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SUMMARY
The purpose is to define the range of feasible speeds for two walking motions for a
particular planar biped robot, which differ in the definition of their finite time double
support phases. For each speed, these two walking motions are numerically obtained by
using a parametric optimization algorithm, regarding a sthenic criterion. Results allow
us to define the range of allowable speeds for each walking. One result is that the first
gait is less consuming in energy for moderate to fast velocity with respect to the second
one, while the second gait is more efficient for low walking velocity.

KEYWORDS: Walking gait; Finite time double; Impact with foot flat; Toe impact; Heel
impact.

1. Introduction
This paper explores the range of feasible speeds for a planar biped that adopts two
walking motions, which differ in the definition of their finite time double support phases.
The choice here of a planar biped is due to the fact that for human’s walking gait the main
movements are executed in the sagittal plane, see.1, 2 Frontal plane movements mainly
serve to keep human laterally balanced. The pelvis rotation has an important effect to
limit the necessary energy to move the swing leg.3 However, our purpose being to study
the energy effect of two finite time support phases, we assume that the results are little
influenced by the pelvis rotation for the two gaits. The human walking is composed of
single support phases and double support phases. For one step, the duration of a double
support phase represents almost 24 % of the time step.4 Several papers are devoted to a
borderline case where the step of walking is composed of a single support phase and an
instantaneous double support.5 For example the relatively human-inspired ones, which
have been tested with the biped robots Amber6 and Rabbit7 or the walking motions
defined through the linear inverted pendulum8 or,9 among others.

However, for a biped robot, the contribution of the finite time double support phase is
important to change the velocity rate of the walking, to increase the domain of stability
in order to reject some disturbance occurring in single support, see,10 and11 where planar
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bipeds with pointed feet are considered. Inserting a finite time double support phase
in a gait of a biped with feet implies to deal with the behavior of the foot and the
over actuation of the locomotor system, since a closed chain is formed by the locomotor
system and the ground. There is a actuation redundancy leading to an infinite number of
solutions for joint torques and the ground reaction wrench. Ju and Mansour,12 proposed
a foot model with a curved planter surface to design a finite time double support phase
for the motion of a biped in sagittal plane. Sharma and Stein,13 incorporate the finite
time double support phases and single support phases in walking of a biped with point
feet to minimize muscle activation and arm reaction forces generated from the walker.
The dynamics-based optimization of sagittal gait cycles of a seven-link planar biped with
feet by using the Pontryagin maximum principle is considered in.14 In there, one step is
composed of a fully actuated single support phase and a finite time double support phase
and the velocity of the swing foot at the landing on the ground is zero. Six periodic gaits
are presented in.15 The simplest periodic gait is composed of successive single support
phases with a flat foot contact on the ground, the stance foot does not rotate. The support
phases are separated by instantaneous double support. The most complex periodic motion
is composed of single support phases and finite time double support. For the finite time
double support phases, the front foot rotates around its heel and the rear foot rotates
around its toe. For this walking, with a finite time double support phase there is no
impact of the swing foot landing on the ground, as well as for the walking gait defined
in10 for a biped with point foot and in16 where an impactless walking gait is carried out
with single support phases and finite time double support phases for a seven-link planar
biped with feet. Nevertheless, it has been shown that the energy cost for the walking
gait is smaller when the single support phases are ended with impacts than when the
velocity of the swing foot at the landing is null.15 An original design is proposed for the
knee joints of a planar biped robot, based on a four-bar linkage. A comparison of the
performances with respect to a sthenic criterion is proposed between a biped equipped
with four-bar knees and the other with revolute joints for walking reference trajectories
composed of single phases, impact and finite time double support phases with rotation of
both feet.17 The numerical results show that the performances with a four-bar linkage are
worst for the smaller velocities and better for the higher velocities. Tan et al18 proposed a
finite time double support phase that begins when the swing foot strikes the ground and
finishes with the support foot toe-off. The inverse dynamic model is used to optimize a
walking gait with the objective that the trunk remains upright. The criterion is based on
the altitude of the center of mass with respect to a reference. Simulation results show that
a two-level control strategy for simultaneous gait generation and stable control of planar
walking of the ATRIAS biped can reject initial condition disturbances, while generating
stable and steady walking motion.19

Despite all these interesting studies on walking motions with finite time double support
phases, there is a lack of knowledge about the role of the feet during the finite time double
support phase regarding on the speed of the biped robot. Several questions on this issue
are still open, such as:

r Can one foot stay on the ground with a flat foot contact after its landing while the
other rotates?

r Can both feet rotate simultaneously after the landing of the swing foot on its heel?
r What are the feasible speeds for walking with finite time double support phase? Feasible
speed means here, speed that satisfies the limits of the actuator and the unilateral
constraints of the biped robot with the ground.

r What is the best strategy at impact to satisfy the unilateral constraints on both feet
for a feasible speed?

The goal of this paper is to see if we can draw on anthropomorphic features to improve
the walking of bipedal robots with rigid feet. Of course to design a human-like walking
there are many other interesting questions such as a foot-roll design,20 or the rotation
of the foot during the single stance phase.15 But we want to focus our attention on
the effect of finite time double support phases for walking. In particular the goal is to
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give a response to the four previous research questions for a set of periodic walking
motions in the sagittal plane which are composed of impacts, single support phases and
finite time double support phases. The ground and the biped limbs are assumed rigid.
These gaits are defined with a parametric optimization by using a sthenic criterion and
with nonlinear constraints. Even if for human there are movements of bodies that take
place in the frontal plane, we limit our numerical studies in the sagittal plane because
the magnitude of movements are much larger. As a consequence, the results about the
energy consumption that are obtained in the sagittal plane are usually confirmed by
a study in the 3D space, see for example.17 The planar biped model is defined with
the physical parameters of the experimental biped Hydroid.21 Its inertial parameters
are close to those of human. The step of the first gait is composed of a single support
phase, with support on flat foot, a flat-footed impact on the ground for the swing leg,
and a finite time double support phase, where the rear foot rotates around its toe and
the front foot is kept flat on the ground. With this first walking motion it is possible
to answer ”Yes” to the first question. The second walking motion design is similar to
the first one, except that the single support is ended by a heel impact and during the
finite time double support phase the rear foot rotates on its toe and the forward foot
rotates on its heel. The finite time double support of this gait is ended with a toe impact
on the ground of the forward foot. With this second walking motion it is possible to
answer ”Yes” to the second question. According to the experimental studies of Winter4

this second walking motion is closer to the human walking motion than the first one.
Studying these two walking motions, for various speed, will allow to answer the third
and fourth questions. The algorithm for defining optimal walking gait has been carefully
studied and programmed to converge to physically feasible solutions. When convergence
was not achieved, it means that the bipedal robot could not achieve the walking gait
with the target speed.
This paper is outlined as follows. Section 2 gathers the definition of the two walking
motions. Section 3 presents the biped modeling for each phase of the walking motions.
Section 4 deals with the trajectory planning. In section 5, numerical results of the criterion
evaluation as a function of the bipedal robot speed are presented. Finally, section 6 offers
our conclusion and proposes several perspectives.

