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Abstract

We describe the LORIA-Inria-MULTISPEECH system submit-
ted to the Oriental Language Recognition AP20-OLR Chal-
lenge. This system has been specifically designed to be robust to
unknown conditions: channel mismatch (task 1) and noisy con-
ditions (task 3). Three sets of studies have been carried out for
elaborating the system: design of multilingual bottleneck fea-
tures, selection of robust features by evaluating language recog-
nition performance on an unobserved channel, and design of the
final models with different loss functions which exploit channel
diversity within the training set. Key factors for robustness to
unknown conditions are data augmentation techniques, stochas-
tic weight averaging, and regularization of TDNNs with domain
robustness loss functions. The final system is the combination
of four TDNNSs using bottleneck features and one GMM us-
ing SDC-MFCC features. Within the AP20-OLR Challenge, it
achieves the top performance for tasks 1 and 3 with a Cgyg of
respectively 0.0239 and 0.0374. This validates the approach for
generalization to unknown conditions.

Index Terms: language recognition, channel mismatch, do-
main generalization

1. Introduction

Language recognition is the task of predicting the language used
in a test speech utterance [1]. State-of-the-art language recogni-
tion systems are based on the discriminative training of a deep
neural network [2] with multilingual bottleneck features [3].
They rely on automatic training and consequently highly de-
pend on the training dataset. A drop in performance is expected
from a domain shift of the test data, such as noise or channel
mismatch [4]. Various approaches have been introduced to re-
duce the impact of domain shift over language recognition sys-
tems: design of robust features [5, 6], data augmentation of the
training set [5, 7], feature-based adaptation [8] and model-based
adaptation of the classifier [6, 7, 9, 10].

The Oriental Language Recognition (OLR) Challenge has
been organized for the last five years with the goal of boosting
research on language recognition technology [11, 12, 13, 14].
The AP20-OLR edition [15] focuses on three tasks: cross chan-
nel language identification (task 1), dialect identification (task
2) and noisy language identification (task 3). The LORIA-Inria-
MULTISPEECH team focused on improving robustness to un-
known conditions in order to compete for task 1 (cross-channel
identification) and task 3 (noisy conditions). We did not partic-
ipate in task 2. This paper summarizes our research effort to-
wards the design of a robust language recognition recipe suited
for domain generalization.

Three sets of studies have been carried out to design a ro-
bust language recognition system. First, we designed a robust
frame-level bottleneck features extractor, with a recipe based
on an end-to-end speech recognition model. Then, in order

to simulate mismatched test conditions, we compared several
utterance-level classifiers trained with different recipes, without
using training data from the unknown channels, and evaluated
their performance on unknown channels. In the paper, we call
this step optimization for system robustness. Finally, we de-
signed a system combination strategy. We proposed to train
several models on a large dataset including data from unknown
channels, and merged their prediction in order to increase ro-
bustness. In the following, this step is called the final system
design. For each step specific training and testing sets have been
used.

The submitted system is the same for task 1 and 3. It is
constituted of the fusion of five models: one GMM model and
four TDNNS, trained with bottleneck features and different loss
functions. We propose a new recipe for training multilingual
bottleneck features from a Conformer model [16], artificial data
augmentation techniques abiding by the rules of the challenge
and stochastic weight averaging [17] to increase generalization
of the model. Other key factors that have been investigated
are the combination of models with different properties and a
duration-dependent calibration [18].

2. Dataset usage
2.1. Corpora

The rules of the challenge specify a limited set of corpora,
which can be used to develop the systems [15].The training
data contains 16 languages. The 10 traditional languages of the
OLR challenges are Cantonese (ct-cn), Mandarin (zh-cn), In-
donesian (id-id), Japanese (ja-jp), Russian (ru-ru), Korean (ko-
kr), Vietnamese (vi-vn), Kazakh (ka-cn), Tibetan (ti-cn), and
Uyghur (uy-cn). Only these languages are provided with tran-
scriptions in the sets AP16-OL7 and AP17-OL3. In addition,
recordings for three Chinese dialects are provided: Hokkien,
Sichuanese, and Shanghainese. Moreover, data from three non
target languages of previous evaluations are provided: Catalan,
Greek, and Telugu.

