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Non-linear CFL Conditions Issued from the von Neumann
Stability Analysis for the Transport Equation

Erwan Deriaz

Abstract
This paper presents a theory of the possible non-linear stability conditions encountered in
the simulation of convection dominated problems. Its main objective is to study and justify
original CFL-like stability conditions thanks to the von Neumann stability analysis. In par-
ticular, we exhibit a wide variety of stability conditions of the type �t ≤ C�xα with �t the
time step, �x the space step, and α a rational number within the interval [1, 2]. Numerical
experiments corroborate these theoretical results.

Keywords CFL condition · von Neumann stability · Transport equation · Runge–Kutta
schemes · Finite differences · Turbulence

Introduction

This paper prospects the stability conditions coming from the vonNeumann stability analysis
of the transport equation with various finite difference discretizations. It provides a large vari-
ety of CFL-like stability conditions. These conditions observed in finite difference methods
[9] also apply to other numerical methods such as Discontinuous Galerkin [25], Continuous
Finite Elements [7,13] as well as Cartesian Level Set methods [10].

In the following we denote the time step by �t , the space step by �x and the velocity by
a. When a is omitted then�x stands for�x/a. The CFL condition, a physical criterion from
the founding paper [4] based on the influence areas of the points, asserts that the numerical
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simulation of a transport phenomenon at speed a has to satisfy �t ≤ C �x/a with C a
constant close to 1. It is a necessary condition for the numerical stability of explicit schemes.

Nevertheless, the linear CFL conditionmay not be sufficient to ensure the numerical stabil-
ity. Thanks to the von Neumann stability analysis [1], and allowing a controlled exponential
growth of the error, it is possible to establish stability conditions of the type�t ≤ C �xα with
α ∈ [1, 2] a rational number. This exponent α is given by α = p(2q−1)

q(2p−1) with p and q integers
such that q ≥ p > 0. This result was announced but not justified in [6]. Here we detail the
mathematical premise. Then we also prove and test these non-linear CFL conditions.

The organization of the paper is the following: in the first part we briefly review the
stability domain of the time schemes, mainly studied for the ordinary differential equation
theory and comprehensively presented in references [14,15], in the second part we discuss
the spectra of the finite difference approximations, in the third part, we combine these two
elements to make the stability condition �t ≤ C �xα appear, and in the fourth part we test
this condition numerically.

1 Stability Domain of the Time Schemes

Many of the time schemes used in Partial Differential Equations [11] were developed in
the frame of Ordinary Differential Equations [14,15]. We will briefly review the usual von
Neumann stability analysis of the schemes for ODE’s.

Let us consider the differential equation

∂t u = F(u), t ≥ 0. (1.1)

To solve this equation numerically, one can use an explicit one step scheme—i.e. a scheme
of Runge–Kutta type:

u(i) = un + �t
i−1∑

j=0

ai j F(u( j)), for 0 ≤ i ≤ s, and un+1 = u(s), (1.2)

where un is an approximation of the solution u at time n �t .
Or, one can use an explicit multistep scheme [20] which is written:

un+1 =
r∑

i=0

aiun−i + �t
s∑

i=0

bi F(un−i ). (1.3)

Depending on the choice of the coefficients ai j or ai and bi , the numerical scheme will have
a certain accuracy and certain stability features.

In order to derive the stability properties of these schemes it is usual to consider the
differential equation ∂t u = ζ u i.e. the case F(u) = ζ u with ζ ∈ C. Then the scheme (1.2)
satisfies

un+1 = G(z)un, (1.4)

where z = ζ �t . The polynomial function G is called the amplification factor.



For multistep schemes, the definition of the amplification factor has to be more general. Let

Xn =

⎛

⎜⎜⎜⎝

un
un−1

...

un−s

⎞

⎟⎟⎟⎠ , (1.5)

then the scheme (1.3) corresponds to Xn+1 = M(z)Xn , where M(z) is a (s + 1) × (s + 1)
matrix.As Xi+n = M(z)n Xi ,wewill be interested in the eigenvalues ofM(z) andparticularly
in the one with maximal norm. Hence, in the multistep case, |G(z)| stands for the maximum
of the norms of the eigenvalues.