2. Studied Gaits
In the following, two types of walking motions are studied. A lot of articles are devoted
to the definition of walking speeds with single support phases, instantaneous double
supports22 or with single support phases, finite time double support phases but without
impact,16 In order to offer the reader a simple and rigorous presentation, two walking
more anthropomorphic motions with phases of simple support and finite time double
support and impact, will be compared.

r Gait 1: The periodic motion is composed of single support and finite time double
support phases. At the end of the single support phase, see Fig. 1a, there is a flat-
footed impact on the ground. In double support phase the rear foot (foot 2) rotates on
its toe, the other is flat on the ground, see Fig. 1b. On Fig. 1c, the finite time double
support is ended when the rear foot (foot 2) takes off the ground with the toe, the
other foot stays flat on the ground. The single support takes place, Fig. 1d.

r Gait 2: The periodic motion is composed of single support and finite time double
support phases. At the end of the single support phase, see Fig. 2a, the impacting foot
(now foot 1) touches the ground with its heel. The rear foot (foot 2) keeps contact with
the ground through its toe. In double support phase both feet rotate, see Fig. 2b. The
finite time double support ends when the front foot (foot 1) impacts the ground with
its toe and the rear foot (foot 2) takes off as shown in Fig. 2c. Then the single support
takes place, see Fig. 2d.

The gait 1 maximizes the walking stability since the support area in finite time double
support is larger than the one of the gait 2. The gait 2 allows larger walking velocity
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a)

b)

c)

d)

Fig. 1. Walking motion 1. a) End of the SS beginning of the DS b) DS c) End of the DS d) SS

a)

b)

c)

d)

Fig. 2. Walking gait 2. a) End of the SS / beginning of the DS b) DS c) End of the DS d) SS

than gait 1 since the distance between foot can be increased while respecting the joint
limits.
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3. The biped modeling

3.1. The biped
Let us consider a seven-link planar biped robot with physical parameters obtained from
those of the 3D experimental biped Hydroid21 and.23 A photography of the locomotor
system of Hydroid is shown in Fig. 3. The inertial parameters of Hydroid are inspired
from the Hanavan model.24 The considered planar biped is depicted in Fig. 4. Table I
gathers its physical parameters. The parameters si, i = 1, . . . , 5 define the position of the
center of mass of the limbs and the trunk with respect to the hip and knee joints. The
parameters lf and Lf are the distances from the projection of the joint ankle on the foot
sole with the heel and the toe, respectively. Hf is the distance between the ankle joint
and the sole. Spx and Spy are the coordinates of the center of mass Gf of the foot with
respect to the ankle joint. The lengths of the shins, thighs, and the trunk are respectively
l1, l2, and lt.

Fig. 3. Photography of the locomotor system of Hydroid .

Mass (kg) Length (m) Moment of inertia Center of
(kg.m2) mass (m)

foot mf = 0.7 Lf = 0.21 0.002 sfx = 0.01
lf = 0.07 sfy = 0.03
Hf = 0.07

shin 2.2 l1 = 0.4 0.03 s1 = s4 = 0.17
thigh 5.0 l2 = 0.4 0.07 s2 = s3 = 0.17
trunk 29.0 lt = 0.4 0.8 s5 = 0.2

Table I . Physical parameters of the biped robot..

3.2. Dynamic modeling: General case
Let us introduce the generalized vector q for the description of the considered biped as
follows1:

q = [qf1 , qf2 , q1, q2, q3, q4, q5, x, y]
⊤.

The generalized variables x and y are the Cartesian coordinates of the hip joint. The other
generalized variables are shown in Fig. 4. The vector q is chosen with nine components
including x and y in order to be able to define a dynamic model that explicitly takes into
account the unilateral constraints with the ground. For the studied walking motions the

1 Sign ⊤ means transposed vector or transposed matrix in this paper.
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Fig. 4. Schematic of the planar biped robot. Absolute angular variables and joint torques (The angular
variables are counted positive counterclockwise).

contact with the ground of the biped can be with the whole sole, the heel, or the toe,
see Figs. 1 and 2.

x0

y0

z0

Fig. 5. Details of the foot.

For any type of contact of the feet with the ground, the dimension of the robot given in
Figs. 4 and 5 allows to write the condition to ensure a rigid contact between the feet and
the ground based on geometric relation. Here, no slipping of the stance foot is assumed.
Thus, the hypothesis of rigid contact implies zero velocity and zero acceleration of the
foot relative to the ground.

By considering the virtual work principle, the matrix J⊤

i that allows to take into
account the ground reaction ri = [rix, riy,Mi]

⊤ in the dynamic model. This vector ri,
defined in a frame (x0, y0, z0), see Fig. 5, represents the wrench corresponding to the
reaction force and moment from the ground acting on foot i. If only one punctual contact
between foot i and the ground is considered, the component of moment in ri (for a frame
attached to the foot) is zero, i.e. ri = [rix, riy]

⊤.
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Thus, the dynamic model of the biped robot is expressed as:

D(q)q̈+N(q, q̇) +Q(q) = BΓ+ J⊤

1 (q)r1 + J⊤

2 (q)r2, (1)

with the constraint equations

Ji(q)q̈ + J̇i(q, q̇)q̇ = 0 for i = 1 to 2. (2)

Here, D ∈ R
9×9 is the symmetric positive inertia matrix of the biped. Vector N ∈ R

9×1

represents the centrifugal and Coriolis effects, andQ ∈ R
9×1 is the effect of gravity vector.

B ∈ R
9×6 is a constant input mapping matrix composed of 1 and 0. Γ ∈ R

6×1 is the vector
of applied joint torques. J⊤

1 and J⊤

2 are the 9× 2 (or 9× 3 with a flat foot contact)
transposed Jacobian matrices converting the ground reaction wrench at feet 1 and 2 into
torques applied at joints by considering a rigid contact. For the rigid contact of the foot 1
with the ground, the corresponding equations, in position, velocity, and acceleration are
introduced in Appendix A. In this Appendix equations (A2) and (A4) describe a contact
with the heel, and the Jacobian matrix, denoted in this case J1 = Jh1 is given in equation
(A3). Equations (A6) and (A8) describe a contact with the toe, and the Jacobian matrix,
denoted in this case J1 = Jt1 is given in equation (A7). Equations (A10) and (A12) are
written for a foot contact flat on the ground with no take-off and no slipping of the whole
sole, and the Jacobian matrix denoted in this case J1 = Jf1 is given in equation (A11).

Equations (1) and (2) allow to describe any contact of the feet with the ground. These
equations are usual in literature, however the case of finite time double support is not
often considered in detail. In this paper, an analysis of this phase is carried out in section
4.

