.7 (a) corresponding the Case ① of parallel singular configuration in the 

following section. 

3. Singularity analysis  

When the TPM is in a singular configuration, its motion is undetermined. The singular configurations can be identified 

by Jacobian analysis of the robotic mechanism. 

3.1 Jacobian matrix 

By differentiating Eq. (14) with respect to time, the mapping between the output velocity of the end-effector of the 

moving platform  Tzyx   and the input velocity of the actuated joints  T321 AAA yyy   is obtained as 

0   BA                                          (16) 

where 



















333231

232221

131211

fff

fff

fff

A ，   332211 ,, uuudiagB   

)(cot 1111 BC zzf   ；  1112 BC yyf  ；  11C13 Bzzf  ；  

)(cot 2221 BC zzf   ；  2222 BC yyf  ；  2223 BC zzf  ；  

3331 BC xxf  ； 3332 BC yyf  ； 3333 BC zzf  ；  

)( 1111 BC yyu  ；  2222 BC yyu  ； )( 3333 BC yyu  ；  

3.2 Singular configurations analysis 

In Eq. (16), A and B are named as the parallel and serial Jacobian matrices, respectively. The serial singularities occur if 

det(B) = 0 and the parallel singularities occur whenever det(A) = 0.  

3.2.1 Serial singularity 

From det (B) = 0, the set of determinant solutions of matrix B is: 

 }{ 332211 uuuu   

where 

}0{ 1111  BC yyu , which means link B1C1 is parallel to the Z-axis. 

}0{ 2222  BC yyu , which means link B2C2 is parallel to the Z-axis. 



 14  

In particular, when link B1C1 is parallel to the Z-axis, link B2C2 is also parallel to the Z-axis, that is, the above two 

conditions will occur simultaneously. 

}0{ 3333  BC yyu , which means the projections of link A3B3 and B3C3 on the YOZ plane are coincident, that is, the 

projections of P31R32 and R32R33 are coincident on the YOZ plane, as shown in Fig.6. 

 

Figure 6. An example of serial singular configuration. 

3.2.2 Parallel singularity 

For the convenience of analysis, considering the matrix A as a combination of three-row vectors: 

 T321 eeeA   

The determinant of matrix A Det(A) is equal to 0 when the two following situations occur: 

(i) Two of the vectors are linearly related 

① 21 ee k  means that 1e  and 2e  are linearly related, thus, we obtain. 

22

22

11

11

BC

BC

BC

BC

zz

yy

zz

yy









 

Therefore, the projections of 11BC  and 22BC  on the YOZ plane are parallel, that is, the projections of R12R13 and 

R22R23 on the YOZ plane are parallel, as shown in Fig.7 (a). This situation exactly corresponds to (2) and (7) in Figure 5. 

② 31 ee k  means that 1e  and 3e  are linearly related, yielding 

33

33tan
BC

BC

xx

zz




  

Therefore, the slope of the projection of C3B3 on the XOZ plane is equal to the negative number of the tangent of the 

angle β, that is, the projections of Rb1Rc1 and R32R33 on the XOZ plane are parallel, which does not exist for the given lengths, 

as shown in Fig. 7 (b).  

When 32 ee k ,the result is the same to the singularity of the case② . 
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(a) Case ①                                 (b) Case ② 

Figure 7. Examples of parallel singularity configuration. 

(ii) Three vectors are linearly related 

Let )0( 2132112  kkkk eee , the following equation is obtained  

33

33tan
BC

BC

xx

zz




  

Which means that the slope of the link 22ED  is equal to the slope of the projection of 33BC  on the XOZ plane, and the 

occurrence conditions are the same as those in Fig.7 (b). 

3.3 Singularity surface analysis 

Parallel and serial singularities as well as their projections in workspace and joint space can be computed using a 

Groebner based elimination method [4, 5]. This usual way for eliminating variables is to compute the algebraic closure of the 

projection of the parallel singularities in the workspace. 

Based on the structure parameters given in Section 2.3.4, the singular surfaces inside the workspace and the joint space 

of the TPM are plotted with Maple as shown in Figs.8 and 9. 

               

(a) Serial singularity surfaces                     (b) Parallel singularity surfaces 

Figure 8. Singularity surface in the mechanism workspace.  
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                    (a) Serial singularity surfaces                        (b) Parallel singularity surfaces 

Figure 9. Singularity surface in the joint space. 

4. Workspace analysis 

In this paper, the discrete method is adopted to determine the workspace of the TPM. First, by making use of the 

prescribed dimensions in Table 3, it is to find the searching space in the workspace. Then, based on the inverse kinematics 

solutions, and considering the constraints of the motion range of the actuated joints, the range of the passive joint, and the 

interference between the links, the workspace points that meet all the constraints are searched. The 3D image composed of 

these points is the workspace of the TPM. Finally, these spatial points are fitted to form a visual 3D workspace. 

The search scope is set to: 

055038020200-051150-  zyx ，，  

By using Matlab, the 3D workspace for the TPM is obtained, as shown in Fig.10 (a). Furthermore, the projection views 

of the workspace in the yoz direction and xoz direction are obtained, as shown in Fig. 10 (b) and Fig. 10(c).  

 

(a) 3D workspace 
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(b) Projection view of the yoz section             (c) Projection view of the xoz section 

Figure 10. Workspace of the TPM. 

 

By using Maple and SIROPA[4,5], the 3D workspace and the singularity surface are shown in one figure, as shown in Fig.11. 

                       

(a) Serial singularity surface in workspace         （b）Projection view of the xoz section of serial singularity  

 

 

                           

 

（c）Parallel singularity surface in workspace     （d）Projection view of the xoz section of parallel singularity 

Figure 11. Singularity surfaces in the workspace 

 

It is noted that Fig.8 shows the singularity surfaces that contains all the inverse kinematic solutions inside the 

workspace, while Fig.11 shows the positional relationship between the useful workspace and the singularity surface within 

the range of the useful workspace. In Fig.11, the green solid means the useful workspace, and the red surface means the 

singularity surface inside the workspace. 
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5. Conclusions 

In this paper, a novel three-translation parallel manipulator is presented, which combines the advantages below and 

potentially outperforms in application compared to the TPM counterparts. 

① The proposed TPM can have fewer joints and components than the well-known Delta robot, which reduces the structural 

complexity. Compared to the 3UPU or 3RRC counterparts, the asymmetrical architecture of the proposed TPM allows 

partially decoupled motion to ease motion control and trajectory planning.  

② The lengths of guide rails on which the actuated-joints are located can have finitely large lengths as possible according to 

the application requirements, which determines a large workspace rather than its fully symmetric counterparts.  

③ The TPM has symbolic solutions to the direct and inverse kinematic problems. The symbolic direct position solution is 

beneficial for error analysis, workspace analysis, and velocity/acceleration and dynamics analysis.  

According to the kinematics modelling principle based on topological characteristics, the virtual variable α can be solved 

by the geometric constraints and the topological constraints of the first loop with a positive constraint degree, instead of the 

constraints of the second loop with a negative constraint degree. This is a key factor for the TPM in this paper to be able to 

obtain the symbolic solution, and it is also an advantage of the TPM's topology. 

The Jacobian matrix is derived to identify the singular configurations, and the singular loci are found and visualized by 

means of a Gröbner-based elimination operation, to show the singularity-free workspace. From the two aspects of theoretical 

calculation and Adams simulation, the motion characteristics of the TPM are analyzed, which provides the fundamentals for 

the stiffness, dynamics and prototyping of the proposed TPM. 
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