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ABSTRACT

This paper presents an improvement of the keypoint trans-
fer method for the segmentation of 3D medical images. Our
approach is based on 3D SURF keypoint extraction, instead
of 3D SIFT in the original algorithm. This yields a signif-
icantly higher number of keypoints, which allows to use a
local segmentation transfer approach. The resulting segmen-
tation accuracy is significantly increased, and smaller organs
can be segmented correctly. We also propose a keypoint se-
lection step which provides a good balance between speed
and accuracy. We illustrate the efficiency of our approach
with comparisons against state of the art methods.

Index Terms— Whole-body, Probabilistic and statistical
models & methods, Image segmentation

1. INTRODUCTION AND RELATED WORK

Whole-body segmentation is still a difficult problem in medi-
cal image analysis. Recent advances in machine learning, and
particularly in deep learning methods, have brought improve-
ments to segmentation algorithms [1]. However applications
of deep learning to whole body segmentation still face impor-
tant challenges, such as the lack of large training datasets, and
the large dimensions of 3D medical images (often about 5123

voxels) which make the application of 3D deep models infea-
sible due to very high memory requirements. Indeed, most
deep learning methods applied in 3D either resort to resam-
pling or use 2D projections of 3D data [2].

We choose a keypoint transfer method for 3D segmen-
tation, originally proposed in [3], as a starting point. Sim-
ilarly to multi-atlas segmentation methods [4], this method
segments organs in a target image by transferring organ seg-
mentations (annotations) of reference images onto the target
and combining them. However unlike most multi-atlas meth-
ods, it segments a whole-body image in less than a minute
with a relatively small memory footprint. This is due to the
use of keypoints instead of image matrices and the lack of
complex and time consuming registration steps necessary in
multi-atlas methods. We first describe the reference method,
illustrated in Fig. 1, prior to presenting our contributions.

The keypoint transfer algorithm proceeds in 4 steps:

Fig. 1: Illustration of the keypoint transfer algorithm following a
single target keypoint, circled in blue. Matched reference keypoints,
circled in blue, vote for their labels: 3 votes for liver and 1 for R.
kidney. Liver annotations of voting images are transferred to the
target, adding up to its liver score map. Once all target keypoints are
studied, organ maps are merged to obtain the final segmentation.

Preprocessing: Applied to reference images to extract
keypoints (3D SIFT [5] in the reference method) and remov-
ing keypoint located outside organs of interest.

Keypoint matching: Keypoints are extracted from the
target image, and for each keypoint the most similar keypoint
in each reference image is found. The matching is done ac-
cording to keypoint scale, descriptor and coordinates criteria
after a simple translation-only registration of reference im-
ages onto the target.

Keypoint voting: For a given target keypoint, matched
reference keypoints vote for their organ label, weighted by
translational consistency and descriptor similarity criteria to
take uncertainly into account. The label with the highest score
is assigned to the target keypoint.

Keypoint segmentation: For each target keypoint, the
annotations of all matched reference keypoints with the same
label are transferred onto the target image, weighted by label
score and voxel-wise intensity difference between reference
and target images, thus creating a score map for each organ.
The final target segmentation is created by thresholding organ
score maps to reduce over-segmentation caused by outlier an-
notations, and by merging them keeping the label that has the
highest score for a given voxel in case of overlap.



Fig. 2: Local segmentation: instead of transferring the full refer-
ence annotation (left), we extract a cubical region around the refer-
ence keypoint (the side of which depends on the keypoint scale) and
transfer it to the target image (right).

The main shortcoming of the original keypoint transfer
method is its relatively low segmentation accuracy, com-
pared to multi-atlas methods, which also results in the loss of
smaller organs. Therefore, contributions we propose aim at
improving this drawback. Specifically, we increase the num-
ber of extracted keypoints greatly using SURF [6] instead
of SIFT keypoints. Moreover we introduce a local transfer
method which significantly improves segmentation accuracy.
To further increase segmentation speed, we devise a keypoint
selection algorithm to increase segmentation speed while
maintaining accuracy levels.

