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Abstract Optimal Transport (OT) has proven to be a powerful tool to compare
probability distributions in machine learning, but dealing with probability mea-
sures lying in different spaces remains an open problem. To address this issue,
the Gromov Wasserstein distance (GW) only considers intra-distribution pairwise
(dis)similarities. However, for two (discrete) distributions with N points, the state
of the art solvers have an iterative O

(
N4
)

complexity when using an arbitrary loss
function, making most of the real world problems intractable. In this paper, we in-
troduce a new iterative way to approximate GW, called Sampled Gromov Wasser-
stein, which uses the current estimate of the transport plan to guide the sampling
of cost matrices. This simple idea, supported by theoretical convergence guaran-
tees, comes with a O

(
N2
)

solver. A special case of Sampled Gromov Wasserstein,
which can be seen as the natural extension of the well known Sliced Wasserstein
to distributions lying in different spaces, reduces even further the complexity to
O (N log(N)). Our contributions are supported by experiments on synthetic and
real datasets.

Keywords Optimal Transport · Gromov Wasserstein · Convergence Guarantees

1 Introduction

Optimal Transport (OT) (Villani, 2008) and its associated Wasserstein distance
allow the comparison of probability measures by aligning points between the dis-
tributions with respect to their masses and transportation costs. Recent advances
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from a computational perspective, notably with the entropic regularization in-
troduced in (Cuturi, 2013) or the Sliced Wasserstein (Rabin and Peyré, 2011),
led to some success stories of OT in the machine learning community, including
the Wasserstein Generative Adversarial Networks (Arjovsky et al., 2017), Domain
Adaptation (Courty et al., 2014), Color Transfer (Rabin and Peyré, 2011), to cite
a few. Even though the square Euclidean distance is used most of the time to
compare points of the distributions, various other ground metrics can be naturally
used or learned to better capture the idiosyncrasies of the application at hand: the
Earth mover’s distance in computer vision tasks, the Mahalanobis distance (Paty
and Cuturi, 2019), or concave functions in economy such as the square root of the
Euclidean distance (Delon et al., 2012), etc.

Whatever the cost function, it is worth noting that the OT problem has been
originally formulated so as to deal with distributions that are required to lie in the
same space. To relax this constraint, a distance between metric spaces, named Gro-
mov Wasserstein (GW)1, has been introduced in (Memoli, 2007). It takes the form
of the generalization of the well-known Quadratic Assignment problem (Beckman
and Koopmans, 1957) with any distribution (Mémoli, 2011) and any loss func-
tion (Peyré et al., 2016). The intuition is still to align points between two distri-
butions but the method only relies on pairwise distances, in each space separately.
This allows notably to take into account the structure of each distribution while
being invariant to rotation and translation. Therefore, GW is a relevant tool for
matching and partitioning tasks involving graphs (Xu et al., 2019a,b; Vayer et al.,
2019a), by allowing e.g. to encode some structure like the shortest path between
two vertices. GW has been further used in various other domains, such as Hetero-
geneous Domain Adaptation (Yan et al., 2018), Shape Matching (Mémoli, 2011;
Bronstein et al., 2010; Vayer et al., 2019b), Object Modeling with Deep Learn-
ing (Ezuz et al., 2017), Generative Adversarial Networks (Bunne et al., 2019). The
Wasserstein distance and the GW distance have also been jointly used in (Vayer
et al., 2018) leading to the so-called Fused-Gromov Wasserstein distance.

From an algorithmic perspective, most of the previous methods resort to the en-
tropic approximation (EGW) of the original GW formulation introduced in (Peyré
et al., 2016) and based on a gradient descent followed by a projection step, both
according to the Kullback Leibler (KL) divergence. While a naive implementation
of the original GW problem leads to a O

(
N4
)

complexity, Peyré et al. (2016)

further show that one can compute GW in O
(
N3
)

operations for a certain class of
losses. Some other attempts have been recently proposed in the literature to speed-
up the GW calculation. Sliced Gromov-Wasserstein (SGW) (Vayer et al., 2019b)
takes inspiration from the Sliced Wasserstein distance (Rabin and Peyré, 2011)
by projecting each distribution in an 1D line and then solving the 1D Gromov-
Wasserstein problem efficiently in O (N log(N)). The Anchor Energy (AE) dis-
tance from Sato et al. (2020)2, is also related to the GW distance but simplifies
the problem into N2 linear sub-problems. The overall time complexity for solv-
ing AE is O

(
N2 log(N)

)
. Scalable Gromov-Wasserstein Learning (S-GWL) (Xu

et al., 2019a) decomposes recursively the two large probability measures into a

1 By abuse of notation, we will use throughout this paper the term of Gromov Wasserstein
distance, even if all the properties of an actual metric do not always hold.

2 Since this work is not published yet and the code is not available, we will omit it in the
related work section and in the experimental part.
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set of small pairwise aligned distributions using a common Gromov-Wasserstein
barycenter (Peyré et al., 2016). The final transport plan is the aggregation of the
result of GW on each small aligned distributions.

In this paper, we aim at overcoming the main algorithmic bottleneck of EGW:
the multiplication of a 4D tensor with a 2D matrix, which we interpret as an ex-
pectation over matrices. We leverage this interpretation, using sampling to approx-
imate the expectation instead of computing it entirely, reducing the complexity
to O

(
N2
)
. Unlike SGW and AE which propose simplified distances, we optimize

the original GW distance. Unlike EGW and S-GWL which have speedups for spe-
cific loss functions, we lower the complexity with any loss function. We obtain a
generic algorithm, called Sampled Gromov Wasserstein, supported by theoretical
convergence guarantees. We further show that when the number of sampled ma-
trices is 1, the particular 1D case of the OT can be used to compute an update
in O (N log(N)). This version, called Pointwise Gromov Wasserstein, overcomes
most of the limitations of SGW (Vayer et al., 2019b) detailed in Section 3, while
still being very fast. Our contributions are supported by experiments on synthetic
and real datasets. Interestingly, those experiments show evidence that our method
outperforms the state of the art when it comes to finding the best compromise be-
tween the computation time and the quality of the distance. This behavior takes
its origin from (i) the stochastic nature of our method which can reduce the risk
to get stuck in local minima and (ii) the fact that the other approaches do not
scale well. An experiment on a graph classification task shows that being able to
change the loss function for free is of high interest for finding the one that best
fits the problem at hand.

This article is organized as follows: Section 2 details the notations and the
necessary background on GW. Section 3 covers the state of the art approaches for
solving the underlying problem. Section 4 presents our Sampled Gromov Wasser-
stein algorithm, derives convergence guarantees for it, and introduces our very
fast specialized variant called Pointwise Gromov Wasserstein. Experiments are
detailed in Section. 5.

2 Background on GW

In this section, we introduce the Optimal Transport (OT) problem with its asso-
ciated Wasserstein distance, and the Gromov Wasserstein distance that allows the
comparison of distributions lying in different spaces. Let (X , CX ) be a compact
metric space where X is a set and CX its associated metric. Let µ be a distribu-
tion with finite p-moment on (X , CX ). Similarly, (Y, CY) denotes another compact
metric space and ν a distribution with finite p-moment on that space. We denote
as Πµν the collection of coupling probability measures on X × Y constrained by
the marginals µ and ν. Πµν defines the so-called set of admissible transport plans
from µ to ν, used to define the OT problem.

Optimal Transport OT consists in finding the best mapping (or coupling or trans-
port plan) between two distributions µ and ν on the same space, i.e., X = Y and
CX = CY . Denoting as C this common distance, one can define the p-Wasserstein
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Fig. 1: Illustration of GW, with only one term Lijkl of the quadruple sum of Eq. (5).

distance (Kantorovich, 1942) to the power of p, as follows:

W p
p (C) = min

γ∈Πµν

∫
X×Y

Cp(x, y)dγ(x, y). (1)

In the discrete version of Problem (1), µ and ν are empirical measures sup-
ported by two finite sets of points. In this context, µ =

∑I
i=1 aiδxi defined by I

points (xi)i∈J1,IK in X and the associated probability vector a. In the same way,

we define ν =
∑K
k=1 bkδyk in Y associated with the probability vector b. The set

of admissible transport plans becomes Πab = {T ∈ RI×K+ |T1K = a, TT1I = b}.
In this discrete case, each distance function C can be considered as a matrix (or
tensor) C. Therefore, the discrete p-Wasserstein distance to the power p is written
as follows:

W p
p (C) = min

T∈Πab

I,K∑
i,k=1

Cp(xi, yk)Tik = min
T∈Πab

〈Cp, T 〉 (2)

where 〈., .〉 is the Frobenius dot product. To simplify the notations, it is often
assumed that I = K (same number of points in both sets) and N is used to denote
this value. The optimal transport plan T ∗ can be found from (2) using a linear
solver (Bonneel et al., 2011) with, at least, a complexity of O

(
N3 log(N)

)
(Pele

and Werman, 2009). To lower this complexity, an entropic regularization can be
added (Cuturi, 2013) leading to a strongly convex problem that yields a smooth
and unique solution in O

(
PN2

)
with P the number of Sinkhorn’s iterations. Let

ε ∈ R+ be a regularization parameter and let H(T ) =
∑
ik Tik log(Tik) be the

negative entropy, the optimal plan T ∗ of Eq. (2) can be approximated by

T ∗ ≈ argmin
T∈Πab

〈Cp, T 〉+ εH(T ). (3)

Gromov Wasserstein Distance (GW) While the OT problem requires the two dis-
tributions to lie in the same space, the GW distance allows to compare distribu-
tions in different metric spaces. Let L be a bounded loss function which allows
the comparison of two distances. GW (Mémoli, 2011, 2009; Peyré et al., 2016) is
defined as follows:

GW
(
CX , CY , µ, ν

)
= min
γ∈Πµν

∫
(X×Y)2

L
(
CX (x, x′), CY(y, y′)

)
dγ(x, y)dγ(x′, y′).