3.3. Impact model
In biped walking, an impact usually occurs when the swing foot touches the ground. For
gait 2, an impact may also occur when the rear leg toe touches the ground. Let T be the
instant of the impact. An absolutely inelastic impact is assumed, so that the foot does
not slip. Given these conditions, the ground reactions at the instant of an impact can
be considered as impulsive forces and defined by Dirac delta-functions. Impact equations
can be obtained through the integration of the equation of motion (1) for the infinitesimal
time from T− to T+. The vector of actuated torques and the Coriolis and gravity vectors
have finite values. Thus, they do not affect the impact equations. Consequently the
impact equations can be written in the following matrix form:

D(q(T ))(q̇+ − q̇−) = J⊤

I1(q(T ))i1 + J⊤

I2(q(T ))i2. (3)

Here, q(T ) denotes the generalized coordinates of the biped at instant t = T , (these
generalized coordinates does not change at the instant of the impact), q̇− and q̇+ are
respectively the velocity vectors just before and just after an inelastic impact. JI1 and
JI2 characterize the contact of legs 1 and 2 with the ground during the impact, i1 and
i2 are the wrenches corresponding to the impulsive forces and moments from the ground
reaction acting on feet 1 and 2 respectively.

For the studied gaits a finite time double support phase is desired, thus for the first
impact (Figs. 1a and 2b) one does not want the 1 foot to remain flat on the ground.
Extensive simulations have shown that take-offs of the rear point foot can be avoided
only if the landing velocity of the swing foot is zero10 and therefore, there is no impact
either. This solution has a high torque cost. Thus, in the following it is assumed that
only the toe of the rear foot remains on the ground after the impact. First let us consider
the walking motion 1. The swing foot hits the ground with a flat foot contact as shown
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in Fig. 1a. In this case, the impact model is as follows:

D(q(T ))(q̇+ − q̇−) = J⊤

f1(q(T ))





i1x
i1y
iM1



+ J⊤

t2(q(T ))

[

i2x
i2y

]

[

Jf1(q(T ))
Jt2(q(T ))

]

q̇+ = 05×1,

(4)

where the use of matrices Jf1 and Jt2 denotes that after impact the foot 1 has a foot
flat contact with the ground and the foot 2 has a contact with the toe.

Let us consider now the walking motion 2. For one step, there are two impacts. The
first impact occurs at the end of the single support phase when the swing foot heel
impacts the ground as shown in Fig. 2a. This impact is described by the next equation:

D(q(T ))(q̇+ − q̇−) = J⊤

h1(q(T ))

[

i1x
i1y

]

+ J⊤

t2(q(T ))

[

i2x
i2y

]

[

Jh1(q(T ))
Jt2(q(T ))

]

q̇+ = 04×1,

(5)

where the use of matrices Jh1 and Jt2 denotes that after impact the foot 1 has a heel
contact with the ground and the foot 2 has a toe contact with the ground. During the
double support phase the foot 2 rotates on its toe while the front foot rotates on its heel.
The second impact occurs at the end of the double support phase, when the toe of the
front foot reaches the ground and a flat-footed impact with the ground occurs while the
rear foot takes off (see Fig. 2c). This second impact is described by the next equation:

D(q(T ))(q̇+ − q̇−) = J⊤

f1(q(T ))





i1x
i1y
iM1





Jf1(q(T ))q̇
+ = 03×1.

(6)

For each impact, when the velocity vector q̇− just before the impact is known, the
resolution of the systems (4), (5), or (6) gives the velocity vector q̇+ just after the impact
and the impulsive reaction efforts i1 and i2.

4. Gait optimization for the periodic walking
In this section we present the algorithm for defining optimal walking trajectories. Each
step of this algorithm has been carefully defined in order to minimize one sthenic criterion
and to take into account all the physical and technological constraints that make walking
possible. This is the core of our work.

To deal with a minimum energy walking, the Pontryagin’s principle can be used.
This principle is used by Rostami and Besonnet16 to design impactless walking motions
for a seven-link planar biped robot with feet. However the calculations are complex,
the resulting equations are highly sensitive to the initial conditions, and this method
generates bang-bang control laws.25 Direct collocation method is an alternative to define
walking motions. The principle of this method is to approach the solution of an ordinary
differential equation or a partial differential equation for a finite set of points,26,27,28,13,18

and.29 The parametrization of the problem and the conversion of it into an algebraic
optimization problem is another efficient alternative. Torques, Cartesian coordinates or
joint coordinates can be chosen to define the optimization parameters. Discrete values
for the torques are used as optimization variables in.30 However, a numerical integration
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of the direct dynamic model is necessary to find the reference trajectory in velocity
and position. To overcome this difficulty authors in,31,32 and33 propose respectively
polynomial functions and truncated Fourier series to approximate the temporal evolution
of the joints, then torques are found through the algebraic solution of the inverse dynamic
model. Cartesian coordinates are also convenient as optimization parameters,34 but this
choice requires the use of inverse geometric model and for a given posture of the biped
singularities can appear.

In this paper a parametric optimization method is used and the evolution of a set of
independent joint variables are expressed as polynomial functions of time. The coefficients
of these polynomial functions define a set of desired initial, final, and intermediate
positions and velocities. From the polynomial functions, we can calculate their first
and second time derivatives. By using the inverse dynamic model, we can deduce the
joint torques. A criterion, based on the joint torques is minimized to define cyclic
walking motions by considering optimization variables among the set coefficients of the
polynomial functions.

4.1. Principle
The generalized coordinates of the biped are given by vector q. However these generalized
coordinates are not independent due to the equation describing the contact with the
ground. The locomotor system forms a geometrical closed loop with the ground. Thus
it is not possible to choose all these generalized coordinates arbitrarily. Among the set
of generalized coordinates several coordinates can be defined as function of time. The
evolution of the other variables are then deduced based on geometrical relations that
take into account the contact with the ground. The number of constraints varies with
the phases of the motion (single support and finite time double support).

Between two successive phases, the position and velocity of the biped must be
continuous or the discontinuity must satisfy the impact equations (4), (5), or (6). The
set of parameters P specifying the cubic spline functions are determined by taking into
account the transition conditions between the following phases.

The motion studied is assumed to be periodic and with the same behavior on support
on legs 1 and 2. This periodic motion is designed with only one step. As consequence
the initial configuration at the beginning of the current step has to be deduced from the
final configuration of the same step with a swapping role of the legs. Thus assuming that
the leg 1 is the stance leg in single support, an exchange of the number of the joints is
carried out using a matrix A as follows:

q+ = Aq−, (7)

where

A =





























0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























,

i.e. the initial configuration of the robot after the change of stance leg is the final
configuration of the robot before the change of stance leg.

The set of optimization variables P minimizing a sthenic criterion are searched using
a non-linear optimization method. This algorithm is based on the calculation at each
iteration of the gradient vector with respect to the optimization variables P , tacking into
account of non-linear constraints. Physical conditions such as conditions of no slipping



10 Running Head Article Title

of the stance feet on the ground, of no unexpected contact with the ground of the
transfer leg, and physical limits on the actuators define the non-linear constraints in this
optimization process.