2. METHODS

2.1. 3D SURF keypoint extraction

The keypoint extraction method we choose is the 3D SURF
approach described in [7]. This choice is motivated by two
criteria: its short computational time and the number of key-
points extracted, about 140,000 per image. Such a large set of
keypoints helps to cover the majority of thoracic and abdom-
inal organs, even the smallest ones such as the gallbladder
and the adrenal glands. This enables us to apply the keypoint
transfer algorithm to smaller organs, unlike [3].

2.2. Local segmentation

A major improvement of the keypoint-transfer segmentation
algorithm comes from our introduction of local segmentation
which consists in transferring only the region surrounding the
reference keypoint to the target image as opposed to global
segmentation which transfers the full organ annotation.

The motivation comes from observed target over-segmen-
tations, which are due to the high inter-patient variability in
organ shape and size of transferred reference annotations. A
good match between two keypoints does not imply similar
boundaries between reference and target organs : a keypoint
carries information about its local neighborhood, it is oblivi-
ous to the larger context of the organ it lies in.

Fig. 3: Comparison between the number and location of keypoints
before (left) and after (right) their selection which removes the ma-
jority of repetitive keypoints.

When using 3D SURF extraction, around 15,000 key-
points lie inside reference organs, which is significantly
higher than the number of 3D SIFT keypoints in [3]. This
allows us to use a local segmentation approach whereby only
a local region of interest around a reference keypoint is trans-
ferred from the reference annotation to the target image, as
shown in Fig. 2. Following the extraction parameters in [7],
the transferred region is a cubical region the side of which is
twice the scale of the keypoint.

2.3. Keypoint selection

As previously mentioned, we have a very large number of
keypoints which facilitate local segmentation. One advantage
of the original keypoint-transfer segmentation algorithm [3] is
its very short computation time, which is partially due to the
very small number of keypoints (no more than 1,000 per im-
age). Hence the motivation to reduce the number of 3D SURF
keypoints. The left image of Fig. 3 shows that the majority of
keypoints overlap. To reduce the number of keypoints, we
order them in decreasing order according to the detector re-
sponse, then for each keypoint k we examine the spherical
image area it covers (according to its coordinates and scale).
If k covers a region that is already 50% covered by one or
more keypoints with a higher detector response, k is removed
from the set of keypoints. The set of keypoints which results
from this algorithm is illustrated on the right image of Fig. 3.
We can notice that the number of keypoints is greatly reduced,
and the remaining keypoints are less cluttered.



Table 1: Mean performance metrics and execution times for
cross-validated experiments. Two strategies are explored:
global and local transfer using all and selected keypoints.
Dark green cells report best results for the given strategy and
light green ones report the second best.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Data and compliance with ethical standards

We evaluate our method on 20 thoracic-abdominal contrast-
enhanced 3D CT images with 20 organ annotations, manually
segmented by specialists. These images come from the VIS-
CERAL Challenge training dataset [8], obtained in compli-
ance with ethical standards. We have resampled images to a
mean dimension of 200× 200× 349 for comparison with [3].

The experimental protocol follows a leave-one-out strat-
egy, whereby 19 images are used as references and 1 as target,
for all images. Segmentation quality has been evaluated us-
ing the Dice similarity index, the average surface distance and
the Hausdorff distance, averaged over experiments to obtain
overall and organ-wise performances of the algorithm.

3.2. Evaluation of contributions

Table 1 gives mean performance metrics over all experiments,
in addition to mean execution times as it is one of the impor-
tant aspects of the keypoint transfer algorithm. The only set-
tings that change from an experiment to another are the seg-
mentation strategy (global or local transfer, Section 2.2) and
the number of keypoints (all keypoints or selected ones, Sec-
tion 2.3). The table shows that when using all keypoints, local
transfer is better than global transfer. This is confirmed by a
0.05 increase of mean Dice and a 0.4 mm reduction of mean
average distance values, in addition to a 23% decrease of ex-
ecution time. The one-sided paired t-test comparing mean
Dice performances of global and local segmentations gives a
p-value of 2.8×10−5, which confirms the improvement of the
local method. We can also see that selecting about one third of
original keypoints has little influence on global segmentation
accuracy, however it reduces execution time by about 31%.
Finally, local segmentation using selected keypoints yields
the most interesting results as it reduces execution time by
62% while maintaining segmentation quality. Indeed, a one-
sided paired t-test on mean Dice measures between this ex-
periment and local transfer with all keypoints gives a p-value
of 0.08, which means that their organ-wise performances are
quite similar.

