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Abstract

Simulations of ion slowing-down beams in thick targets aim at characterizing the spatial and
energy distributions of incident ions inside the matter. However, to simulate the propagation of
a heavy ion beam we must confront several difficulties due to the stiffness of physical phenomena.
In this paper, we propose to develop a moment method with a high order accuracy numerical
scheme to solve the Fokker-Planck equation. The algorithm is accurate and fast enough to be
used in operational processes of dose deposition optimization. Several benchmarks are carried
out and will be presented in this paper.

Keyword : Heavy ion transport, Moment Method, Numerical Scheme, High Order Accuracy,
Realizability.

1 Introduction

Until the middle of the past century, penetration of charged-particle were stimulated almost exclu-
sively for the needs of fundamental physics research, but the applications in other areas gradually
became important. Quantitative information on the penetration of charged ions through matter,
in particular the energy loss, is of considerable interest in basic science, medicine and technology.
For example, the presence of heavy ions in the galactic cosmic rays (GCR) has been observed at
high altitude in the Earth’s atmosphere (Freier et al., 1948 [1]). Recently, the use of accelerated
heavy ions has been proved fruitful for the exploration of the structures of unstable states of atomic
nuclei as well as the multiple nuclear reactions that which occur in stars, supernovae [2] and also
between matter and cosmic radiation [3]. Continuing this research on the origins and properties
of nuclear matter requires the use of beams of unstable nuclei with a large excess of protons or
neutrons. These methods require very intense ion sources (protons, deuterons, more or less heavy
ions obtained by the combined action of electric and magnetic fields to ionize and gathered the
ions. The progress achieved in the generation of ion sources benefits all kind accelerator facilities,
from small cyclotrons intended to destroy tumors by ion beams (proton therapy [4], radiotherapy
with carbon ions [5]) to those which produce medical and industrial isotopes. The development of
increasingly efficient and reliable accelerators is providing particle beams with properties virtually
on demand. It is now possible to use them to irradiate targets of all kinds. The target can be a
malignant tumor to be treated (medical sector [6]), a food to be sterilized (food safety sector [7]),
or even a spallation target intended to produce neutrons (scientific research sector [8]).

Some biology effects are caused by energy deposition, which may be accurately calculated with
Monte Carlo codes. However, solving directly the system of linear transport equations for the
motion of particles is computationally expensive, and thus nowadays incompatible with practical
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applications. The moment method, used in a very large of physical applications [9, 10, 11, 12, 13]
consists in replacing the linear Boltzmann transport equation by a reduced number of moment
equations of lower dimension. Such an approach allows to reduce the number of degrees of freedom,
i.e. the number of variables, saving memory space and a significant amount of computations while
maintaining a satisfying accuracy. The moments method has already been used by some authors
for the propagation of electrons in matter [14, 15, 16].

This study focuses on the propagation of ions. Simulations of slowing-down of ion beams in
thick targets aim at characterizing the spatial and energy distributions of incident particles and
secondary fragments in matter. Quantitative physics, including the energy deposited (dose), on
the penetration of ions through matter represents a fundamental aspect for a wide diversity of
applications: the development of new materials for devices able to work in hostile conditions (high
fields of radiation, extreme temperature or pressure), new principles and techniques of detection,
reactor waste technologies, medical applications, dosimetry, etc. The great difference between
electrons and ions is that unlike electrons, the deflection of ions when colliding with molecules
is almost zero, since the mass of the ions is much more important. So almost all beam energy is
deposited at the end of the ion path before stopping abruptly. This makes the numerical modelling
of ion beam difficult because of the expected discontinuous nature of the solutions obtained.

Facing the stiffness of the calculations, the requirement on the quality of the results and the
calculation time, we focused our efforts on mathematical and numerical developments. In this paper,
we propose to develop a moment method and a high order accuracy numerical scheme to solve the
Fokker-Planck equation that is sufficiently accurate and fast to be used in operational processes of
dose deposition optimization.

2 Physical Modelling

The linear Boltzmann transport equation (LBTE) has been used widely in the study of particle
transport for several decades [17]. However, the nature of interaction of the ion is different from
that of the neutron: due to the Coulomb interactions, the ion has a large number of small angle
scatter interactions. This type of interaction is expressed in nearly singular differential scatter cross
sections. It is very unpractical to treat these differential cross sections with conventional means
in deterministic methods. To deal with this issue, the Fokker-Planck approximation is used. In
this approximation, the small angle scatters and the small energy transfers are described by the
Fokker-Planck operators. In this section, we will describe these equations.

2.1 The Boltzmann-Fokker-Planck Equation

We define f(r, ε,Ω, t) as an angular density of ion particles in phase space (R3 × R+ × S2 × R+).
The particle density N(r, ε, t) can be determined by:

N(r, ε, t) =

∫

S2

f(r, ε′,Ω′, t)dΩ′ (1)

The motion of transported particles in matter is modelled by their fluence ψ = ||v||f(r, ε,Ω, t)
where v is the particle speed vector (||v|| =

√
2ε/m).
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The flow of particles through the background medium (target) is described by the LBTE (2):

1

v

∂ψ(r, ε,Ω, t)

∂t
+ Ω · ∇rψ(r, ε,Ω, t) + σt(ε)ψ(r, ε,Ω, t)

=

∫

R+

dε′
∫

S2

σ(ε→ ε′,Ω ·Ω′)ψ(r, ε′,Ω′, t)dΩ′

+Q(r, ε,Ω, t), (2)

with t ∈ R+ the time, ε ∈ R+ the particle energy, r ∈ R3 the position vector, Ω ∈ R3 the flight
direction. Q(r, ε,Ω, t) is the source term. σ(ε,→ ε′,Ω ·Ω′) is the differential scattering cross section
of the ions at the energy ε into the direction Ω. σt denotes the total cross section :

σt(ε) =

∫

S2

∫ ε

εmin

σ(ε→ ε′,Ω ·Ω′)dε′dΩ′. (3)

We define the cross section operator ΣB, expressed the likelihood of interactions between particles,
as stated by

ΣBψ(r, ε,Ω, t) = σt(ε)ψ(r, ε,Ω, t)−
∫ ∞

0

∫

S2

σ(ε→ ε′,Ω ·Ω′)ψ(r, ε′,Ω′, t)dΩ′dε′ (4)

On the theoretical point of view, the linear Boltzmann collision operator described is appropriate.
Although, for numerical considerations, discretizing directly these terms can be difficult. Typically,
discretizations of the gain term require the energy grid to be fine enough to capture the peak of
Boltzmann cross sections operator ΣB, which requires a significant number of energy cells.

