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Long-range spin jump diffusion revealed by dynamic light scattering
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Spatiotemporal spin noise spectroscopy is combined with dynamic light scattering in order to reach spatial
resolutions down to ∼λ/10. Applied to a system of localized electron spins, an insulating n-doped CdTe layer,
this allows us to reveal long spin jump distances � ∼ 2.7 μm. Spin noise spectra at large wave vectors q (q� � 1)
provide a snapshot of the spin dynamics before jump (therefore not affected by spin motion), while at smaller q,
spin motion sets in. This allows us to unravel the contributions of spin-orbit and hyperfine fields in the electron
spin relaxation and to determine self-consistently all parameters relevant to the spin dynamics. We propose a
phenomenological equation inspired by studies of atomic jump diffusion by neutron scattering, which includes
the relevant spin relaxation mechanisms and the effect of time of flight of the spin fluctuation across the laser
spot. This modeling reproduces all experimental results.
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I. INTRODUCTION

Donor electron spins in semiconductors are being actively
studied as they hold great promise in the context of quantum
technologies [1–3]. Such spins are among the most coherent
quantum systems in the solid state and can be efficiently
exploited by using advanced semiconductor technology [4,5].
Long-distance displacement of individual electron spins is
another key ingredient for scalability in a spin-based semi-
conductor quantum circuit. This is one option to perform
long-range interaction between distant spin qubits [6,7]. It
has been proposed to move the electron spin coherently over
large distances in a well-defined tunnel coupled array of
empty donors or dots. In practice, this has been realized in
quantum-dot arrays containing up to four electrostatic dots in
GaAs/GaAlAs heterostructures, with size not exceeding a few
micrometers [8–10].

In this paper, we demonstrate spontaneous spin jumps be-
tween donors separated by a few micrometers in a many-body
interacting disordered spin system formed by isolated donors.
Although the jumps are, in this situation, uncontrolled, under-
standing the underlying mechanisms will open new prospects
for coherent long-distance displacement of spins in semicon-
ductors and help to determine to what extent unwanted jumps
can be suppressed.

Experimentally, we reveal the jump-diffusion regime by
passively probing the stochastic spin fluctuations at ther-
mal equilibrium with off-resonant light. This noise-based
approach, issuing from atomic physics [11–13] and quantum
optics [14–16], has been also actively developed in semicon-
ductors since 2005 [17,18]. In these materials, homodyne and
heterodyne detection opened the route to nearly perturbation-
free measurements [19–21]. Different theoretical proposals
have pointed out the interest in probing spatial spin correla-
tions both in semiconductors [22–24] and in cold fermionic

gases [25]. Recently, we experimentally realized spatiotem-
poral spin noise spectroscopy applied to semiconductors
(ST-SNS) and obtained the wave-vector-resolved dynamical
spin response function of electrons [26,27]. Here, we further
extend the accessible range of wave vectors q in the spirit of
dynamic light scattering. This allows us to go beyond the q
values which have been explored so far [28–33]. This way,
we clearly reveal a deviation from the classical q2 diffusion
law and observe a plateau at large q; these findings are the
signature of the jump-diffusion regime.

Jump diffusion is a stochastic process that involves both
discrete jumps and continuous motion. It finds applications in
many different fields ranging from physics [34,35] to epidemi-
ology [36], biology [37,38], and risk management in financial
markets [39,40]. In condensed matter physics, jump-diffusion
processes control, e.g., the atomic diffusion in crystals and in
some liquids, such as water and lead [41,42]. Because jump
diffusion normally occurs at the atomic scale, it has been
extensively studied by means of quasielastic neutron scatter-
ing [43,44]. We rely on this large body of work to develop
below a model which gives the first complete description of
spatiotemporal spin dynamics in an ensemble of disordered
localized spins.

Among the presently investigated materials it has been
suggested that wide-gap II-VI semiconductors combine most
of the advantages of solid-state systems [45–47]: high natural
abundance of isotopes with zero nuclear spins, which also
permits isotopic purification and reduction of decoherence of
electron spins due to hyperfine interaction [48]; a direct band
gap allowing for an efficient spin-photon entanglement; and
large binding energies which confer high thermal stability
to donor-bound electrons. Long spin coherence T2 times up
to 50 μs, a prerequisite for quantum computing, have been
measured, for example, in ZnO [47] and could be further
extended with isotope purification. In fluorine-doped ZnSe,
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inhomogeneous spin dephasing times up to 33 ns were ob-
served below 40 K [45].

We demonstrate jump diffusion in an insulating n-CdTe
sample by resolving effective spin jumps over distances � ∼
2.7 μm. ST-SNS alone is not sufficient for this task because
high spatial frequencies are cut, due to the finite resolution of
the imaging system [26]. This hurdle is bypassed if the dy-
namically scattered light is collected in an arbitrary direction.
Here, we combine three detection schemes: classical SNS
(q = 0 in forward scattering), ST-SNS (q � 3 μm−1), and
backscattering SNS (qb = 4πn/λ � 50 μm−1, with n being
the refractive index and λ being the wavelength). High spatial
frequencies up to qb become accessible, corresponding to a
spatial resolution ∼λ/10.

In the next section we present our model for the wave-
vector-resolved spin noise spectra. There, we derive a
phenomenological equation, which incorporates the structure
factor necessary to account for the light scattering in an
arbitrary direction, and the different spin decoherence mech-
anisms. Section III is devoted to the experimental results and
their analysis with the model developed in Sec. II. Finally, we
conclude in Sec. IV.

II. WAVE-VECTOR-RESOLVED SPIN NOISE SPECTRA
IN THE RANDOM-WALK APPROACH

Our calculation is inspired by previous theories [41,42,49–
52]. In the same spirit, we compute the spin polarization decay
within a random-walk approach and express it as an infinite
sum over the number of spin jumps between localized sites.
Our approach, unlike theories aimed at calculating the spin
resonance or spin noise line shapes, introduces the optical
phase factor due to light scattering at a finite angle.

A. Phase coherence decay

The decay of phase coherence of electron spin rotation
is calculated in the presence of jump diffusion taking into
account the jump length distribution.

