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Abstract—Autoencoders neural networks are nonlinear dimen-
sion reduction models widely used in the field of anomaly detec-
tion. Conventionally, the reconstruction error is considered as a
score function allowing the discrimination between the normal
data and the outliers. Recent advances in calculating uncertainty
from neural networks open new perspectives in the field of
anomaly detection. We study, for given models and different
concentrations of anomalies, several score functions. We compare
the standard score function based on the standard error, a score
based on the error resulting from the Bayesian approximation,
as well as score functions directly including the uncertainty. This
paper empirically demonstrates how including uncertainty in
the score function is likely to improve the performance of an
autoencoder-based anomaly detection model.

Index Terms—Autoencoder Neural Network, Bayesian Neural
Network, Prediction Uncertainty, Anomaly Detection

I. INTRODUCTION

Anomaly detection finds extensive use in a wide variety of
applications such as fraud detection for credit cards, insurance
or health care, intrusion detection for cyber-security, fault
detection... The importance of anomaly detection is due to
the fact that anomalies in data often reflect critical exploitable
information in a wide variety of areas. For example, an
anomalous trafic pattern in a computer network could mean
that a hacked computer is sending out data to an unauthorized
destination [1]. In the medical field, abnormal images (MRI,
X-rays...) may correspond to an illness or a injury [2]. Anoma-
lies in credit card transaction data could indicate credit card
or identity theft [3].

Anomalies are patterns in data that do not conform to a well
defined notion of standard or normal behavior. The notion of
normality purely depends on the overall tendencies present in
our observation frame. Thus, anomalies are purely relative to
the dataset they come from. Figure 1 illustrates various cases in
a 2-dimensional data set. The data has a normal region N since
most observations lie in it. Points sufficiently far away from
the region are anomalies. The point a1 is a clearly identified
anomaly.

It is possible, however, that ambiguous data may be present
within a dataset, making the anomaly detection task more del-
icate. In Figure 1, the point a2 may or may not be considered
as an anomaly, purely depending on a tolerance threshold that
the analyst has to determine. In addition, we can also find
a set of anomalies A that are close to each other. If new

Fig. 1. Examples of normality, anomalies, and ambiguous data in a 2-
dimensional dataset.

data were to be positioned near these anomalies, our notion
of the normal behavior inherent in the basic dataset could be
altered. Taking into account new data when using a model
differentiates abnormality detection from novelty detection [4].

Anomalies might be induced in the data for a large variety
of reasons closely related to the application domain where the
dataset comes from. Malicious activity (e.g., credit card fraud
[3], malware [5], terrorist activity, breakdown of a system
[6]...), hardware malfunction (e.g., broken sensor, broken
actuator [7]...), novelty [4] (one cause may be that the training
dataset is undersized compared to the expected purpose)... but
all of the reasons have a common characteristic that they are
interesting to the analyst.

This paper aims to investigate a possible improvement
in the performance of autoencoders-based anomaly detection
systems, which are systems based on dimensionality reduction.

Dimensionality reduction has a lot of use cases applicable
in many different areas [8]. Beside anomaly detection, dimen-
sionality reduction facilitates the classification, visualization,
communication, denoising,... of high dimensional data.

The reason that motivated the work from which is derived
the autoencoder, is the principle of dimensionality reduction
or feature learning.



Another example of a simple a widely used method of
dimension reduction is Principal Components Analysis (PCA).
PCA is a linear dimensionality reduction method which deter-
minates directions of greatest variance in a dataset and project
each data point along those news axes [9]. Although PCA
is not the only algorithm (Robust PCA, Isomap, Diffusion
maps... we advise the reader to refer to [10] for a complete
review), there are many works that offer comparisons of
various dimensionality reduction [11] [12] methods. Amongst
those works, autoencoder neural appears, at least in some case,
as a very viable alternative to other dimensionality reduction.
According to the results in [13], autoencoders are among the
most efficient models when the used datasets are real data.