The time required for slowing down the particles is negligible if compared to the time of irra-
diation. These assumptions imply that the flux of injected particles can be considered as constant
in time and the equation describing the transport of particles is time independent. Instead it is
often preferred to substitute the exact integral operator described above by a Fokker-Planck one,
reflecting the continuous slowing-down approximation (CSDA) [18]. This approach is based on a
hypothesis that a small kinetic energy loss results in a small deviation, the cumulative effect of many
soft interactions can be approximated by the continuous energy loss of a charged particle without
angular deflection and without production of secondary particles.

With all these assumptions, the fluence of the transported particles satisfies the following equa-
tion (called Fokker-Planck equation):

Ω · ∇rψ(r, ε,Ω) + ΣFPψn(r, ε,Ω) = Q(r, ε,Ω) (5)

The cross section operator ΣB can be approximated by the Fokker-Planck (FP) operator ΣFP :

ΣFPψ(r, ε,Ω) = −ρ ∂
∂ε

(S(ε)ψ(r, ε,Ω))− ρT (ε)∆Ωψ(r, ε,Ω). (6)

with ρ the target weight density (g.cm−3).
We introduce the Laplace–Beltrami operator ∆Ωψ defined by

∆Ωψ(r, ε,Ω) =
∂

∂µ

(
(1− µ2)

∂

∂µ
ψ(r, ε,Ω)

)
+

1

1− µ2

∂2ψ

∂φ2
(7)

and the variables µ and φ are the directions of Ω in spherical coordinates :

(µ,
√

1− µ2 cosφ,
√

1− µ2 sinφ)T
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with µ = cos θ, θ and φ being the polar and azimuthal angles of the vector Ω, µ ∈ [−1, 1], φ ∈ [0, 2π].
We define the function S the mass stopping power (mass energy loss per unit distance travelled)

as:

S(ε) =

∫ ε

εmin

∫

S2

ε′.σ(ε→ ε′,Ω′ ·Ω)dΩ′dε′ (8)

and the function T is the momentum transfer cross section, called ‘transmission coefficient’:

T (ε) =

∫ ε

εmin

∫

S2

(1−Ω′ ·Ω)σ(ε→ ε′,Ω′ ·Ω)dΩ′dε′. (9)

Knowing the mass stopping power, one can estimate the range of an ion beam. The range is defined
as the distance travelled by a particle in a medium before all its kinetic energy is lost. If we neglect
the small lateral deflections of the ion, for an initial energy E0 of the ion beam, the range can be
calculated by the expression (10):

R(E0) =

∫ E0

0

dε

ρS(ε)
. (10)

2.2 Transport Coefficients

2.2.1 Stopping Power

The mass stopping power defined by the relation (8) does not provide a practical method for
calculating the stopping power.

The theory of energy loss has been developed in many authors, these phenomena were described
in many different publications over many decades [19, 20]. When passing through matter, charged
particles ionize atoms or molecules along their path. Consequently, these particles gradually lose
their energy. The stopping power is the average loss of energy of the particle per unit of distance
traveled. The mass stopping power models a property of the material (in MeV.cm2/g), it is defined
by:

S(E) = −1

ρ

dE

dx
, (11)

(in this sub-section, E designates the particle energy, in MeV). Since the total energy loss mechanism
is divided into two processes (electronic interaction and nuclear interaction), the computation of
the SP can be separated into two parts: the electronic stopping power (due to inelastic collisions)
and the nuclear stopping power (due to elastic collisions):

S(E) = Se(E) + Sn(E). (12)

The electronic stopping power deals with the interaction of the incident ions with the electrons
of the target particles. This approximation is possible because the electrons have a much lower mass
than the nuclei, the kinetic energy is therefore largely transferred to the electrons. The energy loss
by ionization above 500 keV is adequately described by the Bethe-Bloch formula:

Se(E) =
κ

AP

ZTZ
2
P

β2

[
ln

(
2mec

2β2

< I > (1− β2)

)
− β2 − C

ZT
− δ

2

]
, (13)

with κ the stopping pre-factor (= 0.3071 for stopping units of MeV.cm2/g), ZT the target atomic
number, ZP the projectile atomic number, AP the target atomic weight , < I > the averaged
excitation potential per electron. C

ZT
is the ‘Shell correction’, the density effect term ( δ2) corrects

for polarization effects in the target (see Ref. [21]).
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The nuclear stopping power is calculated by considering the incident ion and the target nucleus
in the center of mass reference frame. The Ziegler’s empirical formula [21] which is a modification
of the theory of Lindhard et al. [22] is used. There have been several extensive theoretical studies
of the nuclear stopping power using the rms (root-mean-square) value of the interatomic potential.
This is an empirical formula called the universal interatomic potential [21, 23]. This empirical
formula is used to evaluate the nuclear stopping power of an ion in a solid. The accuracy of the
empirical fit was less than 1%. In reduced units, the nuclear stopping power is given by:

Sn(E) =
8.462× 10−15ZPZTMPS

u
n(ε)

(MP +MT )(Z0.23
P + Z0.23

T )
(eV.cm2/atom). (14)

ε is the reduced energy in units of keV/nucleon:

ε =
32.53MTE

ZPZT (MP +MT )(Z0.23
P + Z0.23

T )
(15)

with MP , MT the atomic masses of projectile and target respectively.
Sun(ε) is the reduced nuclear stopping power (16) :