In the theory of ordinary differential equations [14], the von Neumann stability domain
gathers all the points z ∈ C where the amplification factor is less than one:

D = {z ∈ C, |G(z)| ≤ 1}. (1.6)

In Fig. 1 we represented the stability domains of the first four Runge–Kutta schemes and
of a Runge–Kutta scheme of order 5 taken from the numerical analysis manual [5].

When we have to deal with partial differential equations, the semi-discretization of the
equations (only in space, and not in time), and their diagonalization (when it is possible)
stem to multiple ordinary differential equations. For instance, the transport equation on the
domain T = [0, 1] with periodic boundary conditions

∂t u + a∂xu = 0, (t, x) ∈ [0, T ] × T

for a ∈ R given and u : T → R the unknown, when using a Fourier spectral discretization
in space stems to

∂t û + iaξ û = 0, t ∈ [0, T ] (1.7)

for each wave number ξ ∈ 2π [−N/2, N/2] of the discretization

u(t, x) =
N/2∑

k=−N/2

û(t, k) e2iπkx

in the usual Fourier basis. Sowith this discretization, the time scheme is stable for the transport
equation if −iaξ ∈ D for ξ ∈ 2π[−N/2, N/2].

Hence the position of the domain D with respect to the y-axis near zero dictates the
behavior of the schemes for simulating transport-dominated equations. If ∂D goes to the
right (RK3, RK4) then the scheme is dissipative and stable when the stability domain D
encloses the segment iaπ�t[−N , N ]. Therefore it is stable under the linear CFL condition
�t ≤ C�x/a. If ∂D goes to the left (Euler, RK2, RK5) then the scheme is excitatory.
Therefore it calls a stronger CFL condition �t ≤ C(�x/a)α with α > 1 [3,6,8].

In Fig. 2 we show the stability domains of the first five Adams–Bashforth schemes.
According to the behavior of the tangencies along the y-axis, we can say that the schemes
AB3 and AB4 are stable under the usual linear CFL condition while the schemes Euler, AB2
and AB5 are not.

Figures 1 and 2 plot the boundary of the stability domainD, Eq. (1.6), for various classical
schemes. This curve corresponds to the set ∂D = {z ∈ C s.t. G(z) = eiθ , θ ∈ [−π, π]}. We
invert the relation G(z) = eiθ to parameterize the curve ∂D for small values of |z|:

z = G−1(eiθ ), θ ∈ R close to 0. (1.8)
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Fig. 1 Von Neumann stability domains for first five Runge–Kutta schemes. Left: on the half-plan. Right:
zooming in the x direction. The fifth order Runge–Kutta scheme is taken from [5]
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Fig. 2 Von Neumann stability domains for the first five Adams–Bashforth schemes. Left: on the half-plan.
Right: zooming in the x direction

In a neighborhood of zero, the boundary of D satisfies:

z = i(θ + o(θ)) − TDθ2p + o(θ2p), θ ∈ R close to 0. (1.9)

The parameters p ∈ N and TD ∈ R are computed from the coefficients of the polynomial
G(z) for the one step schemes Eq. (1.2), or by writing directly eiθ as an eigenvalue of M(z)
for the multistep schemes Eq. (1.3). We refer to [6] for more details.

2 Space Differentiation

2.1 Spectrum of the Discrete Differentiation

Finite differences originate from the approximation of functions by polynomials, with a first
appearance inNewton’s notes as early as the seventeenth century [17]. It was the first approxi-
mation used to solve Partial Differential Equations numerically, particularly in computational
fluid dynamics [19]. Following [22] which introduces to finite difference approximations, we
extract the important features of the numerical approximations regarding the CFL stability.
These are necessary to unwrap the non-linear CFL stability criteria.



