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Abstract

The numerical modelling of two-phase mixture flows with high density ratios (e.g. water/air) is chal-

lenging. Multiphase averaged models with volume fraction representation encompass a simple way

of simulating such flows: mixture models with relative velocity between phases. Such approaches

were implemented in SPH (Smoothed Particle Hydrodynamics) using a mass-weighted definition of

the mixture velocity, but with limited validation. Instead, to handle high density ratios, a mixture

model with a volumetric mixture velocity is developed in this work. To avoid conservation issues

raised by the discretization of the relative material displacement contribution in the volume fraction

equation, a formulation on phase volumes is derived following a finite volume reasoning. Conserva-

tivity, realizability, limit behaviour for single-phase flow are the leading principles of this derivation.

Volume diffusion is added to prevent development of instabilities due to the colocated nature of

SPH. This model is adapted to the semi-analytical SPH wall boundary conditions. Running on

GPU, this approach is successfully applied to the separation of phases in a settling tank with low

to high density ratios. An analytical solution on a two-phase mixture Poiseuille flow is also used

to check the accuracy of the numerical implementation. Then, a Rayleigh–Taylor instability test

case is performed to compare with multi-fluid SPH. Finally, a comparison with experimental and

numerical data is made on a sand dumping case; this highlights some limits of this mixture model.

Keywords: Smoothed Particle Hydrodynamics, two-phase mixture flows, large density ratios

∗Corresponding author
Email address: thomas.fonty@edf.fr (Thomas Fonty)

Preprint submitted to International Journal of Multiphase Flows February 21, 2020



1. INTRODUCTION

1. Introduction

Multi-component flows with high density ratio play a prominent role in many engineering ap-

plications and imply complex strong flow dynamics (e.g. air-water turbulent mixing in hydraulic

jump or over dam spillways as in Wan et al. (2018)). The SPH (Smoothed Particle Hydrodynamics)

method therefore appears as a natural way to deal with such cases, due to its ability to model such

highly deformed flows (e.g. dam break or wedge entry in water detailed in Gong et al. (2016)).

Multi-fluid SPH models have been extensively studied to take advantage of the good ability of the

method in tracking the interface between different phases. Particular attention was paid to high

density ratio cases applied to air-water cases such that dam-break or rising-bubble cases in Cola-

grossi & Landrini (2003), or Rayleigh-Taylor instability and gravity currents for moderate density

ratios in Grenier (2009), Monaghan & Rafiee (2012). However, accurately modelling multi-fluid

phenomena with the usual SPH approach in the air-water case requires choosing a particle discreti-

sation of less than the size of an air bubble or water drop, which leads to prohibitive computational

cost at the scale of practical interest for engineering applications.

Local instant formulation for multi-phase flows being generally beyond computational capability,

multi-phase averaged models have been developed, as in Ishii & Hibiki (2011). Due to the averaging

process, the interface between phases is no longer explicitly tracked. One gets a continuum in which

phases are followed through a volume fraction representation. This kind of model encompasses two

main approaches1:

• Two-fluid models. Each phase is described by a continuity and a momentum equations.

Interfacial interactions introduce additional terms in these equations. They are closed by

constitutive laws, depending on the flow regime, but their determination can prove to be

tedious;

• Mixture models. The flow is seen as a single-fluid flow with one continuity and one momen-

tum equation that rule the evolution of mixture quantities (mixture density and velocity,

combinations of phase properties to be defined) complemented by an additional equation for

the mass conservation of one phase. Some additional terms linked to the relative velocity

between phases, computed through a closure law depending on the flow regime, appear in

1In view of the hydraulic applications, energy considerations are neglected in what follows.
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1. INTRODUCTION

these equations. In the absence of relative velocity, one has a homogeneous fluid model.

These models are of particular interest for modelling flows with small-scale interfaces (e.g. dispersed

air phase in a water flow) and are usually implemented using the finite volume approach, as in

Gallouët et al. (2004). A prominent point consists in solving the volume fraction evolution properly

as underlined by Rusche (2002). However, free surface tracking is not an easy task with mesh-

based approaches, so that these kinds of multi-phase models were also developed in SPH to deal

with sediment-laden flows with a two-fluid model in Shi et al. (2017) or separated flows with

mixture models in Grenier (2009). It introduces an original way of dealing with phases in SPH:

instead of having different sets of particles for each phase, each individual SPH particle is now

able to carry the different phases with their respective volume fractions. First studies employing

volume fraction representation in SPH were done in an astrophysical framework to study gas/dust

mixtures in Monaghan & Kocharyan (1995) and Monaghan (1997), following a two-fluid model,

further applied to sedimentation in (Kwon & Monaghan, 2015). The unique velocity field for the

motion of SPH particles makes the mixture model enticing. It is close to the usual single-phase

set of equations and can therefore be implemented with limited effort. It is the approach taken

here. The reduced number of equations to solve is expected to limit the computations compared

to two-fluid approaches with a different set of particles for each phase, as described in (Shi et al.,

2017) or (Kwon & Monaghan, 2015). Mixture models have already been tested in SPH:

• Price & Laibe (2015) proposed a mixture model applied to dust settling in protoplanetary discs

by rewriting the two-phase equations through the introduction of new variables, combinations

of phase variables, to overcome some issues inherent to the two-fluid approach (overdamping

at high drag, artificial trapping of dust particles);

• In the graphics community, a mixture model with a volume fraction representation was im-

plemented to capture a wide range of physical phenomena in Ren et al. (2014) but without

quantitative validation. This work includes a closure for diffusion velocities (velocity of the

phases relative to the mass centre, equal to the difference of the phase velocities and mass-

weighted mixture velocity);

• A mixture model with a volume fraction formulation and a diffusion of phases between par-

ticles following a Fick law has been implemented and successfully tested on gravity currents
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2. MATHEMATICAL MODEL

in Cueille (2005), extending to the Lagrangian framework the Eulerian model proposed by

Chanteperdrix (2004);

• Following Cueille (2005), a mixture model with a volume fraction formulation without phase

exchanges between particles was implemented and compared to a multi-fluid formulation in

Grenier (2009), especially on a Rayleigh–Taylor instability case. It highlighted the diffusion

of the interfaces triggered by the mixture model. The multi-fluid formulation of SPH proved

to perform better on the cases tested.

In this paper, the physical and numerical formulations chosen for a new mixture model are

presented. It is designed to be able to deal with high density ratio flows and versatile physics. Special

attention is paid to the conservativity, realizability (respect of physical bounds) and accuracy of this

resolution, issues that have raised some noticeable interest as in Rusche (2002). Then, numerical

validation on several cases is detailed, with comparisons to reference solutions in the literature.

The cases comprise an oil-water and an air-water separation cases, an analytical case similar to a

two-phase mixture Poiseuille flow, a Rayleigh–Taylor instability case and a sand dumping case.

2. Mathematical model

Let us consider a two-phase flow (e.g. air bubbles rising or sediments falling within water). This

section aims at detailing the notations and the mixture equations adopted in this work to model

such a flow. We consider the control volume2 presented in Figure 1. The presence of phases is taken

into account through volume fractions, as illustrated schematically in Figure 2. The two phases are

denoted by α and β.

2.1. Notations

The mixture quantities detailed in Table 2 are computed based on the value of some phase

quantities listed in Table 1. Several choices are possible for the phase quantities to be considered:

in view of achieving the conservation of phase quantities at high density ratios, a volume formula-

tion has been retained here for the phase description (volume fraction3) and mixture velocity. The

2The control volume models an SPH particle that will be introduced in the next section.
3We denote α and β the volume fractions as well as the phase names, without any risk of confusion.
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2. MATHEMATICAL MODEL

β

α

Figure 1: Control volume (green area) in two-phase flow (here a gas phase in red, liquid phase in blue).

α

β

vβ
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j

Figure 2: Schematic view of the control volume, the corresponding volume fractions and velocity fields.

mixture velocity is indeed defined here with respect to the volume centre, and is also called volu-

metric flux, due to weighting by volume fractions. A weighting by mass fractions would correspond

to a definition with respect to the mass center. A mass formulation using mass fractions would

lead to a simpler set of mixture equations but trigger some numerical issues for high density ratio

flows. To preserve the symmetry of the system, we choose to work with relative velocities instead

of drift/diffusion velocities.