Sun(ε) =
ln(1.+ 1.1383ε)

2[ε+ 0.01321ε0.21226 + 0.19593ε0.5]
for ε ≤ 30

Sun(ε) =
ln(ε)

2ε
for ε > 30

(16)

2.2.2 Stopping power of a compound material

The stopping power of a compound can be expressed as a combination of the stopping power of the
constituent elements as a convex combination:

S(E) =
∑

k

YkSk(E) (17)

where Yk is the weight fraction of element k and such that
∑

k Yk = 1.
Figure (1) shows the stopping powers of Protons and Alpha in water estimated by relations

(12-17) in comparison with [24].
Knowing S(E), we integrate the relation (18) using the 4th order Runge-Kutta scheme to obtain

the ion energy all along the path from the initial energy (E0):

dE

dx
= −ρS(E) (18)

This integration provides us the value of the range when the charged particle energy is all deposited
(E = 0) (see Figure 2).

2.2.3 Momentum transfer cross section

The momentum transfer cross section is necessary to describe the angular diffusion due to elastic
collisions. From the relation (9), T (E) can be expressed:

T (E) =

∫ 2π

0

∫ π

−π
σ(E, cos θ)(1− cos θ) sin θdθdφ. (19)
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Figure 1: Stopping power of Protons (H+) and Alpha (He+) in water - Comparison between our
estimation and [24].
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Figure 2: Energy path of protons in water for an initial energy E0 = 100 MeV - a beam ion, coming
in the target with an initiale energy E0, deposits there all its energy until becoming still.

Using the Rutherford differential cross section [25],

σ(E, cos θ) =
dσ

dΩ
=

(
ZPZT e

2

4E

)2
1

sin4(θ/2)
, (20)

(where e is the elementary electric charge), one obtain:

T (E) = 2π

(
ZPZT e

2

E

)2 [
ln(2 sin2(θ/2)

]π
θ0

(21)

A typical feature of the relation (21) is that it increases very rapidly for small angles and even
becomes ∞ at θ → 0; small-angle scattering corresponds to very large impact parameters. A cutoff
in the smallest possible scattering angle θ0 must be imposed from physical considerations.

The resolution of such a system is complex in terms of software development and calculation
time. We detail in the next section the moment method used that allows to reduce the number of
degrees of freedom.
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3 Moment Method : M1 Model

An angular moment model for the Fokker-Planck equation was proposed by Dubroca et al. [14].
Its ability to simulate efficiently the transport of energetic particles has been demonstrated in the
context of photon- and radio- therapy [16]. Therefore, we will use theses studies to develop our
methods for ion beams.

3.1 Definitions

The i−th angular moment of the function ψ is defined by :

ψi(r, ε) =

∫

S2

Ω⊗ ...⊗Ω︸ ︷︷ ︸
i times

.ψ(r, ε,Ω)dΩ. (22)

The three firsts moments are written:

ψ0(r, ε) =

∫

S2

ψ(r, ε,Ω)dΩ = 〈ψ〉,

ψ1(r, ε) =

∫

S2

Ωψ(r, ε,Ω)dΩ = 〈Ωψ〉,

ψ2(r, ε) =

∫

S2

Ω⊗Ω.ψ(r, ε,Ω)dΩ = 〈Ω⊗Ωψ〉.

(23)

Using the definitions of the angular moments (23), one notices that ψ0 is non negative as the integral
of a non-negative fluence function. It is also clear that ||ψ1|| ≤ ψ0.

Proposition 1. Positivity of ψ0 : ψ0 ≥ 0.

Proposition 2. Flux limitation: ‖ψ1‖ ≤ ψ0.

These properties lead to the following definition of the realizability domain A.

Definition 1. A =
{

(ψ0,ψ1) ∈ R× R3, ψ0 ≥ 0, ||ψ1|| ≤ ψ0
}
.

This condition can be interpreted at the physical level by the boundedness of the fluxes.

Proposition 3. The realizability domain A is a convex cone i.e.

• If u ∈ A then ∀α ∈ R+, αu ∈ A;

• If (u, v) ∈ A×A then ∀α ∈ [0, 1], αu+ (1− α)v ∈ A;

• Consequence of these two properties:
If (u, v) ∈ A×A then ∀(α, β) ∈ R+ × R+, αu+ βv ∈ A.

This property will be used when constructing numerical schemes for moment equations in order
to prove that such schemes preserve the realizability property from one step to another.
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3.2 System of moment equations

By averaging the equation (5) and the multiplication by Ω of this equation over Ω we obtain the
system of moment equations:





∇r.ψ
1(r, ε) =

∂

∂ε

(
ρS(ε)ψ0(r, ε)

)
+Q0(r, ε)

∇r.ψ
2(r, ε) =

∂

∂ε

[
ρS(ε)ψ1(r, ε)

]
− 2ρT (ε)ψ1(r, ε) +Q1(r, ε)

(24)

The system (24) can be re-written in the vectorial form

ρ(r)
∂S(ε)U

∂ε
−∇r.F(U) = T .U + Q (25)

In semi-developed form:

ρ(r)
∂S(ε)U

∂ε
− ∂Fx(U)

∂x
− ∂Fy(U)

∂y
− ∂Fz(U)

∂z
= T .U + Q (26)

U =




ψ0

ψ1
x

ψ1
y

ψ1
z


 , T = 2ρ(r)T (ε)




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

Fx(U) =




ψ1
x

ψ2
xx

ψ2
yx

ψ2
zx


 , Fy(U) =




ψ1
y

ψ2
xy

ψ2
yy

ψ2
zy


 , Fz(U) =




ψ1
z

ψ2
xz

ψ2
yz

ψ2
zz


 .

However, this system doesn’t admit a unique solution. A central issue in the definition of the
moment model is the choice of the closure, which writes the highest moment as a function of the
lower ones.