We consider the problem of approximating the pointwise differentiation of a function.
This operation modifies the spectrum of the differential operator—contrarily to a spectral
discretization. Given a smooth function u : R → R discretized on a regular space grid
{k �x, k ∈ Z}, we approximate ∂xu(x) for x ∈ �xZ using the points {x − m �x, . . . , x +
n �x} for m, n ∈ N—i.e. the stencil [-m,n]—by:

A u(x) = 1

�x

n∑

k=−m

aku(x + k �x) (2.1)

where the operator A denotes a discrete differentiation approximating ∂x .

The spectrum of A can be obtained by taking u(x) = e
iξ x
�x , then A u(x) = 1

�x A(ξ) u(x)
with

A(ξ) =
n∑

k=−m

ake
ikξ , ξ ∈ [−π, π]. (2.2)

We plot this spectrum on the plan of complex numbers by considering the curve

S = {A(ξ), ξ ∈ [−π, π]} ⊂ C. (2.3)

Since ak ∈ R for all k, we have A(−ξ) = A(ξ). Hence the curve presents an axial symmetry
along the x-axis.

To be consistent, the discrete differentiation A has to satisfy A u(x) = ∂xu(x) + O(�x)
i.e.

{∑
k ak = 0∑
k k ak = 1

which corresponds to

{
A(0) = 0
A′(0) = i

. (2.4)

The other interesting properties are listed below:

• the first and most important issue is the order of the approximation. An approximation
A is said to be consistent of order β > 0 if it satisfies

∃C > 0, ∀u ∈ C∞
0 , ‖∂xu − A u‖L2 ≤ C �xβ ‖∂β+1u‖L2 , (2.5)

• another important issue affects the stability with respect to the time integration: the
upwind or downwind feature of a scheme. A necessary condition for the time integration
to be stable is that the spectrum of the differentiation have no strictly positive real part
i.e. S ⊂ C

− = {ξ ∈ C,Re ξ ≤ 0}, see Fig. 3. For centered finite differences, we have
S ⊂ iR.

• and finally, another important issue, essential for the present article, regards the conser-
vativity of the space discretization. The conservativity of a differentiation is linked to the
tangency of its spectrum S to the y-axis:

A(ξ) = i (ξ + o(ξ)) − TS ξ2q + o(ξ2q) (2.6)

with q ∈ N
∗ and TS > 0.

The link between the tangency expression (2.6) and the conservativity goes as follows:
let us assume that we are using a differentiation A satisfying (2.6), then the method of
lines (i.e. considering exclusively the space discretization) transforms the transport equation
∂t u = ∂xu, into ∂t û(t, ξ) = �x−1A(ξ �x)û(t, ξ). The solution of this equation is given by
û(t, ξ) = exp(�x−1A(ξ �x)t)û(0, ξ). So, for �x → 0, according to (2.6), the damping of
the frequency ξ may be approximated by
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Fig. 3 Spectra of several finite difference schemes for space differentiation. These spectra have to be compared
with the domains of stability of the temporal schemes Figs. 1 and 2

|û(t, ξ)| = exp(−TS ξ2q �x2q−1 t + o(�x2q−1))|û(0, ξ)| (2.7)

= (1 − TS ξ2q �x2q−1 t + o(�x2q−1))|û(0, ξ)|. (2.8)

The multiplicative factor goes to 1 as fast as TS �x2q−1 goes to zero. Hence a larger q allows
a better conservation of the energy. Notwithstanding the time scheme, the frequency ξ will
be damped after a typical time tξ = 1/TS ξ2q �x2q−1.

This concerns the upwind differentiations as for instance the first order upwind scheme
with a0 = −1, a1 = 1 in (2.1) which is known to dissipate a lot. As we can see on Fig. 6, the
dark blue curve only retains a few coarsest Fourier modes. Symmetric schemes have their
spectra included in the y-axis (see Fig. 3 for second order centered scheme spectrum). Hence
they conserve the energy exactly [23]. On the other hand, as we can see on Fig. 8 they tend
to create spurious oscillations.

