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ABSTRACT

Spherical microphone array processing has been deployed
as a tool for sound source localization and diagnosis using
acoustic image techniques via algorithms such as the gen-
eralized cross-correlation (GCC). However, some acous-
tic image analysis tools used in this domain remain prim-
itive. In this work, it is proposed a method for unsuper-
vised source localization in acoustic images using the im-
age segmentation principle, a method to compute the main-
lobe width (MLW) and the (maximum) side-lobes levels
(SLL) that consider the spherical property of the beam-
forming projection and a method to compute the source
localization uncertainty according to a covariance ellipse
estimation that uses image gradients, the MLW and the
SLL. These methods are numerically tested under different
acoustic conditions and with optimized microphone arrays.

1. INTRODUCTION

In many applications, it is desirable to understand the lo-
cation of one or more sound sources and their propagation
properties. Such a diagnosis can be latter used for the hi-
erarchical classification of the sources as contributors to
the overall environment sound level. The classification is
an important step prior to the design of noise abatement
and control strategies. Microphone array processing can
be used to generate acoustic images that serve for this pur-
pose [1–5]. What is described next is a method to effi-
ciently generate, process and extract information of these
images.

2. METHOD

2.1 Generalized cross-correlation - Phase alignment
(GCC-PHAT)

The generalized cross-correlation (GCC) between micro-
phone signals may be computed with an IFFT:

Rmi,mii(τ) =

k−1∑
f=0

Ψ(f)CXmi ,Xmii (f)e
j2πfτ
k , (1)

where f the frequency index, k is the sampling frequency,
τ = (∆tmiik−∆tmik) is the (unknown) time-lag between
microphone signals Xm(ω), Ψ(f) is an inter-microphone
weighting function, CXmi ,Xmii (f) is the power cross-
spectrum of the signals and k is a steering vector. Equa-
tion 1 is a likelihood estimator for the cross-correlation
function proposed by Knapp [6] and assumes the stationary
nature of the signals during the observation time. The ar-
gument τ maximizing the function provides the estimation
of the time-delay corresponding to the direction of sound
arrival for the pair of microphones considered.

Since τmi,mii = −τmii,mi and Rmi,mii(τ) =
Rmii,mi(τ), the non-redundant beamformer for the GCC
is written as:

y2(k) =

M∑
i=1

M∑
ii=i+1

Rmi,mii(τ). (2)

Because Rmi,mii(τ) is a time-observation function, cer-
tain time-lags might surpass the maximum physically al-
lowable time-lag max(τmi,mii) between all pairs of mi-
crophones. Therefore, the cross-correlation computed
in Equation 1 needs to be truncated in a set of feasible
time-lags such that τ ≤ max(τmi,mii) before further pro-
cessing [1].

Hence the beamformer is obtained from the superimpo-
sition, for each pair of microphones, of cross-correlation
values obtained from the interpolation of truncated cross-
correlation values Řmi,mii into the set of time-lags belong-
ing to the scanning region of k. The weighting function
Ψ(ω) may be set to 1 or an adaptive beamformer created
using the phase-alignment filter (PHAT):

ΨPHATmi,mii
(ω) =

1

|Xmi(ω)X∗mii(ω)|
, (3)

that was mathematically proven to give, when the num-
ber of observations is sufficiently large and outnumbers the
number of sources, an optimal localization in a maximum
likelihood sense for many acoustic conditions [7]. PHAT
is therefore an interesting technique to be used with array
systems. However, it distorts the level information of the
final beamformer.
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2.2 Acoustic image generation

In the far-field, the time-lag may be computed as a function
of the scanning vector as:

∆tmk = rm · k/c0, (4)

where rm is the microphone position vector and c0 is the
speed of the sound. Fig. 1 demonstrates the realization of
a spherical scanning region using spherical microphone ar-
rays. The virtual projection surface is defined at a distance
‖f‖ of the microphone array and with angular resolution
(∆θ,∆ϕ) defined by an equi-rectangular grid.