3.3 Entropic Closure

A minimum entropy approach to the closure problem was applied by Levermore [11].
We want that our model applied to a closed and isolated system evolves to equilibrium, the

same way that the original Fokker-Planck equation moves to more probable states, due to the
collisions between particles. The second law of thermodynamics asserts that the entropy attains
its minimum, as the system reaches the state of equilibrium. The angular entropy of our system of
moment equations is defined as:

H(ψ) =

∫

S2

(ψ lnψ − ψ) dΩ. (27)

We use the entropy minimization principle (Boltzmann H-Theorem [26]) to close the moment equa-
tion system, the second order moment ψ2 will be expressed as a function of ψ0 and ψ1. The
underlying fluence function ψ is obtained as a solution of the following minimisation problem:

min

{
H(ψ)/∀ε ∈ R+,

∫

S2

ψ (r, ε,Ω) dΩ = ψ0(r, ε),

∫

S2

Ωψ(r, ε,Ω)dΩ = ψ1(r, ε)

}
. (28)
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(28) admits a solution [14]:
ψ(ε, r) = exp(λ0(ε, r) + λ1(ε, r).Ω) (29)

with (λ0,λ1) ∈ R× R3.

We define the anisotropy factor α as | α |= ‖ψ1‖
ψ0 , bounded in the interval [0, 1].

By using the Maxwell-Boltzmann-type distribution that assures the positivity of particle density,
ψ2 can be computed [14]:

ψ2 = ψ0

(
1− χ

2
I +

3χ− 1

2

ψ1 ⊗ψ1

‖ ψ1 ‖2
)
, (30)

where I is the identity tensor, the Eddington factor χ can be related to the anisotropy factor α
under interpolated form:

χ(α) ' 1

3
(1 + α2 + α4) (31)

Remark 1. For α = 0, we have χ = 1
3 , which corresponds to the P1 model, largely used in the

context of radiative transfer.

3.4 Dose

The principle of dose calculation is to solve the above equations for ion transport and then to use the
calculated fluence to determine the absorbed dose. The dose can be calculated from the stopping
power :

D(r) =

∫ ∞

0
S(ε)ψ0(r, ε)dε (32)

4 Numerical Methods

The spatial domain D is discretized using a uniform cartesian grid. We assume that the source term
Q does not exist.

4.1 Energetic Derivate: Explicit Method

Using an energy explicit Euler scheme and integrating in energy retrogradeNote (εmax → εmin), the
3D equation system over a control volume [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2] can be
written under the discretized form:

(ρi,j,kS
nI + ∆ε.T n)Un

i,j,k = ρi,j,kS
n+1Un+1

i,j,k −
∑

l=i,j,k

∆ε

∆xl
(Fn+1

l+1/2 −F
n+1
l−1/2) (33)

l = i,∆xi = ∆x, Fi+1/2 corresponds to the x direction discretized flux Fx(xi+1/2);
l = j,∆xj = ∆y, Fj+1/2 corresponds to the y direction discretized flux Fy(yj+1/2);
l = k,∆xk = ∆z, Fk+1/2 corresponds to the z direction discretized flux Fz(zk+1/2).

Thereafter, we will note Sni,j,k = (ρi,j,kS
nI + ∆ε.T ni,j,k).

Using an explicit scheme, one must pick the energy step according to the Courant-Friedrish-Levy
(CFL) condition. This condition will be discussed as well as the spatial numerical scheme in the
subsection 4.2.1. An implicit scheme has been experimented but was suffering a large amount of
numerical diffusion in comparison with the explicit method. Since we are looking for highly accurate
solutions, we will only mention the explicit approach in this paper.
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4.2 Spatial Resolution

For sake of simplicity, we only focus on the discretization of the 1Dx equation system. The extension
to higher dimensions is straightforward on a cartesian grid. The realizability of standard high-order
finite-volume schemes in space is discussed. We will notice an approximation of Un

i = U(xi, ε
n) at

the position xi and the energy εn.

4.2.1 First Order Approximation: HLL Scheme

The spatial discretization is achieved with a standard finite volume scheme using the Harten-Lax-
van Leer (HLL) [27] approximate Riemann solver to compute the fluxes at the cell interfaces in
the x direction. This numerical scheme is commonly used for the moment equations due to its
capability to preserve the realizability from one energy step to another, it is positively conservative
if the absolute value of the maximal and minimal wavespeeds satisfies certain stability bounds.

The HLL scheme [27] solves the Riemann problem approximately by assuming a single state
between the left and right states:

0

x
ε

bRbL UHLL

Ui+1Ui
Ũ(x/ε) =





Ui if x/ε < bL

UHLL
i if bL < x/ε < bR

Ui+1 if x/ε > bR
(34)

where bL and bR are the smallest and the largest wave velocities at the interface xi+1/2, they
correspond to the eigenvalues of the Jacobian matrix associated to the flux function F(U).

Using an energy explicit Euler scheme and integrating the 1D equation system on a control
volume (xi−1/2, xi+1/2), we obtain:

ρi
S(εn+1)Un+1

i − S(εn)Un
i

∆ε
−
FHLL
i+1/2 − FHLL

i−1/2

∆x
= T ni Un

i (35)

where the flux function FHLL
i+1/2 is defined as:

FHLL
i+1/2 =

b+Fi − b−Fi+1 + b+b−(Ui+1 −Ui)

b+ − b− (36)

with b+ = max(bR, 0), and b− = min(bL, 0).
For the particular case, b+ = 1 and b− = −1, the flux function Fi+1/2 is written:

Fi+1/2 = F (Ui,Ui+1)

Fi+1/2 =
1

2
(Fi + Fi+1 − (Ui+1 −Ui))

(37)

Finally, by integrating in energy degeneration, the state at εn can be obtained:

Sni Un
i = Un+1

i (ρiS
n+1 − ∆ε

∆x
) +

∆ε

2∆x
(Un+1

i+1 −F(Un+1
i+1 )) +

∆ε

2∆x
(Un+1

i−1 + F(Un+1
i−1 )) (38)

CFL Condition:
This scheme (38) is stable under CFL condition:

CFL =
∆ε

ρminSn+1∆x
< 1, (39)
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with ρmin = min(ρi,∀ i ∈ D).
The size of the energy step ∆ε is chosen according to this condition. It becomes very restrictive

when the density ρ of the target is low (for example ρAir = 1.204 10−3g.cm−3).

