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ABSTRACT

The acoustic impact of French wind farms is currently es-
timated by measuring their sound emergence. These mea-
sures require the implementation of on/off cycles of the
wind farm in order to determine the ambient noise (wind
turbines in operation) and the residual noise (stopped wind
turbines). These procedures generate very high costs for
operators, which strongly limit the duration of emergence
measurement periods (2 or 3 weeks). This reduced dura-
tion, compared to a full year of different weather condi-
tions, is to the detriment of the representativeness of the
estimation of sound emergence. In order to remedy this
limitation, we propose to estimate the noise emergence
of wind turbines in real time, continuously and without
stopping the machines, using a source separation method
based on a machine learning technique: Non-negative Ma-
trix Factorization. This technique is tested on a corpus
of simulated sound scenes that allows a total control of
their composition and especially their emergence. A nu-
merical experiment is conducted to determine, among the
various influential parameters of this method, the optimal
form that achieves the best estimates of sound emergence
over the entire sound corpus. Initial results indicate that
this approach generates average estimation errors similar
to current methods but depends on the emergence of wind
turbine noise. This method makes it possible, under valida-
tion by more complex corpora, to estimate the noise emer-
gence of wind farms continuously without having to shut
them down which is not the case in the current method.
Keyword: wind turbine noise, sound emergence, in situ
measurements, non-negative matrix factorization

1. INTRODUCTION

In France, every wind turbine farm has to respect the cur-
rent regulation which imposes (among several criteria) that
the wind turbine sound emergence from the background
noise does not exceed 5 dB(A) between 7 a.m. and 10 p.m.
and 3 dB(A) between 10 p.m. and 7 a.m., with an ambient
sound level superior to 35 dB(A). These criteria aim to pre-
serve the life quality of the inhabitants living near the wind
farms. The sound emergenceE is defined as the difference

between the ambient sound level LA,50,ambient (when the
wind turbines work, cycle on) and the residual sound level
LA,50,residual (when the wind turbines are stopped, cycle
off ):

E = LA,50,ambient − LA,50,residual. (1)

Since the noise generated by a wind turbine fluctuates
slowly over time, the emergence calculation is based on the
LA,50 statistical indicator, which corresponds to the me-
dian sound level based on the 1 second equivalent sound
level. This indicator seems adequate in order to limit
the impact of the strong noise contributions from resid-
ual events, which is not possible with the equivalent sound
level. To assure that these regulation levels are respected,
a curtailment plan can be implemented in some circum-
stances (specific meteorological conditions for example)
in order to limit the wind turbine and then the generated
noise. This plan is usually defined before their installation.
Nevertheless, the residual sound level fluctuates over time
according to the meteorological conditions (dry weather,
rain, wind direction. . . ), the season (winter, summer. . . ) or
the surrounding infrastructures (highway, industry. . . ). In
consequence, the curtailment plan can sometimes be inad-
equate: to the detriment of local inhabitants (i.e. sound
emergence overcomes the regulation levels) or to the detri-
ment of industrial operator (i.e. the wind farm is too lim-
ited in its operation which decreases the electric produc-
tion). It is possible to adapt this curtailment plan by reg-
ularly taking a few measurements. However, this process
requires stopping the wind turbine to measure the residual
noise level, which again decreases the electrical productiv-
ity, but above all, gives only a short temporal representa-
tion of the residual noise because these measurement cam-
paigns last a few weeks.

This study aims to develop a tool making it possible to
continuously estimate the sound emergence of wind tur-
bines without stopping them. With such a tool, the cur-
tailment plan could be adapted more regularly and more
easily. Electricity production would be better optimized
and residents would be better protected from louder noise
emissions.