A truncated cross-correlation Řmi,mii is equivalent to
the spatial likelihood function (SLF), the zone in the space
where all time-lags for a given pair of microphones are the
same and the probability to find a source using time-lag
localization methods is maximum [2]. The 3D geometric
locus of the SLF is an hyperboloid, or an hyperbola when
projected on a surface.

The superimposition of cross-correlation values are cal-
culated on the spherical surface of Fig. 1 using arithmetic
(AM) or geometric means (GM), respectively [3]:

y2
AM

(k) =
1

P

P∑
i=1

Řpi(τ),

y2
GM

(k) =

P∏
i=1

∣∣Řpi(τ)
∣∣ 1
P

,

(5)

where P is the number of pairs of microphones. The max-
imum of the superimposition is the common region where
many SLFs’ cross and indicates the sound source local-
ization. The GM tends to attenuate background noise on
the final image and suppress side-lobes. However, it dis-
torts levels information on the final image and diminishes
the level of weaker sources, making their localization more
difficult.

The final image is obtained normalizing the beam-
former response on the surface of projection and applying
a logarithmic scale. Fig. 2 demonstrates the realization of
this process for a circular microphone array of 4 micro-
phones. The proposed acoustic conditions and signal pro-
cessing parameters used in this computation are standard
throughout this work unless otherwise stated. The image
scale is homogeneous to p2RMS(t).

2.3 Optimized microphone arrays

The GCC-PHAT is optimal in a maximum likelihood sense
and should indicate a source localization on the maximum
of a gaussian distribution on the acoustic image. However,
biased SLFs’ superimposition will ruin this optimality and
amplify side-lobes generation. In order to reduce biased
superimposition and induce a phenomenon called ‘spatial-
whitening’ on the acoustic image, Carneiro [4] proposed
the following geometric criteria that must be maximized:

Γ =

∑P
i=1

∣∣γ (kpi ,k′pi)∣∣
P

,

D =

∑P
i=1

∣∣dpi − d′pi∣∣
P

,

(6)

Figure 1. Virtual spherical surface of projection for
the beamforming: x = ‖f‖ sin(θ) cos(ϕ), y =
‖f‖ sin(θ) sin(ϕ) and z = ‖f‖ cos(θ). ∆θ = ∆ϕ = 1◦

in this work.

referred to as the mean orientation difference (the mean
of the sum of the difference of orientation between pairs
of microphones) and the mean separation difference (the
sum of the difference of separation between pairs of mi-
crophones), respectively. P is the number of microphones,
γ is the aperture angle between the unit orientation vector
kp of a given pair of microphones and the best alignment
vector k′p (smallest angle) among any other pair to kp, dp
is the linear separation of a given pair of microphone and
d′p is the closest separation among any other pair to dp. kp
and dp are computed as follows:

kpi,ii =
rmi − rmii
‖rmi − rmii‖

,

dpi,ii = ‖rmi − rmii‖ ,
(7)

where i, ii are indices for the microphones of the pair and
rm the vector coordinates of the microphone.

The optimization of a spherical microphone array of M
microphones, diameter L and eventually pre-defined lin-
ear and/or non-linear design constraints requires the maxi-
mization of one or both geometric criteria using a single or
multi-objective genetic algorithm (GA) [8].

2.4 Image segmentation and unsupervised localization

The topology of a typical acoustic image may be general-
ized as a series of local peaks (maximum) indicating the
localization of multiple sources. These areas will be called
foreground. Side-lobes may appear as local peaks on the
foreground. The background of the image may present a
noisy allure with many local peaks and valleys separated
by a, sometimes spatially variable, dynamic range from the
foreground.