2.1.1. Mixture quantities

As a consequence of the above-mentioned definitions, one has the following useful relations:

α+ β = 1 (1)

vα = j + βvr and vβ = j − αvr (2)

The Lagrangian derivative for a particle moving at the mixture velocity j is denoted by:

d

dt
=

∂

∂t
+ j ·∇ (3)
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2. MATHEMATICAL MODEL

Table 1: Phase quantities (k = α or β)

Volume V k

Mass mk

Density ρk = mk/V k

Kinematic viscosity νk

Dynamic viscosity µk

Velocity vk

Pressure pk

2.2. Mixture model

Following Ishii & Hibiki (2011), the averaged model for two-phase flows gives the following set

of continuous phase equations:
∂αρα

∂t
+ ∇ · (αραvα) = 0 (4)

∂αραvα

∂t
+ ∇ · (αραvα ⊗ vα) = −∇ (αpα) + ∇ · (αT α) + αραg (5)

where T α = µα (∇vα +t ∇vα) stands for the viscous stress tensor and g the gravity vector. We ne-

glected here the interfacial terms. Combining these relations and using the mixture model variables

introduced in 2.1, one gets:

∂ρ

∂t
+ j ·∇ρ = −ρ∇ · j + ∇ ·

(
αβ
(
ρβ − ρα

)
vr
)

(6)

∂αρα

∂t
+ j ·∇ (αρα) = −αρα∇ · j −∇ · (αραβvr) (7)

Under the hypothesis of constant phase densities (i.e. ρα = cst and ρβ = cst), one gets the volume

fraction equation:
∂α

∂t
+ j ·∇α = −∇ · (αβvr) (8)

Summing this relation on both phases leads to a divergence-free mixture velocity field. This conser-

vation equation, if we except the relative velocity term, is somewhat similar to the Volume of Fluid

approach proposed by Hirt & Nichols (1981) or the topological equation introduced in 7-equations

models for two-phase flows as detailed in Baer & Nunziato (1986), neglecting compressibility and
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2. MATHEMATICAL MODEL

Table 2: Mixture quantities

Volume V = V α + V β

Mass m = mα +mβ

Density ρ = m/V = αρα + βρβ

Volume fractions α = V α/V and β = V β/V

Mass fractions Y α = αρα/ρ and Y β = βρβ/ρ

Mixture velocity w.r.t. the volume center j = αvα + βvβ

Mixture velocity w.r.t. the mass center u = Y αvα + Y βvβ

Relative velocity vr = vα − vβ

Drift velocity vα − j

Diffusion velocity vα − u

Mixture pressure p

thermodynamical effects. A volume fraction equation has been proposed in Chanteperdrix (2004)

and includes additional terms due to compressibility effects that might be considered in further

studies. In this work we choose to use the usual momentum equation using mixture velocities and

densities for the sake of simplicity, as we focus on volume fraction and density resolution in a first

attempt at deriving an SPH mixture model:

dj

dt
= −1

ρ
∇p+

1

ρ
∇ · T + g (9)

where T = ρν (∇j +t ∇j) with ν = ανα+βνβ the mixture kinematic molecular viscosity. Chante-

perdrix (2004) indicates that there is no preferential argument to choose either a mixture kinematic

or dynamic viscosity. The choice done here is motivated by a momentum equation derivation in this

volume-based framework that makes a mixture kinematic viscosity appear naturally. An equation

consistent with the volume-based formulation would require additional careful work (as explained

in Ishii & Hibiki (2011), including an additional viscous terms and a contribution of the form

∇ · (αβvr ⊗ vr)).

2.3. State equation

We assume the mechanical equilibrium of partial pressures as pressure relaxation time is gener-

ally small compared to other characteristic times of the flow, as illustrated in Labois (2008) in case
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3. NUMERICAL MODEL

of bubbly flows:

p = pα = pβ (10)

In the standard WCSPH (Weakly Compressible SPH) approach, the mixture is considered as

barotropic and the pressure is calculated based on the density values, using the Tait equation

of state as reported in Cole (1948). We adapted the state equation to a two-phase mixture with a

unit polytropic index (common assumption, as in Marrone et al. (2011) for example) and a sound

speed computed following Grenier (2009). We linked the pressure to a ratio of volumes instead of

densities:

p =
(
αρα (cα)

2
+ βρβ

(
cβ
)2)(V0

V
− 1

)
+ pB (11)

where V0 is the reference volume equal to δr2 in 2D, δr3 in 3D, δr being the particle discretization.

This formula reduces to a one-phase formulation for null or unit volume fraction: in single-phase

SPH, when particle masses are constant, the ratio of densities ρ/ρ0 can be identified to the ratio

of volumes V0/V . In the following, if not specified, we assume that the background pressure pB is

null and sound speeds are chosen so as to ensure that ck > 10 max
(
vmax,

√
gH
)

where vmax is the

maximum mixture velocity and H the maximum height of the flow under gravity. As in classical

WCSPH, this ensures the compressibility effect is purely numerical and the sound speeds cα and

cβ aim at ensuring relative density fluctuations within 1%, as explained by Monaghan (1994).

3. Numerical model

The fluid domain Ω is discretized with a set of SPH fluid particles F . The discrete value

Ab = A (rb, t) denotes the quantity A at the particle position vector rb and time t.

3.1. SPH operators

The continuous SPH interpolation is performed with the Wendland C2 kernel introduced in

Wendland (1995) denoted w. For a pair of particles (a, b), wab = w (rab) where rab = ra − rb

and the kernel gradient writes ∇wab = ∇aw (ra − rb). Unified Semi Analytical Wall (USAW)

boundary conditions described in Ferrand et al. (2017) are used. In this framework, boundaries ∂Ω

of the domain are meshed by segments s ∈ S of size δr (δr being the initial interparticle spacing)

connected at vertices v ∈ V as illustrated in Figure 3. Those vertices are truncated fluid particles
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3. NUMERICAL MODEL

Figure 3: SPH kernel and intersecting boundary.

with a volume computed with respect to a reference volume through a fraction θ. The reference

volume for vertices and segments writes:

V a =

∑
b∈F

Vbwab∑
b∈F

wab
(12)

It is equal to the actual volume for fluid particles. On the other hand, θ is defined as the angle

between two connected segments divided by 2π in 2D for vertices, 1/2 for segments and 1 for fluid

particles. Segments and vertices contribute to accurately compute fields and their derivatives close

to the boundaries through boundary and volume integrals, respectively. Vertices are indeed part

of the fluid and allow one to impose field quantities. If not stated otherwise, multi-fluid operators

adapted to this framework are employed following Ghaitanellis et al. (2015). The SPH pressure

gradient approximation is therefore:

(∇p)a ≈ Ga{pb} =
1

γaV a

∑
b∈F∪V

θb

(
V

2

apa + V
2

bpb

)
∇wab

− 1

γaV a

∑
s∈S

1

V s

(
V

2

apa + V
2

sps

)
∇γas

(13)

In this operator, the renormalization factor γa presented in Ferrand et al. (2017) was used to account

for potential truncated kernel supports near boundaries:

γa =

∫
Ωa∩Ω

w (ra − r) dr (14)

where Ωa denotes the kernel support of the particle a. Moreover, following Ferrand et al. (2017),

the contributions to the gradient of γ are:

∇γas =

(∫
s

w(r)dS

)
ns (15)

9



3. NUMERICAL MODEL

where ns is the inward unit normal to the boundary segment s. These values can be computed

analytically as explained in Ferrand et al. (2017).

Except in subsection 4.2, the SPH Laplacian approximation used to compute the viscous stress

tensor writes:

(∇ · (µ∇j))a ≈ La{µb, jb} =
1

γa

∑
b∈F∪V

θbV b
4µaµb
µa + µb

jab
r2
ab

rab ·∇wab

− 1

γa

∑
s∈S

2µa
jas
r2
as

ras ·∇γas

(16)

where rab = |rab|, jab = ja − jb and µ = ρν being the dynamic molecular viscosity. Following

Violeau (2009) and Español & Revenga (2003), the alternative formulation used in case of variable

viscosities is:

La{µb, jb} =
1

γa

∑
b∈F∪V

θbV b
2µaµb
µa + µb

(4 (jab · eab) eab + jab)
rab ·∇wab

r2
ab

− 1

γa

∑
s∈S

2µa
jas
r2
as

ras ·∇γas

(17)

where eab =
rab
rab

. This formulation is used in subsection 4.2.