(4)
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The discrete case (see Fig. 1) can be formulated as:

GW
(
CX , CY , a, b

)
= min
T∈Πab

I,I∑
i,j=1

K,K∑
k,l=1

LijklTikTjl, (5)

where Lijkl = L
(
CX (xi, xj), CY(yk, yl)

)
. This formulation exhibits an important

property of GW: only the pairwise distances are needed. This explains why the
Gromov Wasserstein distance is often used to compare graphs, for which Chowd-
hury and Mémoli (2019) proves that GW is a pseudometric.

3 Approaches to solve GW

We describe here the most used method for solving GW, namely Entropic Gro-
mov Wasserstein, as well as two other approaches that aim at lowering the time
complexity of the former. As all these methods use an iterative optimization, for
the sake of simplicity, we omit in this section the number S of iterations (of the
outer loop).

Entropic Gromov Wasserstein (EGW) To solve an approximation of Problem (5),
the authors of (Peyré et al., 2016) generalize the idea introduced in (Solomon et al.,
2016) by using a gradient descent step followed by a projection, both according to
the Kullback Leibler (KL) divergence. This boil down to a two-step loop. First,
from the current estimation of the transport plan T , a new matrix defined as
Λjl =

∑I,K
i,k=1 LijklTik is computed, and which can be seen as an updated cost

matrix. Second, a new estimate of the transport plan is obtained by solving the
following entropic regularization-based OT problem:

min
T∈Πab

〈Λ, T 〉+ εH(T ). (6)

When the loss L(CX , CY) can be decomposed as f1(CX ) + f2(CY)−h1(CX )h2(CY)
for functions (f1, f2, h1, h2), it is shown that the Λ matrix can be computed in
O
(
N3
)
. This notably holds for the square loss and the KL divergence. However,

in the general case, the complexity is O
(
N4
)
, making this method intractable as

N grows, as shown in our experiments.

Sliced Gromov-Wassertein (SGW) In (Rabin and Peyré, 2011), the authors in-
troduce an alternative metric, called Sliced Wasserstein distance, which uses ran-
dom 1D-projections. The advantage of this method lies in the fact that the OT
Problem (2) can be simply solved by sorting both empirical distributions (in
O (N log(N))) and matching the sorted lists. In a similar manner, Sliced Gromov-
Wasserstein (SGW) (Vayer et al., 2019b) projects each distribution in a common
1D space, to solve the Gromov-Wasserstein problem (5) efficiently. While being
very fast to compute, SGW comes with some limitations: (i) it cannot be used
in general on graphs because a feature representation is needed to allow the 1D
projection, (ii) it does not output an explicit transport plan which can be a pitfall
in some applications like domain adaptation, (iii) it does not approximate the orig-
inal GW distance and (iv) it is not naturally invariant to rotation (although the



6 Tanguy Kerdoncuff et al.

authors propose a solution by repeatedly calling SGW). Note that while SGW’s
theoretical result and the O (N log(N)) time complexity are relying on the square
loss, its algorithmic approach can be adapted to handle arbitrary losses. This
adaptation results in a O

(
N2
)

time complexity.

Scalable GW Learning (S-GWL) Scalable Gromov-Wasserstein Learning (Xu et al.,
2019a) aims at making GW tractable to large scale graph analysis. It recursively
decomposes the two original graphs into a set of smaller sub-graph pairs, using
Gromov-Wasserstein barycenters (Peyré et al., 2016). Then, these sub-graphs are
matched. The transport plan is updated with a proximal gradient method regular-
ized with a KL divergence. The time complexity is O

(
N2 log(N)

)
when the cost

matrices CX and CY are not sparse and L is the square loss. However, with an
arbitrary L, the gain in complexity does not hold anymore because S-GWL cannot
leverage the closed-form solution for the barycenter calculation.

4 Scalable GW optimization

We aim to address in this section the algorithmic bottleneck of EGW (Peyré et al.,
2016) which prevents its use on large scale problems. By rewriting Eq. (5) as an
alternating optimization problem, we propose to compute the GW distance by
solving iteratively an OT problem from a cost matrix seen as the expectation of
a random variable. This allows us to propose a sampling strategy to drastically
reduce the algorithmic complexity of GW. We introduce our algorithm, called Sam-
pled Gromov Wasserstein (SaGroW), and then derive its convergence guarantees.

We also present some special case and a variant of SaGroW: Pointwise Gromov
Wasserstein (PoGroW) which leverages very efficient 1D OT solvers but does not
exhibit the drawbacks of SGW, and SaGroWKL a version using a Kullback-Leibler
regularization. We finally show that an appropriate sampling strategy can be also
be used to accurately and efficiently approximate the GW distance from a known
transport plan.

4.1 Sampled Gromov Wasserstein (SaGroW)

It is known that the GW problem as described in Eq. (5) is not convex in general
and thus difficult to solve. On the other hand, we can note that the transport plan
T appears twice in the formulation. In the following, we suggest to treat these
two instances differently and solve the problem with respect to two transport plan
variables T and T ′, as follows:

min
T∈Πab

min
T ′∈Πab

I,K∑
i,k=1

I,K∑
j,l=1

LijklT
′
ikTjl. (7)

Even though our sampling strategy leverages this decomposition into T and T ′,
as if they were two different transport plans, note that we still solve the original
GW problem. Indeed, as we will explain, our Algorithm fuses T and T ′ after each
update, fulfilling the T = T ′ constraint.
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In an alternating optimization, with a fixed T , the optimal T ′ is thus the
solution of the following OT problem:

min
T ′∈Πab

I,K,I,K∑
i,k,j,l=1

TjlLijklT
′
ik = min

T ′∈Πab

〈
I,K∑
j,l=1

TjlL.j.l, T
′

〉
(8)

where L.j.l is an extracted matrix i.e., (L.j.l)ik = Lijkl.
As the transport plan T sums to 1, we can interpret it as (the parameters of) a

categorical distribution on pairs of points (j, l), or equivalently on the associated
matrices L.j.l. We thus define a random variable C on matrices, defined3 by the
distribution P(C = L.j.l) = Tjl ∀(j, l) ∈ J1, NK2. Leveraging this random variable,
the cost matrix

∑
j,l TjlL.j.l used in problem (8) can be seen as the expectation

of C. Therefore, the problem can be rewritten as follows:

min
T ′∈Πab

〈
E(C), T ′

〉
. (9)

While solving this problem is still in O
(
N4
)

in general, it presents the advantage
of opening the door to a sampling strategy allowing a reduction of the complexity.
Indeed, rather than computing the entire expectation E(C), we suggest here to cal-
culate an approximation by sampling M matrices {Cm}Mm=1. To get a matrix Cm

drawn according to the distribution of C, it suffices to sample two indices (jm, lm)
following the weights of the matrix T . Consequently, Cm takes the form of the
matrix L.jm.lm . Using these sampled matrices, Problem (9) can be approximated
as follows:

min
T ′∈Πab

〈
1

M

M∑
m=1

Cm, T ′
〉
. (10)

This approximation comes with two main advantages: (i) it allows a reduction
of the computation time of the GW problem and (ii) similarly to a mini batch
gradient descent, it might avoid being stuck in local minima and thus might lead
to a better transport plan. Even though Problem (10) can be solved efficiently
with any OT solver, our approach resorts to the Sinkhorn method (Cuturi, 2013)
leading to a time complexity of O

(
(M + P )N2

)
due to summing over M matrices

and P iterations of the Sinkhorn algorithm.
Algorithm 1 gives the pseudo-code of Sampled Gromov Wasserstein (SaGroW).

In the absence of prior, the transport plan T0 is initialized to the joint distribu-
tion abT (line 1). At each iteration, M pairs of indices (jm, lm) are sampled from

the current transport plan Ts (line 3). Then Λ̂, the approximation of E(C), is
computed (line 4) and used in an entropic regularization-based OT problem (6)
solved using the Sinkhorn algorithm, yielding the plan T ′s (line 5). As indicated
before, Problem (7) inherently assumes that T = T ′. To ensure that T ′ stays
close to T and to mitigate the nature of the process, we perform a partial update
(1−α)Ts+αT ′s. Given the symmetric roles of T and T ′ (as long as CX and CY are
symmetric) this partial update becomes our next plan Ts+1 (line 6). This update,
inspired by the Frank-Wolfe algorithm, allows us to derive theoretical guarantees

3 The definition is not rigorous: two matrices L.j.l and L.j′.l′ may be equal, and then the
probabilities add up.
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(see next section). Notice that Algorithm 1 returns a single transport plan and
thus aims at minimizing the original GW problem. In practice, other strategies
can be used: as the previous plan Ts and the optimized T ′s can be interpreted as
distributions, line 6 can be omitted and replaced by a KL regularization (on line
5) between them, as detailed in Section 4.4.

We end this section by noting that when the expectation is fully computed in
SaGroW (i .e.,M =∞ and “M = N2” in terms of complexity as sampling becomes
useless) and α is set to 1, our method is strictly equivalent to the two steps loop
of EGW described in Section 3. This connection will be used advantageously in
the next section by deriving new convergence guarantees for EGW when the GW
problem is concave.