4.2.2 Realizability

In order to provide deeper physical meaning to the solution of moment equation, one aims to relate
the solution ψk of moment equation such as (24) to an underlying kinetic fluence ψ, numerical
schemes applied to the system (26) need to preserve the realizability property.

Lemma 1. If U ∈ A then U±F(U) ∈ A.

Proof. According to Definition 1:
∃ψ ≥ 0, ∀U ∈ A such as

U±F(U) =

〈
ψ

(
1
µ

)〉
±
〈
ψ

(
µ
µ2

)〉
=

〈
(1± µ)ψ

(
1
µ

)〉

As µ ∈ [−1, 1] then U±F(U) ∈ A.

Using this property, we can show that out method preserves the realizability property from an
energy step to the next one:

Proposition 4. If we assume the CFL condition ( ∆ε
ρS∆x < 1) then for Un+1

i ∈ A , the scheme (38)
provides Un

i ∈ A .

Proof. From the equation (38), we examine term by term

Sni .Un
i = Un+1

i (ρiS
n+1 − ∆ε

∆x
)

︸ ︷︷ ︸
∈A if ∆ε

ρS∆x
<1

+
∆ε

2∆x
(Un+1

i+1 −F(Un+1
i ))︸ ︷︷ ︸

∈A see Lemma 1

+
∆ε

2∆x
(Un+1

i−1 + F(Un+1
i−1 ))︸ ︷︷ ︸

∈A see Lemma 1

.

If the CFL restriction is satisfied, the updated state is a positive combination of realizable states,
it is therefore realizable according to Proposition 3.

4.2.3 High Order scheme: Second order approximation

The most widely used second-order finite volume scheme is the Monotonic Upstream-centered
Scheme for Conservation Laws (MUSCL) scheme (see Ref. [19]). We use Van Leer’s techniques
to extrapolate the face centered pointwise values of the conservative variables Un

i in each cell from
the initial volume averaged data. The principle is to start from the definite piecewise constant so-
lution, then to evaluate the slopes and to reconstruct a piecewise affine solution in the x direction.

We then use theses high precision states to solve the Riemann problem and obtain high order
estimations of the fluxes.

The slope limiter plays an essential role in suppressing spurious numerical oscillations.

Ũi(x) = Ui +
x− xi

∆x
ηi (40)

where ηi denotes the slope of the linear function on the cell (xi−1/2, xi+1/2).
We consider the inner approximations in the cell i (see Figure 3), located at x = xi−1/2 and

x = xi+1/2. These approximations are denoted Ũ±i and are defined by

Ũ±i = Ui(xi±1/2) = Ui + ∆U±i (41)
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136 STABILITY OF THE MUSCL SCHEMES

where the increment �Wn,±
i is defined by

�Wn,±
i =±�x

2
�n

i ,

in the case of linear function based on the conservative variables (1.12). If we consider
linear functions based on a change of variables (1.13), �Wn,±

i finds the following
definition:

�Wn,±
i =�1

✓
(Wn

i )± �x

2
�n

i

◆
�Wn

i

Fig. 1.1. Piece-wise linear MUSCL reconstruction

xi�1 xi xi+1

Wn
i�1

Wn
i Wn

i+1

Wn,�
i

Wn,+
i

Wn,+
i�1

Wn,�
i+1

In the sequel, we will denote conservative slope with the following case:

Wn,�
i +Wn,+

i =2Wn
i (1.15)

or equivalently �Wn,�
i +�Wn,+

i =0, while the general slope will be denoted by

Wn,�
i +Wn,+

i 6=2Wn
i , (1.16)

or equivalently �Wn,�
i +�Wn,+

i 6=0. Both situations will be considered in the
present paper. In general, works devoted to stability properties of the MUSCL
schemes (see Perthame [22] or Khobalatte-Perthame [16] for instance) solely consider
the conservative slope (1.15).

The space second-order scheme writes:

Wn+1
i =Wn

i �
�t

�x

⇣
F(Wn,+

i ,Wn,�
i+1 )�F(Wn,+

i�1 ,Wn,�
i )

⌘
, (1.17)

where F is the associated first-order flux function introduced in (1.8).
The main di�culty lies on the construction of the vector increment �Wn,±

i . A
large literature is devoted to this subject but essentially for the scalar conservation
laws and it is based on the Total Variation Diminishing criterion [9]. As emphasized
by Coquel-LeFloch [9], the total variation of a solution of (1.1), in general, is not a
diminishing function of time. Thus, it is necessary to focus on properties (1.5) and
(1.7).

In the framework of the Euler equations (1.1), the MUSCL scheme (1.14)-(1.17)
is used but, in general, the stability properties are not ensured. However, Khobalatte-
Perthame [16] and Perthame-Qiu [23] exhibit (conservative) slope limitations in order

U

U

U

U
U

U
U

Figure 3: Variation

where the increment ∆U±i is defined by :

∆U±i = ±1

2
ηi (42)

The space second order scheme is written:

Sni Un
i = ρ.Sni Un+1

i − ∆ε

∆x
(F (U+

i ,U
−
i+1)− F (U+

i−1,U
−
i )) (43)

The main difficulty lies in the construction of the vector increment ∆U±i .
Several choices for the slope ηi are proposed [28, 29]. In this paper, we can use

or
ηi = minmod (Ui −Ui−1,Ui+1 −Ui) ,

ηi = superbee (2(Ui −Ui−1), 2(Ui+1 −Ui),Ui+1 −Ui−1) .
(44)

With the minmod function defined by

∀(x, y) ∈ R2, minmod (x, y) =





0 if xy ≤ 0
x if |x| ≤ |y|
y else

. (45)

and the superbee limiter:
superbee (x, y, z) = minmod (x, y, z) (46)

with
∀(x, y, z) ∈ R3, minmod (x, y, z) = max(0,min(x, y, z)) + min(0,max(x, y, z)). (47)

In order to ensure that the scheme preserves the realizability of the solution, we use the slope
limitation procedure proposed by Berthon [30].