The main difficulty here is to correctly extract the wind
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turbine noise component from the ambient sound compo-
nent since it is permanently mixed with the residual noise.
Gallo et al. [1] proposed a method to overcome this diffi-
culty assessing the wind turbine noise from measurements
based on an analytical model. The wind turbine noise is
here not considered as a function of the wind speed but
as a function of a parameter related to the rotation of all
the wind turbines. The residual noise is defined accord-
ing to the wind speed at ground. To do so, they do not
consider, on the used measurements they collected, the an-
thropic and the animals noises and assumes that the resid-
ual noise is mainly due to the wind noise. This assumption
can be restrictive because it does not consider the dawn
chorus of birds or may not apply depending on the location
of the wind farms. This difficulty to isolate a specific sound
source in sound mixtures has already been tackled for other
noise sources, for example for the estimation of the traffic
noise from measurements. In [2], the traffic noise is es-
timated indirectly by detecting other sound sources. The
traffic sound level is them calculated by rejecting the tem-
poral frames where these sound events were detected. In
parallel, there is a growing interest in the community dedi-
cated to the sound signal processing for the use of machine
learning techniques for environmental sounds [3]. Multi-
ple applications have been investigated in the detection [4],
classification [5] and recognition [6] tasks. One possibil-
ity offered by the machine learning techniques is to allow
the source separation between the different components of
a signal [7], [8]. Still in the urban traffic noise, a source
separation technique has recently been deployed in order
to estimate the urban traffic sound level [9] with the Non-
negative Matrix Factorization framework. The source sep-
aration approach has the advantage, once the sound of in-
terest is isolated, of making it possible to express the de-
sired indicators such as the sound level. Since this machine
learning technique is well-suited for monaural measure-
ments and found multiple applications in the environmen-
tal sound field [10], this method is considered to estimate
the sound emergence of wind turbines. The purpose of this
work is to see if this could be an appropriate choice for
wind turbine noise and for such an application.

The first section summarizes the Non-negative Matrix
Factorization framework, the second section presents the
different used corpora. Then the third and the fourth parts
present the numerical experiment carried out and the re-
sults.

2. NON-NEGATIVE MATRIX FACTORIZATION

2.1 Principe

Non-negative Matrix Factorization (NMF) [11,12] is a lin-
ear approximation method which consists in approximat-
ing a non negative matrix VF×N in R+ by the product
of two non negative matrices: W, called dictionary with
F ×K dimensions and H, an activation matrix with K ×
N dimensions such as V ≈ WH. In audio domain, V
corresponds to the magnitude of an audio spectrogram and
W is composed of audio spectra. Consequently, F rep-

resents the number of frequency bins, N , the number of
temporal bins and K, the rank of the approximation which
corresponds here to the number of spectra in W. The ap-
proximation of V by the matrix product WH is defined by
the minimization of a cost function:

min
W,H≥0

Dβ(V||WH). (2)

Dβ(·|·) is the β-divergence and is defined as Dβ =∑F
f=1

∑N
n=1 dβ

(
Vf,n| [WH]f,n

)
. This class includes 3

particular classes:

• Itakura-Saito divergence (β = 0): dβ(x|y) = x
y −

log x
y − 1,

• Kullback-Leibler divergence (β = 1): dβ(x|y) =
x log x

y − x+ y,

• Euclidean distance (β = 2): dβ(x|y) = 1
2 (x− y)

2.

The minimization problem of NMF (eq. 2) is solved it-
eratively by updating the matrices W and H. From the dif-
ferent existing algorithms, the Multiplicative Update [13]
is chosen here, since it ensures the convergence of the re-
sults and the non-negative results:

H(i+1) ← H(i) ⊗

WT

[(
WH(i)

)(β−2)
⊗ V

]
WT

[
WH(i)

](β−1)

γ(β)

(3a)

W(i+1) ←W(i) ⊗


[(
W(i)H

)(β−2) ⊗V
]
HT[

W(i)H
](β−1)

HT

γ(β)

.

(3b)

where γ(β) = 1
2−β for β < 1, γ(β) = 1 for β ∈ [1, 2]

and γ(β) = 1
β−1 for β > 2. The A ⊗ B and A/B op-

erators represent the Hadamard product and ratio. When
NMF is used as a dictionary learning method, nor W nor
H is known, it is then an unsupervised NMF that is carried
out. When W is learned on labeled data and only H is up-
dated, it is a supervised NMF. Some derived approach have
been developed (smoothness [14], source/filter [15]) in or-
der to better adapt it to different cases. Here, it is a variant
of NMF that is considered through Thresholded Initialized
NMF.