Algorithm 1 SaGroW

Require: a, b (probability vectors of µ and ν), CX , CY (cost matrices), L (loss function), M
(number of samples), ε (entropy regularization), α (partial update weight)

1: T0 = abT

2: for s= 0 to S-1 do
3: (jm, lm) ∼ Sample(Ts) ∀m ∈ J1,MK
4: Λ̂ik = 1

M

∑M
m=1 L(CXi,jm , C

Y
k,lm

) ∀i, k ∈ J1, NK

5: T ′s = solve the regularized OT problem (a, b, Λ̂, ε)
6: Ts+1 = (1− α)Ts + αT ′s
7: end for
8: return TS−1

4.2 Convergence analysis

In this section, we aim at studying the convergence of Algorithm 1. Note that
convergence guarantees have been already derived for EGW in (Peyré et al., 2016).
However, based on Rangarajan et al. (1999), this convergence has been proven only
when L produces a convex problem. Unlike Peyré et al. (2016), the guarantees
presented in this section have two main advantages: (i) they hold whatever the
loss function, (ii) a convergence on average is proven to a stationary point. Note
that other results related to the GW problem have been recently derived in the
literature. The authors of Xu et al. (2019b) prove the convergence of their proximal
point method to a stationary point as long as their regularized GW problem can be
solved perfectly at each iteration. On the other hand, Redko et al. (2020) provides
a guarantee on the convergence of Problem (7) under the condition that L yields
a concave problem.

Assuming that the two cost functions CX and CY are symmetric, we introduce
the following notations: E(A,A′) := E(A′, A) :=

∑I
i,j=1

∑K
k,l=1 LijklAikA

′
jl and

E(A) := E(A,A). Under these notations, our goal is to minimize (5), i.e., to min-
imize E(T ) under constraints on the marginals of T . Let us now define G(T ) as
follows: G(T ) := E(T, T )−minT ′∈Πab E(T, T ′). In a non convex setting, T is a sta-
tionary point of E(T ) if and only if G(T ) = 0 (Reddi et al., 2016). The goal of our
Theorem 1 is to provide a guarantee on the convergence of G(T ) with T uniformly
sampled from (Ts)s∈J0,S−1K. The convergence is proven on average over these sam-
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pling. A practical implementation will naturally take only the last transport plan,
TS−1, and avoid unnecessary computations.

Theorem 1 (Based on Reddi et al. (2016)) For any Lijkl ∈ [0, B], for any distri-
butions µ and ν with uniform weights a and b respectively, for any optimal solution
T ∗ of Problem (5), on average for the transport plan T uniformly sampled from
(Ts)s∈J0,S−1K, on average over all the samplings, the following bound holds:

E
(
G
(
T
))
≤
√

2B (E(T0)− E(T ∗))N

S
+B

√
2N

M
+ ε log(N).

Proof The complete proof is available in the Appendix A.1. It requires a novel
lemma that quantifies the difference between the Wasserstein distances obtained
with and without the entropic regularization: 0 ≤ 〈C, T ε〉 −

〈
C, T 0

〉
≤ ε log(N).

We also prove that E(T ) is 2N2-smooth and we bound the difference between two

transport plans:
∥∥T − T ′∥∥

F
≤
√

2
N . Those two results allow us to adapt the proof

of Theorem 2 in (Reddi et al., 2016) where our new Lemma is useful as the entropy
regularized solvers do not find the exact OT minimum.

While our bound cannot be explicitly computed as T ∗ is unknown, it gives
meaningful information about Algorithm 1. First of all, it prompts us to initialize
T0 so as to get E(T0) as close to E(T ∗) as possible. Without any prior information,
abT (the uniform plan) appears to be a reasonable choice to avoid degenerated
cases. Regarding the regularization parameter, if ε is not small enough, the con-
vergence to a stationary point is not guaranteed. On the other hand, we can note
that the number of sampled matrices M appears in only one term of the bound.
Therefore, the costly complete computation of the expectation (M = ∞) would
not guarantee the convergence while leading to a O

(
N4
)

complexity. Thus, our
bound prompts us to find a compromise between reducing M and increasing the
number of iterations S, allowing us to control the complexity while getting a rea-
sonable bound.

As the GW problem has been shown in (Redko et al., 2020) to be often con-
cave, especially with the square loss and the euclidean distance on both spaces,
the following Theorem 2 gives a second bound dedicated to address the specific
concave case. This result presents the major interest of providing an asymptotic
convergence to a stationary point for EGW in this concave case, as the proofs
proposed in (Peyré et al., 2016) only cover the convergence of EGW and only for
high values of ε.

Theorem 2 With the same notations as in Theorem 1 with the entropy regular-
ization parameter εs that may now change along the iterations s, when L yields a
concave GW problem, the following bound holds:

E
(
G
(
T
))
≤ E(T0)− E(T ∗)

2S
+B

√
2N

M
+

1

S

S−1∑
s=0

εslog(N)
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Sample TX
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CX01

x2
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y2

CY12
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Fig. 2: Intuition behind PoGroW when j, l = 0, 1 are sampled from T : only the distances to
x0 in X (on the left) and to y1 in Y (on the right) characterize a pair, and then T ′ can be
computed in O (N logN) like in 1D OT.

We can make the following comments from this bound. First, the convergence
is better in the concave case as, unlike in Theorem 1, the first term is now linear
in S. Second, as it can be seen in the proof (see Appendix A.1), it can be shown
that in this concave scenario, the best value for α is 1. Thus, if we completely
compute the matrix Λ (M = ∞), this bound applies to EGW. For any sequence
(εs)s∈N such that

∑S−1
s=0 εs is o(S), the convergence of EGW to a stationary point

is guaranteed.

Relationship between SaGroW and the Frank-Wolfe algorithm At first sight, SaGroW
seems akin to a Frank-Wolfe algorithm (Frank et al., 1956). In fact, when the reg-
ularization parameter ε = 0, SaGroW is strictly equivalent to a Stochastic Frank-
Wolfe (Reddi et al., 2016). The convergence analysis of this general non-convex
setting is thus very similar, except for the term that depends on ε which quantifies
the error due to the entropy regularization. Moreover, note that if ε = 0, EGW
becomes equivalent to the Frank-Wolfe algorithm (Frank et al., 1956) when its
step size α is set to 1. Since the α parameter in our algorithm plays the same
role as that of the step size of the Frank-Wolfe algorithm, we might wonder why
SaGroW does not compute the optimal value using a line search. To the best of
your knowledge, in this general non convex setting, there is no convergence guaran-
tees towards a stationary point for a stochastic Frank-Wolfe algorithm that would
make use of the optimal step. Moreover, it is worth noting that this optimal step is
expensive (O

(
N4
)

complexity) to calculate without approximation. Considering
an approximation would make the derivation of theoretical guarantees even more
challenging.

4.3 Particular case: Pointwise GW

We focus in this section on the special case of SaGroW where only one matrix C
is sampled (i.e., M = 1) at each iteration. This variant, called Pointwise Gromov
Wasserstein (PoGroW), makes it possible to leverage a dedicated solver to reduce
the algorithmic complexity of GW.



Sampled Gromov Wasserstein 11

When M = 1, if we sample a position j, l from T , then we seek to minimize
the following problem:

min
T ′∈Πab

I,K∑
i,k=1

L(CX (xi, xj), CY(yk, yl))T
′
ik. (11)

As illustrated in Fig. 2, each point in X (resp. Y) is simply defined by its distance
to xj (resp. yl), as done in papers that define a distribution using a distance to
a point (Gelfand et al., 2005; Sato et al., 2020). With a single feature per point,
Problem (11) can be solved very efficiently in O (N log(N)) like a 1D OT problem:
the two lists of distances can be sorted and matched. With non-convex losses,
this sorting approach is only an approximation. PoGroW can be seen as a natural
GW extension of Sliced Wasserstein where each point is described by its distance
to a chosen “anchor” (instead of a position on a line). Recall that the output of
Problem (11) is a transport plan. If needed for the application at hand, the GW
value can be computed in O

(
N2
)

(see Sec. 4.5).
In summary, PoGroW has the same low complexity as Sliced Gromov Wasser-

stein (Vayer et al., 2019b) but it overcomes its main limitations: PoGroW is natu-
rally invariant to rotation; it returns a transport plan; it approximates the actual
GW distance; it works with graphs.

4.4 A KL regularization-based variant

As the transport plan T is a distribution and most GW algorithms progressively
update T , an interesting idea is to encourage the next plan T ′ to be close (in terms
of KL divergence) to the current estimate T . This idea, already used in Xu et al.
(2019b) based on Xie et al. (2020), can be applied to our SaGroW algorithm: we
name this approach SaGroWKL and describe it below.