1. The random-walk description

We first recall the main lines of the random-walk model for
the decay of phase coherence of rotating spins which perform
jumps in an ideal crystal lattice [50]. The spins precess with
the Larmor frequency ω0 under the influence of an exter-
nal magnetic field. The phase coherence of the rotation of
different spins is gradually diminished through the random
orientation of nuclear fields at different sites. In the presence
of spin jump diffusion, the individual spins sense more or
less averaged nuclear fields, depending on the jump rate. The
decay of the polarization is reduced compared with the case
of no diffusion; that is, motional narrowing occurs. The basic
feature of the model is a separation of the polarization decay
P(t ) into the contribution of a fixed number of generalized
jumps,

P(t ) =
∞∑

l=0

Rl (t ). (1)

Rl (t ) is the contribution to the polarization decay of all
spins which have made l jumps until the time t . The initial
condition is P(t = 0) = 1. In particular, we have

R0(t ) = P0(t ) exp(−t/τc), (2)

where τc is the residence time at each site and exp(−t/τc)
is the probability that the spin has performed no jump until
t . P0(t ) = exp(− 1

2σ 2t2) is the decay of the phase coherence
due to the Gaussian distribution (σ 2 second moment) of spin
precession frequencies at different localized sites and given by
the ensemble average over many spins. If we assume no cor-
relations between the precession frequencies at different sites,
the ensemble average can be performed at each jump, and the
decay of phase coherence at each step can be calculated as a
function of R0(t ); we have, after one jump,

R1(t ) =
∫ t

0
dt ′R0(t − t ′)

1

τc
R0(t ′), (3)

and after l jumps

Rl (t ) =
∫ t

0
dt ′R0(t − t ′)

1

τc
Rl−1(t ′), (4)

and the series in Eq. (1) is summed up by the integral equation

P(t ) = R0(t ) + 1

τc

∫ t

0
dt ′R0(t − t ′)P(t ′). (5)

The integral equation can be solved by Laplace transfor-
mation

P̃(s) = R̃0(s)
∞∑

l=0

(
1

τc
R̃0(s)

)l

= R̃0(s)

1 − 1
τc

R̃0(s)
, (6)

where P̃(s) and R̃0(s) are given by

P̃(s) =
∫ ∞

0
dt exp(−st )P(t ), (7)

R̃0(s) =
∫ ∞

0
dt exp(−st )R0(t ) (8)

=
√

π√
2σ

exp

[
(s + 1

τc
)2

2σ 2

]
erfc

(
s + 1

τc√
2σ

)
. (9)

R̃0(s) can be conveniently expressed with the Faddeeva func-
tion, for which efficient implementations exist for numerical
calculations,

W (z) = e−z2
erfc(−iz) (10)

so that

R̃0(s) =
√

π√
2σ

W
(

i(s + 1
τc

)
√

2σ

)
. (11)

P̃(s) is related to the spin noise spectrum S(ω),

S(ω) = 1

π
Re{P̃[s = i(ω − ω0)]}. (12)

An angular rotation Rso occurs from the jump event when
spin-orbit coupling is present. In the case where all angular
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rotations due to spin orbit are the same at each spin jump,
Eq. (6) becomes [51]

P̃(s) = R̃0(s)
∞∑

l=0

Rl
so

(
1

τc
R̃0(s)

)l

(13)

= R̃0(s)

1 − Rso
1
τc

R̃0(s)
, (14)

where Rso = 1 − 4
3 sin2( γ

2 ) for the spatially averaged spin-
orbit rotation.

One can incorporate an intrasite relaxation independent
of hopping by multiplying the right-hand side of Eq. (2) by
exp(−νst ), with νs being the intrasite spin relaxation rate.
Thus, with an intrasite relaxation, R̃0(s) becomes R̃0(s + νs).

2. Optical phase factor

In the following we will introduce the effect of a spatial
phase factor which appears when the spin system is probed
at scattered angles, i.e., when the signal is detected in a di-
rection different from that of the incident light. This kind of
configuration of noise measurement is usually called dynamic
light scattering (DLS) measurement. The spatial phase factor
comes from “interferences” between the incident light and the
scattered light; it is then equal to the relative optical phase
between the incident and scattered fields. A particle at a given
position ri scatters the incident plane wave, initially propagat-
ing in the direction u0, in all directions. When detected far
from the sample at a position rd, the scattered light has an ad-
ditional phase factor e−iq·ri , which is equal to 1 when detected
in the direction of the incident light, where q = q0 − qd, with
q0 and qd being the incident and scattered wave vectors,
respectively. q = 4π

λ
sin( θ

2 ), with θ = acos( u0·(rd−ri )
|u0||(rd−ri )| ). Thus,

when a particle at a given time t and at a given position ri

jumps to another position at another time, its phase changes;
then the phase coherence diminishes at each jump. This results
in an additional broadening of the line described by Eqs. (6)
or (13), which contains the spatial jump structure.

The Kehr-Richter-Honig model described in Sec. II A 1
has been developed assuming a uniform lattice, but it is valid
(except for the inclusion of the spin-orbit coupling) for jumps
with different lengths while the system is probed in trans-
mission. We revisit the steps of the random-walk description
leading to Eq. (6) taking into account the spatial distribution of
jumps and the optical spatial phase factor appearing in a DLS
measurement. Let us consider that the jumps occur between
a given site and N others. A spin at a position ri can jump
to N other positions ri + dν , where dν (ν = 1, 2, . . . , N) is a
set of N jump vectors connecting the site with the others. The
jump rate from a site ri to a site ri + dν is �ν . We assume that
the spatial structure of the jumps is the same whatever the site
position, i.e., a spin initially at ri after one jump will occupy
N different sites at ri + dν depending on the jump rates and
after a second jump it will occupy ∼N2/2 sites at positions
ri + dν + dν ′ (ν, ν ′ = 1, 2, . . . , N) (the factor 1/2 accounts
for the fact that the same site can be reached by two different
paths). At a site a spin spends a time τc with 1/τc = ∑N

ν=1 �ν ,
and the time required to jump from site to site is neglected.
For zero jump, Eq. (2) remains unchanged, but after one jump
we have to take into account the phase variation δφ = q · dν

due to the spatial displacement dν of the spin; then Eq. (3)
becomes

R1(t ) =
∫ t

0
dt ′R0(t − t ′)

N∑
ν=1

�νe−iq·dν R0(t ′) (15)

= τc

N∑
ν=1

�νe−iq·dν

∫ t

0
dt ′R0(t − t ′)

1

τc
R0(t ′) (16)

and the Laplace transform of the series in Eq. (1) is written as

P̃(s) = R̃0(s)
∞∑

l=0

(
τc

N∑
ν=1

�νe−iq·dν
1

τc
R̃0(s)

)l

(17)

= R̃0(s)

1 − [1 − τc�(q)] 1
τc

R̃0(s)
, (18)

with R̃0(s) given by Eq. (8) and �(q) being the Fourier
transform of the transition rate matrix �i,i′ , �(q) =∑

i,i′ �i,i′e−iq·(ri−ri′ ) = ∑N
ν=1 �ν (1 − e−iq·dν ). �i,i′ satisfy the

master equation of the conditional probability P(rit | 00) of
finding a particle at site ri at time t when it was at site 0 at
time 0,

d

dt
P(rit | 00) =

∑
i′

�i,i′P(ri′t | 00), (19)

with

�i,i′ =

⎧⎪⎨
⎪⎩

∑
ν �ν if ri = ri′

−�ν if ri − ri′ = dν

0 otherwise.

