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Abstract 
Frequent pattern mining algorithms often draw on graph isomorphism to identify common 
pattern occurrences. Recent research, however, has focused on cases in which patterns can 
differ from their occurrences. Such cases have great potential for the analysis of noisy network 
data. This approach can be refined still further, though. Most existing FPM algorithms consider 
differences in edges and their labels, but none of them so far has considered the structural 
differences of vertices and their labels. Discerning how to identify cases that differ from the 
initial pattern by any number of vertices, edges, or labels has become the main challenge in this 
approach. As a solution, we suggest a novel Frequent Pattern Mining (FMP) algorithm named 
Mining Frequent Patterns (MFP) with two central new characteristics. First, we begin by using 
the inexact matching technique, which allows for structural differences in edge, vertices, and  
labels. Second, we follow the approximate matching with a focus on mining patterns within the 
directed graph, as opposed to the more commonly explored case of patterns being mined from 
the undirected graph. Our results illustrate the effectiveness of this new MFP algorithm in 
identifying patterns within an optimized time.   
Keywords: Frequent Pattern Mining; direct graph; undirected graph; approximate matching; 
networks; JSON noisy data 

1. Introduction 
Frequent pattern mining (FPM) is an analytical process that aims to discover recurring patterns 
and associations from data [1][2][3]. FPM is an important data mining technique used to extract 
meaningful, usable insights, and information from large volumes of data [4][5][6][7]. 
Moreover, FPM also describes the process of discovery uncovering frequent recurring sets of 
items in large graphs, as based on a frequency threshold specified by the user. Recent research 
has focused on many such algorithms with a focus on frequency thresholds used to identify 
frequent patterns [8] [9] [10] [11]. 
Frequent patterns can be mined from large graphs, either oriented or non-oriented, that model 
a specific type of a network (social, medical, vegetation, etc.)[12][13]. We note that a graph is 
a collection of nodes and edges with labels or attributes. An essential challenge for complex 
graphs is the detection of frequent patterns [14] [15]. FPM algorithms often use the graph 
isomorphism technique as a means of identifying pattern occurrences. However, in this work, 
we focused on the case where a pattern could differ from its occurrences, which can be essential 
to analyze noisy network data. 
Let us suppose the case of simple modeling of some parts of the human brain, as depicted in 
Figure 1. We have a basic graph (G) and three patterns (P1, P2, and P3) mined according to 



each node’s occurrence in G. In this case, G has ten vertices and nine oriented edges. Each 
vertex appears n times in G (e.g., Striatum appears 3, Pallidum appears 2, and Mid-brain appears 
1). 
In the following example, let us fix the frequency threshold as follows: σ >=2. In other words, 
two will be the minimum number of occurrences needed for each vertex to be accounted for in 
the mining process. 
Hence, in the following example, with σ >=2, Striatum vertex (P1), Pallidum vertex (P2), and 
Striatum and Pallidum vertices (P3) represent the set of frequent and approximate patterns 
mined from G as shown in Figure 1. 
 

 
Figure 1.  A basic example of a mined frequent and approximate set of patterns present on a 

graph G   

Our work's primary challenge is detecting a set of frequent patterns using the inexact matching 
technique from a single oriented or non-oriented graph. Hence, we propose an approach based 
on three main steps. The first step, data processing, aims to prepare JSON noisy data by 
providing a more comprehensive and logical data structure. The second step, graph 
visualization, allows visualizing large graphs using built-in python libraries. The last step, 
mining frequent patterns, aims to discover recurring and approximate patterns using the 
proposed subgraph-mining function. 
The remainder of our paper is organized in the following way. Background information on FPM 
is presented in Section 2. A review of the relevant literature is offered in Section 3. Our 
proposed FPM algorithm is introduced in Section 4, and our experimental results using it are 
detailed in Section 5. Our conclusions on applications [16][17][18] of this algorithm and our 
thoughts on directions for future work are the focus of Section 5. 
 