2.2 Thresholded Initialized NMF

TI-NMF has been proposed in [9]. First, an initial dictio-
nary W0 is learned on a sound database dedicated to the
sound source of interest. Then, this matrix is updated, with
H, on the sound mixtures. After been updated, the element
in the final dictionary W′ can model other sound sources.
To only consider the source of interest, a classification step
is added to extract the related spectra from W′. To do so,
a cosine similarity is computed to estimate the similarity
between each element k:
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D(W0,k|W′
k) =

|W0,k ·W′
k|

‖W0,k ‖‖W′
k ‖

. (4)

This indicator gives a value between 0 and 1: 1 means
that the k element is exactly the same in W0 and W′;
while 0 means that these elements are completely different.
Then by setting a threshold t between 0 and 1, it is possible
to classified according to the cosine similarity, which ele-
ment can be considered as a wind turbine spectra. In the
present study, the labeled data are wind turbine spectra (in-
troduced in section 3). Then as output, we can extract the
wind turbine component [WH]WT with WWT with F×J
dimensions, where J ≤ K, the number elements consid-
ered as wind turbine spectra. In Figure 1, an example of
the cosine similarity values sorted in descending order is
displayed. All the correspondent elements in W′ that have
a similarity with W0 superior to the threshold (here illus-
tratively chosen at t = 0.6) are considered as wind turbine
spectra. In all, 156 elements are retained (J = 156). With
their respective vectors in H, the selected elements form
the wind turbine component [WH]WT .

Figure 1. Example of the cosine similarity look (sorted in
descend order).

3. ENVIRONMENTAL SOUND CORPUS

To test the performance of NMF on the noise of wind tur-
bines, two different corpus are built. Both are based on
data collected during a wind farm measurement campaign
in France [16]. In this campaign, on/off cycles were alter-
natively performed to measure ambient and residual noise
levels at different distances from the wind farm. For this
study, measurements close to the machines are used to have
labeled data to build the dictionary and to simulate environ-
mental measurements.

3.1 Dictionary corpus

First, TI-NMF (see section 2.2) needs tagged data to learn
a dictionary of wind spectra. To obtain the cleanest data
possible, only the measurements data corresponding to the
IEC 61400-11 standard [17] are taken into account. The
microphone being on the ground, the contribution of sound
reflection is avoided and we consider that the microphone
is close enough to wind turbines (150 m) to neglect the

Figure 2. Example of the period extracted for the dictio-
nary in an off/on/off cycle. The residual noise for this time
slot is calculated from the samples between 1.30 pm and
2.00 pm and between 3.00 pm and 3.30 pm.

effects of sound propagation. Only the measurements cor-
responding to stable electrical production and for which
the sound emergence of the wind turbine noise is greater
than 10 dB (A) are included in the dictionary corpus. To
ensure that the cleanest samples are obtained, the resid-
ual component (even if less loudly) is filtered out from the
measurements by quadratic subtraction. This component is
estimated by the equivalent sound level obtained 30 min-
utes before the on cycle and 30 minutes after.

Finally, the dictionary corpus is made up of 14,200 sam-
ples of one-second wind turbine spectra in the frequency
range [50− 5000] Hz in 1/3 octave bands (F = 21), which
represents approximately 4 hours of cumulative duration.

3.2 Environmental noises corpus

This corpus includes elements allowing to simulate envi-
ronmental measures. The noise from wind turbines comes
from measurements made 300 m from the wind farm,
which are the closest measurements made on this wind
farm (after those following the IEC standard). Available
recordings made at a greater distance do not allow suffi-
cient emergence to guarantee clean samples (i.e. not pol-
luted by residual noise). Again, a selection is made to keep
the most emerging wind turbine samples from the resid-
ual noise. Those considered samples are filtered of the
residual component following the same protocol as for the
dictionary corpus. The samples are cut into 10 minutes
samples without overlapping. This corpus is finally com-
posed of 277 samples of noise from wind turbines with a
duration of 10 minutes of 1 second in third octave bands
in the frequency range [50− 5000] Hz. Finally, 30 sam-
ples lasting 10 minutes, composed exclusively of residual
noise, are extracted from the measurements at 1250 me-
ters from the wind farm during an off cycle. In addition,
to bring more diversity in the creation of environmental
measures, the corpus is supplemented by isolated resid-
ual sound events that can be found in French countryside
(tractor, airplane, bird whistles, passing car. . . ) [18]. Fi-
nally, these 3 corpora (wind turbine noise samples, resid-
ual background noise samples and isolated residual sound
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events) are used to simulate academic measurements on
which NMF is applied to estimate the sound emergence of
a wind turbine (see section 4.1.