3.2. Integral balance for a single-phase flow

The usual SPH discretisation of volume fraction equation (7) leads to non conservative and non

realizable solutions (i.e. volume fractions may take non-physical values). We intend to derive a

realizable phase volume equation, conservative with respect to the relative velocity contribution,

through a finite-volume like approach. In this prospect, we will consider a Voronoi tesselation that

discretizes the fluid, as illustrated in Figure 4. The cells in this Figure are a representation of the

SPH particles, used to derive the subsequent equations. During a simulation, the exact shape of

the particles is never actually known (or used). a|b stands for the interface index between the cells

a and b, the outwards-oriented surface vector associated to this interface being denoted Sa|b. For

the sake of clarity, we first apply this approach to a single phase medium to see how one can recover

the WCSPH volume conservation equation:

dV

dt
= V∇ · j (18)

After this, a similar reasoning shall be applied to the two-phase case. To start with, we only consider

particles that do not interact with the boundaries of the domain.
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3. NUMERICAL MODEL

a|b

a

b

Sa|b

Figure 4: Voronoi diagram.

3.2.1. Leibniz’ rule

Let us apply the Leibniz’ rule for a scalar field A on a particle a seen as a material volume Ωa

moved and deformed by the fluid velocity j:

d

dt

∫
Ωa(t)

AdV =

∫
Ωa(t)

∂A

∂t
dV +

∫
∂Ωa(t)

Aj · dS (19)

For A = 1, equation (19) gives:
dVa
dt

=

∫
∂Ωa(t)

j · dS (20)

We therefore recognize an integral form of equation (18). For a closed surface:∫
∂Ωa(t)

dS = 0 (21)

Subtracting ja · (21), one gets:

dVa
dt

=

∫
∂Ωa(t)

(j − ja) · dS (22)

3.2.2. Discrete SPH approximation

Let us proceed with a finite volume formulation of the integrals in equation (22). For each

neighbouring cell, one has: ∫
a|b

dS = Sa|b (23)

∫
a|b

j · dS ≡ ja|b · Sa|b (24)

11



3. NUMERICAL MODEL

ja

j

Figure 5: Mixture velocity field j. ja is the mixture velocity of the particle a, constant within the volume of the

particle.

Equation (23) is exact while equation (24) is a definition of the interface mixture velocity ja|b. By

summing over all neighbours (i.e. all the a|b interfaces), one gets:

dVa
dt

=
∑
a|b

(
ja|b − ja

)
· Sa|b (25)

In the above equation, j is the velocity at the continuous level, while ja is the velocity of the particle

a, which is a discrete field, constant over the support of the particle (see Figure 5).

The similarity between SPH-ALE and Finite Volume (FV) approaches have been underlined in

Neuhauser (2015), among others. In the SPH formalism, this analogy is based on the following

relation:

Sa|b = 2VaVb∇wab (26)

to determine the virtual surface vector of the interface between particles. An important difference,

as highlighted by Neuhauser (2015), between FV and SPH, is the definition of a neighbour in each

method: only cells that share (part of) a face with the considered cell in FV are considered as

neighbours, whereas all SPH particles within the kernel support are considered as neihgbours (their

number thus depends on the smoothing length). This difference of neighbour definition requires

an adequate handling of the weighting of the neighbouring SPH particle contribution, which is

done through the presence of the kernel gradient in equation (26). A limit of this approach is that

the property
∑
b Sa|b = 0, that is true in FV, does not hold in SPH (as zeroth consistency is not

fulfilled). This notation will be used throughout this document.

Choosing a centred value to approximate ja|b, equation (25) becomes:

dVa
dt

= −Va
∑
b∈F

Vb (ja − jb) ·∇wab (27)

12



3. NUMERICAL MODEL

We recognize a discrete SPH approximation of (18), the right hand side being an SPH discrete

divergence operator as described in Violeau (2012).

3.3. Integral balance for a two-phase flow

One can now make a similar reasoning in the case of a two-phase flow. Due to the mixture

model we have adopted, we can consider that we have a single fluid, but whose characteristics will

vary depending on the local volume fraction α.

3.3.1. Leibniz rule

For A = α, equation (19) becomes:

d

dt

∫
Ωa(t)

αdV =

∫
Ωa(t)

∂α

∂t
dV +

∫
∂Ωa(t)

αj · dS (28)

Using (8) to compute the right-hand side volume integral and using Gauss’ theorem, we get:

dV αa
dt

=

∫
Ωa(t)

[α∇ · j −∇ · (αβvr)] dV (29)

Expanding α at the zeroth order, we make the following approximation:∫
Ωa(t)

α∇ · jdV = αa

∫
Ωa(t)

∇ · jdV (30)

Subtracting αaja · (21) leads to:

dV αa
dt

= αa

∫
∂Ωa(t)

(j − ja) · dS −
∫
∂Ωa(t)

αβvr · dS (31)

3.3.2. Discrete SPH approximation

The finite volume approximation of the integrals leads to:

dV αa
dt

= αa
∑
a|b

(
ja|b − ja

)
· Sa|b −

∑
a|b

(αβvr)a|b · Sa|b (32)

where we identify two contributions: the first term corresponds to a divergence of the mixture

velocity field α∇ · j and the second to a contribution from the relative displacements of phases

∇ · (αβvr). The interface a|b quantities still need to be defined in equation (32). Four principles

guide this definition:

• Conservativity: the fluxes must be symmetrical with respect to the particle labels (a, b);

13



3. NUMERICAL MODEL

• Realizability: phase volumes V α and V β should remain positive;

• Reduction to single phase model: for α = 1 and vr = 0, we want to recover single-fluid

WCSPH equations;

• Symmetry with respect to phases: we can interchange α↔ β without modifying the equations.

Guided by these principles, we propose the following relations on both phase volumes:

dV αa
dt

= αa
dVa
dt
− 2Va

∑
b∈F

Vb

(
αaβb

[
vra|b ·∇wab

]+
+ αbβa

[
vra|b ·∇wab

]−)
(33)

dV βa
dt

= βa
dVa
dt

+ 2Va
∑
b∈F

Vb

(
αaβb

[
vra|b ·∇wab

]+
+ αbβa

[
vra|b ·∇wab

]−)
(34)

where [x]
+

= max (x, 0) and [x]
−

= min (x, 0). The relative velocity is computed with a centred

approach:

vra|b =
1

2
(vra + vrb ) (35)

Equation (34) was obtained from (33) by changing α into β, since these relations are symmetric

(this switch changes the sign of the relative velocity). There are several important choices for the

derivation of equation (33) from equation (32):

• The first term of the right hand side of equation (32) can be identified as the first term of

equation (33) using the relation (25). The computation of the temporal derivative of the total

volume relies on the use of an exact time integration scheme, following what is suggested by

Ferrand et al. (2017). It proves to be better at simulating the mixture at rest (the usual

continuity equation resolution with antisymmetric divergence led to spurious convection cells

which appeared to be linked to the accumulation of numerical errors). Starting from the SPH

volume interpolation:
γa
Va

=
∑

b∈(F∪V)

θbwab (36)

one can update the total volume through:

γn+1
a

V n+1
a

− γna
V na

=
∑

b∈(F∪V)

(
θn+1
b wn+1

ab − θ
n
b w

n
ab

)
(37)

• The second term of the right hand side of equation (32) is computed through an upwind

formulation, symmetric with respect to phases, that ensures the realizability of the scheme

14



3. NUMERICAL MODEL

(under a CFL condition, see section 3.7). The flux vra|b · Sa|b at the midpoint of the pair of

particles (a, b) is split into its positive and negative parts. The factor αβ then takes a different

form depending on the sign of the flux: in αaβb, α is upwinded with respect to vr and β is

convected by (−vr). The choice of alternate indices a and b for the volume fractions ensures

the symmetry with respect to the phases and the conservation of the total quantity of each

phase.

A similar formulation can be found in (Shi et al., 2017) that details a two-phase model for sediment

laden flows with an asymmetric treatment of the liquid and solid phases. The volume fraction of

sediment is updated with an equation looking like (33) but with β taken to 1 and a usual SPH

divergence of the fluid velocity field to compute the total volume variation. Instead of a β equation,

an equation on βρβ is solved. Our approach has the advantage to keep a symmetrical treatment of

both phases and to be conservative with respect to the relative velocity contribution. The model

can therefore handle only water or air phase within a particle when the approach detailed in (Shi

et al., 2017) assumes constant water mass in particles, which may trigger some significant volume

variations. We are only solving three equations instead of four, which decreases the computational

cost of the approach. A mixed upwind/downwind operator in a finite volume framework is proposed

in Larreteguy et al. (2017) to solve a volume fraction equation with drift velocities and a mass-

weighted mixture velocity (α is upwinded whereas the drift velocity encompassing β and vr is

downwinded). Such a distinction between upwind and downwind, due to a stencil limited to a pair

of particles in SPH, does not seem possible to implement.