Benefiting from the flexibility and adaptability of neural
networks, autoencoders have the advantage of being able to
efficiently use data which, with other dimensionality reduction
methods, would require pretreatments or which would be more
difficult to process. Thus, derived architectures have emerged,
such as recurrent autoencoders [7] [14] used, for example, to
reduce the size of time series or convolutional autoencoders
[15] [16], which can extract visual features.

Those reasons makes autoencoder neural networks a signif-
icant and important part of anomaly detection algorithms.

Recent advances in the area of neural networks model un-
certainty induced the emergence of processes, such as Monte
Carlo Dropout [17] which we used in this paper. One of the
purpose of prediction uncertainty is to capture the confidence
of the model when producing a result. In this paper, we aim to
integrate the results of recent work in this field to autoencoder
based anomaly detection methods.

This paper makes the following contributions:
• Propose new score functions that include prediction un-

certainty.
• Compare the performances of standard, recent and the

previously mentioned new score functions.
The rest of this paper is organized as follows: Section

II gives an overview of the background knowledge needed
to fully understand the experimentation as well as related
work about the use of autoencoder used in the context of
anomaly detection, bayesian neural network, as well as model
uncertainty. Section III explains how we defined new score
functions. Section IV details the data we used for our exper-
imentation, the methodology we followed, and the produced
results. Section V concludes the paper.

II. RELATED WORK

A. Anomaly detection with autoencoders

While classic neural networks are typically used for clas-
sification or regression problems, thus producing an output
usually having a dimension different from the input, the main
purpose of an autoencoder is to output a reconstruction of the
input data [18].

Over training, an autoencoder neural network learns to
approximate two functions. We consider here a dataset X =
(x, . . . , xj , . . . , xn) with xj = (xj,1, xj,2, . . . , xj,d) ∈ Rd. The

Fig. 2. A typical example of autoencoder.

encoding function f(x), for any x ∈ X, execute the dimension
reduction and compress the data to a vector h with h ∈ Rn,
n<d. The decoding function g(h) recreate an approximation
of the original input x̂ ∈ Rd. We can see in Figure 2 a schema
of a simple autoencoder with a single hidden layer. Given that
n<d, the model is forced to prioritize which aspects of the
input should be copied [19]. Autoencoder models are often
restricted volontarily if they perform too well in order to learn
the most useful properties of the data. In this way, during the
test phase, the anomalies, which do not respect the learned
properties of the data, will not be recreated with precision.

As shown by our experimentation in section IV, even if
anomalies are present in the training dataset, the autoencoder
will be more influenced the majority (i.e. normal data). Of
course, the higher the anomaly concentration increases in
the training game, the more the overall performance of the
autoencoder to detect anomalies will tend to decline.

An important aspect for any anomaly detection technique is
the manner in which the anomalies are reported [20]. Outputs
produced by the majority of different anomaly detection
methods can be divided into the following two types [21]:

a) Scores: Scoring techniques assign an anomaly score
to each sample of the test data depending on the degree
to which that instance is considered an anomaly. Thus the
output of such techniques is a ranked list of anomalies. An
analyst may choose to either analyze top few anomalies or
use a cut-off threshold to select the anomalies. He therefore
has the choice for ambiguous data (refer to Figure 1 for an
example).

b) Labels: Techniques in this category assign a label
(normal or anomalous) to each test instance. Scoring based
anomaly detection techniques allow the analyst to use
a domain specific threshold to select the most relevant
anomalies. Techniques that provide binary labels to the test
instances do not directly allow the analysts to make such
a choice, though this can be controlled indirectly through



Fig. 3. Illustration of the principle of dropout applied to every layer of a
neural network. Above is the original neural network and below is the same
neural network with dropout applied.

parameter choices within each technique.

