HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Metamaterial made of poroelastic lamellas for sound attenuation in duct

Abstract : Sound attenuation performances of a duct silencer made of a metamaterial composed of a set of poroelastic lamellas, are investigated numerically and experimentally. The lamella arrangement is designed so that skeleton elastic resonances appear at low frequency. In addition, the air gap between the lamellas induces pressure diffusion effects commonly encountered in highly contrasted double porosity media. The configuration of the silencer also exhibits strong anisotropy. A 3D finite element model of the silencer has been developed in order to identify the different mechanisms taking place in the silencer. Numerical results are shown to match well with experimental data for different lamella orientations. By exploiting the geometrical periodicity of the silencer, a Bloch waves analysis is realized and a parametric study is conducted. This reveals strong model dispersion and interaction due to lamella elastic resonances. It is shown that certain design parameters can be tuned in order to achieve large attenuation and absorption at low frequency.
Complete list of metadata

Contributor : Claude Inserra Connect in order to contact the contributor
Submitted on : Sunday, May 30, 2021 - 1:35:22 PM
Last modification on : Thursday, May 5, 2022 - 3:17:31 AM
Long-term archiving on: : Tuesday, August 31, 2021 - 6:07:34 PM


Publisher files allowed on an open archive



Ke Li, Nicolas Dauchez, Benoit Nennig, Emmanuel Perrey-Debain. Metamaterial made of poroelastic lamellas for sound attenuation in duct. Forum Acusticum, Dec 2020, Lyon, France. pp.3-4, ⟨10.48465/fa.2020.0523⟩. ⟨hal-03240280⟩



Record views


Files downloads