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ABSTRACT 

The project aims to supplement nocturnal bird migration 
research with long-term audio recordings. We checked 
how different deep learning methods – namely 
convolutional neural networks (CNN) and residual neural 
networks (ResNets) – perform in the nocturnal flight calls 
detection task. Moreover, we used transfer learning from 
image classification models to determine if we can 
improve automatic detection performance. The best 
model obtained the AUC score over 95% (area under the 
receiver operating characteristic curve). Although higher 
bird detection accuracy is still needed because of the 
strong dataset imbalance, the results are very promising 
and suggest that deep learning models applied to audio 
data have great potential in supplementing bird migration 
studies. 

1. INTRODUCTION 

 
Billions of birds migrate between breeding and wintering 
sites every year. Traditionally, migration studies are 
concentrated on day migration. This is primarily 
determined by the fact that the most popular methods – 
such as visual observations and bird ringing – are most 
appropriate for daytime research. However, as most bird 
species migrate at night, much information about 
migration is lost, so novel techniques are used to fill the 
knowledge gaps [1]. One of these methods is acoustic 
monitoring. 

As autonomous recording devices are getting cheaper 
and more accessible, the bioacoustics monitoring projects 
become the “big data” research area, generating terabytes 
of audio data [2]. However, manual analysis of long-term 
recordings is a very time-consuming and inefficient 
process requiring expert knowledge. For example, the 
"scanning" of the spectrograms in search for impulsive 
nocturnal birds’ calls can take up to 2-3 times more time 
than the duration of the recording. For such big datasets, 
manual annotation is not feasible, so effective automatic 
detection of birds’ calls is crucial. 

While there is plenty of research focused on bird 
songs, the nocturnal avian flight calls projects are not yet 
common, regardless of the recent interest in this topic 
[3,4]. In this article, we present the results of research on 
flight calls detection, based on the well-established deep 
learning methods – CNNs and ResNets. 

2. MATERIALS AND METHODS 

2.1 Field Recordings 

In the 2016 - 2019 seasons, field recordings at the site of 
increased migration of birds were performed. Long-term 
recordings of the night calls of bird migrants were 
conducted every season for 50-60 days, from the first half 
of September to the beginning of November. The 
recording sets were deployed on a narrow spit between 
Bukowo Lake and the Baltic Sea in Dabkowice near 
Darlowo (54°20'16 "N, 16°14'38" E). 4-6 microphones 
were set up in different places: on a dune, in the reeds, 
and in a more quiet place – a clearing near the lake. The 
tests were performed with SM2+ recorders connected to 
directional SMX-NFC microphones, placed on a flat 
plastic plate (Wildlife Acoustics Inc., USA), and mounted 
on poles 3-5 m high. The recordings were performed 
every night, from sunset to sunrise. In total, over 3,000 
hours of recordings were collected in each season. In 
addition, a weather station was deployed for the two last 
seasons. 

2.2 Training and Testing Set 

At first, two automatic voice detection programs were 
checked; unfortunately, they did not extract the voices 
from the recordings accurately [5]. In search of effective 
bird calls detection methods, we created training and 
testing sets for deep learning models. We manually 
annotated over 50 hours of recordings from different 
nights and various weather conditions, for which we used 
the Audacity software1. The annotations were performed 
only on a time scale, not on the frequency axis. Only 
passerines' calls were annotated, as we assumed that other 
bird groups might contain calls of local or resting 
individuals (owls, ducks, geese, etc.). 

As avian flight calls are sporadic and short (10-300 
ms), a balanced training set was created. It consisted of 
clips derived from 94 30-min long recordings. The clips 
were 500 ms long, overlapping by 150 ms. The training 
set comprised all positive clips and the same number of 
randomly picked negative clips. If no call was present in 
the recording, a small number of negative frames was 
added to a subset for background noise representation. As 
a result, the training set consisted of more than 15.9k 
clips with a 45% bird call presence. 
  

                                                           
1Audacity®. Version 2.0.5. http://audacity.sourceforge.net. 
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      There were 20 annotated full recordings (30-min 
long) in the test set, prepared as in the training set. As the 
test set comprised full continuous recordings, it was 
strongly unbalanced, resulting in over 103k clips with 
only 1.2% bird call presence.   

2.3 Deep Learning Detection Methods 

Three different approaches were tested – convolutional 
neural networks (CNN), residual neural networks 
(ResNet-18 and ResNet-50 architecture [4]), and transfer 
learning from pre-trained ResNet models. 

2.3.1 Convolutional Neural Networks 

To fully use the potential of CNNs, we used image-like 
representations of the sound: spectrogram, mel-
spectrogram, and multitaper2 (with two tapers). We have 
chosen representation parameters in such a way, that each 
of them had a similar size, about 60x148 px. Each time 
4.5-9kHz range was covered. The hyperparameters of the 
CNNs were optimized by grid-search over a parameter 
grid with 2-3 values for each parameter. ReLU activation 
was used for all but last layer, where we used sigmoid. 
Table 1 presents the chosen CNN hyperparameters, while 
Figure 1 illustrates the schematic network architecture.  

2.3.2 Residual Neural Networks 

To adapt ResNets for bird call detection, we changed the 
number of classes from 1000 to 2 (bird – no bird) and the 
input size to 1 channel (mel-spectrogram), as opposed to 
3-channel in the original model (colour images).  