 



2. Background  
In the literature, several works have attempted to identify frequent patterns in a large graph 
through the use of Deep First Search (DFS) mechanisms [19] [20] and have focused on 
identifying recurring patterns following a pattern growth strategy [21].  
In recent works, frequent approximate pattern mining is proposed as an extension of existing 
FPM algorithms [15][21][23][24][25]. A major challenge is to find approximate occurrences of 
patterns in single oriented and large graphs [20]. Finding patterns might be easy for graph 
isomorphism, but not for approximate mining patterns in a large graph. We need a frequency 
threshold to detect each vertex's number of times across the main graph for our search. This 
threshold is less computationally expensive, and the maximum number of occurrences of nodes 
represents the support of P. Given the existence of a graph (signified here by G) and a pattern 
within it (signified here by P), the threshold 𝝈 is defined by the equation (1) as follows:  
                                                                𝜎	(𝑃, 𝐺) = 𝑚𝑎𝑥	{	𝑣 ∈ 𝑉	, 𝜑(𝑣)}                                                            (1) 
V signifies the set of vertices of the graph G, and the function 𝝋 is the frequency count of each 
vertex v in V. 
Furthermore, a function for graph comparison is required to identify patterns and ensure that 
the output covers only those patterns that are closed [18]. To accomplish this, we utilized a 
distance function to compute the dissimilarity between two patterns: P1 and P2. The distance 
function, fdist, between P1 and P2 is demonstrated by equation (2). 

 

                           𝑓𝑑𝑖𝑠	(𝑃1, 𝑃2) = 𝐾	. v ∗ select +	(1 − K). e ∗ select	                                  (2) 

 

Where 0 ≤ 𝐾 ≤ 1	 signifies the edit cost correlated with vertices that can measure the weight 
between vertices and edges as necessary, and 𝑣 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡  and 𝑒 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡		 are defined by 
equations (3) and (4), respectively. 
 

                             𝑉 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡 = ∑ 𝑑𝑣M𝑣,𝑚(𝑣)N + |𝑅𝑣1| + |𝑅𝑣2|Q	∈𝑽𝟏\𝑹𝒗𝟏 		                           (3) 

 

                            	𝑒 ∗ 𝑠𝑒𝑙𝑒𝑐𝑡 = ∑ 𝑑𝑒((𝑢, 𝑣), (𝑚(𝑢),𝑚(𝑣)) + |𝑅𝑒1| + |𝑅𝑒2|(X,Q)	∈𝒆𝟏\𝑹𝒆𝟏 	      (4) 

 
 

Where 
m is a bijective function that compares between vertices in V1 and V2. 

𝑑M𝑣,𝑚(𝑣)N : The cost of replacing v by 𝑚(𝑣). 

𝑑M(𝑢, 𝑣), (𝑚(𝑢),𝑚(𝑣)	)N : The cost of replacing (u,v) by (m(u),m(v)). 

RV1 is the set of vertices in V1 that are unrelated to all vertices in V2. 

RV2 is the set of vertices in V2 that are unrelated to all vertices in V1. 
RE1 is the set of edges related to V1 that allow structural differences in edges. 

RE2 is the set of edges related to V2 that allow structural differences in edges. 



3. Related works  
Several studies from the literature have focused on FPM. In [9], researchers proposed and tested 
CFSP-Miner, a new form of closed frequent similar-pattern mining. Their results demonstrated 
that this new algorithm offered greater efficiency than similar, more frequently-used 
algorithms. Moreover, CFSP-Miner could locate a similar “closed” patterns without incurring 
significant information loss.  
 