Autoencoders and other anomaly detection methods based
on dimensionality reduction usually produces a score. This
score is typically based on the distance between the recon-
structed data from a compressed vector and the original data.
The typical score function used with autoencoders is explained
in Section III as Standard function (S.). An ideal autoencoder
model will recreate a test dataset with a absolute discriminant
error threshold, meaning that the anomaly with the smallest
score will have a higher score than the normal sample with
the highest score. Of course, this is rarely the case in reality,
where we often have anomalous error distributions and normal
error data that overlap. Generally, the choice that is made is
to set the threshold in order to minimize the number of mis-
categorized anomalies, since they can be critical.

The performance of neural networks can be improved by
applying dropout to the layers [22]. It has been shown that
dropout prevents overfitting and provides a way of for neural
network architectures to approximate functions more effi-
ciently. Dropout can simply be considered as the allocation, for
each neuron of a layer, of a probability of inactivity. The term
”dropout” refers to dropping out units (hidden and visible) in
a neural network, making them inactive. By ”inactive”, we
mean temporarily removing it from the network, along with
all its incoming and outgoing connections (Figure 3 illustrate

how dropout applies to a neural network). The simplest case
is, each unit is retained with a fixed probability p independent
of other units, where p can be chosen using a validation set
or can simply arbitrary set. Although work exists to find the
best dropout rate for a model, the optimal dropout rate differs
depending on the model. The trend is that larger models in
terms of connections have a higher ideal dropout rate than
smaller models.

Autoencoders may, in some cases, be capable of approxi-
mating the identity function. As mentioned above, the layer
where the dimensionality reduction takes place is likely to be
reduced if the autoencoder is too good at recreating the data. A
more effective alternative is to incorporate dropout. Denoising
autoencoders [23] consist of applying dropout to the input
layer of the network to corrupt basic data during training.
Thus, the network will never learn the identity function. In
addition, work has shown that denoising autoencoders have a
better ability to generalize and perform better in the context
of anomaly detection [24].

All the models we used in our experiment are all inspired
by autoencoding denoising by incorporating dropout on the
input layers.

The Section II-B1 provides further details and more back-
ground about the architecture of the model used in the exper-
iment.

B. Bayesian Neural Network & Uncertainty

1) Bayesian Neural Network: Bayesian neural networks
(BNNs, Bayesian NNs) were first suggested in the ‘90s
and have been studied in many works since then [25] [26].
Until recently, BNNs Bayesian neural networks were mostly
theoritical model difficult to use on the field.

The purpose of BNNs if to offer a probabilistic interpreta-
tion of deep learning models by inferring distributions over the
models’ parameters rather than treating weights as simple real,
1-dimensional values. Such model would offer robustness to
over-fitting, uncertainty estimates, and could easily learn from
small datasets. A notable example of work using a Bayesian
neural network is Uber, which has benefited from a significant
performance increase through their implementation [27].

However, exact posterior inference is rarely possible. In-
deed, BNNs are easy to formulate but difficult to perform
inference with due to the complicated non-linearity and non-
conjugacy in deep models. Such limitations motivated work
on inference approximation.

Recently, several approximate inference methods are pro-
posed for Bayesian Neural Networks. Most approaches are
based on variational inference that optimizes the variational
lower bound, including stochastic search [28], variational
Bayes [29], probabilistic backpropagation [30], Bayes by
BackProp [31] and its extension [32]. Several algorithms
further extend the approximation framework to α-divergence
optimization, including [33], [34]. We refer the readers to [35]
for a more detailed and complete review of these methods.
In all the previously mentionned algorithms, different training
methods are required for the neural network. Various factors



and parameters must be adjusted, such as the loss function,
which must answer to different optimization problems, and
the training algorithm has to be modified in a usually non-
trivial sense. However, in practice, solutions corresponding
to the use case studied are often used, without changing
the neural network architecture and can be directly applied
to the previously trained model. In addition, most existing
inference algorithms introduce additional model parameters,
which makes the solution difficult to scale given the large
amount of parameters.