We introduce now a parameter δ :

Ũ±i = Ui ± δi∆U±i such as Ũ±i ∈ A (48)

Then {
ψ0 ± δi∆U0±

i ≥ 0 (see Proposition 1)

|ψ1 ± δi∆U1±
i | ≤ ψ0 ± δi∆U0±

i (see Proposition 2)
(49)

The system (49) admits 4 solutions :

δ1,2,3,4
i =

(
∓(∆U0±

i ψ0
i −∆U1±

i ψ1
i )±

√
∆
)

(∆U0±
i )2 − (∆U1±

i )2
(50)
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with ∆ = (∆U0±
i ψ0

i −∆U1±
i ψ1

i )
2 − ((∆U0±

i )2 − (∆U1±
i )2)((ψ0

i )
2 − (ψ1

i )
2).

Finally, the following nonlinear realizability condition is determined:

δi = min(1, δ∗i ) with δ∗i = min(δji if δji > 0, j = 1..4) (51)

CFL Condition:

Theorem 1. [31]: If the first order scheme (33) is realizable under CFL condition (CFL < 1) then
the second order scheme (43-51) is realizable under CFL condition 1

2 (CFL < 1
2) .

4.2.4 High Order scheme: Fourth order approximation

We turn now to a higher order approximation using a fourth order MUSCL TVD scheme [32].

U±i = Ui + δi(∆u)±i (52)

Similar to the second order scheme, the fourth order scheme proceeds in 2 steps. At the first step,
we construct the vector increment (∆u)±i , and at the second, we determine the slope limitation δi.
This δi will be calculated in the same way as the second order scheme (see eq. 48 - 51). Although,
we have to redefine the increments (∆u)±i .

The fourth order MUSCL reconstruction reads :

(∆u)−i = −1

6

(
2∆∗ūi−1/2 + ∆∗ũi+1/2

)
,

(∆u)+
i =

1

6

(
∆∗ūi−1/2 + 2∆∗ũi+1/2

)
, (53)

where

∆∗ūi = minmod
(
2∆∗ui−1/2, 4∆∗ui+1/2

)
,

∆∗ũi = minmod
(
2∆∗ui+1/2, 4∆∗ui−1/2

)
, (54)

and

∆∗ui+1/2 = ∆ui+1/2 −
1

6
∆3ūi+1/2,

∆3ūi+1/2 = ∆uai−1/2 − 2∆ubi+1/2 + ∆uci+3/2,

with

∆uai−1/2 = minmod
(
∆ui−1/2, 2∆ui+1/2, 2∆ui+3/2

)
,

∆ubi+1/2 = minmod
(
∆ui+1/2, 2∆ui−1/2, 2∆ui+3/2

)
,

∆ubi+3/2 = minmod
(
∆ui+3/2, 2∆ui−1/2, 2∆ui+1/2

)
.

Our method is thus fully described. It was parallelized in Open-MP frame. In the following
section, one presents some benchmarks.
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Target Density (g.cm−3) Composition (weight fraction)

Al 2.7 Al 1

Bone 1.85 H 0.034000, C 0.155000, N 0.042000,
O 0.435000, Na 0.001000, Mg 0.002000,

P 0.103000, S 0.003000, Ca 0.225000

Lung 0.26 H 0.103000, C 0.105000, N 0.031000,
O 0.749000, Na 0.002000, P 0.002000,
S 0.003000, Cl 0.003000, K 0.002000

Water 1.0 H 0.1111, O 0.8889

Table 1: Characteristics of considered material target

5 Numerical Results and Discussions

5.1 1D Validations : Bragg Curve

The Bragg curve is characteristic to heavy charged particles and describes the energy loss of ionizing
radiation during its path through matter. This peak occurs because the effective cross-section
increases immediately before the particle stops. For most of the ion path, the charge remains
unchanged and the specific energy loss increases as a function of 1/v2. Towards the end of the
course, the charge is changed by capturing electrons and the curve abruptly decreases.

Uni-dimensional simulations of mono-energetic proton beam are performed with 250 cells in the
x direction, the Bragg peak is obtained with accuracy (Figure 4) for 5.10−2 seconde CPU, above 30
minutes with Monte Carlo GEANT4 code [33]. The first order scheme provides a good result at the
beginning of the path but suffers from an important amount of numerical diffusion that prevents
it to correctly capture the Bragg peak. The minmod second order scheme is not sufficient sharp.
For the same number of cells, the peak captured by the 4th order scheme is much higher. Excellent
results are obtained with the superbee 2nd order scheme (see Figure 4).

It appears that developping a 4th order scheme is necessary to obtain an accurate simulation
of the ion beam propagation. Indeed, the superbee 2nd order and the 4th order schemes require
noticeably the same CFL number (rather 0.1-0.2 in practice), smaller than the minmod 2nd order
CFL. But we can use a smaller amount of cells with the 4th order scheme. This allows to have a
more affordable computation complexity for multi-dimensional simulations.

Otherwise, one can notice that for an equivalent initial energy E0, the Alpha range is 10 times
smaller than the Proton one. The phenomenon is not linearly proportional to the molar mass of
the projectile.

These results allow us to validate our approach physical model and numerical code.

5.2 1D Simulations : Presence of a single insert

We consider the following geometry (Figure 5). Within 10 cm of water length, a different material is
placed from 2 to 4 cm. Four cases are considered : Water (homogeneous medium), Aluminum, Bone
and Lung. Their composition is on the Table (1). In this part, we are interested in the simulation
of the Proton beam propagation of initial energy (E0 = 100 MeV).