As in usual WCSPH, the total volume is not conserved due to weakly-compressibility. However,

the antisymmetry of the discrete terms concerning the relative velocity ensures that the relative

phase motion does not affect the total volume. Introducing the wall renormalization factor γ of

equation (14), the phase volume equation (33) becomes:

dV αa
dt

= αa
dVa
dt
− 2

Va
γa

∑
b∈F

Vb

(
αaβb

[
vra|b ·∇wab

]+
+ αbβa

[
vra|b ·∇wab

]−)
(38)

the temporal variation of Va being computed from (37), the symmetry of the relative velocity

term is somewhat broken by this factor, as always with the USAW technique but it did not prove

to introduce significant discrepancies. No boundary term is considered so as to ensure a no-flux

condition at the boundaries. Let us finally underline that in the numerical implementation phase

volumes have been adimensionalized by the reference volume V0 to avoid the accumulation of
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numerical errors that triggered some spurious pressure profiles.

3.4. Volume diffusion

For constant relative velocities, checkerboard effects clearly appear in simulations as a conse-

quence of the colocated nature of SPH. One possible way to circumvent this issue is to introduce

volume diffusion when phase volumes are updated. The derivation of this additional term is detailed

in Appendix A.

3.5. Particle characteristics

Once phase volumes are computed, one can assess the other particle quantities according to

their definitions (here particle labels a were dropped for the sake of simplicity):

• m = (αρα + βρβ)V0

• ρ = m/V

• α = V α/V

Special attention shall be paid to the particle mass computation. In single-fluid SPH, particle

masses are usually constant (except in the Arbitrary Lagrangian-Eulerian approaches such as in

Vila (1999)), so that they do not vary due to compressibility effects; only the density does. To

recover this behaviour, we introduce the reference volume V0 to compute particle masses, so that

they only vary due the volume fraction variations. With this choice, we indeed have a varying

density due to the fluid (weak) compressibility. This way of calculating the particle quantities

constitutes a discrete approximation of the original continuous equations (6) and (8). To check

that, one can deduce from (33) the discrete governing equations of the mixture density and volume

fraction:

dρ

dt
= −ρa

Va

dVa
dt

−
(
ρα − ρβ

) V0

V 2
a

∑
b

(
αaβb

[
vra|b · Sa|b

]+
+ αbβa

[
vra|b · Sa|b

]−) (39)

dα

dt
= − 1

Va

∑
b

(
αaβb

[
vra|b · Sa|b

]+
+ αbβa

[
vra|b · Sa|b

]−)
(40)

the sum on the right hand side being an SPH approximation of ∇ (αβvr), as previously explained.
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3.6. Closure law for the relative velocity

The closure law for the relative velocity is flow-dependent and one can refer to the extensive

literature, for example (Ishii & Hibiki, 2011), to find adequate closures depending on the two-

phase flow regime. The relations used in this article assume constant particle sizes. More complex

models solving transport equations for particle diameters exist but we will focus on the simple

closures described hereafter. Let us note v0 the rising velocity of a single, small spherical bubble

of diameter dp within an infinite medium at rest under gravity, according to Stokes’ law:

v0 =

(
ρα − ρβ

)
d2
p

18µβ
g (41)

Under the assumption that a local equilibrium can be reached over a short spatial length scale,

one can write an algebraic expression of the relative velocity according to Manninen & Taivassalo

(1996). Several cases are presented in this work:

• A constant relative velocity:

vr = v0 (42)

• In Brethour & Hirt (2009), the relative velocity is variable and linked to the pressure gradient

through:

vr =
Vp
Kp

α
(
ρα − ρβ

)
ρ

∇p (43)

where the drag coefficient Kp is computed as:

Kp =
1

2
Apρ

β

(
Cd|vr|+

24νβ

dp

)
(44)

with Ap = 1
4πd

2
p and Vp = 1

6πd
3
p the cross sections and volumes of the bubbles. To account for

the particle-particle interactions, the Richardson-Zaki correlation can be employed to compute

the effective relative velocity:

vreff = αζvr (45)

where ζ is computed using the Reynolds number Re = dp|vr|/νβ as:
Re < 1 ζ = 4.35/Re0.03

1 < Re < 500 ζ = 4.45/Re0.1

500 < Re ζ = 2.39

(46)
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To close (43), we use here ∇p = ρg in the separation case 4.1.1, assuming hydrostatic equi-

librium.

• Finally, we propose a relative velocity including a volume fraction gradient:

vr = v0 −K
∇α

α
(47)

where the coefficient K > 0 accounts for turbulent-like diffusion effects. The presence of a

gradient requires some numerical precautions: to avoid double summation that can lead to

instabilities, a second order SPH operator is used. Substituting (47) in (32), one gets:

dV αa
dt

= αa
dVa
dt
−
∑
b∈F

(αβv0)a|b · Sa|b +K
∑
b∈F

(β∇α)a|b · Sa|b (48)

The relative velocity contribution in the phase volume equation is divided in two parts: the

v0 part is treated as in (33) whereas the diffusion term in K is discretized separately as a

usual SPH Laplacian introduced by Morris et al. (1997):

dV αa
dt

= αa
dVa
dt
−
∑
b∈F

[
αaβb

[
v0,a|b · Sa|b

]−
+ αbβa

[
v0,a|b · Sab

]+]
+K

∑
b∈F

βa + βb
2

αa − αb
rab

rab · Sa|b
rab

(49)

3.7. CFL condition

The resolution of the phase volume equation (33) introduces a condition on the time step for

positivity of the phase volume (i.e. realizability of the numerical scheme). Let us consider the

relative velocity of general form (47). It is associated to the numerical Péclet number

Peσ =
vmaxσ

K
(50)

where vmax = max (|v0|) and σ is the kernel standard deviation described in Violeau & Leroy

(2014). Appendix B details the derivation of the sufficient condition that guarantees the positivity

of V α,n+1
a given the positivity of V α,na , V β,na :

CFL =
vmaxδt

σ
≤ ξ

(
η +

1

Peσ

)−1

(51)

The non-positivity of V α can trigger some instabilities so that this sufficient condition of positivity

is interpreted as a condition of stability. For an advection-diffusion of the volume fraction α along

the vertical axis, we got numerically ξ ≈ 1.1 and η ≈ 0.8 for Peσ ∈ [0.0012, 0.12] (optimized with

respect to the L1 norm of the relative error). The fitting curve is displayed in Figure 6.
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Figure 6: Advection-diffusion: limit of stability of the volume fraction profile (stability region below the curve).

3.8. Boundary conditions

In what follows, except in subsection 4.2, the volume fraction at boundaries is computed with

a Neumann condition using the following approximation:

αv =
∑
b∈F

V αb wab (52)

This value of the volume fraction of vertex particles is used in some of the operators described

above.

3.9. Time marching scheme

The detailed resolution of our system is as follows (particle labels are dropped here):

1. Relative velocity update using 3.6:

vr,n = g (ρn, αn, βn) (53)

2. Operator splitting for the momentum equation: velocity update

• Potential force step:

j∗ = jn + δt

[
− 1

ρn
∇pn + g

]
(54)
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• Viscous force step:

jn+1 = j∗ + δt

[
1

ρn
∇ · T ∗

]
with T ∗ = ρnνn

(
∇j∗ +t ∇j∗

)
(55)

3. Particle position update:

rn+1 = rn + δtjn+1 (56)

4. Total volume update using (37):

V n+1 = f(V n, rn, rn+1) (57)

5. Phase volume computations with (33) and (34):

V α,n+1 = V α,n + αn
(
V n+1 − V n

)
− δtV n∇ · (αnβnvr,n) (58)

V β,n+1 = V β,n + βn
(
V n+1 − V n

)
+ δtV n∇ · (αnβnvr,n) (59)

6. Computation of other flow features using 3.5:

mn+1, ρn+1, αn+1 (60)

7. Pressure computation using state equation (11):

pn+1 = p
(
αn+1, βn+1, ρn+1

)
(61)

To comply with the saturation condition (1), we deduce β = 1− α when needed in the implemen-

tation.

4. Numerical validation

All our application cases are two-dimensional with particles initially placed on a Cartesian

lattice.