The master equation has a convolution form which takes a
more practical form in Fourier space,

d

dt
P(q, t ) = −�(q)P(q, t ), (20)

where P(q, t ) = ∑
i eiq.ri P(rit | 00) = e−�(q)t .

The form of �(q) has been calculated for various situ-
ations such as atom or molecule diffusion in solids or in
liquids. One can name the well-known models of Chudley-
Elliott (CE) [41], Singwi-Sjölander (SS) [42], and Hall-Ross
(HR) [53], largely used in neutron scattering theories and ex-
periments in liquids. These models are called jump-diffusion
models where the particle is in its equilibrium position for
a mean time τc and then diffuses by continuous motion for
a mean time τd . When τc � τd , the diffusion takes place as
successive jumps. The different models have been developed
for different jump length distributions. The CE model as-
sumes jumps of fixed distance but in random directions. In
the SS model the particle has a probability e−t/τd to remain
in diffusive motion; this leads to an exponential jump length
distribution as given in Fig. 1 [54]. The HR model deals with
a Gaussian jump length distribution. In Fig. 1 the forms of
�(q) and of the spatial jump distribution ρ(r) are given for the
different models. One can note that, whatever the model, in the
small-q limit we recover the q2 law for continuous diffusion
for �(q) and in the large-q limit all models yield �(q) = 1

τc
.
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FIG. 1. The Fourier transform of the transition rate matrix �(q)
for a hypercubic arrangement of sites (chain, square lattice, simple
cubic lattice, etc.) and for different models of jump diffusion with
a distribution of jump lengths ρ(r). l̄2 is the mean-square displace-
ment, which is related to the characteristic jump length l0 usually
used in the models.

B. Interplay of hyperfine interaction and spatially
resolved spin jump distribution

1. Motional narrowing suppression: Probing no jump

The interplay of the hyperfine interaction and carrier
hopping in spin dynamics was studied in works on muon
diffusion [50] (approach used in this paper) and in molecular
systems [51,55,56]. More recently, an analytical expression
of the spin noise spectrum has been derived for an ensemble
of localized electrons, taking into account nuclear effects and
electron hopping between the localized sites [52]. We have
not seen reports of the interplay of the hyperfine interac-
tion and spin jump in a configuration of DLS measurement.
We will discuss some behaviors suggested by the wave-
vector-dependent spin noise spectrum S0(ω, q) deduced from
Eqs. (18) and (12),

S0(ω, q) = 1

π
Re

{
R̃0(s)

1 − [1 − τc�(q)] 1
τc

R̃0(s)

}
, (21)

with s = i(ω − ω0).
First, in a transmission measurement with q = 0, �(0) = 0,

and Eq. (21) reduces to the real part of Eq. (6), which re-
produces the Gaussian decay of the polarization for large στc

due to hyperfine interaction and motional narrowing inducing
exponential decay for small στc [50]. For signals detected in
a direction different from the incident light, for intermediate
στc, and for not-too-large wave vectors, the spin noise line
broadens in a peculiar way. As known in motional narrowing,
when στc decreases, the line shape changes from Gaussian
to Lorentzian in such a way that the Gaussian part decreases
and the Lorentzian part increases. At intermediate στc, when
the line shape is partly Gaussian and partly Lorentzian, an
increase in q broadens the spin noise line with an increase in

the Gaussian part rather than the Lorentzian part. This kind
of behavior is usually encountered with an increase in στc

because the spins become more and more localized. The fact
that we observe a similar behavior for the line shape when
q increases suggests that we look at spins which experience
some but not all jumps of the distribution. The detection se-
lects some diffusion paths; thus the spins seem more localized.
Moreover, when q has a value qc such that �(qc) = 1/τc,
Eq. (21) reduces to

S0(ω, qc ) = 1

π
Re{R̃0(s)}. (22)

Then for large wave vectors, in the case of continuous jump
length distributions or for periodic values of q in the case
of jump on uniform lattices, the spin motion is suppressed
by the detection configuration, i.e., the spatial optical phase
averages out the spin jump distribution, and the spin dynamics
before the first jump is measured. Thus no motional narrowing
occurs when στc decreases, and the Gaussian decay of the
polarization is accelerated by the probability that the spin
leaves its equilibrium position.

2. Spin-orbit coupling

The inclusion of angular rotation due to spin-orbit coupling
is quite simple if the diffusive motion is a direct hopping
between nearest neighbors on uniform lattices because the
hopping rotation is independent of the time (it appears only
when the hop occurs) and it is independent of space since
the rotation is the same at each hop. Thus the inclusion of
a polarization decay due to spin-orbit coupling Rso in Eq. (15)
is obvious, and we get

R1(t ) = Rso

∫ t

0
dt ′R0(t − t ′)

N∑
ν=1

�νe−iq·dν R0(t ′)

= Rsoτc

N∑
ν=1

�νe−iq·dν

∫ t

0
dt ′R0(t − t ′)

1

τc
R0(t ′);

(23)

the Laplace transform of the series in Eq. (1) is written as

P̃(s) = R̃0(s)

1 − Rso(1 − τc�(ul )(q)) 1
τc

R̃0(s)
, (24)

with �(ul )(q) being the diffusion broadening for uniform lat-
tices, �(ul )(q) = 1

τc
{1 − 1

3 [cos(qxa) + cos(qya) + cos(qza)]},
for a simple cubic lattice of spacing a. It is interesting to note
that if �(ul )(q) = 1/τc, then P̃(s) reduces to τcR̃0(s), which
corresponds to the situation explained in the previous section.
The spin-orbit rotation is suppressed because the correlations
are lost (by the spatial averaging by the optical spatial phase)
before the spin reaches its second equilibrium position (its
equilibrium position after one jump). One can expect similar
behavior at large q in the case of continuous jump length dis-
tributions, i.e., spin-orbit-induced broadening vanishes when
�(q) = 1/τc. Therefore the hopping-induced rotation will be
space dependent leading to a wave-vector dependency, which
would be convoluted with 1 − τc�(q) as suggested by the
term

∑N
ν=1 Rso,ν�νe−iq·dν in the equation below taking into
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account the jump length dependency of Rso in the expression
of R1(t ),

R1(t ) =
∫ t

0
dt ′R0(t − t ′)

N∑
ν=1

Rso,ν�νe−iq·dν R0(t ′)

= τc

N∑
ν=1

Rso,ν�νe−iq·dν

∫ t

0
dt ′R0(t − t ′)

1

τc
R0(t ′),

(25)

with Rso,ν being a function of dν which depends on the mech-
anism of the diffusive motion leading to the jumps from one
site to another.