4.1.1. The criterion. A lot of criteria can be used to produce an optimal trajectory.
The cost transport (COT) to evaluate the biped gaits is a common and good option.35

However to deal with a smoother mathematical function the sthenic criterion based on
the squared torques is chosen to obtain optimal trajectories. As for a motor its maximum
delivered torque is strongly connected to its weight the physical meaning of this sthenic
criterion is also interesting:

CW =
1

d

(

∫ T

0

Γ⊤Γdt

)

=
1

d

(

∫ TSS

0

Γ⊤Γdt+

∫ TSS+TDS

TSS

Γ⊤Γdt

)

, (8)

where T , TSS, and TDS are respectively the durations of the step, the single support phase,
and the finite time double support phase. Several motions with different velocities will be
defined. When the walking speed v is fixed, the step length d and TDS are optimization
variables. The step duration T is directly given through the relation T = d/v. Thus we
can deduce TSS as follows:

TSS =
d

v
− TDS. (9)

4.1.2. Parametric functions: Cubic spline. Cubic spline functions36 are used to define
the trajectories θi(t) of each independent angular variable during a phase of the walking
motion,

θi(t) =































ϕi,1(t) if t1 ≤ t ≤ t2
ϕi,2(t) if t2 ≤ t ≤ t3

.

.

.
ϕi,n−1(t) if tn−1 ≤ t ≤ tn.

i = 1, 2, ..., nj (10)

Here, n is the number of selected knots and nj is the number of angular variables.
ϕi,1(t), ..., ϕi,n−1(t) are polynomials of third-order such that:

ϕi,k(t) =
3
∑

j=0

aj
i,k(t− tk)

j , for t ∈ [tk, tk+1], k = 1, ..., n − 1

where the coefficients aj
i,k are calculated such that the trajectory, velocity, and

acceleration are continuous between t1 and tn. The cubic spline functions are uniquely
defined by specifying an initial angular position θi(0), an initial angular velocity θ̇i(0)

(both at t = t1 = 0), a final angular position θi(T ), and a final velocity θ̇i(T ) (both
at t = tn = T ), with T being the duration of the phase and n− 2 intermediate angular
positions (n− 2 because let us recall that in finite time double support and single support
phases the two Cartesian positions can be deduced from the knowledge of the angular
positions). Consequently, the temporal joint evolution will be defined by a limited number
of optimization parameters ((n+ 2)× nj). When functions θi(t) are chosen, the joint
velocities and accelerations can be deduced through time derivation of the polynomial
function θi(t).

The number of parameters increases with the number of knots n but the order of
the polynomial functions, the cubic spline functions does not increase. These cubic
polynomials are sufficient to ensure the continuity of the second derivatives at nodes.
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4.2. Description of the gait in the different phases
4.2.1. The single support phase. The biped has a foot contact flat on the ground, see
Fig. 1d or Fig. 2d. It means there are three unilateral constraints of contact in the stance
foot with the ground. Thus there are only 9− 3 = 6 independent generalized variables
among the set of components of vector q. Let us assume without loss of generality that
the biped is in single support on foot 1. Then qf1 , q̇f1 , and q̈f1 are null. We can choose as
independent coordinates: Θ = [θ1, θ2, θ3, θ4, θ5, θ6]

⊤=[qf2 , q1, q2, q3, q4, q5]
⊤. The duration

of the single support phase is TSS = T − TDS. The cubic spline functions θi(t), i = 1, ..., 6
are defined with three selected knots, n = 3 for this phase. Thus, for each joint we need
to define five parameters of position and velocity to design the trajectories.
If the single support phase is ended by a flat-footed impact of the swing leg, only four
independent variables are necessary to define the final configuration of the robot. For the
choice of these four independent variables we use the distance d between the front heel
and the rear toe, see Fig. 6, the position coordinates of the hip x, y, and the inclination
of the torso q5. If the single phase is ended by a heel impact of the swing leg five
independent generalized coordinates are necessary to define the final configuration of the
robot. The angle of the front foot has to be added. The final velocity of the joints at the
single support phase is described with six variables for both cases.

4.2.2. The finite time double support phases. For gait 1, leg 1 has a flat foot contact
and foot 2 rotates on its toe, as shown in Fig. 1a. Then, there are five unilateral
constraints of contact with the ground. There are nine generalized variables and five
constraint equations. Thus during the double support phase the biped’s configuration
can be described with only four independent coordinates. Let us choose the orientation
qf2 of foot 2, the orientation angles of leg 1 q1, q2, and the inclination angle of the torso
q5: Θ = [θ1, θ2, θ3, θ4]

⊤ = [qf2 , q1, q2, q5]
⊤.

For gait 2, leg 1 rotates around its heel and foot 2 rotates on its toe, as shown in
Fig. 2a. Then there are four unilateral constraints of contact with the ground. There
are nine generalized variables and four constraint equations. Thus during the double
support phase the biped’s configuration can be described with only five independent
coordinates. Let us choose: Θ = [θ1, θ2, θ3, θ4, θ5]

⊤ = [qf1 , qf2 , q1, q2, q5]
⊤.

Let TDS be the duration of the double support phase. Only limited evolution of the
joints exists during the double support phase. Thus the cubic spline functions θi(t), are
defined with two selected knots for gait 1 and three for gait 2. We can remark that the
distance between feet d is constant during this phase, thus the number of independent
parameters to describe the robot configuration is reduced as it was shown.

4.2.3. Continuity of the generalized coordinates between phases. The studied gaits are
periodic, and the different phases are connected via impact model with a jump of
velocities or continuity between the generalized coordinates, thus the initial configuration
and velocity of each phase can be deduced based on the final configuration and velocity
of the previous phase. The number of optimization variables can thus be reduced and
are summarized in the tables II and III. For the periodic walking motions 1 and 2, the
number of knots for the single and double supports phases have been chosen in order to
have similar number of optimization variables. For gait 1, we choose nSS = 4 and nDS = 2
that gives 31 optimization variables, and for gait 2, we choose nSS = 3 and nDS = 3 that
gives 32 optimization variables. TDS and d are also optimization variables. Tacking into
account equation (9), the duration of the single support phase TSS can be deduced.