Figure (6) regroups numerical results of 4 cases. This figure highlights the influence of the weight
density of target on the range of the dose deposition. The lung is lighter than the water, thus the
peak is located further away from the source, unlike the cases of aluminum and bone. The 2nd and
4th order schemes are used with 500 cell mesh. The Bragg peak heights obtained with the 4th order
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scheme are more important. The numerical dissipation is minimized with this scheme. The range
of each case is compared with the result obtained by the theory (Eq. 18). The agreement between
two approaches is excellent (Figure 7).

5.3 2D Alpha beam in Non-homogeneous Medium

We consider a test-case corresponding to the physical setup represented in Figure (8). The calcula-
tion domain is by a 10×5 cm2. The main material is water; at x = 2 cm, a 1 cm layer of Aluminum
adjacent to a 2 cm layer of bone is placed. The Alpha beam from the left dimension is 1 cm wide,
centered at y = 2.5 cm, for E0 = 480 MeV. We use a cartesian 500 × 250 mesh for this case. The
simulation is realized using the 4th order scheme in 811 secondes CPU with 2.6 GHz 6 Core i7 Intel
Processor.

The lateral straggling of the beam is very low because of the ion mass. One observes a lateral
expansion of the dose at the end of the path (Figure 9). Thus, we can expect to find the Bragg
curve all along the beam axis (y = 2.5 cm). In Figure (10), the dose axial distribution is presented
and compared with the 1D curve. The theoretical energy path (Eq. 18) is also plotted. The lateral
diffusion leads to a small weak shortcut of the range and a lower peak intensity, but the overall
behaviour of Bragg curve is very well reproduced.

5.4 2D Proton beam in presence of a half width air insert

We now want to test our method’s ability to deal with important density gradient, for instance,
liquid and air (ρ = 1.0 g.cm−3) and air (ρ = 1.204 10−3g.cm−3). This test-case was proposed in
[34]. A conventional analytical pencil beam algorithm and a Monte Carlo particle simulation are
realized by [34]. The benchmark consists in considering a 150× 80 mm2 calculation domain. A 128
MeV Proton beam is coming in water from the left, centered at y = 40 mm with 10 mm wide. In the
domain, an air pocket is present from x = 50 to 70 mm, y = 40 to 80 mm. The time steps are very
small because of the low density of the air (see paragraph 4.2.1 for discussions), the time calculation
is important for 150× 80 mesh (3650 secondes CPU with the minmod 2nd order scheme).

The pencil beam method is commonly used for dose calculations in intensity- modulated radia-
tion therapy (IMRT) [35]. While PB algorithm is very fast, the limitations of PB algorithms in het-
erogeneous media are well known. This is due to the fact that PB algorithms use a one-dimensional
density correction which does not accurately model the accurately model the distribution of sec-
ondary electrons in media of different densities. Figure (11) shows the spatial distribution of the
dose. As in the Alpha beam case, the lateral diffusion is not important, until 60 mm. Some of
charged particles crossed through the air zone deposited their energy away from the source. The
moments method quantitatively reproduces the behavior of ion propagation in this medium.

5.5 3D Simulation

For this case, the 100 MeV Proton d0 = 1 cm diameter beam is coming from the left in the water.
It is centered at (y0 = 3.5 cm, z0 = 3.5 cm) at its direction is inclined by (θ = −5o, φ = 30o). The
boundary condition of ψ0, and ψ1 at the beam is determined by:

∀x = 0,





ψ0, ψ1 = ψ0




cos θ
sin θ cosφ
sin θ sinφ


 for

√
(y − y0)2 + (z − z0)2 ≤ d0

2

ψ0 = 0, ψ1 = 0 else

. (55)
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A (200 × 120 × 120) cartesian mesh is used for (10 × 6 × 6cm3) calculation domain. Bone
rectangular parallelepipeds (of 10 × 10mm2 section and of 10 × 5mm2 section, 60 mm length) are
placed in parallel in the z direction. A Lung (2 × 3 × 3cm3) rectangular parallelepiped is located
at (x ∈ [4, 6], y ∈ [0, 3], z ∈ [1.5, 4.5]) (see Figure 12 (a) and (b)). This case requires 5 hours of
calculation time in 4th order accuracy.

Figure (13) shows how the beam propagates in the medium: some of charged particles only pass
through water medium, some also pass through the bone, a small part meet three materials along
their path.

Figure (14) shows the complexity due to the interaction of the different characteristics of this
beam. The ions that have passed through the three materials deposit their remaining energy farthest
as predicted in the subsection (5.2) for the case with a lung insert. Charged particles, that only
travel in water, have the dose maximum approximately at the 1D range level (l ∼ 7.5 cm) (because
the lateral straggling decreases slightly their energy). And those which have crossed the bone, have
the peak around (l ∼ 7 cm).

6 Conclusions

We have developed a fast accurate method to simulate the propagation of heavy ions. It is able
to deal with very heterogeneous medium while maintaining the realizability of the solution. We
dealt with the problems of a heterogeneous medium. Multi-dimensional cases are simulated and
analyzed. They show the feasibility of the method. Our method’s efficiency allows it to be used in a
practical application context. A realizable implicit method is being developed for very low density
case. This method must be as less dissipative as possible to ensure the quality of the results. Future
work also include MPI massive parallelisation of the code.

We will also refine the transport coefficients. The validity of the momentum transfer coefficient
can be investigated with the help of these benchmark calculations. The CSD approximation will
be taken into account by using (and/or simulating) the differential cross sections of heavy ions.
Secondary fragments should also be treated for heavier ions (Z > 2). We can also add other
external forces (Lorentz force) into the code and consider the hot plasma medium.

Acknowledgements

This work was carried out by the financial support of the Agence Nationale de la Recherch (ANR-
16-CE92-0027-01).