2.3.3 Transfer Learning 

ResNet-18 and ResNet-50 were used, initialised with 
random and with weights pre-trained on ImageNet [7]. 
Models were trained five times, and their predictions on 
the test set were averaged. For ResNet-18 the additional 
experiments were performed, with freezing the weights of 
the first 1 or 2 layers (all ResNet architectures are 
composed of four layers, sometimes called stages. Every 
layer is composed of several blocks). As an input, a mel-
spectrogram was used in each channel, or – for chosen 
experiments – different signal representations were put in 
each channel (spectrogram, mel-spectrogram, multitaper). 

                                                           
2 https://pypi.org/project/libtfr/ 

3. RESULTS AND DISCUSSION 

For each experiment, the receiver operating characteristic 
curve (ROC) and the area under that curve (AUC) was 
calculated. 

3.1.1 CNNs 

Figure 2 shows the results for the CNN models with 
different input representations. Although the training 
process for spectrogram and mel-spectrogram 
architectures gave varying outcomes – some models were 
not trained at all, resulting in AUC oscillating around 
50% – creating an ensemble of five independent runs led 
up to higher AUC score than for any of the individual 
models.  

Figure 2. ROC curves for three CNN architectures. The 
dashed lines  represent the result of individual five runs 
of the same algorithm. Each solid curve is a voting 
ensemble of five models.   

 

 Architecture parameters CNN model 

Representation 
type R 

Batch 
size 

[32,64] 

Dropout 
D [0.1, 

0.35,0.5] 

No of 
blocks 
N [3,4] 

Filters 
[10,20] 

Dense 
layer size 

DLS 
[128,256] 

Epochs 
[20,50, 
100] 

 

Spectrogram 32 0.5 4 20 256 20 

Mel-spectrogram 32 0.5 3 10 256 50 

Multitaper 64 0.35 4 10 128 100 

Table 1. Chosen hyperparameters for CNN architecture Figure 1. Architecture of CNN models 
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3.1.2 ResNets 

For ResNet models, the best AUC score was obtained by 
ResNet-50 with different signal representations in each 
channel as input, initialised with pre-trained weights, and 
by ResNet-18 without pre-training (Figure 3). However, 
the differences between the models were negligible; only 
the ResNet-50 without using the weights pre-trained on 
ImageNet got lower result. Thus, using the pre-training 
weights seems beneficial for ResNet-50, but not for 
ResNet-18.  

3.1.3 Comparing representations      

The results obtained for mel-spectrogram representation 
in each channel were very similar to 3 representations 
(AUC = 95.1% for ResNet-18 IW, 95.0% for ResNet-50 
IW, 95.2% for ResNet-18 NP, 93.8% for ResNet-50; 
compare with Figure 3). Because of these negligible 
differences, we do not present the separate chart. Hence, 
the three representations instead of one, did not 
significantly improve the performance, and the neural 
network did not profit from the additional data 
representations.  

3.1.4 Transfer learning 

In the last experiment, we checked how freezing some of 
the weights of the pre-trained ResNet-18 model 
influenced the performance. The obtained results clearly 
indicate that freezing the layers was degrading for the 
performance in all three variants, resulting in the AUC 
measure in the 75.9-93.3% range (Figure 4). 

3.1.5 Comparison of the best performing models 

Finally, two best models of each neural network type 
were compared. To put the obtained AUC measures in a 
wider context, the data reduction on the test set was 
calculated (Table 2). The data reduction was defined as 
reducing the time of the recordings, retaining high 
percent of the avian flight calls. Two recall values were 
chosen: retaining 80% and 90% of calls present in the test 
set.   
 
Architecture FP TP Precision Data reduction 

Retaining 80% of calls (recall 80%) 
CNN spectro 6911 984 12.5% ~1h 6min/14h 
ResNet18 NP 1873 984 34.4% ~24 min/14h 

Retaining 90% of calls (recall 90%) 
CNN spectro 33635 1107 3.3% ~4h 50min/14h 
ResNet18 NP 12580 1107 8.1% ~2h 54min/14h 

Table 2. The data reduction table for the best 
performing CNN and ResNet models. Results for 
retaining 80% and 90% of the calls from the test set. FP 
– false positive, TP – true positive. 

 
Depending on the goal and application of the bird call 

detection, stricter conditions may be selected. The test set 
can then be reduced from 4 hours to less than 3 hours 
while retaining 90% of calls. However, if we choose the 
recall of 80%, the set may be condensed to only 24 
minutes, and around one out of every three samples will 
contain the bird call while the initial rate was 1:82. The 
ResNet model with such settings could greatly reduce the 
effort of bird detection and annotation in long-term audio 
recordings. 

Figure 3. ROC curves for ResNet-18 and ResNet-50 
models. IW- model initialised with pre-trained weights, 
NP – no pre-training.  3 channel input: spectrogram, 
mel-spectrogram, multitaper. Each curve is a voting 
ensemble of five models. For the sake of clarity, the 
individual five runs were not shown. 

Figure 4. ROC curves for ResNet-18 models. IW- 
model initialised with pre-trained weights, f_all – 
freezing all layers apart from the last one, f_2 – freezing 
two layers, f_1 freezing the first layer only. Input: mel-
spectrogram. Each curve is a voting ensemble of five 
models. For the sake of clarity, the individual five runs 
were not shown. 
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4. SUMMARY 

In this work we have shown that using deep learning 
methods – especially ResNet architecture – is beneficial 
for the presented research topic: detecting nocturnal avian 
flight calls. However, we could not find evidence that 
transfer learning from the models pre-trained on 
ImageNet has positive effects on the results. The 
outcomes are promising, and they suggest that deep 
learning methods applied to audio data have great 
potential to support nocturnal bird migration research. 
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