In this paper, we use the same method as Uber [27], which
is the Monte Carlo dropout (MC dropout). This method
proposed in [17] and [36], which requires few or no change
of the existing model architecture and provides uncertainty
estimation almost for free. Specifically, stochastic dropouts
are applied after each hidden layer in a classic neural network.
The models we use are inspired by Denoising Autoencoders
(cf: Section II-A), and thus already benefit from stochastic
dropout applied on the input layer. The resulting architecture,
for our case, is then an autoencoder with dropout applied to
every layer. The output of our model can be approximately
viewed as a random sample generated from the posterior
predictive distribution [21]. As a result, the model uncertainty
can be estimated by the sample variance of the model
predictions in a few repetitions. In our cas, we will focus
on prediction uncertainty rather than overall model uncertainty.

2) Bayesian and Uncertainty approximation: We consider
here a neural network as function fW ,where f denotes the
function approximated by the model dependent on the set of
parameters W . Here, W , representing the weights of each
”layers” of connection accross the neural network, regroups
weight matrices. Bayesian NNs often place a prior distribution
over a neural network’s weights, which induces a distribution
over a parametric set of functions. Given weight matrix W i

and bias vectors bi for layer i, a standard Gaussian prior
distributions is often used:

p(W i) = N (0, I)

The model will then aims to fit the optimal posterior distribu-
tion through training.

We formulate the distribution of the data generated by the
model by p(y|fW (x)). In the case of regression, it is often
assumed

y|W ∼ N (fW (x), σ2) (1)

with some noise level σ. In the case of classification, the
softmax likelihood is often used. Autoencoders use multiple
regression to recreate their input, so we will focus on the
case of regression with the precision that y = x̂, x̂ being
the approximation recreated for fW (x).

Given a set of N observations X = (x1,. . . , xn), Bayesian
inference aims at finding the posterior distribution over model
parameters p(W |X, X̂).

As previously explained, the model uncertainty can be
determined by estimating Var(X̂

∗
|X∗), X∗ a dataset of new

data (i.e. test dataset), with Monte Carlo dropout. In our case,
we will estimate prediction uncertainty by also using Monte
Carlo dropout on each x∗ ∈X∗ by determining Var(fW (x∗)).

The Monte Carlo dropout process is as follows: We consider
an autoencoder fW , W having been determined by driving
on an independent data set (note : in our case, dropout was
also used during the training phase, cf Section II-A). For
each new input x∗ taken from a test dataset, we use fW

to compute a result x̂∗ from it. The difference with the
standard method comes from the fact that, during this passage
in the network, random dropout is applied. We repeat this
step B times, knowing that the inactivating neurons will not
be the same each time, the dropout being random based on
a probability p. We then obtain a set of results (x̂∗1,...,x̂∗B).
From that set of approximations, we can determine two values
that will be used in our score functions. The first is the
”Bayesian approximation” which, if the number of iteration
B is sufficient, will give a reliable average of the possible
results w.r.t. 1 :

¯̂x∗ =
1

B

B∑
b=1

x̂∗B (2)

The second is the prediction uncertainty, which is the variance
of the distance between the result of each iteration of the
Monte Carlo dropout and the Bayesian approximation (in our
case, we used the squared difference) :

Var(fW (x∗)) =
1

B

B∑
b=1

(
x̂∗B − ¯̂x∗

)2
(3)

III. STUDIED SCORE FUNCTIONS

A. Standard score functions

As detailed in II-A, autoencoders are part of anomaly
detection algorithms that produce scores, essentially based on
the distance between the input and the output. Moreover, as
recalled in section II-B2, autoencoders work the same way as
a multiple regression network. Thus, similar distance function
can be used. In our case, we used the standard Mean Squared
Error (MSE) distance function. Our first score function, which
will now be called S. (Standard) for the rest of the paper, can
be formulated as follow : For any sample x ∈ Rd

