Thermal properties of TiNiSn and VFeSb half-Heusler thermoelectrics from synchrotron x-ray powder diffraction - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics: Energy Année : 2021

Thermal properties of TiNiSn and VFeSb half-Heusler thermoelectrics from synchrotron x-ray powder diffraction

Résumé

Half-Heusler (HH) alloys are an important class of thermoelectric materials that combine promising performance with good engineering properties. This manuscript reports a variable temperature synchrotron x-ray diffraction study of several TiNiSn- and VFeSb-based HH alloys. A Debye model was found to capture the main trends in thermal expansion and atomic displacement parameters. The linear thermal expansion coefficient α(T) of the TiNiSn-based samples was found to be independent of alloying or presence of Cu interstitials with αav = 10.1 × 10−6 K−1 between 400 and 848 K. The α(T) of VFeSb and TiNiSn are well-matched, but NbFeSb has a reduced αav = 8.9 × 10−6 K−1, caused by a stiffer lattice structure. This is confirmed by analysis of the Debye temperatures, which indicate significantly larger bond force constants for all atomic sites in NbFeSb. This work also reveals substantial amounts of Fe interstitials in VFeSb, whilst these are absent for NbFeSb. The Fe interstitials are linked to low thermal conductivities, but also reduce the bandgap and lower the onset of thermal bipolar transport.

Domaines

Matériaux
Fichier principal
Vignette du fichier
2021-070.pdf (1.03 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03228444 , version 1 (18-05-2021)

Identifiants

Citer

Daniella A. Ferluccio, Blair F. Kennedy, Sonia A. Barczak, Srinivas R. Popuri, Claire Murray, et al.. Thermal properties of TiNiSn and VFeSb half-Heusler thermoelectrics from synchrotron x-ray powder diffraction. Journal of Physics: Energy, 2021, 3 (3), 035001 (12 p.). ⟨10.1088/2515-7655/abf41a⟩. ⟨hal-03228444⟩
26 Consultations
50 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More