A multiple sound source localization algorithm may be
designed to localize the sources on a segmented image. A
segmented image is a binarized version of the original im-
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Figure 2. A wide-band monopole is considered and mod-
eled using the free-field radiation equation of a pulsating
sphere with low additive noise (15 dB environmental and
64 dB at the microphones). The GCC-PHAT-AM algo-
rithm is used sampling 1 s of time signal at 32768 Hz.
(a)/(b) SLF for a pair of microphones projected on the x−y
plane and on the steering space. (c) The superimposition
of SLFs generates a pin-point localization (in the acoustic
image, SLFs for all microphone pairs are depicted).

age with foreground indicated as 0 (black) and the back-
ground indicated as 1 (white). Assuming that segmented
black areas for the different sources are not connected,
the algorithm uses the binary image to locate the areas in
black. It transfers this localization information to the orig-
inal acoustic image, where the position of the local max-
imum for each area is extracted and attributed as a new
sources. If the segmented areas or two sources are con-
nected, one of the sources will not be located, resulting in
a false-negative. If a side-lobe is segmented as foreground
(black), it will result in a false-positive.

Three segmentation methods suitable to acoustic im-
ages are discussed in this paper: the h-minima mor-
phological filter [9], Otsus’ method [10] and Bradleys’
method [11]. While computer graphics applications for
these methods are widely discussed in the literature, us-

age in acoustic images seems to be new up to the authors’
knowledge. It is therefore important to understand the
principle of these methods, their hypotheses and the nec-
essary conditions in order to achieve good segmentation
results.

The h-minima filter can be used to extract a series of
extreme values from the image using a contrast criterion.
It suppresses all minima whose deepness relative to a user-
defined vicinity is smaller or equal to a threshold h (a non-
negative scalar), performing a reconstruction by erosion of
y from y + h, as follows:

HMINh(y) = Rεy(y + h), (8)

where Rεy is an erosion transformation of the grid value
y. Intuitively, the filter may be compared to the geologi-
cal erosion mechanism: the erosion residue of the highest
ridges (global maxima) covers the minor ones (local min-
ima). The segmented image presents a foreground with
minor modifications (the value at the peak is the last to be
eroded) while the background is flattened.

Finally, the resulting image may be binarized. Nonethe-
less, the h-minima filter is a supervised segmentation strat-
egy because the deepness threshold h needs to be set be-
forehand and only allows supervised source localization.

Otsus’ and Bradleys’ methods are both non-parametric
and unsupervised automatic image segmentation methods
based on discriminant and integrative analysis, respec-
tively. The acoustic image needs to be converted to a gray-
scale of N pixels and L levels from 0 to 1 (0 is black and
corresponds to the strongest source and 1 is white).

Otsus’ method evaluates and selects an optimal thresh-
old(s) that maximizes the separability between two or more
classes from the gray-level histogram of the image. Ac-
cording to the discriminant analysis, the optimal thresh-
old(s) maximizing the separability of the classes is/are the
one(s) maximizing the between-class variance computed
from the gray-level histogram. For instance, segmentation
is achieved defining two classes: C0 is the set of pixels
with levels up to k (the foreground) and C1 is the set of
pixels with levels above k (the background), with k being
the optimal threshold separating both classes. Once k is
estimated, it can be used to binarize the original acoustic
image.

The discriminant analysis assumes that the gray-level
histogram has bimodal distribution. This condition is ide-
ally secured when the surface distribution of the class C0

on the image is of the same order of C1, when the mean
level difference between C0 and C1 is large and when the
variance of each class is small [12]. In other words, the
image is not extensively corrupted by noise and the back-
ground is not affected by ‘non-uniform illumination’, a
condition where the background of the image is affected
by a non-uniform dynamic range.

On acoustic images, if the main lobe and the rest of
the image are considered to be distinct classes, the above
conditions are better met when the side-lobe levels (SLL)
are smaller and spatially constant and the main-lobes width
(MLW) are larger.
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Bradleys’ method computes a moving average on a win-
dow of n× n pixels (also known as kernel) on the integral
image of the gray-scale. If the value of the current pixel is
smaller than t percent the average of the moving average
the pixel is set to black (0), otherwise it is set to white (1). t
is the sensitivity of the segmentation operation. Under the
hypothesis that the image contains dominant background
pixels (white) and that the foreground is distributed, this
operation preserves hard contrasts and ignores soft gradi-
ent changes even under ‘non-uniform illumination’ condi-
tions. The kernel needs to be larger than the foreground
components or may lead to miss-classification. If the ker-
nel is too large it may lead to a loss on the ability to seg-
ment fine details. If t is too low (higher sensitivity), the
segmentation becomes too sensitive to noise. Too high and
sources are not detected.