The sets containing recordings from unknown channels
are of key interest: AP19-OLR-dev-task2 and AP19-OLR-test-
task2. They only contain 6 languages: Japanese, Russian, Viet-
namese, Tibetan, Mandarin and Uyghur. In the paper, they are
referred to as the development languages. This means that we
do not have access to recordings from unknown channels for
three of the six languages of task 1: Cantonese, Indonesian
and Korean. Consequently, we designed a two-step strategy to
use this data from unknown channels first for evaluating perfor-
mance on unknown channels (optimization for system robust-
ness ) and then to increase the diversity of the training set (final
system design).

As mentioned before, the system has been designed in sev-
eral steps. Train, validation and test datasets used for each step
are described in Table 1 and explained below:



Table 1: Usage of datasets for each set of experiments. val.
refers to validation.

bottleneck | optimization final
Dataset features for system system
robustness design
AP16-OL7 train & val. | train & val. train & val.
AP17-OL3 train & val. | train & val. train & val.
AP17-test train & val. train & val.
train & val.
AP18-test test-2018 & match
AP19-dev-task2 dev-2019 mismatch
AP19-dev-task3 dev-2019 train & val.
AP19-test-task | est-2019 | tram & val
& mismatch
AP19-test-task2 test-2019 train & val.
AP19-test-task3 test-2019 train & val.
AP20-dialect train & val.

1. Training of bottleneck features. We use recordings from
the ten traditional languages with their transcriptions.

2. Optimization for system robustness. In order to repli-
cate the unknown channel evaluation conditions, we de-
sign systems using data from mobile channels only. We
evaluate them on three datasets: fest-2018 (with mobile
channel data), dev-2019 and test-2019 (with unknown
channel data). To focus on the channel mismatch prob-
lem, we only use the 6 development languages.

3. Final system design. At the final stage of training, once
we have selected training recipes robust to channel mis-
match, we increase further diversity of the training set
by adding data from unknown channels. We train the
system with 16 languages. This allows us to evaluate the
system for three different sets of languages: development
languages, languages of task 1 and languages of task 3.
We use two test sets: march (with only mobile channel
data) and mismatch (with unknown channel data).

‘When an original dataset is split into several datasets for our
experiments, we use speaker labels (when available) to ensure
that all recordings of the same speaker belong to the same set.

2.2. Data augmentation

To improve the robustness of the systems to mismatched con-
ditions, we train them with three data augmentation techniques.
To abide by the rules of the challenge [15], we do not use any
additional speech corpus and only use other files of the training
corpus or artificial noise or filters. The three data augmentation
methods are: addition of white noise, addition of babble noise
(sampled by mixing other files of the training set) and convolu-
tion with random artificial band-pass filters.

3. Frame-level features

We explored two kinds of frame-level features during the chal-
lenge: spectral features and bottleneck features (BNF). We also
used specific SDC-MFCC features for the GMM model.

3.1. Spectral features

Mel-filterbank features and mel-frequency cepstral coefficients
(MFCCs) were evaluated. When used without any domain ro-
bustness technique, restriction to the telephone bandwidth (300-

3800 Hz) was shown useful. No significant gain was achieved
by adding pitch features [19].

The Gaussian mixture model (GMM) system employs
shifted delta coefficients (SDC) computed with short-term
MFCC features [20]. The MFCCs are extracted from speech
frames of 20 ms with shift of 50% and 16 filters in mel scale. We
process the extracted MFCCs with relative spectral (RASTA)
processing for removing slowly varying channel effect. Then
we compute SDCs with shift of three frames and a context of
seven frames to create 128-dimensional SDC-MFCC features.

For all systems, we applied an energy-based speech activity
detector (SAD) to discard the non-speech frames. Finally, we
found utterance-level cepstral mean and variance normalization
(CMVN) helpful for robustness of the TDNN models.