2.2 Most Conservative Differentiations

For further experiments, we look for discretized differentiationsAmaximizing the tangency
of the spectrum to the y-axis, i.e. maximizing the number q in the expression (2.6). From
(2.2), we deduce:

A(ξ) =
n∑

k=−m

ake
ikξ =

n∑

k=−m

ak
∑


≥0

(ikξ)



! =
∑


≥0

i



!

(
n∑

k=−m

akk



)
ξ
. (2.9)

Maximizing the order of the approximation is equivalent to solving the system of equations

n∑

k=−m

ak = 0 (2.10)



n∑

k=−m

k ak = 1 (2.11)

2 ≤ 
 ≤ s,
n∑

k=−m

k
ak = 0 (2.12)

for s = m + n, so this provides an order s approximation. A finite differentiation is stable
if its spectrum shows no strictly positive real part. If s is odd—i.e. with an even number
of points—one can notice that there is only one stencil providing an order s stable finite
differentiation, and if s is even, that there are two of them. For each s, one stable instance
corresponds to an upwind scheme, and the other—for s even—to a centered scheme.

In order to maximize the tangency of S to the y-axis, we extract the real part of the
polynomial expansion of A(ξ) (2.9). As a result, only the equalities (2.4) and (2.12) with
even parameter 
 = 2
′ enter into play:


 = 0,
n∑

k=−m

ak = 0 (2.13)


 = 1,
n∑

k=−m

k ak = 1 (2.14)

2 ≤ 2
′ ≤ 2(q − 1),
n∑

k=−m

k2

′
ak = 0 (2.15)

If a−k = −ak , then the scheme is centered and q = +∞. If it is not the case, then we have
an expansion of the type:

A(ξ) = i ξ + o(i ξ) +
(

(−1)q

(2q)!
n∑

k=−m

k2qak

)
ξ2q + o(ξ2q). (2.16)

From (2.9), the real part of A(ξ) is given by:

f (ξ) = Re(A(ξ)) = a0 +
N∑

k=1

(ak + a−k) cos(k ξ) (2.17)

with N = max(n,m) and (ak) completed by ak = 0 when k does not remain to the stencil.
In the following we consider that N = n. We maximize the number of vanishing derivatives
of f at zero, by taking

f (ξ) = −Km,n(1 − cos ξ)n, (2.18)

with Km,n a positive constant for n ≥ m. With this choice, q = n in the expansion (2.16).

Remark 1 This form for the real part of A(ξ) maximizes the tangency to the y-axis. And,
since it does not contain any strictly positive value, it provides a stable upwind differentiation.

For m = 0, this leads to the unique solution K0,n = 2n−1

Cn−1
2n−2

, a0 = − Cn
2n

2Cn−1
2n−2

and ak =
(−1)k+1 Cn+k

2n

Cn−1
2n−2

for k ≥ 1 [12].

For the further numerical experiments, wewill be using the casem = n−1withmaximum
order of approximation (i.e. order s = 2n − 1), leading to the coefficients of Table 1 for a
velocity going from the right to the left: ∂t u + a ∂xu = 0 with a < 0.



Table 1 Upwind finite difference
coefficients (ak )k∈[−m,n] for
several stencils [−n, n + 1]. The
resulting orders of approximation
are equal to 2q − 1

k −4 −3 −2 −1 0 1 2 3 4 5
q

1 −1 1

2 − 1
3 − 1

2 1 − 1
6

3 1
20 − 1

2 − 1
3 1 − 1

4
1
30

4 − 1
105

1
10 − 3

5 − 1
4 1 − 3

10
1
15 − 1

140

5 1
504 − 1

42
1
7 − 2

3 − 1
5 1 − 1

3
2
21 − 1

56
1

630

Remark 2 For a finite number of points N with periodic boundary conditions, the Fourier

modes of the simulation e
iξ x
�x form a discrete set with {ξ = π k

N , −N + 1 ≤ k ≤ N }. We
plotted the spectra of the discretized operators A applied to these modes in Fig. 3.