In Algorithm 1, we used partial updates to explore the transport plan space
while encouraging the new value of T to be close to the preceding one, as reflected
in line 6. We suggest here a slight modification, consisting in using a Kullback
Leibler (KL) regularization between T and T ′ in line 5 and removing line 6. This
allows to account, in a natural way, for the requirement for T and T ′ to stay
close to each other during the optimization. This leads to the following sampled
optimization problem,

min
T ′∈Πab

〈
1

M

M∑
m=1

Cm, T ′
〉

+ εKL(T ′||T ), (12)

which can be rearranged into,

min
T ′∈Πab

〈
1

M

M∑
m=1

Cm − εlog(T ), T ′
〉

+ εH(T ′). (13)

This regularization allows to take advantage of the Sinkhorn-Knopps solver (Cu-
turi, 2013) as it is similar to equation (3) with a cost function modified to take
into account the current prior T . Even if ε is high, the optimization might lead to
a solution close to the edge of the polytope with enough iterations which is not
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Fig. 3: Estimated value of E(T ) as sparsity decreases due to an increasing ε regularization
in EGW (left) and evolution of the time required for its estimation as N grows (right). The
absolute loss is used in these experiments and the distributions take the form of two graphs
generated using a gaussian random partition graph (Brandes et al., 2003). For a given ε and N ,
the same T (obtained using EGW) is passed to the three considered methods: Real) an exact
one which computes completely E(T ), Sampled) our sampling method described in Section 4.5,
and, Sparse) a sparse approximation which keeps only the 2N largest values of T and sets the
other entries to 0. The mean and 2 standard deviations over 10 runs are displayed on both
figures. When the standard deviation is not visible, it corresponds either to a deterministic
method or a value very close to 0.

the case with a classical entropy regularization without prior. The time complexity
does not increase as it is still O

(
(P +M)N2

)
. As this regularization is not specific

to our method, we will also use it for EGW during the experiments to allow a fair
comparison. On the other hand, note that this regularization cannot be used with
PoGroW as it currently does not seem possible to solve 1D entropy-regularized OT
in O (Nlog(N)) (Cuturi et al., 2019). Note also that the convergence Theorem 1
does not hold anymore with this regularization.

4.5 Efficient computation the GW distance from a transport plan

This section introduces and evaluates a low-complexity high-accuracy method for
the estimation of E(T ). Indeed, while SaGroW and PoGroW provide important
complexity improvements, one might argue that they only find a good transport
plan T and do not provide a value for E(T ). An exact computation of E(T ) has a
O
(
N4
)

time complexity, and it would dominate the complexity of our algorithms
in applications where E(T ) is required, for example when GW is used as a dissimi-
larity measure between graphs. Additionally, having an efficient way of estimating
E(T ) opens the door to selecting the best transport plan among a set of plans, e.g.,
obtained by varying the hyper-parameters or the random seed of an algorithm.

We address this issue in this section. Similar to Equation (9), we propose to
interpret the sums in the definition of E(T ) as the expectation of a random variable
R (this time real-valued instead of matrix-valued, so with a quadruple sum), with
P(R = Lijkl) = TikTjl:

E(R) =

I,I,K,K∑
i,j,k,l=1

LijklTikTjl. (14)
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Table 1: Complexity of each method with an arbitrary loss function, with S iterations, P
Sinkhorn iterations, N points in the dataset and M matrix samples. Note that the complexity
can be different for specific loss functions.

Methods GW approximation Transport Plan E(T ) Total

EGW Yes S(P +N2)N2 N4 S(P +N2)N2

SaGroW Yes S(P +M)N2 N2 S(P +M)N2

S-GWL Yes Unknown SN2 Unknown
SGW No Unavailable SN2 SN2

PoGroW Yes SN log(N) N2 N2

Instead of simply sampling this expectation, we propose to stratify by each index
i, j to improve the quality of the estimate. Let Ui be the event “i is chosen for the
first dimension of L” and U ′j be the event “j is chosen for the second dimension
of L”. Based on the marginal a and using the law of total expectation, E(R) can
be rewritten as:

E(R) =

I,I∑
i,j=1

P(Ui ∩ U ′j)E(R|Ui ∩ U ′j) =

I,I∑
i,j=1

aiajE(R|Ui ∩ U ′j). (15)

For each (i, j), the conditional expectation is approximated using M samples of
a random variable Xij , defined by P(Xij = Lijkl) = P(R = Lijkl|Ui ∩ U ′j) =

TikTjl. Finally, R̂ =
∑
ij aiaj

1
M

∑M
m=1X

m
ij defines an unbiased estimate of the

GW distance which can be computed in O
(
MN2

)
(details about the variance

estimate are provided in the Appendix A.3).

As shown in Figure 3 (left), the prediction is perfect for a sparse transport
plan (ε = 0), while still being almost perfect and much better than a naive sparse
approximation of the OT plan as ε increases. Figure 3 (right) confirms that this
approximation is clearly faster than the exact computation which becomes quickly
intractable as N grows.

Having at our disposal an efficient method for estimating E(T ), we can now
fully compare, in Table 1, the complexity of the state of the art methods with
that of SaGroW and PoGroW, for the general case of an arbitrary loss function.
From this table, we have evidence that SaGroW allows a drastic reduction of
the algorithmic complexity of EGW. On the other hand, PoGroW fully benefits
from the 1D projections. But unlike SGW, it provides a transport plan and does
approximate the original GW problem.

5 Experiments

In this section4, we first compare different GW methods on both their speed and
their accuracy. We use here the term accuracy to express the capability of the
methods to minimize E(T). Indeed, as the exact (optimal) GW distance is unknown
for a given dataset (solving this problem is known to be NP-hard), the best method
will be the one with the smallest value of E(T ). Then, we analyze the impact of the

4 The code to reproduce all the experiments, figures and tables is available in the GitHub
https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein

https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein
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hyperparameters, illustrating that our approach covers a range of very good trade-
offs between speed and accuracy. Using a real graph-classification task, we finally
illustrate why being able to solve GW for various loss functions is important.

5.1 General setup and methods

We compare SaGroWKL and PoGroW with: (I) EGW (Peyré et al., 2016); (II)

EGWKL, a KL regularized version of EGW described in Xu et al. (2019b); (III)

EMD-GW, which is similar to EGW0, but uses the OT solver of (Bonneel et al.,
2011) as the Sinkhorn algorithm (Cuturi, 2013) cannot handle a null value for ε;
(IV) S-GWL (Xu et al., 2019a), adapted for arbitrary loss functions using the
optimizer of Wright (1996) to update the barycenter; (V) SGW when the points
are available, with an adaptation to arbitrary losses; (VI) the uniform transport
plan, used as a baseline.

While Section 5.3 will detail the impact of the hyperparameters, the next
section reports, for each method, the results obtained by the set of parameters
with the lowest GW estimation. To take into account the stochasticity of some
methods the GW estimation for each hyperparameter set is taken on average
over 10 runs. ε is chosen among {0.001, 0.005, 0.01, 0.005, 0.1} for EGW and
EGWKL, and in {0.001, 0.01, 0.1, 1, 10, 100} for S-GWL. To have comparable
sets of hyperparameters, we fix some of our parameters: in PoGroW, a step of
α = 0.8, and in SaGroW, the number of samples M = 10 and a KL regularization
ε = 1. Experiments in the Appendix B.5 and B.6 show that: SaGroW is much
less sensitive to ε than EGW and α = 0.8 is a reasonable choice. The number of
iterations S is chosen among {10, 100, 500, 1000} to obtain a reasonable accuracy-
speed trade-off.

This experiment compares the quality of the transport plan and the compu-
tational time of the methods for an increasing number of points N . Each method
minimizes Problem (5) and returns a transport plan T (besides SGW, see below).
In order to assess the quality of this transport plan, E(T ) is then computed exactly.
Notably, our GW distance approximation (see Section 4.5) is not used in this first
experiment. The mean and standard deviation of E(T ) over ten runs are reported.

The loss L chosen here is the absolute loss in order to show the capacity of our
methods to deal with any arbitrary loss function. We remind that EGW, S-GWL
and SGW are much faster (with speeds that are comparable to our approach) for
some specific losses, such as the square loss (see Appendix B.2 and Section 5.4).

To include SGW (which needs points to project) in this comparative study,
a first dataset uses µ and ν that are composed of N points sampled from two
different mixtures of gaussians. Details about the generation of the datasets are
available in the Appendix B.1.

5.2 Speed and accuracy of the GW estimate

Figure 4 shows, in a log-log representation, that EGW and EMD-GW become
quickly intractable when the number of points increases and that S-GWL is slightly
faster. We exclude EGWKL for the clarity of the figure as it has a computa-
tional time similar to EGW. SaGroW, PoGroW and SGW behave better, with a
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Fig. 7: Impact of the number of sample M and the number of iterations S for SaGroW on the
GW distance estimation and computational time, for two sets of 500 points sampled from two
mixtures of gaussians. The mean and standard deviation over 10 runs are display.

quadratic complexity (linear slope of 2 in log-log) but with different multiplicative
factors (offsets in the log-log plot).

Figure 5 reports the quality of the obtained GW value. Comparing SGW to
other methods is complicated as it does not return a transport plan, nor aims at
computing an approximation of the GW distance. We thus report the distance
it computes and also the same rescaled by a factor 25. With rescaling, we see
that SGW seems to behave more like the uniform transport plan than like the
GW methods (which produce better-than-uniform plans). While all other meth-
ods predict very similar GW distances, EGW-based methods have often the best
accuracy. However, when N reaches 1000 points, we can observe interesting behav-
iors: EGW is not able to provide any result, PoGroW is the fastest with a lesser
accuracy than S-GWL, and SaGroW provides the best value while being much
faster than S-GWL.