3.2. Bottleneck features

Multilingual bottleneck features [3] are very efficient frame-
level features for language recognition. Usually, forced align-
ment between frame-level acoustic features and transcriptions is
performed by an automatic speech recognition system for each
target language. Then simple neural networks are trained to
predict for each frame the assigned phone or triphone. An em-
bedding is extracted from an intermediate bottleneck layer of
the system.

In this work, we did not invest resources to develop an ac-
ceptable automatic speech recognition system for each target
language with the goal of performing forced phone alignment.
We simply trained a unique multilingual end-to-end speech
recognition system with the connectionist temporal classifica-
tion (CTC) loss [21], extending the idea of [22, 23]. We used
the Conformer architecture [16] with an output layer specific
to each target language, with 64 mel-filterbank features as in-
put. The ten traditional languages were used for training the
Conformer model. A sentence piece model [24] was estimated
on the training transcriptions to define 2000 target tokens for
each language. Finally we extracted frame-level embeddings
from a hidden layer of the Conformer model and used them as
language recognition features. We used a small Conformer en-
coder constituted of two blocks with four attention heads.

4. Neural network training

The utterance-level classification task can be performed by
a neural network. The standard time delay neural network
(TDNN) architecture for language recognition [2] was used in
this work. First the general training recipe was selected accord-
ing to experiments with the datasets defined for optimization
for system robustness. For this set of experiments, we kept data
from unkown channels for evaluation of the system. Then sev-
eral systems were trained using the datasets defined for the fi-
nal system design, with regularization loss functions that benefit
from training data from unknown channels.

4.1. Training recipe
The final training recipe includes:

« the cross-entropy (CE) loss function

* stochastic gradient descent with dropout [25]

* specAugment [26]

« the three data augmentation techniques (Subsection 2.2)

* stochastic weight average [17]. It consists in averaging
parameters of the model along the trajectory of the gra-
dient descent, instead of selecting the parameters corre-
sponding to the best validation loss.



4.2. Exploring other loss functions

In the last set of experiments, we used the final system design
datasets with training data from unknown channels. Conse-
quently, we trained systems with different loss functions to re-
duce the domain mismatch:

* additive angular margin softmax (AAM) [27] as an al-
ternative classification loss function , we used a margin
parameter m = 0.1 and a radius s = 40

* regularization of the cross-entropy with maximum mean
discrepancy (MMD) between mobile channel and un-
known channels [10], we compared different weights A
for the regularization loss functions

 regularization of the cross-entropy with n-pair loss [28]

5. Gaussian mixture model training

As an alternative utterance-level model, we chose the GMM-
based model as this gives promising language recognition accu-
racy for short test utterances [1]. This statistical approach was
also traditionally used in NIST language recognition evalua-
tions (LREs) and could be helpful by providing complementary
information to the neural network based methods. Language-
dependent GMMs are trained using 4096 mixture components
and ten iterations of the expectation-maximization (EM) algo-
rithm. During scoring, we compute the log-likelihoods corre-
sponding to each target language model separately.

6. Fusion and calibration

Standard linear multi-class calibration and score fusion are per-
formed for each task with the FoCal toolkit [29]. This step is
performed on the validation set defined for the final system de-
sign. The final scores are log-likelihood ratio.

For the selected final combination of systems, we imple-
ment a duration-dependent calibration procedure [18]. For three
ranges of duration (inferior to 2s, between 2 and 4s, superior to
4s), we learn specific fusion and calibration parameters. For test
utterances, the duration is estimated thanks to the energy-based
SAD module mentioned in Section 3.

7. Experiments

In this section, we report the main results that lead to the design
of the submitted system.

7.1. Bottleneck features training

We use the bottleneck features datasets. Models are compared
with the average CTC loss for the 10 target languages on the
validation set, cf. Table 2. We observe that the combination of
cepstral mean and variance normalization (CMVN), specAug-
ment and data augmentation allows to train better speech recog-
nition features. We call these features final BNF, as opposed to
the baseline BNF. We use the final BNF in the submitted sys-
tem.