The Laplace transform of the series in Eq. (1) becomes

P̃(s) = R̃0(s)

1 − τc
∑N

ν=1 Rso,ν�νe−iq·dν 1
τc

R̃0(s)
. (26)

To evaluate the term
∑N

ν=1 Rso,ν�νe−iq·dν , we first
must know the form of

∑N
ν=1 �νe−iq·dν . We know that

τc
∑N

ν=1 �νe−iq·dν = 1 − τc�(q); in the CE model the sum∑
ν is replaced by an integral over space and orientational

averaging. It is possible to determine �(q) whatever the jump
length distribution from �CE(q), the diffusion broadening ob-
tained with the CE model, through the following relation:
�(q) = ∫ ∞

0 �CE(q)ρ(r)dr = ∫ ∞
0

1
τc

(1 − sin(qr)
qr )ρ(r)dr, with

ρ(r) being the jump length distribution and for
∫ ∞

0 ρ(r)dr =
1. Then we get

τc

N∑
ν=1

Rso,ν�νe−iq·dν ≡
∫ ∞

0

sin(qr)

qr
Rso(r)ρ(r)dr.

dν→r (27)

When q → ∞, the left and right terms in Eq. (27) tend to
0, and P̃(s) reduces to τcR̃0(s) as expected. For small q, while
sin(qr) ∼ qr, Eq. (27) gives R̄so, the mean value of Rso. For
any q,

∫ ∞
0

sin(qr)
qr Rso(r)ρ(r)dr = R̂so(q) ∗ [1 − τc�(q)], with

∗ being the convolution product, which can be replaced by
R̄so[1 − τc�(q)] when Rso(r) is a smooth function compared
with the jump length distribution.

Let us discuss the case where each jump between local-
ized sites consists of numerous fast (compared with τc) and
short-distance (compared with the characteristic jump length
l0) elementary jumps in random directions. One can assume,
for example, fast hops between nearest neighbors separated
by a distance rc. At each hop the polarization decay due to
spin-orbit coupling is given by Rso = 1 − 1

3γ 2, if the angular
rotation γ is small. Thus, when a spin at a site ri jumps to
another site ri + dν , it will experience Nν = (dν/rc)2 uncor-
related rotations by an angle γ . Thus one can basically write
Rso,ν = 1 − 1

3γ 2( dν

rc
)2 or Rso(r) = 1 − 1

3γ 2( r
rc

)2, and thus

R̄so = 1 − 1

3
γ 2

(
l̄2

r2
c

)
, (28)

where l̄2 = ∫ ∞
0 r2ρ(r)dr is the mean-square displacement. If

one introduces the spin-orbit length Lso, which characterizes
the jump distance at which the spin orientation is lost, we may

FIG. 2. Half-width at half maximum (HWHM) of the real part of
Eq. (27) in reduced units for Gaussian (thin lines) and exponential
(thick lines) jump length distribution, as a function of q� with � =√

l̄2. Solid lines, Eq. (27) with Rso(r) = 1 − 1
3 ( r

Lso
)2. Dashed lines,

Eq. (27) assumed to be equal to R̄so[1 − τc�(q)].

write γ = rc/Lso [57], so that, in fine,

R̄so = 1 − 1

3

(
l̄2

L2
so

)
. (29)

We note that this expression is identical to the one expected for
a single jump between distant donors separated by an average
mean-square distance l̄2.

Figure 2 shows the broadening of the line deduced from the
real part of Eq. (26) calculated for Gaussian and exponential
jump length distributions, for different values of the spin-orbit
length and using Eq. (27) or its averaged form. For Lso �
5
√

l̄2 the relation R̄so[1 − τc�(q)] = R̂so(q) ∗ [1 − τc�(q)] is

almost true, while for Lso � 2
√

l̄2 it is difficult in an experi-
ment to differentiate between the convolution or the averaged
forms.

Keeping the averaged form and using Eqs. (12) and (26),
the q-resolved spin noise spectra S0(ω, q) can be expressed as

S0(ω, q) = 1

π
Re

{
R(ω)

1 − RsoF (q) 1
τc

R(ω)

}
,

R(ω) = 1

σ

√
π

2
W

[
ω − ω0 + i(νs + 1/τc)√

2σ

]
,

F (q) = 1

N

N∑
ν=1

exp(−iq · dν ). (30)

It contains the one-site response function R(ω) = R̃0(s + νs),
and we have introduced the structure factor F (q) = 1 −
τc�(q).

205208-5



S. CRONENBERGER et al. PHYSICAL REVIEW B 103, 205208 (2021)

FIG. 3. Sketch of an electron spin trajectory along a chain of trapped states (green circles) starting from an initial state “0.” Only the
first five states are represented. We consider a spin initially in a bright fringe. The fringes represent the spin visibility, which depends on the
relative phase between the incident (wave vector ki) and the scattered light (wave vector ks) (see Ref. [26]). The spin is represented as a green
arrow and precesses in a local nuclear field (dashed arrow). The black curve represents the spin trajectory along fast diffusion channels. From
left to right, three spin noise detection schemes used in this paper are represented. (a) Forward-scattering (FWD) geometry (classical SNS):
Spin visibility is maximum and constant along the trajectory. All terms in Eq. (32) equally contribute to the signal. (b) ST-SNS: The spin
visibility is slowly modulated. The terms contribute less and less as the number of jumps increases. (c) Backscattering (Back) geometry: When
the modulation period of the spin visibility is smaller than the distance between traps, only the initial state “0” contributes to the signal (for
random trap positions).