4.3. The optimal torque
When the motion of the biped is defined with the cubic functions as function of time
(4.1.2), their first, and their second time derivatives can be calculated. The contact
equation allows to define the vector q of generalized coordinates and its derivatives q̇
and q̈. Then the dynamic model (1) can be used to deduce the torque and the criterion
can be evaluated. In the case of double support phase, due to actuation redundancy, many
torques produce the same motion. A local optimal problem can be stated to choose the
specific torques in double support as a function of the ground reaction. To define this
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Description Optimization variables Number of

parameters

Final configuration

of single support xh(TSS), yh(TSS), q5(TSS) 3

Final configuration

of double support q1(TDS), q2(TDS), q5(TDS), qf2(TDS) 4

Intermediate

configuration

of single support qf2(k
TSS

nSS−1
), q1(k

TSS

nSS−1
), q2(k

TSS

nSS−1
), q3(k

TSS

nSS−1
), 6 (nSS-2)

q4(k
TSS

nSS−1
), q5(k

TSS

nSS−1
), k=1, ..., nSS-2

Intermediate

configuration

of double support qf2(k
TDS

nDS−1
), q1(k

TDS

nDS−1
), q2(k

TDS

nDS−1
), q5(k

TDS

nDS−1
) 4 (nDS-2)

k=1, ..., nDS-2
Final velocities

of single support q̇f2(TSS), q̇1(TSS), q̇2(TSS), q̇3(TSS), q̇4(TSS), q̇5(TSS) 6

Final velocities

of double support q̇f2(TDS), q̇1(TDS), q̇2(TDS), q̇5(TDS) 4

Step length d 1

Duration

of double support TDS 1

Total 4nDS + 6nSS − 1

Table II . Number of optimization variables for the walking gait 1.

calculation we develop an explicit relation between the torque vector Γ and the wrench
vector r2. Then we detail both cases, double support phases and single support phases
and show the associated constraints.

4.3.1. Explicit relation between the torque vector Γ and the ground reaction in foot 2
r2. In finite time double support phase the locomotion system of the biped moves as a
closed kinematic loop. This locomotion system is over-actuated. This situation requires an
optimization process in order to manage the actuation redundancy and to find a solution
that minimizes the criterion (8). This optimization process is based on an explicit relation
between the torque vector Γ and the effort vector r2. From the dynamic model (1) we
can write both following equations:

B⊥(Dq̈+N+Q) = B⊥(J⊤

1 r1 + J⊤

2 r2) (11)

and

B+(Dq̈+N+Q) = Γ+B+(J⊤

1 r1 + J⊤

2 r2). (12)

Here, B⊥(3× 9) and B+(6× 9) are the orthogonal complement matrix and the pseudo-
inverse matrix of B, respectively, i.e., B⊥B = 03×6, B

+B = I6×6.
These equations (11) and (12) will be used in the next subsection to manage the over
actuation of the biped in finite time double support and thus to manage an optimization
of the torques in finite time double support phase.
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Description Optimization variables Number of

parameters

Final configuration

of single support xh(TSS), yh(TSS), q5(TSS), qf2(TSS) 4

Final configuration

of double support q1(TDS), q2(TDS), q5(TDS), qf2(TDS) 4

Intermediate

configuration

of single support qf2(k
TSS

nSS−1
), q1(k

TSS

nSS−1
), q2(k

TSS

nSS−1
), q3(k

TSS

nSS−1
), 6 (nSS-2)

q4(k
TSS

nSS−1
), q5(k

TSS

nSS−1
), k=1, ..., nSS-2

Intermediate

configuration

of double support qf1(k
TDS

nDS−1
), qf2(k

TDS

nDS−1
), q1(k

TDS

nDS−1
), q2(k

TDS

nDS−1
), 5 (nDS-2)

q5(k
TDS

nDS−1
), k=1, ..., nDS-2

Final velocities

of single support q̇f2(TSS), q̇1(TSS), q̇2(TSS), q̇3(TSS), q̇4(TSS), q̇5(TSS) 6

Final velocities

of double support q̇f1(TDS), q̇f2(TDS), q̇1(TDS), q̇2(TDS), q̇5(TDS) 5

Step length d 1

Duration

of double support TDS 1

Total 5nDS + 6nSS − 1

Table III . Number of optimization variables for the walking gait 2.

4.3.2. Optimal torques during the finite time double support phase for gait 1. Let us
first consider the gait 1, through the resultant wrench of the ground reaction, which is
composed of two components for each force applied on both feet and one component
for the moment vector on the flat foot. The front leg has a flat foot contact (see Fig. 6a),
thus the resultant wrench reaction of the ground acting in some point of this front foot
is defined by r1 = [r1x r1y Mz]

⊤.
Let us consider the global equilibrium in translation and rotation of the biped, see

Fig. 6a. Let δg be the dynamic momentum of the biped with respect to its center of mass
defined by the Cartesian coordinates (xg, yg). We have five unknown variables, Mz, r1x,
r2x, r1y, and r2y for three equations only :







yg(r1x + r2x) + (xg − d)r2y + (xg + l)r1y +Mz = δg
r1x + r2x = mẍg

r1y + r2y −mg = mÿg.
(13)

Consequently, among r1x, r2x, r1y, r2y, and Mz two variables can be chosen as
optimization variables. For a given sum r1x + r2x, there are an infinity of solutions for
r1y, r2y, and Mz that satisfy the first and third equations of (13). Let r2x and r2y be the
optimization variables. From (11) r1 is such as:

r1 = (B⊥J⊤

1 )
−1B⊥(Dq̈+N+Q− J⊤

2 r2), (14)
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assuming that B⊥J⊤

1 is invertible as it has been tested in all our numerical tests.
Substituting r1 with its expression (14) in (12) the torque vector is such as:

Γ = B+(I9×9 − J⊤

1 (B
⊥J⊤

1 )
−1B⊥)(Dq̈ +N+Q)−

B+(I9×9 − J⊤

1 (B
⊥J⊤

1 )
−1B⊥)J⊤

2 r2.
(15)

From equation (15) let us identify a linear relation, that emphasizes the effect of the
optimization variable r2 on the actuated torque Γ:

Γ = M−Kr2, (16)

Here, the size of the matrices M, K is respectively (6× 1), and (6× 2) and:

M = B+(I9×9 − J⊤

1 (B
⊥J⊤

1 )
−1B⊥)(Dq̈ +N+Q),

K = B+(I9×9 − J⊤

1 (B
⊥J⊤

1 )
−1B⊥)J⊤

2 .

For a given motion we can locally choose the solution that minimizes the criterion (8),

min
r2x, r2y

Γ⊤Γ. (17)

By using the relation (16) the expression of Γ⊤Γ can be written as

Γ⊤Γ = (M−Kr2)
⊤(M−Kr2)

= M⊤M− 2r⊤2 K
⊤M+ r⊤2 K

⊤Kr2.
(18)

We have numerically checked that matrix K⊤K is definite positive, thus the criterion
Γ⊤Γ as function of vector r2 is strictly convex and has a minimum. The solution r2 opt

which minimizes Γ⊤Γ can be calculated by writing that the derivative of Γ⊤Γ with
respect to r2 is equal to zero.

∂

∂r2
(Γ⊤Γ) = 0 ⇒ r2 opt = (K⊤K)−1K⊤M

= K+M.
(19)

The solution r2 opt = [r2x opt r2y opt]
⊤ found with (19), minimizes Γ⊤Γ without constraints.

Remark: For r2 opt the constraints of no take-off and no slipping in double support can be
satisfied or not. At this stage of the optimization algorithm we can search a solution r2 to
satisfy the defined constraints. But another way, that we choose, is to reject the obtained
global solution with the global optimization and the SQP optimization algorithm when
a constraints is not satisfied.