Table 2: Automatic speech recognition performance in terms of
CTC loss for different training recipes

System name Training recipe CTC-loss on
validation set
baseline BNF | mel-filterbank features 3.94
+ CMVN 3.69
+ specAugment 3.52
final BNF + data augmentation 3.02

7.2. Optimization for system robustness experiments

During the optimization for system robustness experiments, we
train language recognition systems without using data from un-
known channels. Performance is measured with the equal error
rate (EER) on three test sets: fest-2018 (mobile channel), dev-
2019 and test-2019 (which contain recordings from unknown
channels), with the 6 development languages, cf. Table 3. We
use a TDNN with the recipe described in Section 4, with differ-
ent frame-level features and model selection strategies.

The experiments demonstrate the superiority of the trained
bottleneck features over mel-filterbanks and MFCCs. Final
BNF are superior to baseline BNF for the challenging dev-2019
set. Finally, stochastic weight averaging is superior to model se-
lection based on the best validation loss. We observed the same
behavior for all models. In the following, stochastic weight av-
eraging is applied to all models.

7.3. Final system design experiments

To design the final system we train various models with a large
dataset containing data from 16 languages, including record-
ings from unknown channels. We calibrate them on the corre-
sponding validation datasets and evaluate them on two datasets
in terms of Cavg [15]: match (with mobile channel data only),
mismatch (with some unknown channel recordings). Evaluation
is performed for two sets of languages corresponding to task 1
and task 3. Results are presented in Table 4.

For comparison, we also present the performance obtained
with a TDNN trained with cross-entropy loss on the optimiza-
tion for system robustness datasets. All other models are trained
with the final system design datasets and achieve better perfor-
mance. Among the individual models, the best performance
on unknown conditions is achieved by the TDNN trained with
AAM loss. TDNNs trained with regularization loss functions
(MMD and n-pair) do not improve on the test sets but the perfor-
mance gap between known and unknown channels is reduced.
Finally, the GMM model achieves the best performance on
matched conditions but is very sensitive to channel mismatch.

Then, starting with the model with best performance, we
greedily add models to the final system.We select the combina-
tion of five systems: four TDNNs based on BNF trained with
additive angular margin softmax, regularization with maximum
mean discrepancy with low and high weight values (), regular-
ization with n-pair loss and one GMM model.

For known conditions, the best performance of individual
systems is achieved by the GMM model (2.53% for task 1).
Fusion with the TDNN trained with AAM helps to improve
performance (1.54 %) but the addition of three other TDNNs
trained with domain robustness objectives does not improve fur-
ther (1.53%). Conversely, for unknown conditions, the TDNN
trained with AAM is better than the GMM model (5.34% in-
stead of 10.82% for task 1). The fusion of both is also help-
ful and the fusion with three other robust models allows an
additional gain in performance (3.67%). Even if the models
trained with regularization loss functions achieve a weak indi-
vidual performance, they are designed to be robust to channel
mismatch and are therefore useful on mismatched conditions
for fusion with the best models.

Finally, we learn the fusion and calibration parameters for
three different duration ranges. At test time, we use the fu-
sion parameters corresponding to the speech duration of the test
utterance. Since we had no information about durations of the
evaluation utterances, we assumed that this technique was safer,
even thought it was not beneficial for our test sets.



Table 3: Language recognition performance for system robustness experiments. Equal error rate (%) on test sets. All models are
TDNNs trained with the cross-entropy loss and data augmentation.

input features Model selection test-2018 | dev-2019 | test-2019
mel-filterbanks best validation loss 11.95 25.48 29.54
MEFCCs best validation loss 4.75 37.78 24.34
baseline BNF best validation loss 3.91 19.11 11.08
final BNF best validation loss 3.43 17.24 13.68
final BNF stochastic weight average 2.97 16.92 12.78

Table 4: Comparison of final systems in terms of Cqvg. Performance is measured on the three development sets of the final system
design step (validation, match and mismatch) and the evaluation sets (eval). The submitted system corresponds to the last row. It
achieves an EER of 2.47% on task 1 and 4.07% on task 3.