3. Time of flight

Next, we introduce the finite resolution in q via the convo-
lution [26]

S(ω, q) =
∫ ∞

−∞
d2q′S0(ω, q′)Î2

0 (q − q′), (31)

where Î0(q) = e−q2/2Q2
/(

√
πQ) is the wave-vector distribu-

tion of the probe beam, with Q = √
8 ln(2)/w, where w is the

laser spot size on the sample. For a distribution that is not too
large, one finds an analytical expression (see Appendix A)

S(ω, q) = 1

π
Re

{
R(ω)

1 − RsoG(q) 1
τc

R(ω)

}
,

G(q) = F (q) + 1

4
Q2F (2)(q). (32)

F (2)(q) is the second derivative (Laplacian in q space) of
the structure factor F (q). The corresponding term in Eq. (32)
can be interpreted as the polarization decay due to time
of flight (TOF) of the spin fluctuation across the probed
area [58]. In effect the associated broadening is inversely
proportional to the time for the spin fluctuation to leave the
sampling area.

Equations (30) and (32) are only valid at large external field
satisfying ω0 � σ . To obtain the noise spectra in zero field,
we use for R(ω) the one-site response calculated by Glazov
{the term τωA(τω ) in Eqs. (6)–(9) of Ref. [52]}.

4. Interpretation

Equation (30) has a simple interpretation. R(ω) is the re-
sponse of spins during their residence time on one site. At
each step of the random walk, the spin coherence decays by
a constant factor, which adds, to the decoherence during the
time spent in the trap described by 1

τc
R(ω), the spin rotation

induced by SOC during the jump described by 1 − Rso, and
the structure factor F (q). Hence Eq. (30) simply results from
the summation of a geometric series, where the term of order
p corresponds to p jumps.

Figure 3 graphically represents how the different terms of
the geometric series contribute to the signal depending on the

different detection schemes we use. Only one spin trajectory
is represented, and we disregard TOF effects (Q = 0) and
relaxation by SOC (Rso = 1). In backscattering, where q is
much larger than the inverse of the jump distance, the structure
factor F (q) averages to zero, and S(ω, q) ∝ Re[R(ω)]. The
spectrum corresponds to the one-site response, in agreement
with Fig. 3(c). Under an applied magnetic field, it follows
an exact Voigt profile with σ as Gaussian parameter and
γ = 1/τc + νs as Lorentzian parameter.

In classical SNS [q = 0, Fig. 3(a)], F (0) = 1, so that all
terms contribute. In other words, one follows the spin all along
the trajectory, and the signal results from averaging over an
ensemble of such trajectories. S(ω, q) remains very close to
a Voigt profile, but the Gaussian parameter is smaller than σ :
The linewidth decreases by motional narrowing of the local
nuclear fields. In ST-SNS [Fig. 3(b)] a finite number of terms
contribute; in other words, the trajectory fades away. This adds
a broadening mechanism linked to motion, quadratic at small
q (q� � 1), from which the spin diffusion coefficient Ds can
be deduced. Finally, in the presence of SOC a competition sets
in between broadening due to relaxation by SOC and motional
narrowing.

III. SPIN NOISE EXPERIMENTS

We studied an Al-doped CdTe layer grown by molecular
beam epitaxy on a Cd0.96Zn0.04Te(001) substrate, mechani-
cally polished on its back face. The donor density, below
the Mott transition, was estimated from secondary ion mass
spectroscopy to be ∼2 × 1016 cm−3, corresponding to an av-
erage interdonor distance of ∼50 nm. The layer thickness is
10 μm. In a previous study we have observed a satellite line
in the zero-field spin noise spectra of this sample (M3460),
assigned to the electron spin precession in the local nuclear
field ∼1.2 mT [27]. A similar effect was also observed in
high-purity GaAs [59].

Details of the experimental setup can be found in
Refs. [26,27]. Here, the laser was detuned 9.3 meV below
the donor-bound exciton at E = 1.5926 eV in a region of
low absorption. Spin noise spectra with and without applied
magnetic field were obtained simultaneously by repeated
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FIG. 4. Series of spin noise spectra for three different temperatures in forward scattering and backscattering (self-homodyne detection), in
zero field (left) and in a transverse magnetic field (right). The curves are calculated with Eq. (32). Red (blue) curves are calculated at q = 0
(q = ∞). At 4 K and B = 0 we highlight the difference between forward scattering and backscattering by plotting the curves calculated for
both configurations (same color code).

interleaved acquisition in a single experimental run. The ap-
plied field 16 mT was chosen much larger than the local
nuclear field.

Figure 4 shows typical spin noise spectra, in forward scat-
tering and backscattering (intermediate spectra using ST-SNS
are not shown). A good fit was obtained for the spectra with
field using Voigt profiles, for all values of q, and the half-
linewidth at half maximum �ω 1

2
(q) is shown in Fig. 5(a) [60].

The strong dependence on q is evidence of the role of spin
motion. Figure 5(a) shows that �ω 1

2
(q) increases quadrat-

ically at small q (see also Ref. [26]): This is the usual
continuous diffusion regime described by a diffusion coeffi-
cient Ds with a diffusion damping rate γdiff = Dsq2. However,
�ω 1

2
(q) exhibits a plateau at large q. This behavior suggests

that a characteristic length � in the micrometer range char-
acterizes the motion. Below we will interpret � as the mean
hopping distance and show that indeed the regime q� � 1 is
reached for the backscattering spectra. Under such conditions
[Fig. 3(c)], the signal is related to the one-site response: It can
be characterized by an inhomogeneous broadening {for in-
stance, the Gaussian distribution of precession frequencies in
the trapped states p(ω) = (2πσ 2)−1/2 exp[−(ω − ω0)2/2σ 2]
due to hyperfine interaction (HFI)}, an intrasite spin relax-
ation rate νs (ISR), and the spin residence time τc (hopping
probability 1/τc). The near-Gaussian profile at 4 K suggests
that the linewidth is inhomogeneous and a good estimate
of σ . The evolution towards a broader Lorentzian profile
in backscattering (q = ∞) as the temperature is increased
shows that νs + 1/τc increases. The evolution towards a nar-
rower Lorentzian profile in forward scattering (q = 0) is
interpreted as the result of motional narrowing, with an ex-
pected linewidth ∼ σ 2τc. Finally, the broad Lorentzian profile
at higher temperature is interpreted as due to the increased role
of time of flight (TOF; ∼ �2

w2τc
) and spin-orbit coupling (SOC;

∼ �2

L2
soτc

): Both rates increase as τc decreases.
Those trends are schematized in Fig. 5(b).
A quantitative check using Eq. (32) is shown in Figs. 4

and 5. We obtain a simultaneous agreement between all
experimental and theoretical spectra (including those at fi-
nite q) for a Gaussian distribution with � = 2.7 μm, and for

σ = 1.12 × 108 s−1 and Lso = 5 μm (see Appendix C for de-
tails of the fitting procedure).