3 Stability Condition1t ≤ C 1x˛ with˛ > 1

The partial differential equation (1.7) has solutions of the type u(t, x) = f (x − at). So in
particular for ξ ∈ R we have as a solution, the wave function

u(t, x) = u0e
iξ(x−at).

Discretized with �x and �t , xk = k�x and tn = n�t , for un(xk) = u(tn, xk) = eiξ(xk−atn)

the numerical scheme provides un+1 = g(ξ,�t,�x)un . Following [21], the scheme is
stable under the condition |g(ξ,�t,�x)| ≤ 1 + C�t with C ≥ 0 a constant which limits
the exponential growth of the numerical solution:

‖un‖ ≤ |g(ξ,�t,�x)|n‖u0‖ ≤ (1 + C�t)(tn/�t) ‖u0‖ ≤ eC tn‖u0‖. (3.1)

We concentrate on the module of g(ξ,�t,�x) but numerical accuracy also depends on its
phase −iξω(ξ,�t,�x)�t defined by

g(ξ,�t,�x) = |g(ξ,�t,�x)|e−iξω(ξ,�t,�x)�t

and how close ω(ξ,�t,�x) remains to a.
Considering Eq. (3.1), we notice that the case C > 0 is more permissive than the case

C = 0. The case C > 0 is actually encountered in numerical simulations and allows to
explain more accurately some actual stability phenomena. Then we deduce the following
result which links the non linear CFL condition to the stability domain of the time scheme
and to the spectrum of the discrete differentiation applied to the space variable:

Theorem 3.1 Let us consider a numerical solver for the transport equation ∂t u + a ∂xu = 0
using finite differences with time step �t and space step �x. If, close to zero, the boundary
of the stability domain of the time integrator—noted D in (1.6)—satisfies:

∂D : z = i(θ + o(θ)) − TDθ2p + o(θ2p) (3.2)

for p ∈ N and TD > 0, and if the spectrum S = {A(ξ), ξ ∈ [−π, π]} of the discrete
differentiation—from (2.3)—satisfies:

S : z = i(θ + o(θ)) − TSθ2q + o(θ2q) (3.3)
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8
7

6
5

4
3

1

α

...
2

... ...

for q ∈ N and TS > 0, then the von Neumann stability condition

‖un+1‖L2 ≤ (1 + C�t)‖un‖L2 (3.4)

of the numerical solution (un) is given by

�t ≤ C ′�xα (3.5)

with C ′ > 0 a constant independent of �t and �x and with

• α = 1 if q ≤ p (stable under linear CFL condition),
• α = p(2q−1)

(2p−1)q ∈ (1, 2] if q > p, and in this case, the constant C ′ from (3.5) is written:

C ′ = C
q−p

q(2p−1)
T

p
q(2p−1)
S

T
1

2p−1
D

((
p

q

) p
q−p −

(
p

q

) q
q−p

)− q−p
q(2p−1)

, (3.6)

with p and TD from (3.2), q and TS from (3.3) and C from (3.4).

Remark 1 Ifq = +∞ (centered schemes, spectralmethod) itmakes appear the case presented
in [6] for conservative space discretizations: α = 2p

2p−1 .

Remark 2 The localization of all possible values of α is plotted in Fig. 4. It consists in
accumulations from the left to the points of the sequence (

2p
2p−1 )p≥1. This sequence itself

has an accumulation point at 1, from the right.

Remark 3 This result also applies to other schemes than finite differences. Following Cock-
burn et al. [2], a Discontinuous Galerkin method combining a second order upwind scheme
in space (q = 2) with a forward Euler scheme in time (p = 1) turns out to be stable under the
condition �t ≤ C�xα (3.5) with the exponent α = 3

2 , which explains why this numerical
scheme “is stable if �t

�x is of order
√

�x”.