4.1. Separation

The separation of liquid dispersions, the sedimentation in a settling tank, etc. are common

industrial separation problems. In this subsection, we investigate two applications of this separation

phenomenon illustrated in Figure 7. This test case is of particular interest to check the realizability

and conservativity of the numerical scheme.
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Figure 7: Separation case: initial and final states.

4.1.1. Separation of an oil-water dispersion

A vertical rectangular column (0.24 m×0.915 m) contains a mixture of oil of density ρα = 837

kg/m3 and demineralized water of density ρβ = 996 kg/m3, with an initial uniform volume fraction

of oil α0 = 0.3. The kinematic viscosities να = 10−6 m2/s and νβ = 1.5 10−6 m2/s are used for the

relative velocity computation. Sound speeds are set as cα = cβ = 45 m/s. The particle discretization

is δr = 0.005 m to have an accurate tracking of the interface position. In the momentum equation,

in order to stabilize the flow, we used higher viscosities, equal for both fluids να = νβ = 0.03

m2/s. As the mixture is assumed to remain in hydrostatic equilibrium, this should not influence

the result very much: particles have negligible motions and the separation is driven by the phase

volume equation that triggers phase exchanges between particles. Experimental and numerical

validation (Flow-3D R© software) are provided in Jeelani & Hartland (1998) and Brethour & Hirt

(2009), respectively. Flow-3D R© is a finite difference code based on structured meshes as described

in Freitas (1995). It uses a semi-implicit resolution of the continuity/momentum equation with

a first order convergence. For dispersed two-phase flow, it provides a mixture model similar to

the one exhibited in this paper with a volume-based formulation using a volume-weighted mixture

velocity (to automatically enforce incompressibility). This model together with the closure of

the relative velocity are described in Brethour & Hirt (2009) and detailed in (43). A switch of

the definition of the dispersed phase is done at the threshold α = 0.5, so that continuous and

dispersed phase are exchanged in the relative velocity definition. The relative velocity parameters

are dp = 1.2 mm and Cd = 0.7 (values used in Flow-3D R©). The temporal evolution of the separation

is displayed in Figure 8. We can observe the generation and motion of two clear interfaces until
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(a) t=0 s (b) t=50 s (c) t=100 s (d) t=150 s (e) t=200 s

Figure 8: Separation of an oil-water dispersion: density evolution through the decantation process.

complete separation of oil and water phases. Figure 9 shows the evolution of the positions of

these interfaces through the separation process, and shows good agreement with Flow-3D R© and

experimental results. Convergence is illustrated by the final interface position, located at 30% to

the top wall. The slowdown of the interface progression velocity around 50 s is reproduced, and

appeared to be linked to the switch of definitions of dispersed and continuous phases made at

α = 0.5 for the computation of the relative velocity.

4.1.2. Separation of an air-water mixture

A vertical rectangular column (1 m×2 m) contains a mixture of air of density ρα = 1.23 kg/m3

and water of density ρβ = 1000 kg/m3, with an initial volume fraction of air α0 = 0.5. As a first step,

high kinematic viscosities να = νβ = 0.03 m2/s are taken. Sound speeds are cα = cβ = 45 m/s. The

particle discretization is δr = 0.01 m. The relative velocity is set to 0.45 m/s. Figure 10(a) shows

that at convergence, both fluids are separated, and volume is conserved (the interface appears in the

middle of the domain). Once the separation is established, we observe some instabilities developing

near the interface, due to the pressure gradient computation, as highlighted in Figure 10(b). The

pressure gradient discontinuity is however well computed, as shown in Figure 11(a). One can see in

Figure 11(b) that there is a non negligible error at the interface, but also near the upper boundary

as pressure values are quite small (for the relative error computation, the minimum pressure in the

domain has been subtracted, as a constant pressure offset was present throughout the domain). In

the bulk of the fluid domain, the error is close to 1%, as expected in WCSPH.
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Figure 9: Separation of an oil-water dispersion: evolution of the upper and lower interface positions. Comparison of

experimental data of Jeelani & Hartland (1998) and numerical results (Flow-3D R© results are taken from Brethour

& Hirt (2009)).

(a) Global view (b) Focus on the interface

Figure 10: Separation of an air-water mixture: separated state.
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(a) Pressure profile (b) Relative error

Figure 11: Separation of an air-water mixture: pressure for the separated state.

4.2. Two-phase mixture Poiseuille flow

The computation domain is a rectangle of height 2e and length e, periodic along the x direction

as illustrated in Figure 12. The fluid is submitted to a longitudinal force F mimicking a pressure

gradient as in a Poiseuille flow. However, no gravity is introduced as it proved to trigger some small

instabilities in the velocities and pressure profiles (the gravity effect is all included in the definition

of the relative velocity). Starting from an homogeneous mixture α = α0 at rest, the flow should

converge towards the analytical dimensionless steady state4 detailed in Appendix C, obtained with

a relative velocity given by (47) at constant mixture kinematic viscosity να = νβ . The volume

fraction at vertices v of normal nv is computed thanks to a second order approximation method

for Robin boundary condition as detailed in Mayrhofer et al. (2013). The no-flux condition at the

boundary:

vr = 0 ←→ α (v0 · n)− ∂α

∂n
= 0 (62)

4Obtained with an incompressibility hypothesis.
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Figure 12: Two-phase mixture Poiseuille flow: initial and final states.

where n is the normal to the wall is approximated using:

αv =
∑
b∈F

V αb
∆v

(
Yv (1− (v0 · nv) (rvb · nv) /K)− Zv (rvb · nv)2

)
wvb (63)

∆v = XvYv − Z2
v (64)

Xv =
∑
b∈F

Vb (1− (v0 · nv) (rvb · nv) /K)
2
wvb (65)

Yv =
∑
b∈F

Vb (rvb · nv)4
wvb (66)

Zv =
∑
b∈F

Vb (1− (v0 · nv) (rvb · nv) /K) (rvb · nv)2
wvb (67)

This flow is analogous to a Rouse flow described in Rouse (1937) but with a rising instead of

settling velocity and constant turbulent coefficient K. The following parameters were used: e = 1

m, ρα = 1.23 kg/m3, ρβ = 1000 kg/m3, να = νβ = 0.03 m2/s. Sound speeds are cα = cβ = 1

m/s. Background pressure is set to pB = 250 Pa to avoid particle disorder near boundaries that

usually appears in Poiseuille flows. The particle discretization is δr = 0.01 m. Initially starting

with a uniform volume fraction distribution α0 = 0.05 and a fluid at rest, for F = 0.02 N and

Pe = 7.26 (K = 0.1 m2/s and dp = 0.2 m, values chosen arbitrarily to exhibit a steep volume

fraction gradient), one gets, after convergence, volume fraction and longitudinal velocity profiles

displayed in Figures 13 and 14. There is a very good agreement between analytical and numerical

solutions. Let us underline that the highest relative errors are obtained in zones where the volume

fraction or the mixture velocity are very small.

Convergence curves are displayed for the volume fraction and longitudinal velocity profiles in

Figures 15 and 16 respectively, plotting the instantaneous L2 relative error for the steady-state field
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(a) Volume fraction profile (b) Relative error

Figure 13: Two-phase mixture Poiseuille flow with constant kinematic viscosity: volume fraction at steady-state.

(a) Longitudinal velocity profile (b) Relative error

Figure 14: Two-phase mixture Poiseuille flow with constant kinematic viscosity: longitudinal velocity at steady-state.
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Figure 15: Two-phase mixture Poiseuille flow: convergence study on the volume fraction profile.

as a function of the dimensionless particle size δr/e. This relative error for a field A compared to

the analytical profile Ath is computed as:

||A−Ath||2
||Ath||2

=

√√√√√√√
∑
b∈F

(Ab −Ath (zb))
2

∑
b∈F

Ath (zb)
2

(68)

The convergence slope is approximately of order 1/2 for the volume fraction and 1 for the longi-

tudinal velocity. The upwind formulation of the phase volume equation might explain this weak

order of convergence for the volume fraction.

As a second step, one can consider a case with a varying mixture kinematic viscosity. Only the

longitudinal velocity profile is modified: its expression is detailed in Appendix C. All parameters

remain unchanged compared to previous configuration, except the viscosity να = 0.001 m2/s. We

get, after convergence, the longitudinal velocity profile displayed in Figure 17 (the volume fraction

profile is unchanged). Again, analytical and numerical solutions agree very well, even though, due

to slight discrepancies on the volume fraction profiles, one can notice that the velocities are a bit

smaller than expected in the upper part of the flow (the kinematic viscosity also varies with the

volume fraction in this case, and the largest absolute errors on the volume fraction are made in the

upper part of the flow, therefore influencing the shear stress, and consequently the quality of the
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Figure 16: Two-phase mixture Poiseuille flow: convergence study on the longitudinal velocity profile.

velocity profile).