4. SUMMARY OF THE EXPERIMENT

After having introduced the different elements for this
study in sections 2 and 3, the measurement corpus, the
experimental factors and their modalities involved in TI-
NMF are exposed.

4.1 Design of the measurement corpus

To assess the performance of TI-NMF on wind turbine
noise, 30 scenes lasting 10 minutes are constructed to com-
pose the measurement corpus. Figure 3 summarizes the
different step involved in this process.

Residual 
component

Specific 
component SIR

Measurement 
corpus

Wind turbine 
noise samples

Residual background 
noise samples

Isolated residual 
sound events

Figure 3. Block diagram of the measurement corpus build-
ing.

These scenes are composed of a wind turbine compo-
nent, taken at random from the 277 samples, a residual
background noise and several residual sound events. In
order not to complicate the scenes too much and to be rep-
resentative of what can happen in the countryside, less than
6 isolated sound classes can be present during the dura-
tion of every scene. The sound emergence of these isolated
events is adjusted according to the background noise em-
pirically by listening to avoid inconsistent behavior. In the
rest of the document, the wind turbine noise component
will be called the specific component while the association
of the background noise and additional residual events will
be called the residual component. The energetic sum of the
specific component and the residual component generates
the ambient component which simulates the measurements
recorded in the field when the wind turbines are operating.
It corresponds to the spectrogram V for NMF (see section
2).

In addition, to test different situations, the sound pres-
sure level of the residual component is calibrated accord-

ing to the sound level of the specific component through
the Signal-to-Interference Ratio [19]:

SIR = LA,50,specific − LA,50,residual (5)

with SIR ∈ {−9,−6,−3, 0, 3, 6, 9} dB(A). These
values generate an equivalent Signal-to-Noise-Ratio,
SNR = LA,50,ambient − LA,50,residual, which cor-
responds to the sound emergence E (eq. 1) of
wind turbine noise, that worth respectively SNR ∈
{0.5, 1.0, 1.8, 3.0, 4.8, 7.0, 9.5} dB(A).

The advantage of this simulation process is to allow a
total control of the content of the measurement because all
the components and their contribution to the sound level
can be estimated separately, which is never possible with
the in situ measurements. Thus, the exact sound emergence
E of the wind turbine noise can be calculated following the
eq. 1 and is compared to that estimated by TI-NMF.

4.2 Design of the dictionary corpus

The complete dictionary corpus is not fully used in TI-
NMF as it represents a large matrix which would slow
down the computation time and, most of all, it has re-
dundant information in it. In order to reduce it, a K-
mean algorithm is applied on the dictionary corpus to
obtain initial dictionary W0 with different size such as
K ∈ {25, 50, 100, 200}.

4.3 NMF computation

In addition with the different built dictionaries, TI-NMF
bring several experimental factors which can take multi-
ple values. The β-divergence parameter is fixed to 3 val-
ues, β ∈ {0, 1, 2}. The threshold t is set from 0.01 to
0.99 with a 0.01 step and 100 iteration are performed.
The spectrogram V and the dictionary W0 are both ex-
pressed with A weighting in 1 second third octave bands.
After the 100 updates of W′ and H, the thresholding
step makes it possible to extract the wind turbine com-
ponent [WH]sp.. From this spectrogram, it is then pos-
sible to estimate its 1 second A-weighting sound level,
L̃Aeq,1s,specific, the residual component, L̃Aeq,1s,residal
and so, the statistical sound level, L̃A50,residual. The esti-
mated sound emergence Ẽi of a sample i is then obtained:
Ẽi = LA,50,ambient,i − L̃A,50,residual,i.