In [18], the authors surveyed the different mining algorithms presently designed to detect 
frequent sub-graphs within a single larger graph. They elaborated on which algorithms are most 
commonly used in the recent literature as well as which algorithms have impacted research on 
FSM processes. The authors also detailed the FSM process, which they split into its three 
primary phases: generation of candidates, computation of support, and achieving results.  
Saidi et al. [23] have proposed the AntMot algorithm as a fast, alternative option for locating 
spatial motifs within three-dimensional protein structures. Such motifs are used in biological 
research as descriptors to aid with dataset classification. Their results demonstrated how the 
new approach offers significant enhancements in speed and accuracy of identifying sequential 
and frequent motifs.  
Vella et al. [13] presented examples of biological application systems that utilized approaches 
based on graph theory. They introduced the reader to the protein-protein interaction (PPI) and 
co-expression networks, along with various aspects of reconstruction and analysis. The 
structure of PPI networks characterizes topological, functional, and disease modules.  
In [20], the authors introduced two potential extensions of the previously mentioned AGraP 
algorithm, as a means of reducing output set sizes. A new variation of AGraP was proposed 
(CloseAFG) as well as a new algorithm (IntAFG). IntAFG followed a "greedy" approach and 
could be used as a stage post-mining stage in order to reduce the set of patterns. Experimental 
results demonstrated noticeable size reduction.  
Mrzic et al. [21] offered a bioinformatics perspective in their survey of various subgraph-mining 
algorithms and their applications. The proposed approach focused on pattern discovery within 
large graphs. FSM techniques are utilized in bioinformatics to tackle a wide-ranging scope of 
research projects, from the discovery of frequent substructures in bimolecular compounds to 
the detection of understudied patterns in large-scale molecular networks.  
In [7], the authors proposed a list-based, indexed algorithm developed to mine recent, high-
utility patterns. The proposed algorithm reduced the utility values of past transactions based on 
the times at which data has been inserted. The researchers tested this method and compared its 
performance with state-of-the-art counterparts using various datasets, both real and synthetic. 
Their results demonstrated a higher commission for execution, memory usage, and overall 
scalability. 
In [8], the authors performed a similarity analysis of sequential activity patterns frequently 
generated by various users. The researchers defined inter- and intra-personal measures of 
similarity between sets of two participants as well as among all of the patterns frequently created 
by a single individual. They also proposed an innovative new methodology framework to help 
complete this type of mining, an approach that they implemented on the dataset of the Safety 
Pilot project. This study was the first work completed utilizing BSM generated from connected 
vehicles.  
In [14], the authors studied sequential pattern mining across large databases and developed a 
pattern-growth approach that would increase the efficiency and scalability of this process. The 



method, which they named PrefixSpan, also included a pseudo-projection technique that would 
decrease the number of databases eventually generated. Experimental results demonstrated that 
the proposed PrefixSpan method often outperformed priority-based GSP algorithms such as 
FreeSpan, SPADE, and others, particularly in terms of speed.  
In [10], the authors introduced the AGraP algorithm, which was developed to find frequent 
approximate patterns within a single graph. They also proposed a comparison function that 
could handle graphs based on edit distance and also accounted for structural differences within 
vertices and edges alike. They also suggested strategies that could be utilized to identify 
occurrences of structural differences in vertices. Here, the authors' results demonstrated that 
AGraP could find patterns identified by “gApprox” and also that the AGraP mining process 
depends mainly on which values the user selects for the frequency and dissimilarity thresholds.  
In [4], the authors proposed a tree-based algorithm intended to mine temporal association rules 
by considering temporal relations among multi-items. The algorithm proposed could mine 
temporal associations in search of inter-transactions. By drawing on the T-FS-tree, candidate 
itemset generation could be avoided for mining rules, which effectively reduced the 
computational costs of scanning. With its basis in T-FS-tree structure, the new algorithm 
enabled the building of the tree and mining of the temporal relation proceeding simultaneously, 
which in turn improved both the efficiency of mining and the interpretability of results.  
In [5], the authors compared the different algorithms available and most commonly used in 
Frequent Pattern Mining (FPM). They also reviewed the advantages and disadvantages of the 
most recent and significant FPM algorithms to support the development of more efficient FPM 
algorithms in the future. They reported that the major problem identified in this area concerns 
the hidden patterns frequently concealed within a data set, which often become increasingly 
time-consuming to mine as the amount of data to be mined increases.  
In [26], the authors explained various methods of analyzing structures in social networks and 
proposed a hybrid method intended for the detection of overlapping communities within social 
networks. In the process they suggested, a new and optimized algorithm is introduced as a 
potential means of solving established optimization models. The authors also proposed a 
searchability enhancement involving a local search operator developed from the classic tabu 
search method. They tested the proposed algorithm and its effectiveness on various social 
networks. Series of experiments that yielded promising results in the detection of overlapping 
communities in such systems are conducted.  
In [22], the authors proposed a specialized detection algorithm, or "for local higher-order 
community detection" (FuzLhocd). They also introduced a purely localized metric, the "local 
motif modularity," which was intended to limit the neighbourhoods around the seed node. Their 
experiments, which were conducted regarding both real-world networks and synthetic 
counterparts, proved that FuzLhocd could run efficiently. It could operate locally, and solve 
problems of seed dependency, all with a speed and accuracy that made it a highly effective and 
promising new tool.  
In [24], the authors abstracted complex networks from various systems in which one vertex 
represents the individual, and the edge represents a relationship among such individuals. After 
applying their method to real world and artificial networks, the authors reported that greater 
scores for artificial networks and extrapolated that it would be used to great effect for 
overlapping or non-overlapping community structures networks. 
In [25], the authors proposed an algorithm that could detect community structures within 
complex networks. Their experiments conducted on various benchmark networks indicated that 