It is important to note that the segmentation methods do
not need to operate on the logarithmic version of the acous-
tic image. They may also operate on the linear version and
with any other beamforming technique. Ideally, the image
needs to be able to efficiently suppress side-lobes, which
can be accomplished using optimized microphone arrays.

2.5 Metrics extraction

The standard used in this work to compute the main-lobe
width (MLW) and the (maximum) side-lobe level (SLL) is
similar to that presented by Christensen [5] and is synthe-
sized in Fig. 3.

Figure 3. Definition for main-lobe width (MLW) and
(maximum) side-lobe level (SLL) using a fictive 1D beam-
former with two located sources.

The MLW is a metric used to evaluate the size of the
main-lobe and is in most cases an angular value. It is gen-
erally defined as the angular aperture between the first two
neighboring minima (derivative zero) on the localization
topology or two points defined by a certain dB attenuation
(usually up to −10 dB).

The SLL is a profile obtained excluding the MLW for all
located sources. It keeps track of the maximum topology
level out of the MLW. It can be simply characterized by the
maximum tracked level.

Fig. 3 is a 1D topology for which metrics can be eas-
ily computed in the direction obtained from the abscissa.
In the case of 2D acoustic images, it is not realistic to

compute these metrics for the orthogonal axes (θ,ϕ). A
more precise computation can be executed in the radial di-
rections of the source localization but requires an interpo-
lation of the topology originally generated from an equi-
rectangular grid to a polar grid centered on the source posi-
tion (Fig. 4). This is accomplished positioning a spherical

Figure 4. (a) Equi-rectangular grid points can be trans-
ferred from the spherical cap to its base (green plane):
rz = ‖f‖ sin(θ′), rx = ‖f‖ sin(ϕ′). This transformation
introduces large pole distortion. Although the distortion is
minimal for any points close to the focus point. (b) Repre-
sentation of an equi-rectangular grid centered on the source
position. (c) Representation of a polar grid centered on the
source position.

cap centered on the sound source location (Fig. 4 (a)) and
converting the angular positions on the equi-rectangular
grid (Fig. 4 (b)) to the base of the spherical cap. These
samples can be finally used to interpolate a regular polar
grid (Fig. 4 (c)). The standard polar grid discretization in
this work consisted of 360 radially distributed points with
constant spacing of 1◦ and 100 linearly spaced points in
the polar axis of a hemi-sphere cap.

Once the local equi-rectangular topology is interpolated
to a polar grid, the MLW may be computed radially us-
ing the appropriate criterion (derivative zero or dB atten-
uation) and smoothing the data to compensate the noise
allure of the slope: a radius ri is obtained for each el-
ements distributed on the angular coordinate of the po-
lar grid. This radius may be converted back to a radial
aperture angle on the equi-rectangular spherical grid as
γi = arcsin(ri/ ‖f‖). The set of radial aperture angles
form a contour. The MLW may be represented as a mean
radial aperture angle that fits a circular spherical cap on the
MLW contour:

MLWγ = arccos(1− 2SMLW ) =

arccos

(
1− 4π ‖f‖2

K

K∑
i=1

(1− cos(γi))

)
,

(9)

or as a fraction of the equi-rectangular spherical grid sur-
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face:

MLW% =
1

K

K∑
i=1

(1− cos(γi)), (10)

where SMLW is the area computed from the angular aper-
ture criteria for the MLW and K denotes the number of
elements distributed on the angular coordinate of the polar
grid.

The global SLL can be computed in the sequence. Its
maximum is the maximum value of the acoustic image
topology on the equi-rectangular grid excluding the MLW
contour for all identified sources, in dB. Its mean is the
mean of the acoustic image topology excluding the MLW
contour for all identified sources, in dB. A SLL may be
computed individually for each identified source. On a po-
lar grid, the maximum topology level can be tracked along
each radial angle ωi. A SLL image in polar coordinates is
obtained. Based on this image, maximum and mean SLL
may be computed as described in the above paragraph.