The retained metric used to assess the performance is

the mean absolute error, MAE =

∑N
i=1 |Ẽi − Ei|

N
with

N = 30, the number of simulated ambient measurement.

The bias, B =

∑N
i=1 Ẽi − Ei

N
, is also considered to com-

plete the first metric and to help to better apprehend the re-
sults. The entire schema of the experiment is summarized
in Figure 4.

4.4 Reference method

To assess the performance of TI-NMF, a reference method
is used. It is based on the method currently used to estimate
the sound emergence of installed wind turbines. It consists
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dictionary 
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Figure 4. Block diagram of the experience to estimate the sound emergence of wind turbines by TI-NMF.

in evaluating the ambient sound level, LA50,ambient when
the wind turbines are operating (cycle on) and the resid-
ual sound level when the wind turbine is stopped (cycle
off ), LA50,residual,off . To do so, for this method, each
scene is completed by 10 minutes of residual noise to sim-
ulate the cycle off. As previously, this component is the
combination of the residual background of the correspond-
ing scene during the cycle on and some isolated residual
sound events, which are different here but with the same
distribution (less than 6 different sound classes by scene).
To avoid too large variations between the on residual and
the off residual (for each of the 30 scenes), the two com-
ponents are calibrated to the same equivalent sound level
LAeq . Then with the SIR parameters, the off residual
is adjusted to keep the same level than the on residual.
In Figure 5, an example is displayed with the wind tur-
bine component and the residual component for the on
and off cycles. The sound emergence is thus calculated
as Eref = LA50,ambient − LA50,residual,off .

Figure 5. Example of the scene building for the reference
method.

5. RESULTS AND DISCUSSIONS

The experience consists in calculating the set of combina-
tions of the parameters. For each set, a MAE error and
a bias is obtained. However, it is possible to average the
metrics between the 7 values of the SIR to determine the
most efficient NMF on the different cases of predominance

of the wind turbines. Indeed, in practice, the value of SIR
is unknown. The set of NMF parameters that reaches the
lowest average MAE is then the most efficient for differ-
ent wind turbine predominance.

5.1 Global results

In Table 1, the set of parameters that reaches the lowest
average MAE errors for each β value are summarized.
The error generated by the reference method is also added.

β K t MAE (dB(A))

reference - - - 3.3 (± 2.0)

0 100 0.78 1.7 (± 1.5)
NMF IS 1 200 0.68 1.6(±1.5)

2 200 0.66 1.8 (± 1.6)

Table 1. MAE errors and their standard deviation of ref-
erence method and TI-NMF for each β value that reached
the lowest errors on all the measurement and SIR values.
In bold, the set that reached the lowest error.

For each β value, TI-NMF obtains lower estimation er-
ror on the emergence than the reference method with lower
standard deviation too. Despite different settings in TI-
NMF, there is no configuration that is significantly better
than the others. The lowest set is obtained with β = 1, K =
200 and for a threshold t = 0.68. This setting is the one that
get the best averaged performance for all the SIR values.
From these results, it is now possible to extract the errors
made by this set for each value of SIR. In Figure 6, the
evolution of the MAE errors and the bias are displayed.
In addition, the errors generated by the reference method
are added.

First, the MAE errors and the bias for the reference
method are constant according the SIR values. For both of
these metrics, the difference of the estimated emergence Ẽ
and the exact oneE is equivalent to the difference between
the residual component of the off cycle, L̃A50,residual and
the one of the on cycle, LA50,residual. This result is inde-
pendent of the SIR values and reflects the differences in
construction between this two residual components. There
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Figure 6. Evolution of the MAE error (on left) and the
bias (on right) according to the SIR value with the stan-
dard deviation as error bars. For visibility, as constant, the
standard deviation of the reference are not displayed.

is an absolute averaged difference of 3 dB(A) and a bias
close from zeros. This last metric reveals a balanced distri-
bution of these differences on the 30 scenes: almost half of
all scenes have an off residual component lower than the
on residual and vice versa.