Proof We prove Theorem 3.1 directly by computation. It also corresponds to geometrical
considerations: the spectrum �t

�x × S must not get out of the domain of stability D by more
than C�t , see Fig. 5.

Geometrically, if q ≤ p and S∩ iR = {0} then for τ = �x
�t sufficiently small the spectrum

τS fits inside the stability domain D.
Let us consider the case q > p. The demonstration relies on the same computations as

the demonstration of Theorem 3.1 of [6]. The tangency of the stability domain to the y-axis,
Eq. (3.2), corresponds to an amplification factor

G(z) = β0 + β1z + β2z
2 + · · · such that |G(i ζ )|2 = 1 + 2TDζ 2p + o(ζ 2p) (3.7)

for ζ ∈ R close to zero. We assume the convergence of this power series, hence G(z) =
G0(z) + o(|z|2p) with G0 a polynomial.

We are interested in the case that deviates a little from the spectral case z ∈ i R, and we
need to compute |g(ξ,�t,�x)| = |G( �t

�x A(ξ))| for A(ξ) = iξ − TSξ2p + o() /∈ i R. We



2

near 0

homothety by

Time scheme stability domain

domain

Spectrum of the upwind differentiation

near 0

x=−K  y1
2p

2q−1
x=−K  y /τ2q

τ Δ=   t/ xΔ

stability
to the
spectrum
from the
distance
Maximal

tΔ< C

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 −0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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put τ = �t
�x . Then τ A(ξ) = a + i b with a = τ Re(A(ξ)) = −TSτ ξ2q + o(τ ξ2q) and

b = τ Im(A(ξ)) = τ ξ + o(τ ξ) for ξ → 0. As τ → 0 and ξ → 0, a and b tend to zero with
a = o(b). Given that β0 = β1 = 1, we can write

G(a + i b) = 1 + (a + i b) + β2(a + i b)2 + · · · + β2p(a + i b)2p + o(|z|2p) (3.8)

then

|G(a + i b)|2 = (1 + a + β2a
2 − β2b

2)2 + (b + 2β2a b)
2 + · · · + o(b2p) (3.9)

= 1 + 2a − 2β2b
2 + · · · + b2 + · · · + o(a) + o(b2p) (3.10)

As all the terms am+1bn are negligible with respect to a for m + n > 0, then

|G(a + i b)|2 = |1 + (a + i b) + β2(i b)
2 + β3(i b)

3 + · · · |2 + o(a) + o(b2p) (3.11)

= (1 + a − β2b
2 + β4b

4 + · · · )2 + (b − β3b
3 + · · · )2 + o(a) + o(b2p)

(3.12)

= 1 + 2a + (1 − 2β2)b
2 + · · · +

⎛

⎝
2
∑

j=0

(−1)
+ jβ jβ2
− j

⎞

⎠ b2
 + · · ·

+ o(a) + o(b2p) (3.13)

= 1 + 2a + 2TDb2p + o(a) + o(b2p) (3.14)

Now, using the fact that a = −TSτ ξ2q + o(τ ξ2q), ξ ∈ [−π, π], and b = τ ξ + o(τ ξ), we
look for the maximal value of:

f (τ, ξ) = 1 − 2TSτ ξ2q + 2TDτ 2pξ2p = |G(τ A(ξ))|2 + o(τ ξ2q) + o(τ 2pξ2p)

(3.15)

This maximum is reached for

ξ = ξ0 =
(
p TD
q TS

) 1
2(q−p)

τ
2p−1
2(q−p) (3.16)



then

|G(τ A(ξ0))|2 = 1 + 2
T

q
q−p
D

T
p

q−p
S

((
p

q

) p
q−p −

(
p

q

) q
q−p

)
τ

p(2q−1)
q−p + o(τ

p(2q−1)
q−p ). (3.17)

Hence, knowing that τ = �t
�x , the von Neumann stability condition |G(τ A(ξ0))|2 ≤ 1 +