The value w = 16.8 μm is estimated from the measure-
ment of the spot size. The main parameter which changes
with temperature is τc. In order to reproduce the line shape
of the satellite at q = 0, we have to assume an additional
broadening mechanism at 4 K. Although the origin of this
broadening is still unclear, we take it into account by assuming

FIG. 5. HWHM �ω 1
2

vs q (a) and vs τc (b). Experimental values
(symbols) are measured at 16 mT (probe laser power P� = 2 mW).
Data are obtained by self-homodyne detection either in forward scat-
tering (open circles) or backscattering (dark circles), and by ST-SNS
(gray circles). All curves are calculated using Eq. (32) (parameters
in the text). In (a), �ω 1

2
(q) is calculated for a Gaussian (solid lines)

and an exponential distribution of jump lengths (dashed lines). In
(b) the thin solid black line is calculated for q = ∞; the other black
lines are calculated for q = 0 with only HFI included (dotted line),
HFI + SOC (dashed line), HFI + SOC + TOF (thick solid line). The
asymptotic behaviors are also indicated for στc → 0 and στc → ∞.
The rightmost point in (b) was obtained at P� = 0.25 mW.
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FIG. 6. HWHM �ω1/2 of the spin noise line as a function of the
wave-vector distribution QLO of the LO beam, experiments (sym-
bols: triangles and circles, self-homodyne and homodyne detection,
respectively) and models (lines). The black solid line shows the
calculation with Eq. (31) including the optical transfer function of
the collection long-working-distance objective (Mitutoyo ×10), the
dash-dotted black line shows the calculation with Eq. (31), and the
dotted black line shows the calculation with Eq. (32). The calcula-
tions are done for a Gaussian jump length distribution, with Q0 =
115 000 m−1, τc = 11 ns, σ = 0.112 ns−1, l = 2.7 μm, R̄so = 0.903,
and q = 0 (except for the dashed black where q = ∞). Gray solid
and dash-dotted lines show the calculation with Eq. (31) (q = 0)
with and without the optical transfer function of the imaging system,
respectively, and for Brownian motion with a diffusion coefficient
Ds = l2/6τc.

a small ISR [νs = (2π ) × 4.3 MHz]. Remarkably the satellite
at zero field is better resolved in backscattering (see spectra at
4 K in Fig. 4). This difference is also well reproduced by our
calculation. Indeed, in this situation only the initial state “0”
not affected by spin motion is observed [Fig. 3(c)]. In other
words, the one-site response is being probed. Finally, once τc

and � are determined, one deduces Ds = �2/6τc, which varies
in the range 0.44–14 cm2/s from 4 to 18 K.

The time-of-flight broadening appears in the expression of
the spin noise spectrum in the same way as the spin-orbit
coupling; it is then impossible to discriminate between these
two mechanisms without knowing Ds and the spatial extent
of the beam. A way to differentiate between both mechanisms
would be to measure the spin noise linewidth as a function
of the spot size on the sample. However, focusing more or
less may, for example, induce a temperature change and then
a change in the correlation time. A better way is to use the
homodyne detection technique in order to keep unchanged
(and as large as possible) the spot size on the sample and
to select, with a local oscillator (LO), the probed area in
the detection plane. In this case, in the expression of Î2

0 (q),
Q2 must be changed by 1

2 (Q2
0 + Q2

LO), where Q0 and QLO

are linked to the widths of the wave-vector distributions of
the beam probing the sample and the local oscillator, respec-
tively. Calculations and measurements are depicted in Fig. 6.
In the experiment a large probe beam (Q0 = 115 000 m−1)
illuminates the sample, while a LO beam with a varying
QLO probes the correlations in the sample’s image. Triangles
are for self-homodyne measurements (without the LO beam)
in transmission (forward) and reflection (back), while open

circles correspond to homodyne measurement (with LO
beam) in transmission. Calculations are made taking into ac-
count or not the transfer function of the imaging system. When
optical transfer function h(q) is considered, S(ω, q) must be
replaced by S(ω, q)h(q); this case is never considered in the
approximate solution given by Eq. (32).

We found that the broadening due to the TOF agrees well
with the calculated one. This is important to deduce the value
of �ω 1

2
(q) corrected for the TOF [Fig. 5(b)].

IV. CONCLUSION

To conclude, our experiments have uncovered a spin-jump-
diffusion regime in an n-doped CdTe layer, which manifests
as a plateau at large wave vectors for the broadening of
the q-resolved spin noise spectra. We have proposed phe-
nomenological equations, which simultaneously fit all spin
noise spectra in zero and nonzero magnetic field, for all q
vectors and temperatures, with a fixed set of parameters σ , Lso,
and �. Besides, τc decreases with temperature and is mainly
determined from the width of the noise spectra in backscat-
tering. Remarkably, this determination of τc is consistent with
the observation or not of the satellite line. It turns out that
the parameters which govern the spin relaxation by HFI and
SOC in CdTe, σ and Lso, respectively, are quite similar to the
values in GaAs (σ = 1.29 × 108 s−1 [59], Lso � 5 μm [57]).
Systematic measurements for different doping levels will be
necessary for a quantitative comparison with GaAs. However,
we have strong indications that the faster relaxation in CdTe
is not due to material parameters, but rather to the specific
long-distance spin jump diffusion that we have uncovered.
The inhomogeneities of the system may plausibly play an
important role in this phenomenon [61–63].

Our experimental value of Lso is close to the theoret-
ical value Lso � 3.37Eba4

b/γc = 4.1 μm [57], where Eb =
13 meV is the donor binding energy, ab = 5.3 nm is its Bohr
radius, and γc = 8.5 eV Å3 is the Dresselhaus coefficient
taken from theoretical estimations [64]. σ can be estimated
from the Bohr radius and the hyperfine constants of Cd and
Te. Unfortunately, reliable values for the hyperfine constants
are missing (see discussion in Ref. [27]). The longest spin
relaxation time, corrected for a small TOF effect, that we
measure in the regime of motional narrowing is T ∗

2 = 15 ns
(see Appendix B for the precise definition of T ∗

2 and how it is
determined).