4.3.3. Optimal torques during the double support phase for gait 2. For gait 2 the problem
is similar but presents some differences. Let us consider the global equilibrium in
translation and rotation of the biped (20), with Fig. 6b. The resultant reaction of the
ground acting in the pivot point that represents the heel of the front foot 1 is defined by
r1 = [r1x r1y]

⊤. Force r2 = [r2x r2y]
⊤ is the ground reaction acting in the toe of the rear

foot 2, δg is the dynamic momentum of the biped with respect to its center of mass. We
have four unknown variables, r1x, r2x, r1y, and r2y for three equations only.







yg(r1x + r2x) + (xg − d)r2y + xgr1y = δg
r1x + r2x = mẍg

r1y + r2y −mg = mÿg.
(20)

For a given reference trajectory of the center of mass defined along with xg, ẋg and
ẍg, mẍg is known, and then the sum r1x + r2x through the second equation of (20).



Running Head Article Title 15

a)

b)

Fig. 6. Ground reactions in double support phase and the center of mass of the biped. a) DS of gait 1
b) DS of gait 2

Consequently r1y and r2y are the unique solution of the first and second equations of
(20). But there are an infinity of solutions for r1x or r2x that satisfy the first and second
equations of (20). Let r2x be defined as an optimization variable to minimize locally the
criterion (8). Using (11) we can write:

B⊥(Dq̈+N+Q)

= B⊥

(

J⊤

1

[

r1x
r1y

]

+ J⊤

2

[

r2x
r2y

])

,

= B⊥

(

J⊤

1

[

r1x
r1y

]

+ J⊤

21r2x + J⊤

22r2y

)

,

= B⊥

(

J
′
⊤

1

[

r1
r2y

]

+ J21r2x

)

,

(21)

with J
′
⊤

1 =
[

J⊤

1 J⊤

22

]

and r1 = [r1x r2x]
⊤.

Assuming thatB⊥J
′
⊤

1 is invertible (we observed thatB⊥J
′
⊤

1 also is numerically invertible)
we have:

[

r1
r2y

]

= (B⊥J
′
⊤

1 )−1B⊤(Dq̈+N+Q− J⊤

21r2x). (22)

From (12) we also can write:

B+(Dq̈+N+Q) = Γ+B+

(

J
′
⊤

1

[

r1
r2y

]

+ J21r2x

)

. (23)
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Combining (22) with (23) we obtain:

Γ = B+(I9×9 − J
′
⊤

1 (B⊥J
′
⊤

1 )−1B⊥)(Dq̈+N+Q)
−B+(I9×9 − J

′
⊤

1 (B⊥J
′
⊤

1 )−1B⊥)J⊤

21r2x.
(24)

From equation (24) let us identify the linear form in r2x for Γ:

Γ = M1 −K1r2x. (25)

Here, the size of the matrices M1, K1 is (6× 1) and:

M1 = B+(I9×9 − J
′
⊤

1 (B⊥J
′
⊤

1 )−1B⊥)(Dq̈ +N+Q),
K1 = B+(I9×9 − J

′
⊤

1 (B⊥J
′
⊤

1 )−1B⊥)J⊤

21.

By using the same methodology that for the gait 1 with similar expressions to (18) and
(19) the optimal solution is :

∂

∂r2x
(Γ⊤Γ) = 0

⇒ r2x opt = K+
1
M1.

(26)

Remarks:

r As the scalar term K⊤

1 K1 is strictly positive, Γ⊤Γ as function of r2x has a minimum.
r Similarly to gait 1 if r2x opt does not satisfy the constraints of no take-off and no
slipping, the SQP optimization algorithm will reject the obtained solution in the global
optimization.

4.4. Parametric optimization problem
By parameterizing the joint motion in terms of cubic spline functions, the optimization
problem is reduced to a constrained parametric optimization problem of the form:

Minimize CW (P)
subject to gj(P) ≤ 0 for j = 1, 2, · · · , l

(27)

where P is the set of optimization variables. CW (P), which is the sthenic criterion (8),
is minimized with l inequality constraints gj(P) ≤ 0 to satisfy. The vector gj(P) ≤ 0
regroups the unilateral constraints of contact with ground reactions, the geometrical
constraints and motor limits. The criterion and these constraints are given in the following
sections.

4.4.1. The single support phase. The biped has a flat foot contact on the ground, Fig.
1c. The resultant wrench of the ground reaction is composed of two components for the
force and one component for the moment. In the second foot the resultant wrench of the
ground reaction is null (assuming that the stance foot is foot 1, r2 = 0).

The dynamic model (1) becomes:

Dq̈+N+Q = BΓ+ J⊤

1 r1. (28)

By knowing q, q̇, q̈, which satisfy (2), this matrix equation has a unique solution for
the torque vector Γ and the ground reaction effort r1.

4.4.2. The constraints. Two types of constraints are used to obtain a realistic gait.

r The contact constraints, which ensure a valid walking.
The first constraint ensures the stance leg does not take off or slide on the ground. The
vertical component of the ground reaction of the foot must be positive. Furthermore,
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the ground reaction force is inside a friction cone, defined with the coefficient of friction
µf :







−rjy < 0
(−µf rjy − rjx) ≤ 0
(−µf rjy + rjx) ≤ 0,

(29)

j = 1 and/or 2. rjx and rjy are the normal and tangential components of the reaction
force. Moreover, we can introduce a constraint on the ground reaction at the impact:







−ijy < 0
(−µf ijy − ijx) ≤ 0
(−µf ijy + ijx) ≤ 0,

(30)

j = 1 and/or 2. We choose an arbitrary numerical value for the friction coefficient
µf equals to 0.7. To ensure the non-rotation of the stance flat foot we introduce a
constraint on the ZMP during contact phase and at the instant of the impact:

− lf ≤ lZMP ≤ Lf − lf . (31)

lZMP represents the distance between the ZMP and the projection of the ankle joint
on the ground, see Fig. 5.
Just after the impact, the velocity of the taking-off foot should be directed upward. As
a consequence, the positivity of the vertical component of the velocities for the heel
and the toes is added to the set of constraints.
The next constraint allows to ensure the non penetration of the swinging foot in the
ground. Defining the altitude of the toe and the heel of the foot 2 from expressions in
Appendix (6) we obtain inequality constraints as follows

y − l2 cos q3 − l1 cos q4 + (Lf − lf ) sin qf2 −Hf cos qf2 > 0,
and

y − l2 cos q3 − l1 cos q4 − lf sin qf2 −Hf cos qf2 > 0.
(32)

r The geometrical constraints and actuator limits to ensure a technological
realistic gait:
For the joint variables of the knee we limit the domain of desired solutions such as the
knee counterflexion is avoided. Moreover, Table IV gathers the motor limits in torque,
velocity, and power for the joints of the hips, knees and the ankles. These maximum
values, are those of the locomotor system of the hydroid robot, which the power supply
fluid is hydraulic. They are used for the two gaits and for each velocity of the optimal
walking.