4.3. Rayleigh–Taylor instability

The computation domain is a rectangle of height 2e and length e bounded by walls. As illustrated

in Figure 18, the fluid domain initially consists of two fluids of densities ρα = 1000 kg/m3 in

the lower part and ρβ = 1800 kg/m3 in the upper part, separated by an interface defined by

z = 1− 0.15 sin (2πx). To be consistent with the work of Grenier et al. (2009), both fluids have the

same kinematic viscosities ν = να = νβ = 2.381 10−3 m2/s and the gravitational acceleration is

taken to g = 1 m/s2. The homogeneous model is solved, i.e. without relative velocities. To compare

with the results from Grenier et al. (2009), a background pressure pB = 3.6 Pa is introduced within

a state equation of the form:

p =

(
αρα (cα)

2
+ βρβ

(
cβ
)2)

γ

[(
ρ

αρα + βρβ

)γ
− 1

]
+ pB (69)

where γ = 7 is the polytropic index. Sound speeds are cα = 14 m/s and cβ = 10 m/s to comply

with the idea used for example in (Colagrossi & Landrini, 2003) that one should choose values

such that ρα (cα)
2

= ρβ
(
cβ
)2

. As spurious fragmentation occurs at the interface between fluids, a

small repulsive force was added in the pressure gradient, following Grenier et al. (2009). This force
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(a) Longitudinal velocity profile (b) Relative error

Figure 17: Two-phase mixture Poiseuille flow with varying kinematic viscosity: longitudinal velocity profile at

steady-state.

consists of an additional term in the pressure gradient when the neighbouring particle belongs to

another phase. Its expression was extended to the mixture model:

Ga{pb} =
1

γaVa

∑
b∈F

(
V 2
a pa + V 2

b pb
)
∇wab

+ε
1

γaVa

∑
b∈F

(αaβb + αbβa)
(
V 2
a |pa|+ V 2

b |pb|
)
∇wab

(70)

where the factor (αaβb + αbβa) is equal to 1 when a and b belong to distinct phases, and 0 otherwise

as long as phases remain separated, as in this Rayleigh–Taylor case without relative velocity. The

relevance of this term for intermediate volume fractions is questionable. As suggested by Grenier

et al. (2009), ε is taken equal to 0.01. This test case aims at checking the numerical behaviour for

separated phases: the multi-fluid behaviour should be recovered. Figure 19 shows the temporal

evolution of the phases with the finest resolution (300 particles per unit length). Figure 20(a)

displays a convergence study of the shape of the interface at the adimensional time t∗ = t
√
g/e = 5

in which one can see the convergence of the interface shape. Figure 20(b) compares the finest

discretization interface with the one obtained in Grenier et al. (2009) with SPH and a Level-Set

model at equivalent discretizations, showing a good agreement. Some discrepancies can be observed
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Figure 18: Rayleigh–Taylor instability: initial and final states.

(a) t∗ = 0 (b) t∗ = 1.25 (c) t∗ = 2.5 (d) t∗ = 3.75 (e) t∗ = 5

Figure 19: Rayleigh–Taylor instability: light (blue) and heavy (red) phases evolution for a discretization of 300

particles per unit length.

in the curling up region of the mushroom-shaped heads.

Introducing a constant relative velocity (42) chosen arbitrarily with dp = 0.07 m, interfaces first

diffuse and rapidly converge towards a separated state as in section 4.1. Simulations without and

with relative velocity are displayed in Figure 21. One can see that without relative velocity (i.e.

configuration equivalent to the multi-fluid model), phases are not fully separated as some drops

remain in both phases and are under-resolved because of the size of SPH particles (a steady state is

not reached even at t∗ = 500 even though phases are then more clearly separated). An inaccurate

pressure gradient computation for those small size structures might explain this behaviour, making

our mixture approach useful in such circumstances.
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(a) Convergence study (b) Comparison with Grenier et al. (2009)

Figure 20: Comparison of the interfaces for the Rayleigh–Taylor instability case at t∗ = 5. On the left, a convergence

study is displayed for 75 (red line), 150 (blue line) and 300 (black line) particles per unit length. On the right, a

comparison is made between Level-Set (red line) and SPH (blue line) results of Grenier et al. (2009) and the present

SPH model (black line) for the same resolution.
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(a) t∗ = 0 (b) t∗ = 6.25 (c) t∗ = 12.5 (d) t∗ = 18.75 (e) t∗ = 25 (f) t∗ = 31.25 (g) t∗ = 37.5 (h) t∗ = 43.75 (i) t∗ = 50

(a) t∗ = 0 (b) t∗ = 6.25 (c) t∗ = 12.5 (d) t∗ = 18.75 (e) t∗ = 25 (f) t∗ = 31.25 (g) t∗ = 37.5 (h) t∗ = 43.75 (i) t∗ = 50

Figure 21: Rayleigh–Taylor instability: evolution of the volume fractions from the light (blue) to heavy (red) phases

without (upper series) and with (lower series) relative velocity for a discretization of 300 particles per unit length.

4.4. Limits of the mixture model: a sand dumping case

In this section, the performances of the presented mixture model are assessed on a case of

sand dumping described in (Shi et al., 2017). This case implies enriched physics compared to the

previous sections, with the presence of a free surface and a physically-based relative velocity closure.

α denotes the sediment phase, and β the water phase. The configuration is a square water tank

(1 m×1 m) with a free surface as described in Figure 22. In the middle of the domain, just under

the free surface, a sand block is released initially with a volume fraction α0 equal to the maximum

sediment concentration. Many different configurations were considered by (Shi et al., 2017) but

we will focus on the tests for which experimental results are available. The sand cloud is initially

W0 = 2 or 4 cm wide and H0 = 2.5 cm high. The three sizes of sediment dp considered are 0.8

mm, 1.3 mm and 5 mm that correspond roughly to settling velocities of 12.6 cm/s, 19.61 cm/s and

49.52 cm/s, respectively. The particle discretization is δr = 0.005 m.

In order to have a fair comparison with the two-fluid approach developed in (Shi et al., 2017),

several changes were introduced to deal with the complete physics of this case:
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Figure 22: Sand dumping: sand cloud features.

• Computation of the sediment viscosity following Alihan and Sleath’s formula (Alihan & Sleath,

1987):

να = 1.2
ρβ

ρα

[(αsm
α

) 1
3 − 1

]−2

νβ (71)

where αsm is the maximum sediment volumetric concentration, that was set to 0.607 in our

computations (instead of 0.606 in (Shi et al., 2017)) to avoid singularity of the viscosity at

the initialization (indeed the sediment cloud starts at this concentration initially).

• Computation of a turbulent viscosity, added to the physical one, following a Smagorinsky

model5:

νt = (Cδr)
2 ||S||

(
1− α

αsm

)n
(72)

where C = 0.1 and n = 5. Please note that we are using here the mixture rate-of-strain tensor

defined as:

S =
1

2

(
∇j +t ∇j

)
and ||S|| =

√
2S : S (73)

that differs from the phase rate-of-strain tensors used for distinct phase turbulent viscosities

computations in (Shi et al., 2017). Moreover, a sensitivity analysis has been conducted in

(Shi et al., 2017) to optimize the results with adequate choice of the Smagorinsky coefficients

and power law, choices that might not be optimal in the framework of our mixture model.

5Some prefer using the smoothing length h in place of δr. It is a matter of convenience about the definition of C.

However, we emphasize that, following (Dehnen & Aly, 2012), h is meaningless and should be replaced by the kernel

standard deviation.
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• A relative velocity closure is deduced from (Shi et al., 2017) continuous equations. It includes

the drag effect, an hindering factor computed with Richardson and Zaki formula (Richardson

& Zaki, 1997) and a turbulent diffusion of volume fraction based on a gradient transport law:

vr =
4

3

β2.65
(
ρα − ρβ

)
dp

ρβCD||vr||
∇p

ρ
− νt

Sc

∇α

αβ
(74)

where the drag coefficient is computed according to the Reynolds number Re = ||vr||dp/νβ

following:

CD =

 24
Re

(
1 + 0.15Re0.687

)
if Re < 1000

0.44 if Re ≥ 1000
(75)

Iterations are made to converge to a well-defined value of the relative velocity, due to the

implicit relation implied by the drag. The Schmidt number Sc is taken equal to 1.