In a second series of experiments, we make use of graphs that are generated
using a gaussian random partition graph (Brandes et al., 2003). On this more
difficult dataset, we see in Figure 6 that SaGroW is very competitive with the
best method EGWKL while being able to scale to more than 200 nodes, which is
the limit for all EGW-based methods. With more nodes, SaGroW is as accurate
as S-GWL but remains much faster and scalable (computation times are similar to
the ones from the first dataset). In this experiment, a key factor of success seems
to be the KL regularization, used in EGWKL, S-GWL and SaGroW. This can
explain why PoGroW stays close to the uniform baseline.
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The mean and standard deviation over 10 runs are display. To take advantage of the large
stochasticity, the minimum over 10 runs is also display.

5.3 Hyperparameters analysis

We now focus on the impact of the numbers of iterations S and samplesM , showing
that these allow our approach to cover a variety of trade-offs between speed and
accuracy. More experiments (in the Appendix B) consider other parameters such
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as different loss functions or dataset size. We also study, in this experiment, the
impact of the ε parameter of other methods.

Figure 7 shows that increasing the number of iterations S yields a strong im-
provement for SaGroW, independently of the number of samples M . Interestingly,
the accuracy of SaGroW is similar regardless the value of M . This remark supports
the key assumption of this paper that the entire computation of the expectation
is not needed. The standard deviation displayed in Figure 7 shows that most runs
provide similar GW distances, with enough iterations. However, there is a high
variance with less iterations which tends to highlight that the different runs of
SaGroW take different paths during the optimization. As shown in Figure 8, the
speed of EGW and S-GWL does not vary much with ε but this parameter needs
to be chosen carefully for those methods to reach a good accuracy.

On Figure 9 we can see that PoGroW is even faster than SaGroW: it can
provide a reasonable approximation in a second, compared to the three hours
required by EGW. Because PoGroW does not resort to a KL regularization, it
is more impacted by stochasticity: two runs can yield very different results. This
can be used advantageously by keeping the plan that gives the lowest GW among
ten runs (crosses on Fig. 9). The combination of SaGroW and PoGroW allows to
obtain a good trade-off between speed and accuracy.

Beyond the algorithmic advantages shown above, one last key question remains:
is it useful, in an application, to compute the GW distance for other losses than
the widely used square loss?

5.4 Graph classification

We illustrate here the usefulness of using different loss functions in a context of
graph classification. We take the FIRSTMM-DB graph dataset (Neumann et al.,
2013) which is the one with the biggest average nodes number (1377) over the
database of (Kersting et al., 2016). Each of the 41 graphs of the dataset describes
an object from one of the 11 classes (cup, knife, etc.). The distance matrix of each
graph CX and CY is computed using the shortest path length, similarly to Mémoli
(2011). For each method, we compute the pairwise GW distance matrix. Finally,
a 1-Nearest-Neighbor classifier is used to predict the class of each graph (using a
leave-one-graph-out scheme).

Section 5.2 showed that EGW, EGWKL and S-GWL are very slow with ar-
bitrary loss functions on graphs (with around 1000 nodes). Therefore, we use for
them the square loss to allow them to be competitive from a time complexity per-
spective. We consider ten values for the entropic regularization, ε ∈ [10−4, 102].
SGW is excluded as it is unable to handle graphs. For our methods, we set ε = 0.1
for SaGroW and α = 0.8 for PoGroW and keep M = 1, S = 100 for both methods.
However, ten different loss functions L are tested, notably |CXij −CYkl|

p for different
values of p ∈ [0.5, 3].

The results are reported in Table 2. Looking at SaGroW, we see that the
classical square loss (p = 2) is outperformed, e.g., by the absolute loss (p = 1)
which yields a better classification accuracy. Beyond that, the ability of SaGroW
to handle arbitrary losses allows it to get the best overall accuracy, across all the
methods. The explanation can be that the L1 loss is more robust to outlier nodes,
which might be important on this real dataset. Note that while EGW and S-GWL
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Table 2: Classification accuracy and computation time of various methods on a 11-class graph
classification task. In this summary table, only the hyperparameters yielding the best classifi-
cation accuracy are reported, for each considered method.

Methods Accuracy Time (s)

S-GWL5 0.44 23.4
EGWKL

0.005 0.24 41.1
EMD-GW 0.37 16.6
EGW0.001 0.22 36.2
Uniform 0.07 0.1

SaGroWp=1 0.49 11.6
SaGroWp=2 0.39 12.7
PoGroWp=2 0.39 0.5

are fast as they are computed with the square loss for L, SaGroW is still slightly
faster. PoGroW has a competitive accuracy and even outperforms EGW while
being very fast. The complete table with every hyperparameter run is available in
the Appendix B.7.

While the goal of this experiment is to correctly classify graphs, we can still
compare the GW distances obtained from the transport plans returned by all
methods. This comparison only makes sense with the same (square) loss for all
methods. Averaged over 412 distances, SaGroW gets the lowest value of 336, fol-
lowed by EMD-GW with 341. This highlights the fact that, on a real dataset, the
stochasticity used by our method can lead to a better GW distance estimation.

Conclusion

In this paper, we present both algorithmic and theoretical contributions to address
the still open problem related to the calculation of the Gromov Wasserstein dis-
tance. We propose a method to reduce drastically the time complexity of GW for
arbitrary loss functions. To do so, we tackle the bottleneck of the mostly used GW
solver, namely EGW, by using a sampling strategy to efficiently approximate the
costly sum of N2 matrices. Our SaGroW algorithm is supported with theoretical
convergence guarantees to a stationary point in the general non-convex setting.
We also introduce PoGroW, an algorithm which samples only one matrix and al-
lows us to benefit from a very low complexity by using 1D OT. We show that
PoGroW overcomes the main issues related to SGW. Experiments on synthetic
datasets show that our method are tractable for a large number of points and offer
a good trade-off between speed and accuracy. Finally, a real world experiment on
graph classification illustrates the interest of choosing different loss functions. In
order to deal with potential outliers, we show that the absolute loss associated
with SaGroW gives the highest classification accuracy. We claim that this capac-
ity to choose ad-hoc loss functions will push the state of the art in various graph
applications by unlocking their use with large graphs.
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A Scalable GW optimization

A.1 Detailed derivations for the convergence

This section gives the (very) detailed derivations used to obtain the convergence properties of
Section 4.2 of Algorithm 1 (from the paper).

A.1.1 Goal and context

First, let’s give a few reminders of the context and the final result. The proposed algorithm
runs for S iterations, and averages M sampled cost matrices (obtained by sampling pairs of
indices), at each iteration. We provide here a proof of convergence to a stationary point for any
arbitrary loss L. Previous algorithms relied on having some particular loss L to be efficient.
When M =∞ and α = 1, the proposed algorithm is equivalent to EGW.

We are interested in G(T )
def
= E(T, T ) − minT ′ E(T, T ′). In a non convex setting, T is a sta-

tionary point of E(T ) if and only if G(T ) = 0 (Reddi et al., 2016). We recall the assumptions
and notations:

– We suppose CX and CY symmetric. This assumption is notably satisfied if CX and CY

are metrics.

– We define E(A,A′)
def
= E(A′, A) =

∑I
i,j=1

∑K
k,l=1 LijklAikA

′
jl

– We overload the notation if the two parameters are the same: E(A)
def
= E(A,A)

– We assume that 0 ≤ Lijkl ≤ B. This value B can be found in O
(
N2
)

with any losses

L that increase when |CXij - CYkl| increases, by looking at the extreme values of the two

matrix CY and CX .

More precisely, the bound that we will prove here is the following (Theorem 1 of the paper):

E
(
G
(
T
))
≤
√

2B (E(T0)− E(T ∗))N

S
+B

√
2N

M
+ ε log(N).

Where T ∗ is the optimal (unknown) solution of GW, i.e., T ∗ = argmin
T∈Πab

E(T ) and the

expectation is taken on all the sampling done during the algorithm and on T .
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The notation of the Algorithm 1 are slightly different in this appendix, as we make the
distinction between T ′εs and T ′s. T

′ε
s is the transport plan given by the OT-Sinkhorn solver,

while T ′s is the exact minimum transport plan.
Our proof is inspired by the Theorem 2 from Reddi et al. (2016) but we additionally

consider the entropy regularization with notably the lemma 1 which is specific to the OT
problem. To give all details while trying to improve readability, we first prove some intermediate
results.

A.1.2 Necessary intermediate results

We first prove the following new lemma which quantifies the difference between the Wasserstein
distance with and without the entropy regularization, for a generic OT problem with a cost
matrix C. Note that a related bound was proposed by Genevay et al. (2019) or Blondel et al.
(2018) but include the entropy regularization while here we are only concerned about the
difference between the scalar product.

Lemma 1 Let T ε (resp. T 0) be the optimal solution of the a discrete OT problem with (resp.
without) entropic regularization. We suppose the simplified case with N points in each em-
pirical distribution and with uniform marginal distributions. We will note C the N ×N cost
matrix of this problem.

0 ≤ 〈C, T ε〉 −
〈
C, T 0

〉
≤ ε log(N) (16)

Proof The positivity is obtained by definition of T 0 (it minimizes 〈C, T 〉). The right-hand side
inequality can be derived as follows (where −H(T ) denotes the entropy of T ):

〈C, T ε〉 −
〈
C, T 0

〉
= 〈C, T ε〉 −

〈
C, T 0

〉
+ εH(T ε)− εH(T ε) (17)

≤
〈
C, T 0

〉
−
〈
C, T 0

〉
+ εH(T 0)− εH(T ε) (18)

≤εH(T 0)− εH(T ε) (19)

≤ε log(N−1)− ε log(N−2) (20)

=ε log(N) (21)

Line 18 : by definition, T ε minimizes 〈C, T 〉 + εH(T ). Line 20 T 0 is a permutation and T ε is
at worse (in terms of H()) uniform.