The errors generated by TI-NMF are different and
evolve according to the predominance of the wind turbine.
For SIR ≤ 3 dB (A), the MAE remains low (<1.5 dB
(A)) with a standard deviation less than 1.1 dB (A). Since
the predominance of the wind turbine increases, the error
also increases to exceed 3 dB (A) at SIR = 9 dB (A). The
bias allows us to see this evolution: when SIR ≤ 0 dB
(A), the bias is positive, which means that the estimated
emergencies are overestimated (less than 2 dB (A)), while
when SIR becomes positive, they are underestimated up
to -3.5 dB (A) for the highest value of SIR. Finally, TI-
NMF offers a satisfactory estimate of the emergence when
the wind turbine is less present than the residual compo-
nent, but its performance decreases as it becomes the pre-
dominant sound source. To illustrate this performance, the
Figure 7 compares the estimated emergence according to
the exact emergence.

Figure 7. Comparison of the estimated emergence’s be-
havior according to perfect estimations (TI-NMF, β = 1,
K = 200, T = 0.68).

The behavior of Ẽ is similar to that described above.

The current regulations impose not to exceed the residual
noise level of 3 dB (A) at night and 5 dB (A) during the
day. In the first case, the TI-NMF overestimation is not
harmful up to E = 2 dB (A). Afterwards, between an exact
emergence of 2 dB (A) and 3 dB (A), while the emergence
of the wind turbine still complies with the regulations, the
proposed method overestimates the sound emergence and
declares the emergence above the regulation limit of 3 dB
(A). Consequently, a curtailment plan that is too strong will
be planned and will decrease electrical productivity. For
an exact emergence between 3 dB (A) and 4 dB (A), the
method always overestimates the emergence by 0.5 dB. For
the limitation of 5 dB (A), the method underestimates the
emergence of sound up to 0.5 dB for an exact emergence
between 4 dB (A) and 5 dB (A). Conversely, the risk is
now to underestimate the curtailment plan, to produce too
much noise and to no longer comply with the regulations.
Above, even with the underestimation, in the case where,
for whatever reason, the wind turbine is very noisy, despite
strong errors MAE, the detection of this case can still be
done.

5.2 Estimations of wind turbine and residual sound

To better understand these results, it is necessary to detail
the estimate of the specific sound level and the residual
level. Their errors MAE and the bias are displayed in
the figure 8 for each value of SIR. Here, the metrics are
not calculated from the emergences but from the difference
between the exact and estimated statistical sound levels of
the specific component, LA50 and L̃A50.

Figure 8. Evolution of the MAE error (on left) and the
bias (on right) according to the SIR value with the stan-
dard deviation as error bars of the estimation of the wind
turbine and the residual components (TI-NMF, β = 1, K =
20, t = 0.68).

The errors in estimating the noise level of wind turbines
fluctuate according to the SIR values: when the wind tur-
bine is less predominant than the residual component (SIR
< 0 dB(A)), the wind turbine sound level estimation by TI-
NMF is less performing (MAE > 1.5 dB(A)) than when
it is the predominant sound source (MAE < 0.8 dB(A)).
For SIR ≤ 0 dB(A), the bias is positive which means
that the L̃A50,specific is overestimated compared to the ex-
act value. This overestimation increases strongly as the
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SIR tends to decrease. In the opposite, when SIR > 0
dB(A), the estimation of the LA50,specific becomes under-
estimated but less than 1 dB(A). The residual component
is estimated from the estimation of the wind turbine com-
ponent. The evolution of the MAE errors differs as they
are low when SIR ≤ 6 dB(A) (< 2 dB(A)) to increase
strongly then. The biases have an opposed behavior to the
wind turbine component, with an underestimation of the
sound levels for SIR ≤ 0 dB(A) and then an overestima-
tion. The evolution of the biases for the two components is
complementary. For negative SIR values, an overestima-
tion of the wind turbine component by TI-NMF will gener-
ate naturally an underestimation of the residual component
because too much energy is included in the first one. The
MAE errors remain however low since the ambient com-
ponent is mainly influenced by the residual noise. Conse-
quently, even with strong errors, the residual component
(and therefore the emergence Ẽ) is well estimated. For
positive values of SIR, the wind turbine being the main
source of noise, the slightest error in its sound level es-
timation will greatly increase the residual sound level of
the component, this behavior is independent of the chosen
method. These errors are then transferred in the estimated
emergence.