Hip joint Knee joint Ankle joint
Maximum torque (N.m) 30 10 20

Maximum velocity (rad/s) 6 10 20
Maximum power (W) 180 100 300

Table IV . Actuator limits in torques and velocities..

A block diagram that summarize the parametric optimization algorithm proposed in this
paper to define the two gaits is described in Fig 7.

5. Optimal walking: Simulation results
The problem of parametric minimization with constraints to obtain the optimal walking
is numerically solved, using the SQP method see37 and38 with the fmincon function of
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Optimization

Gait 1 Gait 2

Optimization Variables

Table II Table III

Initial Values

Gait 1 Gait 2

Impact model

Eq. (4) Eq. (5) & (6)

Spline function computations

Eq. (10)

Continuous dynamic model

Eq. (1) & (2)

Gait 1 Gait 2

Eq. (19) Eq. (26)

Continuity coditions 

Periodicity conditions

Optimization problem

Eq. (27)

Was the goal
achieved?

Proposed Values
Set up

START

END
Yes No

between phases

Fig. 7. Block diagram of the parametric optimization for defining the two gaits.

Matlab R©. Figure 8 shows the cost criterion as function of the walking velocity of the
biped for both gaits. The choice of the initial conditions for the optimization process
is very important. The described curves are the results of several iterative optimization
tests, by adapting the initial conditions for the current velocity from the previous velocity,
starting from the lower or the higher allowable speed. For the gait 1, a cyclic motion
has been found for walking velocity between 0.22 m/s and 1 m/s. The criterion has
a minimum around 0.36 m/s. The energy increases quasi linearly for higher walking
velocities. For gait 2, the optimization algorithm does not converge outside the velocity
interval [0.5 m/s, 0.94 m/s]. However, walking velocities faster than 0.55 m/s have values
of the cost criterion lower than those obtained with the gait 1. In the sense of speed
walking, a synchronized rotation of both feet during the double support phase is more
efficient than a flat foot contact on ground and a rotation around the toe of the other
foot. We observed with numerical results that for both gaits with the impact model (3) at
the end of the single support the velocity of the landing foot is small. This is in agreement
with the numerical analyze made by Miossec and Aoustin.39 The reason is that, it is very
difficult to include a finite time double support after a discontinuity of the velocity of
the landing foot and simultaneously to satisfy the unilateral constraints of friction and
no take-off with an absolutely inelastic impact model.
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Fig. 8. Cost criterion as function of the walking velocity for gait 1 (green) and gait 2 (red).

Fig. 8, shows the ranges of feasible speeds for both gaits 1 and 2. Outside the speed
ranges, the actuators can no longer provide enough power to perform the operation or the
optimization algorithm cannot find a solution, which satisfies the unilateral constraints
of the biped robot with the ground. The speed range is larger for the gait 1 than for the
gait 2. However, for the common domain of both gaits, the sthenic criterion is weaker
for the 2 gait, especially around the comfort speed of a healthy adult human, that
is almost equal to 4.4 km/h± 0.8,40 This fact leads us to believe that gait 2 is more
anthropomorphic than gait 1. Parametric optimization by definition provides a minimal
solution of a criterion that is not an optimal solution in the Pontryagin sense. In reality
for each speed, with another criterion, another strategy for choosing the initial value of
the optimized variables, different written of the constraints, it may be possible to find a
different robot motion. However, the multiple numerical tests that led us to these results,
proved that the following general trend is true regardless of the trajectory calculation
method: Gait 1 is better at low speed and worse at high speed than gait 2. From Fig. 8
we choose the velocity 0.9 m/s (3.24 km/h) to detail the walking for both gaits. This is
not far from the comfort velocity. Figs 9 and 10 describe a stick diagram for one step of
the walking motion with gaits 1 and 2 respectively.
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Fig. 9. Stick diagram of the gait 1.

Fig. 10. Stick diagram of the gait 2.
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Fig. 11. Profile of the foot orientations with respect to the ground for the gait 1.

Figure 11 presents the orientation variables of the feet for gait 1. We can observe the
flat foot contact of the stance foot on the ground. The value of the orientation of its sole
is null with respect to the ground. Figure 12 shows the profile of the torques and, the
discontinuities of the torques, allows us to discern the impact at t=0, and the transition
between the double support phase and the single support phase, which occurs at 0.12 s.
The profile of the torques show a discontinuity at the impact (t=0) because there is a
jump of velocities, that is coherent with the definition of the gait 1. During the double
support phase, the rear foot rotates around its toe until 0.12 s and after it becomes the
swing foot.
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Fig. 12. Profile of the torques for the gait 1.

Figure 13 presents the orientation variables of the feet for gait 2. We can explicitly
see the end of the finite time double support phase. The front foot rotates around its
heel until 0.04 s when the orientation of its sole is null. The orientation value of the rear
foot is almost zero during the double support phase, however the numerical results prove
that there is a small rotation of this foot around its toe. After the impact of the front
feet, the rear foot becomes the swing foot and its rotation increases. Figure 14 shows the
profile of the torques and, at the discontinuities of the torques, the transition between
phases. Similarly to gait 1 the profile of the torques show a discontinuity at the impacts
because there is a jump of velocities, that is also coherent with the definition of this gait
2. The time duration of the double support phase, that is an optimisation variable, for
the gait 2 is smaller than for the gait 1. It could be a reason why the consumption of
energy is less for the gait 2 than for the gait 1 because the motion of the swing leg is
quasi ballistic.41
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Fig. 13. Profile of the foot orientations with respect to the ground for the gait 2.
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Fig. 14. Profile of the torques for the gait 2.

6. Conclusion
This paper deals with the design of optimal periodic walking motions with finite time
double support phases and single support phases for a planar biped through a parametric
optimization. The three original main results of this numerical study are the following.
Firstly, with the algebraic model of impact the fact to accept a rotation of the rear foot
on its toe, which was the previous stance foot in single support, allows to get a valid
non instantaneous double support phase. That means this model satisfies the unilateral
constraints i.e. the vertical component of the impulsive ground reaction is positive for the
two feet and the tangential force is in the friction cone. It is true for all the calculated
walking motions for a landing of the swing foot on its heel or with flat foot contact.
Secondly the range of allowable speeds is greater for the finite time double support phase
where the swing foot is landing with a flat foot contact on the ground than for the finite
double support phase that allows a synchronized rotation of both feet. For both kinds
of finite time double support phases, beyond the upper and lower limits in speeds the
optimization algorithm cannot find any optimal solution, which satisfies the unilateral
constraints. Thirdly the gait 1, which has a flat foot contact in finite time double support
phase, is optimal for the low velocities. The gait 2, which allows a rotation of both feet,
is optimal for high biped speeds. This last result is coherent with the observations of the
biomechanical data from several researchers in biomechanics.42

The developed tools here could be useful in the design of a prothesis or an exoskeleton
for rehabilitation, specially to tune the assistance for the locomotor system. Walking
motion designed for healthy people can be defined as a reference motion to track for
handicapped people by tuning the assistance of the prothesis or the exoskeleton during
the gait. Preliminary results can be found in.43
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Appendix

A. The equations of contact with the ground for the biped in position,
velocity, and acceleration.
Equations for legs 1 and 2 are similar with different joint variables. For a sake of clarity
we consider leg 1 only.

r Contact with the heel

x+ l2 sin q2 + l1 sin q1 − lf cos qf1 +Hf sin qf1 = const,

y − l2 cos q2 − l1 cos q1 − lf sin qf1 −Hf cos qf1 = 0.
(A1)

The first time derivative of (A1) is:

ẋ+ l2q̇2 cos q2 + l1q̇1 cos q1 + lf q̇f1 sin qf1+
Hf q̇f1 cos qf1 = 0,

ẏ + l2q̇2 sin q2 + l1q̇1 sin q1 − lf q̇f1 cos qf1+
Hf q̇f1 sin qf1 = 0.