3.3. Comparison with related methods

We compare our segmentation method with two related ones
on the VISCERAL training dataset: [9], which is a multi-
atlas algorithm using a keypoint-based registration approach,
and the original keypoint transfer algorithm [3].

Fig. 4 gives per-organ mean Dice values for the three
methods. Note that Dice measures are given only for 10 or-
gans in [3]. We can see that our method outperforms [3] on all
organs but the lungs. The mean Dice value for the 10 organs
segmented in [3] with our local approach is 0.843 when using
all keypoints and 0.844 with selected keypoints, compared
to 0.796 in [3]. The one-sided paired t-test comparing our
algorithm with [3] gives respectively a p-value of 0.023 when
using all and 0.017 when using selected keypoints, confirming
the significance of the improvement brought by our method.
Investigation has shown that the relatively low Dice value for
the lung segmentation is due to a slight under-segmentation
caused by a relatively low number of keypoints at the basis of
lungs. This could be corrected by using a specific threshold
for the lungs prior to merging organ score maps. Fig. 4 shows
that the multi-atlas method in [9] performs best in terms of
segmentation accuracy. However our method comes quite
close, especially on organs such as the psoas and abdominal
muscles, the aorta and the adrenal glands. Moreover, our
method outperforms [9] in terms of execution speed as the
latter requires over 2 hours to terminate.

3.4. Timing and memory footprint

All experiments are conducted on a Linux system running on
a 2.2 GHz CPU. The memory footprint of local segmentation
is 17.7 GB with selected and 20.2 GB with all keypoints.

We should mention that, as of the current implementa-
tion of our method, it still is around 20 times slower than the
original keypoint transfer algorithm [3]. This is due to two
reasons: the much higher number of keypoints and the cur-
rent Python implementation. A C++ re-implementation is un-
derway and already shows perspectives of important speedup.
Indeed, the step that consists in reading descriptors, calculat-
ing weights and voting which takes about 15 minutes on all
keypoints in Python, terminates in about 38 seconds in the
C++ re-implementation.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an improvement of the key-
point transfer segmentation algorithm by using 3D SURF
keypoints, allowing us to use a local instead of a global seg-
mentation transfer. The new approach improves segmentation
accuracy and allows to segment smaller organs as well. As
the number of extracted keypoints is much larger compared to
the original method, our algorithm is slower. A good trade-off
is to reduce the number of keypoints, which greatly reduces
execution time while preserving segmentation quality.



0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

live
r

spleen

pancre
as

ga
llb

lader

blad
der

aorta

tra
ch

ea
lung R

lung L

ste
rnum

thyroid FLV

kid
ney R

kid
ney L

adrenal 
R

adrenal 
L

pso
as R

pso
as L

abdom. R

abdom. L

Di
ce

Kechichian et al. Wachinger et al.

Proposed method : Best Perfomance, local + all keypoints Proposed method : Best Execution Time, local + selected keypoints

Fig. 4: Comparison of the local transfer segmentation method (using all and selected keypoints) with related state-of-the-art methods on
per-organ mean Dice measures evaluated on the VISCERAL training dataset.

Although the performance of the proposed method is
promising, there is much room for further improvement.
Organ-specific threshold parameters could be defined and
optimized. The segmentation of smaller organs (e.g. the
gallbladder) could be improved by transferring annotations
from nearby larger organs (e.g. the liver). The selection of
keypoints, as described in Section 2.3, could be done accord-
ing to their repeatability in other reference images, as in [10],
instead of the detector response. A repeatability score could
then be used for sorting keypoints prior to selection and as an
additional weight for voting and segmentation.
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