The long-range spin hopping uncovered here in CdTe has
important consequences for the electron spatiotemporal spin
dynamics and hence for qubit operations based on donors: It
should be sought in other materials which are under focus for
quantum technologies [3,45,47], such as GaAs, ZnSe, ZnO,
and, if possible, Si and Ge. Our approach could also an-
swer fundamental questions which underpin such operations,
among which is the predicted random spin rotation during a
hop between two donors, which arises due to the uncertainty
in the quantum trajectory [61].
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APPENDIX A: TIME OF FLIGHT

The spin may diffuse outside of the probed area leading to an additional broadening [58] that we will call time-of-flight
broadening because it is inversely proportional to the time for the spin to leave the sampling area. It can be taken into account
by a convolution of the q-dependent spectrum with the wave-vector distribution of the probe beam intensity [26],

S(ω, q) =
∫ ∞

−∞
d2q′S(ω, q′)Î2

0 (q − q′) = 1

π

∫ ∞

−∞
d2q′Re

{
R(ω)

1 − R̄soF (q′) 1
τc

R(ω)

}
Î2
0 (q − q′), (A1)

with Î0(q) being the space Fourier transform of I0(r), the intensity profile of the probe beam. It is possible to give a simple
analytical expression of integral in Eq. (A1) by using the Taylor series expansion of F (q′) at the measured q,

F (q′) = F (q) + [∇q′′F (q)] · (q′ − q) + 1
2∇q′′ {[∇q′′F (q)] · (q′ − q)} · (q′ − q), (A2)

with ∇q′′F (q) = [ ∂F (q′′ )
∂q′′

x
]q′′=qex + [ ∂F (q′′ )

∂q′′
y

]q′′=qey. Then, if Î0(q) is symmetrical, the convolution integral (A1) reduces to an

integral,

S(ω, q) = 1

π

∫ ∞

−∞
d2q′Re

{
R(ω)

1 − R̄so(F (q) + [∇q′′F (q)] · q′ + 1
2∇q′′ {[∇q′′F (q)] · q′} · q′) 1

τc
R(ω)

}
Î2
0 (q′). (A3)

If the wave-vector distribution of the beam is not too large or if F (q) varies a little in the width of this distribution such that
[∇q′′F (q)] · q′ + 1

2∇q′′ {[∇q′′F (q)] · q′} · q′  F (q), the integration can be put directly in the denominator,

S(ω, q) = 1

π
Re

{
R(ω)

1 − R̄so
[
F (q) + ∫ ∞

−∞ d2q′ Î2
0 (q′)([∇q′′F (q)].q′ + 1

2∇q′′ {[∇q′′F (q)].q′}.q′)
]

1
τc

R(ω)

}
. (A4)

Linear in q′ and mixed second-order partial derivative terms are equal to 0 after integration. For a Gaussian beam of the form
Î2
0 (q) = e−q2/Q2

/(πQ2) the integral reduces to 1
4 Q2F (2)(q), and S(ω, q) becomes

S(ω, q) = 1

π
Re

{
R(ω)

1 − R̄so[F (q) + 1
4 Q2F (2)(q)] 1

τc
R(ω)

}
, (A5)

with F (2)(q) = [ ∂2F (q′ )
∂q′2

x
]q′=q + [ ∂2F (q′ )

∂q′2
y

]q′=q.

γTOF = −Q2F (2) (q)
4τc

is then the broadening due to the proba-
bility of the spin leaving the sampling area. In a transmission
experiment with q = 0, F (0) = 1, and γTOF = Q2 l̄2

6τc
= Q2Ds,

with Ds being the spin diffusion coefficient, whatever the jump
length distribution.

APPENDIX B: LINE SHAPE, LINEWIDTH,
AND SPIN RELAXATION TIME

Let us consider the spin noise line whose spectrum at any
wave vector, in the presence of hyperfine interaction, spin-
orbit coupling, and time of flight, is given by Eq. (A5). Under
an external magnetic field applied transverse to the incident
light, R(ω) identifies with R̃0(s + νs), R̃0(s) being given by
Eq. (8). For the two limiting cases στc � 1 and στc  1, one
can easily deduce the line shape, which will be Gaussian in
the former case and Lorentzian in the latter case. The damping
parameter �, defined as the inverse of the time during which
the temporal signal has decayed by 1/e, is a known parameter
for both cases.� equals the damping rate γ for a Lorentzian-
shaped line and the square root of half the variance for a
Gaussian-shaped line. Thus having acquaintance with the line
shape, knowing the linewidth, one can deduce the damping
parameter. This is true only for short and long τc. Indeed,
there is no analytical expression for the damping parameter
corresponding to Eq. (A5) for any στc, neither for the width

of the line, nor for the relation between these two parameters.
It is then difficult to estimate correctly the spin relaxation time
from the noise power spectrum. A good approximation of the
spin relaxation time is half the amplitude of the spin noise
line when its surface is normalized to unity. This relaxation
time, called T ∗

2 and introduced by Bloembergen et al. [65], is
defined by

T ∗
2 =

1
2 g(ν)max∫

dνg(ν)
= πg(ω)max∫

dωg(ω)
, (B1)

where g(ν) [g(ω)] is the spectrum in the frequency (pulsation)
ν (ω) space and g(ν)max [g(ω)max] is its maximum amplitude.
(T ∗

2 )−1 equals the damping rate for a Lorentzian-shaped line
and overestimates by an amount of less than 13% the damping
parameter for a Gaussian-shaped line, so that (T ∗

2 )−1 ≈ �

and one can call it the damping parameter. T ∗
2 is thus a

good estimate of the spin relaxation time; moreover, it can
be estimated experimentally without any assumption as to the
line shape. A joint determination of (T ∗

2 )−1 and the half-width
at half maximum �ω1/2 gives information about the line
shape. If (T ∗

2 )−1/�ω1/2 = 1, the line is Lorentzian, and if
(T ∗

2 )−1/�ω1/2 = 0.678, the line is Gaussian.
Definition (B1) applied to Eq. (A5) leads to the following

expression for the damping parameter:

(T ∗
2,q)−1 = R−1(ω0) − η(q)

τc
, (B2)
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FIG. 7. Left: (T ∗
2,b/ f )−1 vs (T ∗

2,b)−1 − (T ∗
2, f )−1 deduced with

Eq. (B1) from the measured spin noise power spectrum for two dif-
ferent detection schemes: backscattering SNS [(T ∗

2,b)−1] and classical
SNS [(T ∗

2, f )−1] (black and gray points with error bars, respectively).
(T ∗

2 )−1 deduced from Eqs. (A5) and (B2) for q = 0 (gray solid line)
and q = ∞ (black solid line). Right: Half-width at half maximum
�ω1/2 from experiments (points with error bars) and from Eq. (A5)
(solid lines) [black and gray stand for backscattering SNS (q = ∞)
and classical SNS (q = 0), respectively].