(A2)

In compact form (A2) becomes: Jh1q̇ = 0 with

Jh1 =

[

lfsin qf1 +Hfcos qf1 0 l1 cos q1 l2cos q2 0 0 0 1 0
−lfcos qf1 +Hfsin qf1 0 l1 sin q1 l2 sin q2 0 0 0 0 1

]

. (A3)
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The second time derivative of (A1) is:

ẍ+ l2q̈2 cos q2 + l1q̈1 cos q1 + lf q̈f1 sin qf1+
Hf q̈f1 cos qf1 − l2q̇

2
2 sin q2 − l1q̇

2
1 sin q1+

lf q̇
2
f1 cos qf1 −Hf q̇

2
f1 sin qf1 = 0,

ÿ + l2q̈2 sin q2 + l1q̈1 sin q1 − lf q̈f1 cos qf1+
Hf q̈f1 sin qf1 + l2q̇

2
2 cos q2 + l1q̇

2
1 cos q1+

lf q̇
2
f1 sin qf1 +Hf q̇

2
f1 cos qf1 = 0.

(A4)

In compact form (A4) becomes: Jh1q̈+ J̇h1q̇ = 0.

r Contact with the toe

x+ l2 sin q2 + l1 sin q1 + (Lf − lf ) cos qf1 +Hf sin qf1 = const,

y − l2 cos q2 − l1 cos q1 + (Lf − lf ) sin qf1 −Hf cos qf1 = 0.
(A5)

The first time derivative of (A5) is:

ẋ+ l2q̇2 cos q2 + l1q̇1 cos q1 − (Lf − lf )q̇f1 sin qf1+
Hf q̇f1 cos qf1 = 0,

ẏ + l2q̇2 sin q2 + l1q̇1 sin q1 + (Lf − lf )q̇f1 cos qf1+
Hf q̇f1 sin qf1 = 0.

(A6)

In compact form (A6) becomes: Jt1q̇ = 0 with

Jt1 =









−(Lf − lf ) sin qf1+
Hf cos qf1 0 l1 cos q1 l2 cos q2 0 0 0 1 0

(Lf − lf ) cos qf1+
Hf sin qf1 0 l1 sin q1 l2 sin q2 0 0 0 0 1









. (A7)

The second time derivative of (A5) is:

ẍ+ l2q̈2 cos q2 + l1q̈1 cos q1 − (Lf − lf )q̈f1 sin qf1+
Hf q̈f1 cos qf1 − l2q̇

2
2 sin q2 − l1q̇

2
1 sin q1−

(Lf − lf )q̇
2
f1 cos qf1 −Hf q̇

2
f1 sin qf1 = 0,

ÿ + l2q̈2 sin q2 + l1q̈1 sin q1 + (Lf − lf )q̈f1 cos qf1+
Hf q̈f1 sin qf1 + l2q̇

2
2 cos q2 + l1q̇

2
1 cos q1−

(Lf − lf )q̇
2
f1 sin qf1 +Hf q̇

2
f1 cos qf1 = 0.

(A8)

In compact form (A8) becomes: Jt1q̈+ J̇t1q̇ = 0.

r Flat foot contact

x+ l2 sin q2 + l1 sin q1 +Hf sin qf1 = const,

y − l2 cos q2 − l1 cos q1 −Hf cos qf1 = 0.

qf1 = 0

(A9)
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The first time derivative of (A9) is:

ẋ+ l2q̇2 cos q2 + l1q̇1 cos q1 +Hf q̇f1 cos qf1 = 0

ẏ + l2q̇2 sin q2 + l1q̇1 sin q1 +Hf q̇f1 sin qf1 = 0.

q̇f1 = 0

(A10)

In compact form (A10) becomes: Jf1q̇ = 0

Jf1 =





Hf cos qf1 0 l1 cos q1 l2 cos q2 0 0 0 1 0
Hf sin qf1 0 l1 sin q1 l2 sin q2 0 0 0 0 1

1 0 0 0 0 0 0 0 0



 . (A11)

The second time derivative of (A9) is:

ẍ+ l2q̈2 cos q2 + l1q̈1 cos q1 +Hf q̈f1 cos qf1−
l2q̇

2
2 sin q2 − l1q̇

2
1 sin q1 −Hf q̇

2
f1 sin qf1 = 0,

ÿ + l2q̈2 sin q2 + l1q̈1 sin q1 +Hf q̈f1 sin qf1+
l2q̇

2
2 cos q2 + l1q̇

2
1 cos q1 +Hf q̇

2
f1 cos qf1 = 0.

q̈f1 = 0

(A12)

In compact form (A12) becomes: Jf1q̈+ J̇f1q̇ = 0.

B. Expression of Matrix K.
r K(1, 1) = Hfcosqf2 − (Lf − lf )sinqf2 + l2(cosq3 − cosq2) + l1(cosq4 − cosq1).
r K(2, 1) = Hfcosqf2 − (Lf − lf )sinqf2 + l2(cosq3 − cosq2) + l1cosq4.
r K(3, 1) = Hfcosqf2 − (Lf − lf )sinf2 + l2cosq3 + l1cosq4.
r K(4, 1) = −Hfcosqf2 + (Lf − lf )sinqf2 − l2cosq3 − l1cos(q4.
r K(5, 1) = −Hfcosqf2 + (Lf − lf )sinqf2 − l1cosq3.
r K(6, 1) = −Hfcosqf2 + (Lf − lf )sinqf2.
r K(1, 2) = Hfsinqf2 + (Lf − lf )cosqf2 + l2(sinq3 − sin q2) + l1(sinq4 − sinq1).
r K(2, 2) = Hfsinqf2 + (Lf − lf )cosqf2 + l2(sinq3 − sinq2) + l1sinq4.
r K(3, 2) = Hfsinqf2 + (Lf − lf )cosqf2 + l2sinq3 + l1sinq4.
r K(4, 2) = −Hfsinqf2 − (Lf − lf )cosf2 − l2sinq3 − l1sinq4.
r K(5, 2) = −Hfsinqf2 − (Lf − lf )cosqf2 − l1sinq4.
r K(6, 2) = −Hfsinqf2 − (Lf − lf )cosqf2.