Task 1 (6 languages) Task 3 (5 languages)
models Cavg x 100 Cavg x 100

val. match mismatch eval | val. match mismatch eval

pytorch x-vector baseline [15] 13.21 7.15

< | CE, optimization for system robustness datasets | 3.94  5.60 10.30  4.96 | 3.48 5.91 9.25 4.02

2 CE, system design datasets 2.50 4.69 7.26 5.12 12.04 4.34 7.16 4.94

£ AAM 3.68 3.14 5.34 5.08|387 320 6.25 5.11

§ n-pair 3.22  5.73 7.25 7.52 | 2.58 5.14 7.36 5.70

= MMD A =1 3.18 5.39 7.87 5.54 | 293 4.99 8.31 5.58

2 MMD A = 100 4.01 5.89 7.60 7.61 | 3.76 5.24 7.29 5.80

- GMM 3.31 2.53 10.82 7.13 | 3.00 2.69 13.97  9.32

AAM - GMM 1.37 1.54 4.37 2.82 | 1.35 1.45 5.73 4.93

g AAM - GMM - MMD 100 0.98 1.57 3.91 247 | 1.00 1.60 4.96 3.82

'z AAM - GMM - MMD 100 - n-pair-MMD 1 | 0.93 1.53 3.67 2.28 1 0.97 1.60 4.54 3.71

= duration-dependent calibration 1.56 3.82 2.39 1.61 4.60 3.74
8. Analysis of the submitted system ct-cn2218 17 130 210 65 194 . 1549 352 67 8 403

Once labels of the evaluation sets have been released, we no-
tice that performances on the evaluation test sets of the sys-
tems trained with regularization loss functions are consistent
with performance on the mismatch set (see Table 4). The two
systems trained with the cross-entropy loss achieve a good indi-
vidual performance, presumably because of matched conditions
between the evaluation and training sets. The duration depen-
dent calibration method does not improve performance.

For both tasks we perform an analysis of the errors accord-
ing to the duration and estimations of signal to noise ratio (SNR)
and pitch. Unsurprisingly, we observe that performance im-
proves with duration and SNR. In addition, the submitted sys-
tem is more efficient for high pitch values (200-250 Hz) than
low pitch values (100-150 Hz).

Finally, for both tasks the errors are dominated by a few
language pairs, as can be observed on the confusion matrices of
Figure 1. A significant improvement in terms of Cqyg can be
expected by focusing on these specific language pairs.

9. Conclusion

The Oriental Language Recognition AP20-OLR Challenge was
a good opportunity to evaluate the domain generalization abil-
ity of training recipes of language recognition systems. In this
work, we propose a two-step strategy with the goal of optimally
using data from unknown channels during design of the sys-
tem. First, we design a robust recipe with a training set which
does not contain data from unknown channels and keep this data
from unknown channels for evaluation on mismatched condi-
tions. Then, we apply this recipe with a larger training set which
contains data from unknown channels and use loss functions
that enforce invariance between channels, for the few languages
for which unknown channel data is available.

idid 2 1799 17 3 7 2

jajp 10 1837 31 18 9
jajp| 94 5 2184 210 128 42
kokr 8 19 1914 3 17

ko-kr 0 2 7 1796 3 0

ru-ru, 0 40 3 1939 7

ru-ru 0 9 32 6 1798 0

language of test utterance
language of test utterance

zh-cn| 28 14 9 0 1792

vi-vn 168 2 4 19 7 1744

ct-cn id-id ja-jp ko-kr ru-ru vi-vn
detected languages detected languages

(a) Task 1 (b) Task 3

Figure 1: Confusion matrices of the submitted system on the
evaluation set (number of utterances). Multiple detections are
possible. Language labels are defined in Subsection 2.1. Col-
ored numbers correspond to a high number of errors.

ct-cn ja-jp ko-kr ru-ru zh-cn

The main difficulty of this challenge is generalization to un-
known conditions: new channel for task 1 and noisy conditions
for task 3. The analysis of our systems reveals that their per-
formances on our development sets are consistent with results
on the evaluation set for unknown channels.The final perfor-
mance of the submitted system (which achieved best perfor-
mance for tasks 1 and 3) validates our combination of robust
bottleneck features, data augmentation methods and domain ro-
bustness loss functions.
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