• Combining the momentum equations of both phases under the constant phase density hypoth-

esis, one can obtain a momentum equation for the mixture, distinct from (9). The pressure

gradient term is modified and a convective transfer term appears. The additional viscous

terms are neglected, as they trigger some unphysical behaviours at the beginning of the simu-

lation and do not change the results described in this paper. Hence equation (9) was changed

into:
dj

dt
= −

(
α

ρα
+

β

ρβ

)
∇p+

1

ρ
∇ · T + g −∇ · (αβvr ⊗ vr) (76)

A different state equation is used in (Shi et al., 2017) but the tests made did not highlight any

significant modification of the following results. One can follow temporally the evolution of the

cloud, defined as the particles with a sediment volume fraction α equal to at least 5% of the

maximum value in the domain at the considered instant, through its vertical position Z, its width

W and its frontal velocity wc. Moreoever, one can follow the free surface fluctuations at the release

point zw: this must be handled with care however, as the flucutations after the initial jump are of the

order of the particle size. The adimensionalization coefficients used in the graphs are L0 =
√
W0H0

and u0 =
√

(α0ρα + (1− α0) ρβ) gL0/ρβ .

Numerical results of the mixture model are compared with SPH results of (Shi et al., 2017)

and experimental results of (Nakasuji et al., 1990) for the frontal velocity of the cloud in Figures

23 and 24 and for the cloud width in Figures 25 and 26. The frontal velocity is overestimated in

the late time of the simulation, once the initial transient is passed, even though there is an overall
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Figure 23: Comparison of the cloud frontal velocity for the mixture model, (Shi et al., 2017) numerical results and

(Nakasuji et al., 1990) experimental results for dp = 0.8 mm and W0 = 2 cm.

good trend. The cloud falls more rapidly than in (Shi et al., 2017), especially for large sediments

(i.e. large relative velocities). The cloud width is correctly reproduced for small sediments in the

first moments of the fall, until Z = 4L0, then the model fails at reproducing the change of slope

with an increase of the cloud width growth. Figure 27 displays the comparison of the free surface

fluctuations: they are well reproduced. Cloud repartition is displayed in Figure 28. The two-phase

model of (Shi et al., 2017) predicts a double-peak turbidity distribution (two symmetrical cores) of

the sediment cloud (no experimental evidence found). The mixture model fails at reproducing this

topology: only one turbidity core is detected, at least at low resolution. With a discretization twice

finer, a double-peak configuration appears as highlighted in Figure 29. According to (Nguyen et al.,

2012), vorticity is largely underestimated with a single-phase model: the absence of recirculation

within the lower part of the cloud prevents any separation of the cloud. It can also explain that

the cloud falls more rapidly with the mixture model, without any recirculation slowing down the

progression of the cloud.

5. Conclusion

In this paper, a two-phase SPH mixture model suited to high density ratios was introduced.

Thanks to a finite volume-like reasoning, a realizable numerical scheme, conservative with respect
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5. CONCLUSION

Figure 24: Comparison of the cloud frontal velocity for the mixture model, (Shi et al., 2017) numerical results and

(Nakasuji et al., 1990) experimental results for dp = 5 mm and W0 = 2 cm.

Figure 25: Comparison of the cloud width for the mixture model, (Shi et al., 2017) numerical results and (Nakasuji

et al., 1990) experimental results for dp = 1.3 mm and W0 = 4 cm.
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Figure 26: Comparison of the cloud width for the mixture model, (Shi et al., 2017) numerical results and (Nakasuji

et al., 1990) experimental results for dp = 5 mm and W0 = 4 cm.

Figure 27: Comparison of the fluctuations of the free surface for the mixture model and (Shi et al., 2017) numerical

results for dp = 0.8 mm and W0 = 2 cm.
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(a) Mixture model (b) (Shi et al., 2017)

Figure 28: Comparison of the sediment clouds at t = 1 s for dp = 0.8 mm and W0 = 2 cm.

Figure 29: Sediment cloud for the finest resolution δr = 0.0025 m, dp = 0.8 mm and W0 = 2 cm.
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to the relative velocity contribution, has been derived. It proved to give good results for several test

cases. Separation cases were proposed to check that conservation and realizability were achieved,

while the accuracy of the model was investigated with a two-phase mixture Poiseuille flow. A

Rayleigh–Taylor instability case was also tested. The results are overall satisfactory. Limits of the

model have been highlighted by a sand dumping case for which the model failed at reproducing

the correct falling velocity and topology of a sand cloud at a given discretization compared to a

two-velocity approach. The pressure gradient computation for high density ratios needs more inves-

tigation: indeed, the multi-fluid operator did not appear sufficient to prevent numerical instabilities

close to the interface in the separation cases. A momentum equation consistent with the volume-

based formulation shall also be further investigated. Second order schemes using slope limiters can

be studied to improve the convergence order.

Appendix A. Volume diffusion

We follow the derivation of Brezzi & J. Pitkäranta (1984), but apply it to the volume equation

(18) instead of the density equation. Using the momentum equation (9), the discrete volume

equation writes:

V n+1
a − V na

δt
= V na Da{jn+1

b }

≈ V na Da{jnb −
δt

ρna
Ga{pnb }+

δt

ρna
ρnag}

≈ V na Da{jnb }

−V na Da{
δt

ρna
Ga{pnb } − δtGa{g · rnb }}

(A.1)

where Da and Ga stands for the discrete divergence and gradient operators and δt the time step.

Using the Laplacian operator La, which is slightly different from the divergence of a gradient in

SPH, the volume diffusion term Fa writes:

Fa = VaLa{
δt

ρb
, pb} − VaLa{δt, g · rb} (A.2)

It is written discretely as

Fna = 2Vaδt
∑
b

Vb
1

rab

(
2

ρa + ρb
(pa − pb)− g · rab

)
∇wab (A.3)
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VOLUMES

The easiest approach is now to introduce the usual volume diffusion in both V α and V β equations,

but weighted respectively by α and β. The new phase volumes computed by (33) and (34) being

denoted V α,∗, V β,∗, using a volume diffusion coefficient Λ (generally Λ = 0.1), we finally write at

time n+ 1:

V α,n+1
a = V α,∗a +

δt

γa
ΛαnaFna (A.4)

V β,n+1
a = V β,∗a +

δt

γa
ΛβnaFna (A.5)

Appendix B. Derivation of a condition for positiveness of phase volumes

In the following, the particle a considered is far from boundaries (no boundary term) and we

neglect the volume diffusion term. We search for a sufficient condition of realizability of the phase

volume using equation (49):

dV αa
dt

= αa
dVa
dt
−
∑
b

[
αaβb

[
v0,a|b · Sa|b

]+
+ αbβa

[
v0,a|b · Sa|b

]−]
+K

∑
b

βa + βb
2

αa − αb
rab

rab · Sa|b
rab

(B.1)

Let us note

φ (r) = −2
r ·∇w

r2
so that φab = −2

rab ·∇wab
r2
ab

≥ 0 (B.2)

Replacing α, β and Sa|b by their definitions:

dV αa
dt

=
V αa
Va

dVa
dt
− 2
∑
b

[
V αa V

β
b

[
v0,a|b ·∇wab

]+
+ V αb V

β
a

[
v0,a|b ·∇wab

]−]
−1

2
K
∑
b

(
VbV

β
a + VaV

β
b

)(V αa
Va
− V αb

Vb

)
φab

(B.3)

Using V β = V − V α:

dV αa
dt

=
V αa
Va

dVa
dt
− 2
∑
b

[
V αa V

β
b

[
v0,a|b ·∇wab

]+
+ V αb V

β
a

[
v0,a|b ·∇wab

]−]
−K

∑
b

((
1− αa

2

)
VbV

α
a −

(
1− αb

2

)
VaV

α
b

)
φab

(B.4)
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Discretizing temporally (V n+1
a is taken as an input here, computed separately before, its factor is

explicit):
V α,n+1
a − V α,na

δt
=
V α,na

V na

V n+1
a − V na

δt

−2
∑
b

[
V α,na V β,nb

[
v0,a|b ·∇wnab

]+
+ V α,nb V β,na

[
v0,a|b ·∇wnab

]−]
−K

∑
b

((
1− αna

2

)
V nb V

α,n
a −

(
1− αnb

2

)
V na V

α,n
b

)
φnab

(B.5)

Rearranging and using [x, 0]
−

= − [−x, 0]
+

, we finally get:

V α,n+1
a = V α,na

[
V n+1
a

V na
− δt

∑
b

V nb

(
βnb
[
2v0,a|b ·∇wnab

]+
+K

(
1− αna

2

)
φnab

)]

+δt
∑
b

V α,nb

(
V β,na

[
−2v0,a|b ·∇wnab

]+
+K

(
1− αnb

2

)
V na φ

n
ab

) (B.6)

If we assume V α,n > 0 and V β,n > 0 for every particle (therefore V n > 0), then we have V α,n+1 > 0

(and symmetrically V β,n+1 > 0) under the condition that:

δt
∑
b

V nb

(
βnb
[
2v0,a|b ·∇wnab

]+
+K

(
1− αna

2

)
φnab

)
≤ V n+1

a

V na
(B.7)

as the second term of the left hand side of equation (B.6) is always positive.