the algorithm being proposed was as effective as its more widely recognized, state-of-the-art 
counterparts.   
 

4. The proposed approach  
 The proposed approach comprises three main steps: JSON data processing, data visualization, 
and mining frequent pattern (MFP). In the first step, we transform the input JSON data from 
unstructured to structured data. The second step entails data visualization, which deals with the 
visualization of large-real networks and basic graph simulation using Python packages such as 
NetworkX. The third step is dedicated to implementing of the MFP algorithm, which takes our 
large network/graph as input and returns a set of frequent approximate patterns.  
Figure 2 depicts the three steps of the proposed approach. 

 

 
Figure 2. Main steps of the proposed approach 

 

4.1. Data processing  
This section presents the proposed data processing algorithm for JSON files needed to achieve 
the MFP algorithm and detect frequent approximate patterns in a single large graph. 
This step aims to transform unstructured data into structured ones.  
The mechanism of processing JSON files is depicted in algorithm 1. Here, a general script is 
applied to graphs stored in JSON files to give a more comprehensive and logical data structure. 
The nodes of the graphs represent geographical regions, brain regions, etc. Each node is labeled 
with the attribute “name” and identified by the attribute “id.” Edges or links can be labeled with 
a single attribute of "rel" or "type," or else doubly marked by two attributes: “rel” and “type.” 
The attribute “rel” refers to the name of the relationship between two nodes. Edges are identified 
by the nodes, or ids, of both its start and arrival vertices. 

 

 



Algorithm 1 Processing of JSON files 

Input: unstructured JSON file u_jf 
Output: s_V, s_E 

1: Import u_jf 
2: Read u_V (v1, …, vn) // read nodes in u_jf 

3: Read u_E (e1, …, en) // read edges in u_jf 

4: s_V, s_E← ∅ 

5: Foreach v in u_V do 

6:        s_v← "v"	+ v.region + v.id 

7:   End foreach 

8: Foreach e in u_E do 

9:        s_e← "e"	+ v.source + v.target +  v.rel + v.type 

10:    End foreach 

 

4.2. Data Visualization  
The second step of our approach is data visualization. Using Python packages such as 
NetworkX, we can visualize large graphs, either oriented or non-oriented. We can also perform 
graph simulation to understand better and visualize primary networks. 
In Figure 3, the graph is composed of eight vertices and seven edges. Each vertex has a name 
and a numerical identification number. For example, in our case, we considered bioinformatics 
data related to the human brain. Each node represents a region or a component of the human 
brain identified by an ID. 