with η(q) = R̄soG(q). Let us discuss this quite interesting
formulation for the case q = 0 and η(0) = 1. In this case,
Eq. (B2) expresses the line broadening due to hyperfine inter-
action only, leading to motional narrowing with decreasing τc.
R−1

0 (ω0) is the broadening of a Voigt profile which mixes the
inhomogeneous broadening due to hyperfine interaction and
the homogeneous broadening due to the probability 1/τc that
the spin leaves a localized site. This homogeneous broadening
does not contribute in a classical measurement (q = 0); it is
then subtracted by the second term in Eq. (B2), so that only
the competition between the inhomogeneous and the homoge-
neous parts remains. At short τc this is quite visible because
the line broadening is proportional to σ σ

γ
, with γ = 1/τc

being the damping rate of the homogeneous part. When η < 1,
the other sources of broadening add simply as homogeneous
terms.

When looking at the damping parameter in the two limiting
cases q = 0 and q = ∞, they differ only by the quantity
η(0)/τc. Then a measure of the difference (T ∗

2,∞)−1 − (T ∗
2,0)−1

is a direct determination of η(0)/τc. Plotting (T ∗
2,q)−1 as a

function of (T ∗
2,∞)−1 − (T ∗

2,0)−1 will place the data automat-
ically at the right abscissa position getting rid of one fitting
parameter, the correlation time τc.

In Fig. 7 we plot (T ∗
2 )−1 and �ω1/2 extracted manually

(without using any fitting function) from the noise power
spectrum in measurements made on the n-CdTe sample de-
scribed in the main text, under a transverse magnetic field
of 16 mT, for different temperatures and for two different
detection schemes [backscattering SNS, (T ∗

2,b)−1 from noise
of the reflected beam; forward scattering SNS, (T ∗

2, f )−1 from
noise of the transmitted beam]. On the left-hand side, the
experimentally determined (T ∗

2,b/ f )−1 are plotted as a function
of their differences, while (T ∗

2,q)−1 calculated with Eq. (B2)
for q = 0 and q = ∞ is plotted as a function of η/τc,
with η = η(q = 0). A good agreement between theory and
experiment is obtained for σ = 1.12 × 108 s−1, η = 0.87, and

FIG. 8. Comparison of the damping constant �/σ for the
Markovian random-walk model (symbols; extracted from Fig. 3 of
Ref. [50]), Eq. (B2) (dashed black line), and Eq. (B3) (solid black
line).

νs = 0. On the right-hand side, the experimentally deter-
mined half-width at half maximum is plotted as a function
of η/[(T ∗

2,b)−1 − (T ∗
2, f )−1], while the numerical solution of

the equation S(�ω1/2, q) = S(ω0, q)/2 (with σ , η, and νs

determined previously) for q = 0 and q = ∞ is plotted as a
function of τc. From the ratio (T ∗

2 )−1/�ω1/2, one can deduce
that the line is Lorentzian at short τc (high temperature T > 16
K) and almost Gaussian at long τc (low temperature T = 4 K).

Finally, inspired by Eq. (B2), one can attempt to
give an analytical expression for the damping parameter
� of Eq. (5) using the damping parameter of R0(t ) =
exp(− 1

2σ 2t2) exp(−t/τc). Let us call �σ,τc the damping pa-
rameter of R0(t ), such that R0(�−1

σ,τc
) = 1/e. Following the

structure of Eq. (B2), we propose

� = �σ,2τc − 1

2τc
. (B3)

In Fig. 8 we compare Eq. (B2) [for η(q = 0) = 1] and
Eq. (B3) with � extracted from Fig. 3 of Ref. [50], deduced
from P(t ) obtained by inversion of the Laplace transform of
Eq. (6). We find a maximum deviation of 1.7% for στc ≈ √

π

between Eq. (B3) and � extracted from Fig. 3 of Ref. [50].
When considering other sources of homogeneous broaden-

ing, then η(q = 0) < 1, so that Eq. (B3) is written as

� = �σ,2τc − 2η(q) − 1

2τc
. (B4)

APPENDIX C: DETERMINATION OF THE SPIN
RELAXATION PARAMETERS

In order to determine the spin relaxation parameters σ , Lso,
τc, and �, we make use of the results presented in Appendixes
A and B, together with the q dependence of �ω 1

2
[Fig. 5(a)].

As we have seen in Appendix B, using the spin relaxation
rates is very convenient for this task because it allows for the
direct determination of the parameter η(q)/τc. However, the
experimental determination of (T ∗

2,q)−1 requires a high enough
signal-to-noise ratio in order to have a good estimate of the
wings of the line, and of the background level. This is a bit

205208-10



LONG-RANGE SPIN JUMP DIFFUSION REVEALED BY … PHYSICAL REVIEW B 103, 205208 (2021)

more difficult to estimate in the ST-SNS configuration, where
the optical transfer function of the collection objective filters
out the signal as q increases. Therefore we could determine
precisely only (T ∗

2, f )−1 and (T ∗
2,b)−1 (see Fig. 7). This is why

in Fig. 5 we plot only �ω 1
2
. However, from Fig. 5 one can see

that T ∗
2,b ≡ T ∗

2,∞, while T ∗
2, f ≡ T ∗

2,0 is always true. Hence with
Eq. (B2) we can write

T −1
2,b = R−1(ω0), (C1)

T −1
2, f = T −1

2,b − η

τc
. (C2)

The difference between back and forward spin relaxation
rates already fixes the value of the parameter η/τc, where

η = Rso[1 − (Q�)2/6]. At long τc (low temperatures) these
two relaxation rates converge towards the common value√

2
π
σ . This approximately determines σ . At short τc (high

temperatures), (T ∗
2,b)−1 tends towards 1/τc. Thus one can

roughly deduce both η and τc. Then the fine-tuning of the
parameters is made by seeking for the best agreement for
all temperatures between experiment and theory (see Fig. 7).
We finally obtain σ = 1.12 × 108 s−1 and η = 0.87. τc is thus
automatically determined at all temperatures.

We are left with the determination of Lso and �. � = 2.7 μm
is deduced from the variation of �ω 1

2
with q [Fig. 5(a)]. Then

from the measured width of the spot size w = 16.8 μm, we
get Q = 140 200 m−1; hence Rso = 0.903, and finally Lso =
5 μm.
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