2C �t is given by

(
�t

�x

) p(2q−1)
q−p ≤ C

T
p

q−p
S

T
q

q−p
D

((
p

q

) p
q−p −

(
p

q

) q
q−p

)−1

�t (3.18)

i.e. by the condition �t ≤ C ′ �xα (3.5) with α = p(2q−1)
(2p−1)q and C ′ given by (3.6). ��

4 Numerical Experiment

We test the stability predictions (3.5) of Theorem 3.1 on the simplest case of hyperbolic
equation. On the interval [0, 1] with periodic boundary conditions denoted T, we simulate
the transport of a function f : T → R by a constant speed, i.e. we solve ∂t u = −∂xu for
(t, x) ∈ [0, 5] × T where

u :[0, 5] × T → R

(t, x) �→ u(t, x)

with initial condition u(0, x) = f (x) and periodic boundary condition u(t, 0) = u(t, 1).
During this process, the function f makes five laps, and the exact solution at time t = 5 is:
u(5, x) = f (x).

This (rather simple) experiment accounts of numerous simulations where the transport
dominates the stability properties of the numerical solution. We apply an explicit scheme of
Runge–Kutta type with time step �t to the PDE ∂u = F u:

un+1 = un + b1�t F (un + b2�t F (un + . . . bs−1�t F (un + bs�t F un) . . . )) (4.1)

where the parameters (br )1≤r≤s are chosen according to the desired amplification factor. The
coefficients β
 of the amplification factor (3.7) are given by:

β
 =

∏

k=1

bk .

We couple this time integration with the finite differences from Sect. 2.1. And we use the
spacing �x = 1

N between the N points of the discretization. So it allows to observe the
effects of the parameters p—regarding the time integration—and q—regarding the finite
differences—on the stability condition �tmax(�x) and to evidence the exponents of Table 2.

For simplicity reasons, we apply second order Runge–Kutta schemes which maximize p
and whose coefficients are given by Table 3.

We simulate the transport of the function f (x) = x which presents a discontinuity at x = 0
by a constant velocity. Then, in Fig. 6, we represent the Fourier transform of the numerical
solution at time t = 5 obtained using the second order Runge–Kutta integration scheme in
conjunction with several finite difference approximations. Three typical cases appear, using
a linear CFL condition:



Table 2 Table of the exponents

α = p(2q−1)
q(2p−1) expected for the

non-linear CFL stability
condition �t ≤ �xα

q 1 2 3 4 5 +∞
p

1 1 3
2

5
3

7
4

9
5 2

2 1 1 10
9

7
6

6
5

4
3

3 1 1 1 21
20

27
25

6
5

4 1 1 1 1 36
35

8
7

Table 3 Table of coefficients br
forming the numerical schemes
(4.1) with parameters
p = 1, 2, 3, 4 regarding the
tangency property (3.2)

r 1 2 3 4
p

1 1

2 1 1
2

3 1 1
2

1
4

4 1 1
2

2−√
2

2
2−√

2
4

– the numerical scheme is stable but the high frequencies are dumped, e.g. second order
Runge–Kutta time scheme with a second order upwind space differentiation (p = 2 and
q = 2, see Fig. 6), or every third or fourth order Runge–Kutta time schemes,

– an instability occurs at high frequency ξ = π N
2 , e.g. Euler or Runge–Kutta 2 in associ-

ation with centered finite differences (see Figs. 6, 8),
– an instability occurs at low frequency ξ = C N−1/2q N , q ≥ 2 (see Fig. 6), e.g. Euler

with upwind of order two, Runge–Kutta 2 with upwind of order greater or equal to four
(see Figs. 7, 8). It can be checked that an order 2n scheme has a tangency parameter q at
least equal to n + 1 as indicated in Theorem 3.2 of [6].