 

 
Figure 3. Example of a simple graph 

 



4.3. Mining frequent patterns 
The processes entailed in mining frequently occurring patterns is not a trivial problem. This 
becomes particularly difficult when patterns are extracted from large graphs [29][30][31][32]. 
Besides, graphs are a powerful modeling tool to represent the network’s information 
structurally. In this context, the techniques we developed for the MFP algorithm are general, 
which can be applied to graphs from other domains, e.g., social networks [33], satellite images 
analysis [34], web analysis, etc. We present a new algorithm named MFP, which identifies 
frequent patterns in large graphs according to the input frequency threshold. The proposed MFP 
algorithm provides a set of frequent patterns using two combined techniques: 
        Inexact graph matching technique  

We first utilize "inexact matching," which allows for the identification of structural differences 
among edges as well as vertices [26][27] [37][38]. In other words, pattern occurrences are not 
necessarily isomorphs since no bijective correspondence may be expected between them. This 
technique aims to search approximate occurrences of the frequent pattern in large graphs while 
considering differences in labels for both edges and nodes. 

Oriented/ non-oriented graphs 
The MFP algorithm includes finding a set of frequent approximate patterns in a directed graph 
having oriented edges from a vertex to one or many other vertices. Identifying recuring patterns 
approximately in an oriented graph is more rigorous than the identification process in the non- 
oriented graph since we avoid traversing paths between the graph‘s edges multiple times, which 
creates the risk of finding the same pattern many times [28] [37][39][40]. 
The main steps of the proposed MFP process are detailed in algorithm 2. 

Algorithm 2 Mining frequent pattern in large graphs (MFP) 

Input:  

             G (𝑉, 𝐸): Graph proposed for analysis 

             𝝈:		Frequency threshold 
            Mv: List of vertices with label equivalent to v 

            D: Dictionary that identifies and names equivalences between labels 
Output: P: set of frequent patterns in graph (G) 

1: Foreach v ∈V do 
2:      Stamp v as “explored” 

3:          If |Mv| >= 𝝈 then 
4:              Add v to P 

5:              Subgraph-Mining (G,P,v) ß Subgraph-Mining (P,P,v) 
6:          End if 

7: End foreach 
 

 



The subgraph-mining function is depicted in algorithm 3. This function is dedicated to finding 
the list of frequent patterns in the large graph from a small pattern considered an initial 
candidate specified as input. The subgraph-mining process takes the large graph G and the 
candidate pattern P as input, plus the node Vnew to add. The output provides a list of 
approximate occurrences (according to the labels of Vnew) of P.To do this, we create an empty 
list Mp and then we perform an exhaustive search in the large graph. In this search, we ensure 
that we consider the length of the path between the initial pattern P and the vertex v and its label 
which, should be approximately like Vnew's label. 
 

Function Subgraph-Mining 

Input: G: graph for analysis 

            P: basic pattern candidate 
            Vnew: Vertex related to P 

Output: Mp: list of pattern (P) occurrences = P	∪ Vnew 
1: Create an empty list Mp 

2:      Foreach vertex v in G do 
3:         Calculate the maximum path length (l) between P and v   

4          Obtain set of vertices connected to P through a path of length equal to or less than 1  
5:         Identify the subset Vl of vertices bearing label equivalent to label of Vnew       

6:         Add every graph P ∪ {v}, with vϵVl added to new list Mp7:                     

8:       End foreach             
9: Return Mp. 

 
The most common metric for calculating time complexity is “big O” notation. This removes all 
constant factors so that the running time can be estimated with n when n approaches infinity. 
Let us take the letter T as the time complexity of the MFP algorithm. MFP algorithm has time 
complexity equal to T(n) = O( n^2), which is acceptable compared to other recent algorithms. 

5. Experiments  
The experiments were run on a computer with an Intel Core i5 2.80 GHz (4CPUs), 8GB of 
RAM, 512GB SSD, and an Ubuntu 11 OS. The proposed algorithm was implemented using 
Python 3.6 (IDE Jupyter notebook and Pycharm). 

5.1. Data Processing  
Figure 4.A) represents the unstructured JSON data, which are stored in a list of dictionaries. 
Every single dictionary refers to one node or one edge of the large graph. For example, as shown 
in Figure 4.A), we have, in each dictionary, attributes related to each node, such as “name”, 
“id”, etc. The attribute name refers to the label of this node.The attribute time refers to the date 
of the initial image. The attribute region refers to the human brain or geographical region, and 
the attribute id is a combination of the two previous attributes (name and time).  
In Figure 4.B), we referred to a node (vertex) of a graph using the letter ‘v’ and to edges (links) 
using the letter ‘e’. As a result, we obtained two series: the first series of all vertices followed 
by the series of all edges. The node’s arrangement,  designed by the letter ‘v’, is followed by 



the attribute region (region of the human brain or geographic area in remote sensing) and the 
attribute id.  
The edge sequence is designed by the letter ‘e’ followed by “id” attribute of the starting node 
followed by the “id” attribute of the arrival node, relation attribute (RCC8 in remote sensing), 
and finally “type” attribute. 