Assuming that the main-lobe follows a bi-variate nor-
mal distribution in θ − ϕ, a confidence interval centered
at the peak of this distribution can be estimated in the
form a covariance ellipse with orthogonal maximum and
minimum variations. Modifying the method discussed in
Brooks [13], who proposes a general covariance estimation
method for vision systems, the principal axes and orienta-
tion of the ellipse can be computed from the eigenvalue de-
composition of the following positive semi-definite (hence
symmetric for real numbers) covariance matrix:

Σθ,ϕ(θs, ϕs) =
1

Ê2
θÊ2

ϕ − ÊθEϕÊϕEθ

[
Ê2

θ ÊϕEθ

ÊθEϕ Ê2
ϕ

]
,

(11)
where Ê denotes the directional variance of a locally nor-
malized distribution computed for a certain source located
in (θs, ϕs). The directional variance is computed, for in-
stance, in the θ direction of an equi-rectangular spherical
mesh as:

Êθ(θs, ϕs) =
∑

(i,ii)∈MLWs

1√
2πσ2

e−
γ2(ki∆θ,ii∆ϕ

,kθs,ϕs)
2σ2

×Eθ(θs + i, ϕs + ii),
(12)

and is analogous in the ϕ direction. γ is the aperture angle
between two unitary orientation vectors k computed us-
ing grid coordinates. The computation is done on the zone
interior to the MLW contour (derivative zero) with i and
ii being grid counters representing grid coordinates angles
in θ and ϕ, respectively. σ is the angular standard devia-
tion and can be estimated as 1/3 of the MLWγ (derivative
zero) (Equation 9). Eθ is the gradient matrix of E in θ. E
is the beamformer response (image value) in θ − ϕ nor-
malized between 0 (lowest valley) and 1 (highest peak).
The gradient captures the concept that the source is best
and worst located in the directions of maximum and min-
imum changes on the acoustic image, respectively. The
size of the ellipse is proportional to the MLWγ (deriva-
tive zero), which defines the standard deviation, and the
MLWγ (dB attenuation). The MLWγ (dB attenuation) is

inversely proportional to the gradient, or inversely propor-
tional to the source level and directly proportional to the
SLL.

3. NUMERICAL RESULTS

3.1 Definition of microphone array geometries

It was decided that the microphone array should have
M = 18 microphones and L = 0.4 m in diameter. A
regular and a non-optimized random microphone distribu-
tion were defined as basis of comparison. Then, single and
multi-objective optimization routines using genetic algo-
rithms were set in order to obtain the best possible micro-
phone distribution on the defined sphere according to the
geometric criteria.

Also, for the experimental work, a spherical micro-
phone array support of 15 cm in diameter had to be used:
the 18 microphones are mounted on aluminum rods of ap-
proximately 7.5 cm in length, which can be screwed to 252
different threaded hole positions on the support surface.
In order to optimize the microphones distribution in this
configuration, single and multi-objective integer/discrete
genetic algorithm optimization routines were coded. At
each GA generation, the code considers a continuous dis-
tribution from 1 to 252 that maps the coordinates of the
threaded holes of the support, for computational purposes.
Then, it performs an unbiased truncation of this continu-
ous mapping to integer numbers. This coding technique
allows multi-objective integer/discrete optimization using
GA, which is not available in most commercial algorithms.

In total, 9 microphone arrays geometries were defined.
Their nomenclature, distribution and characterization ac-
cording to the geometric criteria are depicted in Fig. 5.

Figure 5. Microphone array geometry distributions.

For the single-objective optimization, the mean real cri-
teria improvement varied from 15% (discrete Γ) to 52%
(continuous Γ) with respect to the random arrays. For the
multi-objective optimization, it provided improvements on
the order of 35 − 10% for D − Γ, respectively, in the dis-
crete case and 30% for both D− Γ in the continuous case.
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3.2 Implementation of the segmentation and
localization methods

For better understanding and first validation of the segmen-
tation and localization methods, the solutions proposed
in 2.4 are tested on an image created from 4 randomly dis-
tributed, wide-band and uncorrelated monopoles of iden-
tical levels and distances to microphone array ‘continu-
ous optimized D’. AM and GM acoustic images are tested
with gray-scale images obtained from linear and logarith-
mic versions of the original acoustic image. Results are
depicted on Fig. 6 and Fig. 7.