In Figs. 6, 7 and 8, the number of points was chosen equal to N = 271, and the time step
equal to 5

6�tmax with �tmax coming from the second experiment equation (4.2).
In Fig. 6 we can observe the spectra of the transported function with six different finite-

difference schemes. The corresponding physical results are plotted in Figs. 7 and 8.We remark
that all the numerical solutions present spurious oscillations except when using the upwind
order one differentiation. While the centered finite differences allow the best conservativity
as seen in Fig. 6, they also alter the aspect of the solution dramatically as seen in Fig. 8,
whatever explicit time scheme we choose. This is due to the Gibbs phenomenon and is not
related to any stability issue.

Now, let us check the relevance of the stability condition (3.5). For different space steps
�x = 1

N , we compute the maximal time steps �tmax such that

∀�t ≤ �tmax, ∀n ≤ 5

�t
, ‖un‖TV ≤ 4 ‖u 1

�t
‖TV. (4.2)

where the constant 4 is arbitrary, and the solution at time t = 1, u 1
�t

chosen so that the Gibbs
phenomenon does not interfere with stability issues.
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Fig. 6 Fourier transform û(5, ξ) of the numerical solution obtained with a second order Runge–Kutta time
scheme with p = 2 and various finite difference differentiations: upwind schemes of orders 1, 3, 5, 7 and 9
(q = 1, 2, 3, 4, 5), and centered scheme (q = +∞)
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Fig. 7 Physical result of the transport of a discontinuous function using 2nd order Runge–Kutta and upwind
of orders 1, 3 and 5 finite differences (q = 1, 2, 3) after five loops: u(5, x)

We plot the results for various values of p and q in Figs. 9, 10 and 11, taking as an initial
condition the continuous function:

f (x) =
⎧
⎨

⎩

5x for x ≤ 1
5 ,

2 − 5x for x ∈] 15 , 2
5 ],

0 for x > 2
5

(4.3)
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Fig. 8 Physical result of the transport of a discontinuous function using 2nd order Runge–Kutta and 7th order
upwind (q = 4) and centered (q = +∞) finite differences
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Fig. 9 Numerical experiment with p = 1 and various q. The x-axis figures the number N of points in the
space discretization, the y-axis, the time step �tmax in log-scale. The dotted lines represent the theoretical
slopes �t = O(N−α)

This experiment corroborates our approach: although the initial condition and the divergence
criterion influence the slopes i.e. the exponent α, these are located only slightly above the
predicted ones, and their relative positions fit our predictions very well (Figs. 9, 10, 11).
Actually, the smaller and smaller initial value of the most excited mode when N increases
explains the shifting of the slope.
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Conclusion

The present paper explores in details the non-linear CFL conditions which may appear in
transport dominated simulations. It completes the previous paper [6] by proving and testing
the upwind Von Neumann stability condition: �t ≤ C �xα with C > 0 and α ∈ [1, 2]. The
numerical experiments meet our predictions accurately.

Although some CFL instabilities or more precisely exotic CFL stability conditions had
been observed previously [19], our precise stability assertions—Theorem 3.1—had not been



clearly established earlier [18,24]. These results help to select a time integration scheme:
for instance for someone using an upwind of second order, it is useless—from a stability
point of view—to go higher than the second order for the time integration. They also explain
some possible instabilities appearing in explicit hyperbolic numerical simulations: at high
frequencies using centered discretizations [19], and at low frequencies for upwind schemes
[2].

As presented in [8], it also helps to select a suitable time step for simulating the turbulence
if one is interested in capturing precisely the spectrumwhich characterizes the auto-similarity
of the turbulence e.g. the − 5/3 Kolmogorov Law [16]. Then the non linear CFL condition
applies even though it is not necessary for the stability. It also explains why unstable second
order time schemes are so widely in use in Computational Fluid Dynamics [20,23]. The
excitatory time schemes such as Runge–Kutta 2 or Adams–Bashforth 2 are more adapted to
this kind of experiments because when they do not reconstruct the spectrum correctly (as �t
is not small enough) then they crash, while dissipative schemes such as Runge–Kutta 3 or
Adams–Bashforth 3 do not crash but provide with biased spectra.

Data Availibility The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.
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