 
  

Figure 4. Processing of JSON Data: A) unstructured JSON data and B) structured JSON data 

Type of the graph Type of the network List of dictionaries related to nodes  

A) 

 

 

B) 

Name of the 
first node 

« v » vertex Id of the vertex Name of the vertex 

« e » edge 

The Id 
attribute 
of a 
vertex 

Id of the first 
vertex 

Id of the 
second 
vertex 

Name of 
the 
relation 

Type of 
the 
relation 



5.2. Data visualization 
Figure 5 depicts a part of a sizeable oriented graph using the NetworkX python package. In this 
graph, vertices are labeled with Ids, and edges are oriented from one node to another. 
NetworX is a very potent Python package developed to create, manipulate, and study both the 
structure and the dynamics of complex graphs modeling real networks. 
NetworX also deals with many additional tasks, including the loading and storage of graphs in 
both standard and non-standard data formats as well as the generation of networks (both classic 
and random), the analysis of network structures, the construction of  network models, the design 
of novel new network algorithms, the drawing of graphs, etc. 

 

 
Figure 5. Visualizing a part of an oriented graph with the NetworkX package 

 

5.3. Mining frequent patterns  
The proposed MFP algorithm identifies significant numbers of patterns using structural 
differences among edges, vertices, and labels. The MFP algorithm was implemented using 
Python.  
Figure 6 shows a set of approximate patterns with a lexicographical description. Figures 6.A) 
and 6.B) show frequent approximate patterns mined from a large graph where the pattern in  
Figure 6.B) is approximately the pattern in  Figure 6.A). Figures 6.C) and 6.D) depict two other 
frequent approximate patterns in the same network. The Pattern in Figure 6.D) is approximately 
the more extensive occurrence of the pattern in Figure 6.C) with six oriented vertices. 
 

 



(A)                                                                     

(B) 
 

 
                                                                          

(C) 



 
                                                                              

(D) 
Figure 6. Overview of the main outputs: a set of approximate frequent patterns {A, B, C, 
D}.(A) Graphical description of the recurring primary pattern, (B) The approximate second 
recurring pattern of (A), (C) Third recurring approximate pattern, and (D)The most extensive 
frequent approximate pattern. 

5.4. Experimental Evaluation  
The following sections will compare the MFP and Gaston algorithms based on the three 
criteria: runtime, memory consumption, and the number of frequent mined patterns. The 
choice to compare with the Gaston algorithm is not random since the proposed algorithm 
MFP and Gaston share several common points, as depicted in Table 1. 

Table 1. Comparison between MFP and Gaston algorithms 

Feature MFP algorithm Gaston algorithm 

Input type Undirected/Directed graph Undirected/Directed graph 

Dynamicity of graphs Static Static 

Result type Frequent subgraphs Frequent subgraphs 

Pattern growth Pattern growth-based approach Pattern growth-based approach 

Algorithmic design Serial Serial 

Graph mining Deep First Search (DFS) Sequences and Tree Extraction (STE) 

 
The comparison between MFP and Gaston algorithms will be based on two open 
molecular databases, as shown in Table 2. The NCI dataset is used to determine how 
an algorithm scale increases database size and contains 237771 graphs. In contrast, the 
HIV dataset contains both confirmed moderately active molecules (HIV CM) and 
confirmed active molecules (HIV CA). HIV dataset contains 42689 graphs.  
 