Interestingly this bound does not depend directly depend on C (still, C impacts the value of
T 0, T ε). A scale increase of C will virtually reduce ε in comparison, thus T ε will be closer
to T 0. Note that the bound can be adapted to the general case (arbitrary distributions),
then the bound is −ε(H(µ) + H(ν)) as we bound H(T 0) by 0 and −H(T ε) by −H(µ × ν).

Let (T, T ′) ∈ Π2
ab. We now derive several intermediate results with these arbitrary trans-

port plans T and T ′, in a simplified case when I = K = N (same number of points in each
empirical distribution).

We start with a bound on the maximal distance between these transport plans (in term
of Frobenius norm): ∥∥T − T ′∥∥

F
=

√
‖T − T ′‖2F (22)

≤
√
‖T‖2F + ‖T ′‖2F (23)

≤

√√√√√ I,K∑
i,k=1

T 2
ik +

I,K∑
i,k=1

T ′2ik (24)

≤

√
N

(
1

N

)2

+N

(
1

N

)2

(25)

=

√
2

N
. (26)
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Line 23 : the triangular inequality is used. Line 25 : for doubly stochastic matrices, the highest
Frobenius norm is obtained with a permutation (fewer and thus bigger values give a bigger
norm), the permutation has N non-zero values equal to 1

N
.

For completeness, we prove that the gradient of E(T ) is expressed in terms of T . We prove
it with L symmetric, in the sense that Lijkl = Ljilk, which is implied if the cost matrices are
symmetric. For all indices a, b in T , we have:

∂E
∂Tab

(T ) =
∂

∂Tab

I,I∑
i,j=1

K,K∑
k,l=1

LijklTik Tjl (27)

=
∂

∂Tab

Laabb T 2
ab +

2
∑
cd6=ab

LacbdTcd

Tab

 (28)

= 2 LaabbTab + 2
∑
cd 6=ab

LacbdTcd (29)

= 2
∑
cd

LacbdTcd (30)

∇E(T ) = 2
∑
jl

L.j.lTjl (31)

=
∑
jl

(L.j.l + Lj.l.)Tjlin the case where L is not symmetric. (32)

We can also prove that E is 2BN2-smooth, as follows:

∥∥∇E(T )−∇E(T ′)
∥∥
F

=

∥∥∥∥∥∥2
∑
jl

L.j.lTjl − 2
∑
jl

L.j.lT
′
jl

∥∥∥∥∥∥
F

(33)

=

∥∥∥∥∥∥2
∑
jl

L.j.l

(
Tjl − T ′jl

)∥∥∥∥∥∥
F

(34)

=

√√√√√∑
ik

2
∑
jl

Lijkl

(
Tjl − T ′jl

)2

(35)

=

√∑
ik

(2 〈Li.k., T − T ′〉)2 (36)

≤
√∑

ik

(
2 ‖Li.k.‖F ‖T − T ′‖F

)2
(37)

≤
√

4
∑
jl

B2N2 ‖T − T ′‖2F (38)

≤ 2B

√
N4 ‖T − T ′‖2F (39)

≤ 2BN2
∥∥T − T ′∥∥

F
. (40)

Line 37 uses the Cauchy–Schwarz inequality. Line 38 uses 0 ≤ Lijkl ≤ B.

The following Lemma 2 is the same as the one provided in Reddi et al. (2016) and will
allow to start the proof.

Lemma 2 If f : Rd −→ R is L-smooth, then for all x, y ∈ Rd.

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2
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A.1.3 Proof of the theorem

Theorem 3 (Based on (Reddi et al., 2016)) For any Lijkl ∈ [0, 1], for any distributions
µ and ν with uniform weights a and b respectively, for any optimal solution T ∗ of Problem (5),

on average for the transport plan T uniformly sampled from (Ts)s∈J0,S−1K, on average over
all the samplings, the following bound holds:

E
(
G
(
T
))
≤
√

2B (E(T0)− E(T ∗))N

S
+B

√
2N

M
+ ε log(N).

Proof Ts and T ′εs are the transport plan obtain in the Algorithm 1. T ′s = T ′0s is the solution
without entropy regularization.

Let T̂ ′s = argmin
T ′s∈Πab

〈T ′s,∇E(Ts)〉 = argmax
T ′s∈Πab

〈T ′s,−∇E(Ts)〉 and Λ̂s the sum of matrices sam-

pled M times at iteration s.

E(Ts+1) ≤ E(Ts) + 〈∇E(Ts), Ts+1 − Ts〉+
2BN2

2
‖Ts+1 − Ts‖2 (41)

≤ E(Ts) +
〈
∇E(Ts), α(T ′εs − Ts)

〉
+BN2‖α(T ′εs − Ts)‖2 (42)

≤ E(Ts) +
〈
∇E(Ts), α(T ′εs − Ts)

〉
+BN2α2

√
2

N

2

(43)

= E(Ts) + α
〈

2Λ̂s, T
′ε
s − Ts

〉
+ α

〈
∇E(Ts)− 2Λ̂s, T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(44)

= E(Ts) + α
〈

2Λ̂s, T
′ε
s − Ts + T ′s − T ′s

〉
+ α

〈
∇E(Ts)− 2Λ̂s, T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(45)

= E(Ts) + α
〈

2Λ̂s, T
′
s − Ts

〉
+ α2

〈
Λ̂s, T

′ε
s − T ′s

〉
+ α

〈
∇E(Ts)− 2Λ̂s, T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(46)

≤ E(Ts) + α
〈

2Λ̂s, T̂
′
s − Ts

〉
+ α2ε log(N) + α

〈
∇E(Ts)− 2Λ̂s, T

′ε
s − Ts

〉
+BN2α2

√
2

N

2

(47)

= E(Ts) + α
〈
∇E(Ts), T̂

′
s − Ts

〉
+ α

〈
∇E(Ts)− 2Λ̂s, T

′ε
s − T̂ ′s

〉
+ α2ε log(N)

+BN2α2

√
2

N

2

(48)

= E(Ts)− 2αG(Ts) + α
〈
∇E(Ts)− 2Λ̂s, T

′ε
s − T̂ ′s

〉
+ α2ε log(N) +BN2α2

√
2

N

2

(49)

≤ E(Ts)− 2αG(Ts) +

√
2

N
α‖∇E(Ts)− 2Λ̂s‖+ α2ε log(N) +BN2α2

√
2

N

2

(50)

The line 41 uses the smoothness of E. The line 42 uses the definition of the update. The

line 43 uses the bound between transports plans. The line 44 adds artificially the 2Λ̂s term.
The line 45 adds artificially the T ′s term. The line 46 separate two terms. The line 47 uses the

Lemma 1 with Λ̂s as cost matrix and use the definition of T ′s. The line 48 uses the following
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equalities, 〈
2Λ̂s, T̂

′
s − Ts

〉
+
〈
∇E(Ts)− 2Λ̂s, T

′ε
s − Ts

〉
(51)

=
〈

2Λ̂s, T̂
′
s − Ts − T ′εs + Ts

〉
+
〈
∇E(Ts), T

′ε
s − Ts + T̂ ′s − T̂ ′s

〉
(52)

=
〈

2Λ̂s, T̂
′
s − T ′εs

〉
+
〈
∇E(Ts), T

′ε
s − T̂ ′s

〉
+
〈
∇E(Ts), T̂

′
s − Ts

〉
(53)

=
〈
∇E(Ts)− 2Λ̂s, T

′ε
s − T̂ ′s

〉
+
〈
∇E(Ts), T̂

′
s − Ts

〉
. (54)

The line 49 uses the definition of G(Ts). The line 50 applies Cauchy Schwartz inequality and
bound the difference between OT plan.

To bound the difference between the real expectation ∇E(Ts) and the sampling 2Λ̂s, the
following result is needed. Let define M random variable, zm = L.jm.lm −

∑
jl L.j.lTjl. They

have 0 mean and each zm are independent from each other. Moreover, ‖zm‖=‖L.jm.lm −∑
jl L.j.lTjl‖≤

√∑
ik B

2 = BN .

E(‖∇E(Ts)− 2Λ̂s‖) = E(‖2
∑
jl

L.j.lTjl −
2

M

M∑
m=1

L.jm.lm‖) (55)

=
1

M
2E(‖

M∑
m=1

zm‖) (56)

=
2

M

√√√√(E(‖
M∑
m=1

zm‖))2 (57)

≤
2

M

√√√√E(‖
M∑
m=1

zm‖2) Jensen Inequality (58)

=
2

M

√√√√ M∑
m=1

M∑
r=1

E(〈zm, zr〉) (59)

=
2

M

√√√√ M∑
m=1

E(‖zm‖2) (60)

≤
2

M

√√√√ M∑
m=1

E(B2N2) (61)

=
2

M

√√√√ M∑
m=1

B2N2 (62)

=
2

M

√
MB2N2 (63)

=
2BN
√
M

(64)

This result can be used directly on the bound, after averaging over all the sampling.

E(E(Ts+1)) ≤ E(E(Ts))− 2αE(G(Ts)) +

√
2

N
αE(‖∇E(Ts)− 2Λ̂s‖) + α2ε log(N)

+BN2α2

√
2

N

2

(65)

≤ E(E(Ts))− 2αE(G(Ts)) +

√
2

N
α

2BN
√
M

+ α2ε log(N) +BN2α2

√
2

N

2

(66)
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Thus,

2αE(G(Ts)) ≤ E(E(Ts))− E(E(Ts+1)) + 2

√
2

N
α
BN
√
M

+ α2ε log(N) +BN2α2

√
2

N

2

. (67)

We set sum over all s on both side.