ScoreS(x) =
1

d

n∑
i=1

(
xi − fW (x)i

)2
(4)

B. Bayesian approximation based score functions

To our knowledge, no score function based on the Bayesian
approximation has been studied in the context of anomaly
detection in the literature. As we saw in section II-B2, the
Bayesian approximation makes it possible to better take into
account the distribution of the W parameters of the model.
The result therefore benefits in part, theoretically, from the
advantages induced by the Bayesian neural networks. It is then
interesting to use the distance between this approximation and



the original data used as input. Our second score function,
which will now be called B.A. (Bayesian Approximation
based) for the rest of the paper, can be formulated as follow :

ScoreBA(x) =
1

d

n∑
i=1

(
xi − ¯̂xi

)2
(5)

with ¯̂x being the Bayesian approximation explained by 2. It
should be noted that, in order to use this score function, Monte
Carlo dropout has to be implemented. Therefore, if one came
to use it, it would be trivial to use the following proposed
functions as well.

C. Score functions weighted by uncertainty

In order to increase the performance of autoencoders in the
context of anomaly detection, any factor increasing the score
of an abnormality or decreasing the score of a normal data can
be taken into account. In order to develop the score functions
that will follow, we formulate the following hypothesis:

• An anomaly, if it is sufficiently rare in the training data set
and sufficiently different from the normal data (i.e. can be
unambiguously designated as an anomaly, as explained
in the Introduction), will have a weak impact on the
distributions of the model parameters W post-training.
Therefore, an anomaly, when passing through the network
during the test phase, should have an associated variance
Var(fW (x∗)) (explained in 3), and therefore a prediction
uncertainty, higher than those associated to normal data.

However, we do not propose to use only prediction un-
certainty as a score function. Indeed, our study shows that
the hypothesis formulated is not always true and depends
on factors over which we have little or no influence. The
consequence is that, although uncertainty alone could be a
good score function for some models, the uncertainty and
standard error of a model are often not correlated. Indeed, a
model is likely to give an estimate x̂ quite far from x (x being
a new anomalic data in that case) with relatively high certainty
and vice versa for normal data. We therefore propose to study
the impact if we enrich classical function score, based on the
distance between the recreated data and the original input data,
with the prediction uncertainty.

This observation guided us in setting up the functions:
simply weighting the reconstruction error would have been
a source of bad categorization of the anomalies. Indeed, an
anomaly associated with a high error but with an uncertainty
close to 0 would have had a final score close to 0. That is why
we propose to weight the initial and previously described score
functions by the uncertainty plus one. In this way, we seek
to value the best of both approaches. The first weighted score
functions, which will now be called W.S. (Weighted Standard)
for the rest of the paper, can be formulated as follow :

ScoreWS(x) = ScoreS(x) ∗ (1 +
Var(fW (x∗))

reg
) (6)

The term reg is used to put the uncertainty factor on the
same scale as the error factor (here ScoreS) in order to give
them both the same importance on the final score.

The last weighted score functions, which will now be called
W.B.A. (Weighted Bayesian Approximation) for the rest of the
paper, can be formulated as follow :

ScoreWBA(x) = ScoreBA(x) ∗ (1 +
Var(fW (x∗))

reg
) (7)

The motivation behind this score function is to use both the
Bayesian approximation and the uncertainty to discriminate
anomalies and normal data.

IV. EXPERIMENTATION

To create, train, and test our model, we used the python
implementation of the wrapper Keras with a tensorflow back-
end. Every treatment made on the data were done using the
libraries numpy and scikit-learn. The running environment of
all the experiment was a Linux Virtual Machine equipped with
a Nvidia Tesla V100 GPU and hosted on google compute
engine.

A. Datasets

To evaluate our functions, we searched for datasets fulfilling
certain criteria. Since autoencoders are based on dimension
reduction, we have selected datasets with at least 15 features.
We have not followed an upper limit in the number of features,
so we have a set of varied datasets ranging from 16 features
to 617.