 
 
 



Table 2. Datasets used for comparison between MFP and Gaston algorithms 

Dataset Number of graphs Field 

NCI 237771 Chemical 

HIV 42689 Chemical 

 
5.4.1 Runtime evaluation 

MFP and Gaston algorithms' runtime is evaluated using graphs derived from the two datasets 
NCI and HIV. Since the two datasets include a significant number of graphs, the runtime will 
be calculated in minutes. 
Figure 7 depicts a comparison of the runtime of MFP and Gaston algorithms for the two datasets 
NCI and HIV. Results demonstrate that the MFP algorithm outperforms the Gaston algorithm 
in terms of runtime for both datasets using different values of σ. The runtime varies according 
to the value of the frequency threshold σ. When we increase the frequency threshold value, the 
number of mined patterns decreases and the runtime becomes lower. This can be explained by 
the evidence that the more the frequency threshold is high, the less frequent and approximate 
patterns exist in graphs. 

 
(A) NCI dataset                                                 

 
(B) HIV dataset 

Figure 7. Comparison of the runtime between MFP and Gaston 

 
 

 



5.4.2 Memory consumption 
This section will compare the memory usage in GB for MFP and Gaston algorithms using 
various values for σ.  
Figure 8 depicts a comparison between MFP and Gaston algorithms according to memory usage 
for the NCI and HIV datasets. The comparison shows that the Gaston algorithm's memory usage 
is greater than the memory usage of the MFP algorithm for most cases of σ values. In other 
words, MFP is less expensive in terms of memory storage than the Gaston algorithm. This can 
be explained by the mining approach used by each of the two algorithms. MFP uses a deep first 
search (DFS) approach to find a frequent approximate list of patterns. However, Gaston uses 
sequences and tree extraction by integrating frequent paths as an approach. 

 
(A) NCI dataset 

 
(B) HIV dataset 

Figure 8. Comparison of memory consumption between MFP and Gaston 
 

5.4.3 Number of frequent mined patterns  
This section will compare the number of patterns mined by MFP and Gaston algorithms using 
various values for σ. Figure 9 shows that for the same value of σ, the number of patterns mined 
by the MFP algorithm is greater than that mined by Gaston. MFP can detect more frequent 
approximate patterns than Gaston. This last algorithm cannot detect all occurrences of a given 
P in G. For the NCI dataset, we noticed that the number of mined patterns becomes constant 
when the value of σ >=5; however, this number decreases for the Gaston algorithm when the 
value of σ increases. For the HIV dataset, both algorithms detect the same number of patterns 
when the value of σ becomes greater (σ>6). We can conclude that the MFP algorithm is more 



efficient than the Gaston algorithm in terms of mining and finding more occurrences of a given 
pattern in a large graph. 
 

  
 (A) NCI dataset                                                  

  
(B) HIV dataset 

Figure 9. Comparison of the number of frequent mined patterns between MFP and Gaston 
 
In general, and based on the previous comparisons, it becomes evident that MFP is more 
efficient in runtime, memory usage, and the number of mined patterns in a large graph. 
 

6. Conclusion 
As data become more complicated, new algorithmic tools are needed to uncover frequent 
patterns. The identified patterns can be used to analyze associations, correlations, and other 
relationships between data, and to perform many extraction-related tasks, such as indexing, 
classification, etc. Hence, graph mining is being used with increasing frequency for analyzing 
large-scale networks with more complex data. In the paper above, we have presented a new 
approach based on the MFP algorithm, which can detect frequent patterns in large networks 
using the inexact matching technique. The proposed method is based on three steps: JSON data 
processing, data visualization, and mining frequent patterns using the MFP algorithm. Our 
algorithm was shown to be consistently more efficient than similar state-of-the-art algorithms 
when we tested it in real-world networks. Besides, we extended directed graphs to account for 



the edge direction of large graphs. Experimental results on real-world data demonstrate that the 
proposed MFP algorithm provides good results compared to other cutting-edge methods. 
Our work's primary ideas here also point toward several routes for the further, future 
development of optimized algorithms. Once frequent sets of patterns are found with the 
proposed MFP algorithm, additional analysis types could be applied, such as classification 
analysis, clustering, and building predictive models. Supervised machine learning algorithms 
could also be used for predictive analysis (e.g., Random Forest, neural networks, or a fusion of 
both). 
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