References

[1] P. Freier, E. J. Lofgren, E. P. Ney, F. Oppenheimer, H. L. Bradt, B. Peters, Evidence for heavy
nuclei in the primary cosmic radiation, Phys. Rev. 74 (1948) 213.

[2] V. Tatischeff, S. Gabici, Particle acceleration by supernova shocks and spallogenic nucleosyn-
thesis of light elements, Annual Review of Nuclear and Particle Science 68 (2018) 377–404.

[3] J. W. Wilson, S. Y. Chun, F. F. Badavi, L. W. Townsend, S. L. Lamkin, Hzetrn: A heavy
ion/nucleon transport code for space radiations, Technical Report (1991).

[4] W. D. Newhauser, R. Zhang, The physics of proton therapy, Phys Med Biol. 60 (2015) R155—
-R209.

16



[5] G. A. P. Cirrone, et al., Hadrontherapy: a Geant4-based tool for proton/ion-therapy studies,
Progress in nuclear science and technology 2 (2011) 207–212.

[6] E. Pedroni, et al., The 200 MeV proton therapy project at the Paul Scherrer Institute: con-
ceptual design and practical realization, Med. Phys. 22 (37) (1995).

[7] M. T. Munir, M. Federighi, Control of foodborne biological hazards by ionizing radiations,
Foods 9 (7) (2020) 878.

[8] R. F. Welton, M. P. Stockli, S. N. Murray, R. Keller, The status of the spallation neutron
source ion source, Review of Scientific Instruments 75 (5) (2004) 1793–1795.

[9] S. Chandrasekhar, On the radiative equilibrium of a stellar atmosphere, Astrophysical Journal
103 (1946) 351–370.

[10] S. Chandrasekhar, Radiative transfer, Courier Corporation, 2013.

[11] C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83 (1) (1996)
1021–1065.

[12] G. C. Pomraning, The equations of radiation hydrodynamics, Dover Publications Inc., 1973.

[13] B. Dubroca, J.-L. Feugeas, Hiérarchie des modèles aux moments pour le transfert radiatif, C.
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Figure 4: Comparison between a Monte Carlo code simulation (GEANT4) [33] and our M1 code. (a)
Dose of a mono-energetic (E0 = 90 MeV) Proton (H+) beam with 1st, 2nd (minmod and superbee)
and 4th order schemes, (b) Dose of a mono-energetic (E0 = 100 MeV) Alpha (He+) beam with 1st,
2nd (minmod and superbee) schemes.

Figure 5: 1D non-homogeneous medium test-case geometry
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Figure 7: Dose and Ion Energy Path for a monoenergetic 100 MeV proton beam, (a) Homegeneous
Water Medium, (b) Aluminum insert, (c) Bone insert, (d) Lung insert
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Figure 8: 2D Simulation Test Case Geometry: 1 cm 480 MeV Alpha beam from the left in the
water with an aluminum insert and a bone one. Zero fluxes are imposed on the other edges.

Figure 9: 2D Simulation: Dose of Alpha (He+) in non-homogeneous Medium
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Figure 10: Comparison between 1D dose simulation (500 points, 4th order - red dotted line) and
2D dose axial distribution (500×250 points, 4th order, red solid line). 1D Ion energy path (black
solid line) confirms the range value obtained by M1 code.
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Figure 6: Comparison of simulation results of a single proton beam computed with a
conventional analytical pencil beam algorithm and a Monte Carlo particle
simulation. A proton beam with initial Energy Einit = 128MeV and fluence
profile of ‡init = 3.4mm in a water phantom (gray) with an air inhomogeneity
of 20mm was simulated in both cases (image from [1, Chapter 24]).

In contrast to that, Monte Carlo simulations can provide more precise results,
especially in inhomogeneous patient anatomies. A particle beam passing a com-
plex density distribution involves numerous physical interactions on particle level
such as Coulomb scattering and nuclear interactions [17]. These e�ects are in-
su�ciently captured by analytical dose calculation. Figure 6 depicts simulation
results of a conventional analytical pencil beam algorithm as compared to Monte
Carlo simulation results in the same setup. The analytical model performs a den-
sity scaling only along the central axis of the beam line. Density heterogenities
which do not a�ect the central beam line are not taken into account within the
presented analytical model. Thus, the air homogeneity (white) in figure 6 does
not a�ect the beam line of the analytical result. By simulating single particle
trajectories, the Monte Carlo simulation takes all density inhomogeneities into
account. This is the most important e�ect limiting the precision of analytical
models [2]. Thus, Monte Carlo dose calculation algorithms are considered as a
benchmark for other dose calculation algorithms [12].

Any dose calculation model results in a dose D œ RL◊M◊N
Ø0 ; L,M,N œ NØ1;

on the patient’s anatomy A œ RL◊M◊N , where A can be visualized by medical
imaging such as the result of a computer tomography (CT). The dimensions of the
medical imaging are given by L◊M ◊N . The models developed within this work
consider one-dimensional uncertainties in two-dimensional patient’s anatomies
(N=1) but may be expanded to more dimensions.

13

Figure 11: 2D Simulation Test-case with an air pocket: Deposited Energy by a E0 = 128 MeV
Proton beam in Water with an Air pocket. Comparison of M1 simulation results of a single proton
beam computed with pencil beam method and Monte Carlo code by [34].

(a) (b)

Figure 12: Proton Beam in heterogeneous target : Water with Bone (red) and Lung (Navy blue)
inserts. (a) 3D view, (b) 2D xy, z = 0 plan view

(a) (b)

(c)

Figure 13: (a) View in positive x direction: d = 1 cm Circle Beam with inclined direction. (b)
View in negative y direction: shape of the beam propagated in the medium, (c) View in negative z
direction: shape of the beam propagated in the medium
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(a)

(b)

(c)

Figure 14: (a) View at planes x = 0, x = 3.5 cm, x = 7 cm, (b) View at plane n=(-0.05, 0., 0.95),
centered at (5,3,3), (c) View at plane n=(0.04, 0.96, 0.), centered at (5,3,3)
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