2α

S−1∑
s=0

E(G(Ts)) ≤ E(T0)− E(E(TS−1)) + S2

√
2

N
α
BN
√
M

+ Sα2ε log(N) + SBN2α2

√
2

N

2

(68)

≤ E(T0)− E(E(TS−1)) + S2

√
2

N
α
BN
√
M

+ Sα2ε log(N) + SBN2α2

√
2

N

2

(69)

We use the definition of T for G(T ). Notice that the following line is correct only on average

for the random variable T . This part is not clearly specified in the original proof of Reddi et al.
(2016). We use also the definition of T ∗ for the second inequality.

E(G(T )) ≤
E(T0)− E(E(TS−1))

2Sα
+

√
2

N

BN
√
M

+ ε log(N) +BN2α

√
1

N

2

(70)

≤
E(T0)− E(T ∗)

2Sα
+B

√
2N

M
+ ε log(N) +BNα (71)

We derive the function f(α) =
E(T0)−E(T∗)

2Sα
+B

√
2N
M

+ ε log(N) +BNα with respect to α.

df

dα
(α) = 0 ⇐⇒ −

E(T0)− E(T ∗)

2Sα2
+BN = 0 (72)

⇐⇒
1

α2
=

2S

E(T0)− E(T ∗)
BN (73)

⇐⇒ α =

√
E(T0)− E(T ∗)

2SBN
(74)

As E(T0) − E(T ∗) ≥ 0, the second derivative is positive, thus f is convex, therefore we have
the minimum. We can replace α and find the final bound,

E(G(T )) ≤
E(T0)− E(T ∗)

2S
√
E(T0)−E(T∗)

2BSN

+B

√
2N

M
+ ε log(N) +BN

√
E(T0)− E(T ∗)

2BSN
(75)

≤
E(T0)− E(T ∗)

2S

√
2BSN

E(T0)− E(T ∗)
+B

√
2N

M
+ ε log(N) +

√
(E(T0)− E(T ∗))BN

2S

(76)

≤
√

(E(T0)− E(T ∗))BN

2S
+B

√
2N

M
+ ε log(N) +

√
(E(T0)− E(T ∗))BN

2S
(77)

≤
√

2(E(T0)− E(T ∗))BN

S
+B

√
2N

M
+ ε log(N). (78)

We will now prove the second theorem using the same proof.

Theorem 4 With the same notations as in Theorem 3 with the entropy εs that may now
change along the iterations, when L yields a concave GW problem the following bound holds:

E
(
G
(
T
))
≤
E(T0)− E(T ∗)

2S
+B

√
2N

M
+

1

S

S−1∑
s=0

εs log(N)
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Proof The first difference is line 68, the sum from 0 to S−1 cannot be changed to S as εs may
change along the iterations and is now a sum over

∑S−1
s=0 . The second difference is in Lemma

2, were the last term disappear as GW is concave. Thus, in line 71, as the last term is not
present the optimal value of α is 1, which gives the proposed bound.

A.2 A KL regularization-based variant

In this section we will discuss the convergence of the KL variant. A related convergence proof
is proposed in (Xu et al., 2019b) were the authors aim at solving GW using a proximal points
method,

min
T∈Πab

E(T, T ) + εKL(T ||Tn).

However it does not cover our case were we optimize minT∈Πab E(T, Tn) + εKL(T ||Tn) at
each iteration with the expectation approximated by a sampling. Without sampling, this op-
timization can be seen as a Majorization-Minization method (Sun et al., 2016),

E(T ) ≤ E(Tn) + 〈∇E(Tn), T − Tn〉+
2BN2

2
‖T − Tn‖2 (79)

≤ E(Tn) + 〈∇E(Tn), T − Tn〉+BN2|T − Tn|21 (80)

≤ E(Tn) + 〈∇E(Tn), T − Tn〉+BN2KL(T ||Tn). (81)

Were the first line is the line 41 in the proof of Theorem 3. The second line use the fact that
the L2 norm is bigger than the L1 norm. The last line uses the Pinsker’s inequality.
While the last inequality seems to be a good starting point, we could not directly derive (or
find in the literature) a bound that applies with sampling and the KL term (that makes the use
of Sinkhorn-Knopps possible). Thus, while this interpretation seems interesting, the question
of the convergence is left open and would need to be studied in a future work.

A.3 Approximating the Gromov Wasserstein distance

This section gives mathematical details for the estimation of the Gromov Wasserstein distance
from a given transport plan. Our approach to compute the GW distance will take inspiration
from the idea of sampling T ∈ Πab (i.e., with marginals a and b).

Let define a new random variable P (R = Lijkl) = TikTjl. This definition is not totally
rigorous: two values Lijkl and Li′j′k′l′ may be equal, the actual probability is then the sum
of the probabilities. The GW distance can now be seen as an expectation,∑

ijkl

LijklTikTjl = E(R). (82)

Instead of simply sampling this expectation, we propose to stratify by each index i, j to improve
the quality of the estimator. Let Ui be the event “i is chosen for the first dimension of L”
and U ′j be the event “j is chosen for the second dimension of L”. Using the rule of total

expectation, the expectation can be transformed to,

E(R) =
∑
ij

P(Ui ∩ U ′j)E(R|Ui ∩ U ′j) (83)

=
∑
ij

aiajE(R|Ui ∩ U ′j). (84)

For any (i, j) ∈ J1, NK2, we denote as Xij the random variable defined by: P(Xij =

Lijkl) = P(R = Lijkl|Ui ∩ U ′j). Thus, we use R̂ =
∑
ij aiaj

1
M

∑M
m=1X

m
ij to estimate the
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Gromov Wasserstein distance. This estimator is unbiased and comes with a tight estimator of
the standard deviation as shown on the Figure 3 of the paper,

σ̂R̃ =

√√√√√∑
ij

a2i a
2
j

1

M − 1

M∑
m=1

(
Xm
ij −

(
1

M

M∑
m′=1

Xm′
ij

))2

. (85)

We recommend to take at least M = 2, to have access to the standard deviation. Note
that in theory we could only look at a sub-sample of the index i, j (

√
N log(N) instead of all

the N points), to have an approximation of the distance in N log(N). This might be useful
when coupled with Pointwise Gromov Wasserstein, however the predicted distance might be
far from the real one without any standard deviation to quantify the error.

B Experiments

B.1 General setup and methods

We remind that the code to reproduce all the experiments, figures and tables is available in
the GitHub repository: https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein.

B.1.1 Gaussians mixtures

This section explains how the gaussians mixtures are created with a Gaussian Random Par-
tition Graph (Brandes et al., 2003) based on Stochastic Block Model (Holland et al., 1983).
The Algorithm 2 describe how to sample N points. This algorithm will create some gaussians
separated from each other and some values will be sample from those gaussians.

For the experiment, the dimension space d is set to 10 and 20 for the distributions µ and
ν. The Euclidean distance is used on both spaces to compute CX and CY .

Algorithm 2 Gaussians mixtures dataset

Require: N , d, vin = 2, vout = 10, vpoints = 5, c = min(200, N
2

)
1: n = 0
2: Positions = [ ]
3: while n < N do
4: mean = N (0, vout × Id)
5: n′ = N (c, vpoints)
6: Add n′ sample of N (mean, vin × Id) to Positions
7: n = n+ n′

8: end while
9: return N first points of Positions

B.1.2 Gaussian Random Partition Graph

For the second experiment, we generate graphs using a Gaussian Random Partition Graph (Bran-
des et al., 2003) with intra-cluster probability of 0.5, extra-cluster probability of 0.1, the number

of nodes in each cluster is sampled from a Gaussian with mean min(N
2
, 200) and a variance of

5. The adjacency matrix of each graph is used for CX and CY . We set a and b to the uniform
distribution.

https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein
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B.2 Speed and accuracy of the GW estimate

We reproduce the figures available in the paper in Figure 10 and Figure 11. The left part of
Figure 11 is omitted from the paper: it shows similar time complexity compared to the left
part of Figure 10.
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Fig. 10: Computational time (left) and GW distance estimation (right) between points sampled
from mixtures of gaussians.
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Fig. 11: Computational time (left) and GW distance estimation (right) on synthetic
graphs (Brandes et al., 2003).

Figure 12 shows that the computation time is clearly different with the square loss. To
facilitate the comparison, we keep, for every method, the same hyperparameter used for the
absolute loss. Those parameters may not be optimal, especially S-GWL which seems to per-
form poorly. On the left Figure 12, SGW is faster that PoGroW because the distance can be
computed in O (N log(N)), and the entire algorithm is efficiently parallelized. Because of its
O
(
N2
)

complexity, SaGroW is still faster than S-GWL and EGW for a high number of points.
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Fig. 12: Computational time (left) and GW distance estimation (right) between sampled points
from mixtures of gaussians with the square loss.
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B.3 Hyperparameter analysis

In this section, we plot figures similar to Figures 7, 8 and 9 from the paper.

Figure 13 shows the difference between the square loss and the absolute one, to compare
computational times. While our method remains the same, the other method improve their
computational time.
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Fig. 13: Similar to the Figures 7, 8 and 9 in the paper. (Left) Absolute loss. (Right) Square
loss.