The selected datasets are generally used for either multi-
class classification or binary classification. We have, in the
case of datasets used for multi-class classification, selected
and merged several classes after having downsampled them to
create our set of anomalies. In the case of datasets used for
the binary classification, we have downsampled one of the two
classes.

With this method of using classification data for evaluation
of anomaly detection methods we are conform with the
literature [37]. The datasets with a binary class are Musk [38],
Wisconsin Breast Cancer (WBC) [39] and Ionosphere [40].
The other datasets we used are Low Resolution Spectrometer
(LRS)[41], Isolet [42], Satimage [43], and Letter Recognition
[44].

We therefore have a heterogeneous set of datasets, coming
from various fields of application, having different dimensions
and numbers of samples. It should be noted, however, that
these datasets allow the use of a ”standard” autoencoders
(detailed in Section II-A). So we did not focus our study on
datasets of images, videos, time series, ... and did not need
architectures derived from autoencoders such as recurrent or
convolutional autoencoders.

Those datasets are real data coming from the UCI machine
learning repository[45] and have been used previously in the
litterature in works about anomaly detection or classification.
The details of the data and the anomaly classes are detailed
in the table IV-A.



TABLE I
SUMMARY OF THE DIFFERENT DATASETS USED. (”NUMBER OF SAMPLES”

IS APPROXIMATE BECAUSE IT REFERS TO THE SIZE OF THE TRAINING
DATASET, WHICH VARIED ACCORDING TO THE ANOMALY

CONCENTRATION USED.)

Dataset Nb of features ∼ nb of samples Anomaly class
LRS 101 360 classes 4 & 8
Isolet 617 7000 classes 23 & 26

Satimage 37 4000 class 2
Ionosphere 34 200 class ’bad’

WBC 30 320 class ’malign’
Musk 166 1100 class ’musk’
Letter

Recognition 16 10000 classes ’M’ & ’W’

B. Methodology

To evaluate our score functions, we have, for each dataset,
tested models using training sets containing concentrations of
anomalies that we have varied. In this way, we can better
evaluate the different score functions since the challenge level
of the anomaly detection task increases with the number of
anomalies present in the training dataset.

Because of the different characteristics of the original
datasets, we have not been able to use identical concentrations
for each. In addition, we had to adapt the concentrations in
anomalies to the capacities of the autoencoders used. For
example, the score functions tested resulting from the autoen-
coder trained with the Ionosphere dataset with an anomaly
concentration of 18.8% are very efficient, whereas those re-
sulting from the best autoencoder trained with the LRS dataset
with a concentration of anomalies at 2.2% are much less so.

For each given concentration of anomalies, we trained and
tested several models with the same parameters. Indeed, the
smaller the volume or the smaller the dimension of the used
dataset, the more two models with the same parameters can
produce different results due, for example, to the random
nature of the dropout. In order not to bias the experiment, we
repeated the trainings in order to look for the models producing
the best standard score function (S.).

In order to be fair in our evaluation of the models and
associated score functions, we use the same number of anoma-
lies and normal data during the test phase. This allows us to
use a single Receiver Operating Characteristic (ROC) curve
measurement [46] for each model (each anomaly concentration
for each dataset) while not underestimating the value of the
anomalies due to their rare nature. This method is widely used
amongst the literature to evaluate model performances.

C. Results

We recall that our initial hypothesis is that the prediction
uncertainty, estimated with Var(fW (x∗)), is higher when x∗

is an anomaly rather than when it is normal (as explained in
section II-B2). Although this hypothesis is not always verified,
the cases where it is true allow to have more efficient function
score than the classic function score.

We find that :

Fig. 4. Display of the distribution of the anomaly set scores (in red), the
normal data set scores (in blue) for the Standard (S. above) function and the
Weighted Standard (W.S. below) function applied to the Satimage test dataset,
with a training dataset including 2.9% anomalies.