Figure 6. Source localization using different segmentation
strategies and GCC-PHAT-AM images. (a) GCC-PHAT-
AM. (b) Segmented image using h - minima transform. (c)
Localization obtained from binarization of (b). (d) Image
(a) in gray-scale. (e) Otsu segmentation of image (d). (f)
Bradley segmentation of image (d). (g) Linear version of
image (a) in gray-scale. (h) Otsu segmentation of image
(g) and localization. (i) Bradley segmentation of image
(h) and localization. (j) Regularized Otsus’ segmentation
of image (g) and localization. (k) Regularized Bradleys’
segmentation of image (g) and localization.

As shown in Fig. 6 (c), a supervised method success-
fully segments and locates all sources if the threshold h is
correctly estimated by the user. On the other hand, an un-
supervised method may be deployed segmenting gray im-
ages ( Fig. 6 (e) and (g)) into binary images ( Fig. 6 (e-f),
(h-i) and (j-k)).

In the case of GCC-PHAT-AM images, segmentation
and localization are poorly achieved in log-scale gray im-
ages with Otsus’ method: in Fig. 6 (e), the poor segmen-

Figure 7. Source localization using different segmentation
strategies and GCC-PHAT-GM images. (a) Acoustic im-
age. (b) Segmentation obtained from log-scale image with
regularization and localization. (c) Segmentation obtained
from linear-scale image without regularization and local-
ization.

tation is due to the small and spatially variant level dif-
ferences between classes (large and variable SLL causing
‘non-uniform illumination’) on the image. More generally,
the logarithmic operation reduces the mean level difference
between the classes on the image (they present larger SLL)
and the variance of each class becomes too high due to
side-lobes and noisy (irregular) background. Unde these
conditions, the image does not present a bimodal distribu-
tion.

On the other hand, segmentation and localization via
Otsus’ method are more effective on linear-scale gray im-
ages and may be further improved with regularization.
Regularization is a common technique in image segmen-
tation and consists in whitening very small dark con-
nected areas of the segmented image for which surfaces
are smaller or equal than a certain percentage of the full
image surface. It is proposed a regularization of 0.1%, for
which the localization is optimal without risk of missing
the localization of potential sources (false-negatives).

In the case of GCC-PHAT-GM images, image segmen-
tation via Otsus’ method is also more effective because the
GM operation reduces side-lobes and noisy background.
Classes variances are reduced. On linear-scale GM images
the variances are sufficiently small and the quality of the
segmentation is good enough so that regularization is not
necessary: in Fig. 7 (b), only 1 false-positive is obtained.

The Bradleys’ method is deployed using a kernel size
n = 23◦ and sensitivity t = 10%, values that are of stan-
dard usage in the literature. In practice, the size of the
kernel is a conservative estimation of the MLW so that the
source can be fitted inside the kernel. This choice reduces
the sensitivity of the segmentation to noise.

Even under the presence of ‘non-uniform illumination’
due to side-lobes, segmentation and localization are in gen-
eral successful on GCC-PHAT-GM and GCC-PHAT-AM
linear-scale images with Bradleys’ method: the segmenta-
tion is successful in Fig. 6 (k) and Fig. 7. 3 false-positives
are detected in Fig. 6 (i). However, the localization can be
easily improved with regularization.

The superior performance can be explained with two
arguments: first, the images contain dominant background
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pixels and distributed foreground and second, the level dif-
ference between foreground and side-lobes is sufficiently
high so that the images can be successfully segmented. The
last point is not true for GCC-PHAT-AM log-scale images
(Fig. 6 (f)): the image cannot be properly segmented using
conventional settings because of the noisy background. In
such cases a better performance may be achieved reducing
the sensitivity (increasing t) at the expense, for a certain
threshold, of a higher probability of false-negatives detec-
tion. A second but not recommendable solution would be
to increase the amount of regularization on the image.