Figure 14 shows similar expected behavior for a graphs dataset.
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Fig. 14: Hyperparameters analysis on a Stochastic Block Model dataset with 200 nodes for
each graphs. (Left) Absolute loss. (Right) Square loss.

Figure 15 shows a very easy situations, where every method probably finds the right GW
distance. In this case PoGroW is very competitive even for the square loss.
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Fig. 15: Hyperparameters analysis on a mixture of Gaussians with 200 points sampled for each
distributions. (Left) Absolute loss. (Right) Square loss.

Figure 16 highlights the interest of our method even for a very small N (20 nodes in each
graphs). In this case, SaGroW obtains the best transport plan for the square loss.
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Fig. 16: Hyperparameters analysis on a Stochastic Block Model dataset with only 20 nodes for
each graphs. (Left) Absolute loss. (Right) Square loss.

Figure 17 (left) shows an interesting example when every methods seem stuck in the same
local minima and S-GWL finds a better transport plan which is probably the global minima.
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Fig. 17: Hyperparameters analysis on a mixture of Gaussians with 100 points sampled for each
distributions. (Left) Absolute loss. (Right) Square loss.

Lastly, Figure 18 shows that even with 1000 iterations, SaGroW doesn’t seem to converge.
The value of ε is too high in this case and needed to be lowered to avoid too much iterations.
However, SaGroW still obtains a better plan than S-GWL for the absolute loss.
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Fig. 18: Hyperparameters analysis on a Stochastic Block Model dataset with 1000 nodes for
each graphs. (Left) Absolute loss. (Right) Square loss.

B.4 Small experiment on SaGroW without the KL regularization

In this experiment, we replace SaGroWKL by SaGroW and reproduce Figures 7, 8 and 9 in
the paper. We use ε = 0.1 for this experiment and α = 0.8. The Figure 19 shows that the value
of ε = 0.1 is too high on this dataset. Section B.5 highlights the difficulty to chose a good value
of entropy regularization while the KL regularization is much more robust to this choice.

As the number of sample increases, the performance of SaGroW tend to EGW0.1, which
is the left-most point. This behaviour is expected as SaGroW become similar to EGW when
the expectation is completely computed. However, the performance improves slowly with the
number of iterations. This might be due to the lack of memory from one iteration to the other,
as the transport plan Ts may vary a lot between two iterations. This illustrates the advantage
of the KL regularization which completely take into account the previous transport plan.
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Fig. 19: Similar to the Figures 7, 8 and 9 in the paper, with SaGroWKL replaced by SaGroW.

B.5 Small experiment on the entropy parameter

Table 3 shows that EGW is really sensitive to the entropy regularization, with only 4 values of ε
that give a Gromov Wasserstein distance different from 0.75. This value of 0.75 corresponds to
the uniform matrix. In contrast, due to the KL regularization instead of the classical entropy,
SaGroWKL never returns the uniform matrix. Moreover, SaGroWKL gives a reasonable value
for a large range of parameters (from 0.05 to 1).

The entropy regularization ensure to stay close to the uniform. Thus, for high value of ε
it will always stay close to the uniform. The KL regularization ensure than the next value will
be close to the previous one. In such a case, with enough iteration we can still converge to a
local minima. This is intuition was given in (Xu et al., 2019b) based on (Xie et al., 2020).
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Table 3: Gromov Wasserstein estimation for different values of ε. The dataset is composed of 2
graphs created with a Gaussian Random Partition Graph (Brandes et al., 2003) with 50 points
each. The mean cluster size is set to 25 and the variance to 5. The probability of intra-cluster
connection is 0.5 while the inter-cluster is set to 0.1. The GW distances reported are averaged
over 10 iterations. The absolute distance is used for L. The number of iteration of SaGroWKL

is 1000 with one sample per iteration.

ε SaGroWKL EGW

0.001 0.73 0.75
0.005 0.59 0.63
0.01 0.55 0.62
0.05 0.51 0.67
0.1 0.51 0.71
0.5 0.52 0.75
1 0.52 0.75
5 0.62 0.75
10 0.68 0.75

B.6 Small experiment on the α parameter

Tables 4 and 5 analyze the impact of α and the number of iterations. The most important
information is that a high value of α seems a good choice. A high value of α ensure to always
be close to the edge of the polytope, were the optimal value is assumed to be. For a concave
problem (Table 5), the best value to choose is 1. In Table 4 the best value around 0.75 - 0.9.
Thus, it might not be very interesting to cross validate this parameter, and a value around 0.8
seems a reasonable choice.

On average, it is better to apply many iterations. This is especially true for small value
of α were the GW distance changes very slowly. We see on this experiment, the limit of the
convergence proof. In practice, we will never use a small value of α, even if the convergence is
ensured.

Table 4: Gromov Wasserstein distance for PoGroW with different values of α and different
number of iterations. The dataset is composed of 2 graphs created with a Gaussian Random
Partition Graph (Brandes et al., 2003) with 50 points. The absolute distance is used for L.

S\α 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999 1

1 74.87 74.87 74.82 74.63 74.03 73.07 72.33 71.82 71.77 71.76
10 74.87 74.82 74.73 74.52 74.88 74.69 72.28 71.84 71.80 71.79

100 74.82 74.35 73.36 73.94 74.67 68.34 68.76 71.91 71.93 71.94
1000 74.37 73.76 72.90 73.32 73.09 72.12 70.62 72.97 73.01 70.69

Table 5: Gromov Wasserstein distance for PoGroW with different values of α and different
number of iterations. The dataset is composed of 2 samples of 50 points of mixtures of gaus-
sians. The absolute distance is used for L.

S\α 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999 1

1 166.88 166.87 166.28 163.53 154.03 138.40 126.08 117.62 116.73 116.63
10 166.83 166.37 163.81 160.98 117.23 85.41 85.27 85.24 79.84 79.84

100 166.48 163.31 105.36 90.42 137.56 76.93 79.02 73.80 73.64 73.62
1000 163.38 134.57 86.59 80.47 79.43 78.28 77.45 77.14 77.11 77.11
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B.7 Graph classification

Table 6 gives the complete table of the graphs classification experiment. The best parameter
taken for each of the method is not on the edge on the parameter range. Thus, a good parameter
is found for each method. Notice that the performance of PoGroW are very similar for different
value of power p. This can be explain by the fact that the transport plan found does not depend
on the loss used. The 1D optimal transport plan is the same for all convex loss functions. For the
case p = 0.5, PoGroW does not find the perfect transport plan at each iteration as we suppose
the loss convex. For p = 1 the problem might be degenerated, many different transport plans
can be optimal. We can suppose p slightly higher than one to avoid the problem. Caracciolo
et al. (2020) proposes a bound for the 1D OT concave case.

Other losses than the absolute loss at power p have been tested. Only the exponential

square (1− e−(CX−CY )2 ) has a reasonable accuracy.
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Table 6: Complete table of the classification experiment in the paper.

Dataset Accuracy GW Distance Time (s)

S-GWL0.005 0.1 400 14.7
S-GWL0.01 0.1 400 13.9
S-GWL0.05 0.1 400 13.9
S-GWL0.1 0.1 400 12.6
S-GWL0.5 0.17 390 12.0
S-GWL1 0.29 374 11.0
S-GWL5 0.44 362 23.4
S-GWL10 0.41 377 27.8
S-GWL50 0.41 374 34.1
S-GWL100 0.39 372 33.2
EGW0.0001 0.07 430 0.1
EGW0.0005 0.07 429 4.5
EGW0.001 0.22 412 36.2
EGW0.005 0.22 375 42.6
EGW0.01 0.12 383 25.1
EGW0.05 0.15 408 6.2
EGW0.1 0.12 420 2.0
EGW0.5 0.07 429 0.3
EGW1 0.07 429 0.3
EGWKL

0.0001 0.07 430 0.1
EGWKL

0.0005 0.07 429 0.1
EGWKL

0.001 0.15 419 0.2
EGWKL

0.005 0.24 375 41.1
EGWKL

0.01 0.12 383 25.8
EGWKL

0.05 0.15 408 7.1
EGWKL

0.1 0.12 420 2.4
EGWKL

0.5 0.07 429 0.4
EGWKL

1 0.07 429 0.4
EMD-GW 0.37 341 16.6
SaGroWp=0.5 0.41 12.3
SaGroWp=1 0.49 11.6
SaGroWp=1.5 0.49 13.6
SaGroWp=2 0.39 336 12.7
SaGroWp=2.5 0.37 12.3
SaGroWp=3 0.27 11.8

SaGroW (1− e−|CX−CY |) 0.05 0.7

SaGroW (1− e−
|CX−CY|

10 ) 0.05 0.8

SaGroW (1− e−(CX−CY )2 ) 0.27 13.9

SaGroW (1− e
(CX−CY )2

100 ) 0.05 0.8
PoGroWp=0.5 0.37 0.5
PoGroWp=1 0.37 0.5
PoGroWp=1.5 0.37 0.5
PoGroWp=2 0.39 373 0.5
PoGroWp=2.5 0.32 0.6
PoGroWp=3 0.27 0.5

PoGroW (1− e−(CX−CY )2 ) 0.2 0.5

PoGroW (1− e|CX−CY |) 0.05 0.5

PoGroW (1− e
|CX−CY|

10 ) 0.05 0.5
PoGroW ( 1

e−(CX−CY )2
− 1) 0.1 0.2

Uniform 0.07 430 0.1
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