• The standard function score (S.) is the best in only two
cases (∼9.5%).

• The function score based on the Bayesian approximation
(B.A.) is the best in 6 cases (∼28.5%).

• The function score using the basic error and uncertainty
(W.S.) is the best in seven cases (∼33.3%).

• The function score using Bayesian approximation and
uncertainty (W.B.A.) is the best in 6 cases (∼28.5%).

We can consider that the score functions not using uncer-
tainty and those using it form two categories. For a given
model, the scores within each category are, for the most part,
similar. We deduce that, generally, it is the consideration of
uncertainty is the determining factor in the increase or de-
crease of performance, depending on the models. The category
including prediction uncertainty seems to have overall better
performances. Figure 4 illustrates an example, where we can
see that the section size where the normal distribution and the
anomaly distribution overlap is smaller when the W.S function
is used, compared to the S function.

The form of the data used (dimension, quantity) does not
seem to determine which score function will be the best. Nev-
ertheless, it seems that the general ability of an autoencoder to
discriminate anomalies is a good indicator. We can see on the
figure 5 that the category not using uncertainty has generally
higher best scores. The use of uncertainty tends to lower the
performance of the score function when the autoencoder has
already very good performances.



Fig. 5. Box plots of the best score by categories. Category 1 includes score
functions that do not use uncertainty (S. and B.A.). Category 2 includes the
score function using uncertainty (W.S. and W.B.A.). The LRS dataset was
ignored given its very low scores.

TABLE II
EVALUATION OF THE DIFFERENT SCORE FUNCTION.

Dataset AUC ROC for given score function
Name % Anomaly S. B.A. W.S. W.B.A.

LRS
2.2 0.7557 0.7571 0.7561 0.7577
5.4 0.6959 0.6932 0.6971 0.6942
10 0.6408 0.6506 0.6375 0.6458

Isolet
1.2 0.9075 0.909 0.914 0.9148
3.5 0.8743 0.8718 0.8814 0.8807
6.8 0.8115 0.8101 0.8193 0.8173

Satimage
2.9 0.9386 0.936 0.966 0.9645
5.7 0.9159 0.9061 0.9469 0.9383
10.8 0.824 0.805 0.8607 0.8447

Ionosphere
4.6 0.9927 0.9930 0.9924 0.9913
10.6 0.9743 0.9725 0.9718 0.9706
18.8 0.985 0.9868 0.9831 0.9837

WBC
5.2 0.9212 0.9188 0.9268 0.9316
9.7 0.9184 0.918 0.9212 0.9236
15 0.7748 0.7796 0.788 0.8036

Musk
7.2 0.9868 0.9871 0.9854 0.9854
10.1 0.9288 0.9277 0.931 0.93
16.3 0.9269 0.9263 0.9285 0.9289

Letter
Recognition

1.9 0.8887 0.887 0.8884 0.8866
3.3 0.8572 0.8583 0.847 0.8463
6.3 0.8327 0.834 0.8247 0.8256

V. CONCLUSION

In this paper, we reviewed various function score applicable
to neural networks in the context of anomaly detection. As
shown in the part IV-C, the classic score function generally
shows poorer results than others. This result encourages the
use of the Bayesian approximation method in autoencode neu-
ral networks. Indeed, the other functions show rather similar
performances. In addition, setting up an autoencoder that can
produce a Bayesian approximation, as explained in Section
II-B1, is the largest part of the work to use the proposed
new score functions. Moreover, the complexity differs very
little between the calculation of the Bayesian approximation
and the calculation of the proposed functions. We therefore
encourage the consideration of our functions as well as the
Bayesian approximation when setting up an autoencoder used
in the context of anomaly detection.

It would be interesting to study the performance of the

score functions with different datasets, needing other types of
autoencoders. Future works to be carried out would consist
in repeating a similar experiment on the performances of
functions applied, for example, to convolutional autoencoders
or to recurrent autoencoders used for anomaly detection.
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