We now search for an upper bound of the left hand side term of the unequality (B.7). One can

first write:

δt
∑
b

V nb

([
2v0,a|b ·∇wnab

]+
+Kφnab

)
≤ V n+1

a

V na
(B.8)

In the continuous interpolation framework, we have according to Violeau & Leroy (2014):∫
Ω

φ (r) dr ∼ 2

σ2
(B.9)

with the kernel standard deviation σ =
√

5
18h for the C2 Wendland kernel in 2 dimensions.

Noting vmax = max (|v0|), an upper bound can be written:

δt

(
η
vmax

σ
+
K

σ2

)
≤ ξ V

n+1
a

V na
(B.10)

where η and ξ are unknown. Volumes do not vary a lot so that we may consider that the ratio

V n+1
a /V na is close to 1. Noting Peσ the Péclet number

vmaxσ

K
, one can deduce an approximate

upper bound to the CFL coefficient:

CFL =
vmaxδt

σ
≤ ξ

(
η +

1

Peσ

)−1

(B.11)
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FLOW

Appendix C. Analytical solution of the two-phase mixture Poiseuille flow

At steady state, the system of equations to solve (8) and (9) becomes:

∇ · (αβvr) = 0 (C.1)

−1

ρ
∇p+

1

ρ
∇ ·

(
ρν
(
∇j +t ∇j

))
+ g = 0 (C.2)

Under the longitudinal periodicity condition and projecting the momentum equation along the

longitudinal axis, this system becomes:

d

dz
(αβvr · ez) = 0 (C.3)

d

dz

(
ρν

d

dz
j · ez

)
= 0 (C.4)

No-flux condition at boundaries implies that at steady state equation (C.3) becomes after integra-

tion:

vr · ez = v0 · ez −K
dα

dz
= 0 (C.5)

In the simplified momentum equation (C.4), ρ = αρα + βρβ and ν = ανα + βνβ are variable and

depend on the volume fraction solution of equation (C.5). The adimensionalized solution for a

constant kinematic viscosity ν = να = νβ writes:

• Volume fraction

α (z∗) = α1 exp (Pe z∗) (C.6)

• Longitudinal velocity

j∗(z∗) =
3

2

(
1− z2

∗
)

+
3

Pe2

[
Li2,r (z∗) + Pe z∗ lnr (z∗) + C1

(
Pe2z∗ + Pe lnr (z∗)

)
+ C2

] (C.7)

where z∗ = z/e, j∗ = j · ex/U with U = ρβFe2/
(
3µβ

)
(discharge for the usual single-fluid

Poiseuille flow), r =
(
ρα − ρβ

)
/ρβ and Pe = e|v0|/K the Péclet number. We used the nota-

tions lnr (z∗) = ln (1 + α1r exp (Pe z∗)) and Li2,r (z∗) = Li2 (−α1r exp (Pe z∗)) where Li2 is the
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dilogarithm function6. C1 and C2 are deduced from the no-slip condition at walls:

C1 =
−Li2,r (1) + Li2,r (−1)− Pe (lnr (1) + lnr (−1))

2Pe2 + Pe (lnr (1)− lnr (−1))
(C.8)

C2 =
[Pe lnr (1) + Li2,r (1)] [lnr (−1)− Pe]

2Pe+ lnr (1)− lnr (−1)

+
[Pe lnr (−1)− Li2,r (−1)] [lnr (1) + Pe]

2Pe+ lnr (1)− lnr (−1)

(C.9)

α1 is computed thanks to the conservation of volume:

α1

α0
=

Pe

sinh (Pe)
(C.10)

To avoid complete separation of phases, (C.6) gives a condition on α1:

0 ≤ α1 ≤ exp (−Pe) (C.11)

And therefore a condition on the initial uniform volume fraction α0 using (C.10):

0 ≤ α0 ≤
1− exp (−2Pe)

2Pe
(C.12)

As a second step, one can consider a case with a varying mixture kinematic viscosity. Noting

R =
(
να − νβ

)
/νβ , only the longitudinal velocity profile is modified:

j∗(z∗) =
3

2

(
1− z2

∗
)

+
3

(R− r)Pe2
[Pe (R lnR (z∗)− r lnr (z∗)) z∗

+RLi2,R (z∗)− rLi2,r (z∗)− r lnR (z∗) + r lnr (z∗)

+C1

(
(R− r)Pe2z∗ − Pe (R lnR (z∗) + r lnr (z∗))

)
+ C2

]
(C.13)

where the additional notations lnR (z∗) = ln (1 + α1R exp (Pe z∗)) and Li2,R (z∗) = Li2 (−α1R exp (Pe z∗))

are used. C1 and C2 are deduced from the no-slip condition at walls:

C1 =
− (r + PeR) lnR (−1) + r (Pe+ 1) lnr (−1)

2 (R− r)Pe2 − Pe (R (lnR (1)− lnR (−1)) + r (lnr (1)− lnr (−1)))

+
−R (Li2,R (1)− Li2,R (−1)) + r (Li2,r (1)− Li2,r (−1))

2 (R− r)Pe2 − Pe (R (lnR (1)− lnR (−1)) + r (lnr (1)− lnr (−1)))

+
(r − PeR) lnR (1) + r (Pe− 1) lnr (1)

2 (R− r)Pe2 − Pe (R (lnR (1)− lnR (−1)) + r (lnr (1)− lnr (−1)))

(C.14)

6Li2(x) = −
∫ x

0

ln(1− t)
t

dt. If |x| ≤ 1, the series expression writes Li2(x) =
∑
n

xn

n2
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C2 = −C1

[
(R− r)Pe2 − Pe (R lnR (1) + r lnr (1))

]
−Pe [R lnR (1)− r lnr (1)]−RLi2,R (1) + rLi2,r (1) + r lnR (1)− r lnr (1)

(C.15)
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Grenier, N., Antuono, M., Colagrossi, A., Touzé, D. L., & Alessandrini, B. (2009). An Hamilto-

nian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational

Physics, 228 , 8380–8393. doi:10.1016/j.jcp.2009.08.009.

45

http://dx.doi.org/10.1111/j.1365-2966.2012.21439.x
http://dx.doi.org/10.1103/PhysRevE.67.026705
http://dx.doi.org/10.1016/j.cpc.2016.09.009
http://dx.doi.org/10.1115/1.2817132
http://dx.doi.org/10.1142/S0218202504003404
http://dx.doi.org/10.1016/j.jfluidstructs.2016.05.012
http://dx.doi.org/10.1016/j.jfluidstructs.2016.05.012
http://dx.doi.org/10.1016/j.jcp.2009.08.009


REFERENCES REFERENCES

Hirt, C. W., & Nichols, B. D. (1981). Volume of Fluid (VOF) method for the dynamics of free bound-

aries. Journal of Computational Physics, 39 , 201–225. doi:10.1016/0021-9991(81)90145-5.

Ishii, M., & Hibiki, T. (2011). Thermo-fluid dynamics of two-phase flow – Second Edition. chapter

5,13. Springer.

Jeelani, S. A. K., & Hartland, S. (1998). Effect of dispersion properties on the separation of batch

liquid-liquid dispersions. Industrial & Engineering Chemistry Research, 37 , 547554. doi:10.1021/

ie970545a.

Kwon, J., & Monaghan, J. J. (2015). Sedimentation in homogeneous and inhomogeneous flu-

ids using SPH. International Journal of Multiphase Flow , 72 , 155–164. doi:10.1016/j.

ijmultiphaseflow.2015.02.004.

Labois, M. (2008). Modélisation des déséquilibres mécaniques dans les écoulements diphasiques :
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