5.3 Influence of the threshold of TI-NMF

In order to apprehend the TI-NMF’s behavior and the spe-
cific sound level estimation, the evolution of the cosine
similarity according to the SIR and that of the MAE er-
rors according to the threshold values are exposed respec-
tively in the Figures 9 and 10.

Figure 9. Mean cosine similarity sorted in descending or-
der for each SIR value (TI-NMF, β = 1, K = 20, t = 0.68).

Figure 9 allows us to see that, with the update of the
initial dictionary W0 to each scene, the number of the el-
ements that are considered as wind turbine component in
W′ varies from scene to scene. The more the wind turbine
is predominant, the more the number of elements that de-
scribes this sound source is important, while it decreases
with the decrease of SIR. This evolution is due to the
NMF’s behavior defined by the cost function (eq. 2): to
minimize it, depending on the predominance of the spe-
cific source, a variable number of elements in W will be
dedicated to describe this source. As the residual compo-

Figure 10. Variation of the MAE errors according to the
threshold value (TI-NMF, β = 1, K = 20, t = 0.68).

nent becomes predominant, more elements turn into this
component which tend to decrease the cosine similarity.
They are then less elements to describe the specific source.

In complement, Figure 10 exposes the sensibility of the
MAE errors to the threshold value according to the SIR.
Even if the retained set of TI-NMF’s parameters reaches
the lowest MAE errors on all the SIR values, on each
SIR there is an optimal threshold which gets a lowest er-
ror. In the case where SIR is negative, the threshold needs
to be increased to diminish the error, it will decrease the
number of element in Wsp. This means that some ele-
ments in Wsp are considered as wind turbine spectra be-
cause of the similarity of their spectra. In opposite, with
positive SIR, it is necessary to decrease the threshold (and
to increase the number of elements in Wsp. The errors
are then due to the fact that some wind turbine spectra in
W′ are discarded. However, even if the fixed threshold
can miss some wind turbine spectra or can generate false-
positive, it has to be reminded that the SIR value is un-
known in practice. A fixed threshold stays thus the best
compromise to get the best averaged performance.

6. CONCLUSION

Because of the French regulations dedicated to the impact
of noise from wind turbines, there is a need to know how
to estimate the sound emergence of wind turbines in situ
without stopping the wind turbine. This will improve elec-
trical productivity and better protect neighboring residents
from noise. To do this, Thresholded-Initialized NMF is
used to estimate the sound emergence of wind turbines.
This machine learning method makes it possible to sepa-
rate the wind component from the ambient measurements
and to deduce its emergence. TI-NMF was applied to sim-
ulated ambient measurements where the wind turbine and
the residual components are known. This process allows a
total control of the noise contribution of the wind turbines.
Furthermore, this academic corpus based on in situ mea-
surements presents sound diversity by the add of different
isolated sound events. This preliminary study estimated a
set of parameters of TI-NMF (β = 1, K = 200, t = 0.68)
which gives satisfactory results on the whole corpus and
all the SIR values. The various results exposed reveal
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a variable behavior of this method according to the pre-
dominance of the wind turbine: if TI-NMF obtains small
errors for SIR <3 dB (A) (MAE <1.5 dB (A)), as the
wind component is more and more present, the error of
the sound emergence increases (MAE> 1.8 dB (A) when
SIR> 6 dB (A)). The origin of these errors has been iden-
tified: when the SIR is negative (or positive), TI-NMF
considers two numerous (or too few) elements as wind tur-
bines which will generate an overestimation (or an under-
estimation) of the sound emergence. The highest errors
(SIR> 6 dB (A)) are also due to the fact that the estima-
tion of the residual sound level is more sensitive to the er-
ror in estimating the wind turbine noise level. From these
promising results, it is possible to consider this approach
for further investigation, to compare the method to more
complex cases and improve TI-NMF performances. In ad-
dition, one of the main objectives will consist in adding
sound propagation elements to consider the wind turbine
noise at specific distances in order to better simulate in situ
situations and to test the robustness of the method on dif-
ferent scenarios.
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