3.3 Metrics extraction of a monopole, a dipole and a
vibrating panel on the center of the image

Three numerical experiments with sources radiating on a
free-field, centered and 5 m from the array are carried in
order to demonstrate the ability of the proposed metrics to
diagnose point from extended sources or omnidirectional
from directional sources. The metrics can be automatically
computed once the the source localization is obtained us-
ing unsupervised or supervised localization methods.

Fig. 8 is the acoustic image obtained from the radiation
of a pulsating sphere. Fig. 9 is the acoustic image obtained
from the radiation of two very close pulsating spheres in
phase opposition and with the same level in the micro-
phone array as in Fig. 8. This source presents an ideal
dipole directivity pattern with maximum radiation atten-
uation in the direction orthogonal to the main radiation
axis. The main radiation axis presents a pattern similar to a
monopole and therefore is not here analyzed. These mod-
els were validated experimentally presenting good agree-
ment with acoustic images obtained from a B&K 4295 om-
nidirectional source, baffled and unblaffed speakers. How-
ever, a real dipole obtained from an unblaffed speaker
presents limited attenuation in the orthogonal direction and
the presence of two sources as in Fig. 9 is not observed.

Fig. 10 is the acoustic image obtained from the radi-
ation of a vibrating aluminum panel (0.6 m in azimuth,
0.55 m in elevation, 6 mm thickness and damping coef-
ficient of 4%) facing the microphone array excited by an
wide-band distributed force. It is obtained solving the vi-
broacoustic model of a panel and the Rayleigh integral
equation in the frequency domain [14]. Vibrational and
a acoustical parameters of this numerical model were vali-
dated with the literature [15]. Due to memory limitations,
the sampling rate used in this analyze was Fs=8192 Hz.
The panel presents a wide-band radiation pattern with a di-
rectivity pattern (evaluated in wide-band and using SPL)
almost omnidirectional but with stronger radiation in the
direction orthogonal to the panel. An acoustic image of
a monopole with same level and processing parameters
is obtained in Fig. 10 (e). The images are obtained us-
ing the GCC-AM because, due to the distributed nature of
the source, it is more realistic to analyze metrics computed
from a method that preserves images’ absolute levels.

Figure 8. GCC-PHAT-AM image with a monopole on
the center. (a) Acoustic image, microphones distribu-
tion (‘Regular’) and source location. (b) MLW (derivatize
zero). (c) MLW (dB attenuation) for various attenuations.
(d) Amplified covariance ellipse for various σ. (e) Front-
side and back-side of SLL in polar plot.

4. CONCLUSION

It was proposed a method for unsupervised multiple sound
source localization based on the segmentation principle
of acoustic images. The best results are obtained with
Bradleys’ method and GCC-PHAT-GM. In the oral presen-
tation we will support the affirmation that these methods
work either numerically and experimentally with multiple
sources at different levels and acoustic conditions. It will
be discussed the positive impact of optimized microphone
arrays on the method.

It was proposed a method to compute the MLW and the
SLL that consider the spherical property of acoustic im-
ages and that is directionally invariant, i.e., it does not priv-
ilege user-defined analysis directions. It is demonstrated
that the proposed metrics are capable to diagnose point
from extended sources or omnidirectional from directional
sources. In the oral presentation we will support the affir-
mation that optimized arrays tend to present larger MLW
but smaller SLL, which is beneficial for segmentation and
unsupervised localization.

Extensive results related to this research are available
in the authors’ thesis [16]. It is also part of the USPTO
provisional patent application entitled ‘System and method
for tridimensional sound source diagnosis, localization
and directivity reconstruction’ and another conference pa-
per [17].
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Figure 9. GCC-PHAT-AM image with a dipole radiating
along elevation on the center. (a) Acoustic image, micro-
phones distribution (‘Continuous optimized D’) and source
location. (b) MLW (derivative zero). (c) MLW (dB attenu-
ation). (d) Amplified covariance ellipses.
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