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Quadratic error bound of the smoothed gap and the restarted
averaged primal-dual hybrid gradient*

Olivier Fercoq'
May 18, 2021

Abstract
We study the linear convergence of the primal-dual hybrid gradient method. After a review of current
analyses, we show that they do not explain properly the behavior of the algorithm, even on the most
simple problems. We thus introduce the quadratic error bound of the smoothed gap, a new regularity
assumption that holds for a wide class of optimization problems. Equipped with this tool, we manage to
prove tighter convergence rates.
Then, we show that averaging and restarting the primal-dual hybrid gradient allows us to leverage
better the regularity constant. Numerical experiments on linear and quadratic programs, ridge regression
and image denoising illustrate the findings of the paper.

1 Introduction

Primal-dual algorithms are widely used for the resolution of optimization problems with constraints. Thanks
to them, we can replace complex nonsmooth functions like those encoding the constraints by simpler, some-
times even separable functions, at the expense of solving a saddle point problem instead of an optimization
problem. Then, this amounts to replacing a complex optimization problem by a sequence of simpler problems.
In this paper, we shall consider more specifically
min f(z) + fo(z) + g0g2(Az) . (1)
reX
where f and g are convex with easily computable proximal operators, A : X — ) is a linear operator and
f2 and g5 are differentiable with L; and L4« lipschitz gradients. To encode constraints, we just need to
consider an indicator function for g. When using a primal-dual method, one is looking for a saddle point of
the Lagrangian, which is given by

L(z,y) = f(z) + f2(x) + (Az,y) — 9" (y) — 95(y) - (2)

Of course, we shall assume throughout this paper that saddle points do exist, which can be guaranteed using
conditions like Slater’s constraint qualification condition.

A natural question is then: at what speed do primal-dual algorithms converge? This is trickier for saddle
point problems than when we deal with a problem which is in primal form only. For instance, if we just
assume convexity, methods like Primal-Dual Hybrid Gradient (PDHG) [5] or Alternating Directions Method
of Multipliers (ADMM) [14] can be very slow, with a rate of convergence in the worst case in O(1/vk) [1].
Yet, if we average the iterates, we obtain an ergodic rate in O(1/k). Nevertheless, it has been observed that,
except for specially designed counter-examples, the averaged algorithms usually perform less well that the
plain algorithm.
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This is not unexpected. Indeed, the problem you are interested in has no reason to be the most difficult
convex problem. In order to get a more positive answer, we should understand what makes a given problem
easier to solve than another. In the case of gradient descent, strong convexity of the objective function implies
a linear rate of convergence, and the more strongly convex the function, the faster is the algorithm. Strong
convexity can be generalized to the objective quadratic error bound (QEB) and the Kurdyka-Lojasiewicz
inequality in order to show improved rates for a large class of functions [4].

Before going further, let us discuss how one quantifies convergence speed for saddle point problems.
Several measures of optimality have been considered in the literature. The most natural one is feasibility
error and optimality gap. It directly fits the definition of the optimization problem at stake. However,
one cannot compute the optimality gap before the problem is solved. Hence, in algorithms, we usually
use the Karush-Kuhn-Tucker (KKT) error instead. It is a computable quantity and if the Lagrangian’s
gradient is metrically subregular [23], then a small KKT error implies that the current point is close to the
set of saddle points. When the primal and dual domains are bounded, the duality gap is a very good way
to measure optimality: it is often easily computable and it is an upper bound to the optimality gap. A
generalization to unbounded domains has been proposed in [24]: the smoothed gap, based on the smoothing
of nonsmooth functions [21], takes finite values for constrained problems, unlike the duality gap. Moreover,
if the smoothness parameter is small and the smoothed gap is small, this means that optimality gap and
feasibility error are both small. In the present paper, we shall reuse this concept not only for showing a
convergence speed but also to define a new regularity assumption that we believe is better suited to the
study of primal-dual algorithms.

Regularity conditions for saddle point problems have been investigated more recently than for plain op-
timization problems. The most successful one is the metric subregularity of the Lagrangian’s generalized
gradient [18]. It holds among others for all linear-quadratic programs [I7] and implies a linear convergence
rate for PDHG and ADMM, as well as the proximal point algorithm [20]. One can also show linear con-
vergence if the objective is smooth and strongly convex and the constraints are affine [10, 2, [16]. If the
function defined as the maximum between objective gap and constraint error has the error bound property,
then we can also show improved rates [19]. These result can also be extended to the coordinate descent
[25, [d]. Metric subregularity holds for a wide range of problems that includes all piecewise linear-quadratic
functions. The other assumptions look more restrictive because they require some form of strong convexity.
Yet, we will see that for a problem that satisfies two assumptions, the rate predicted by each theory may be
different. Our contribution is as follows.

e In Section [2] we formally review the main the regularity assumptions and do first comparisons.

e In order to do deeper comparisons, we analyze PDHG in detail in Sections [3]and [4] under each assump-
tion. This choice is motivated by the self-containedness of the method, which does not require to solve
any subproblem.

e In Section [p| we show that the present regularity assumptions may not reflect properly the behavior
of PDHG, even on a very simple optimization problem.

e We introduce a new regularity assumption in Section [} the quadratic error bound of the smoothed
gap. We then show its advantages against previous approaches. The smoothed gap was introduced
in [24] as a tool to analyse and design primal-dual algorithms. Here, we use it directly in the definition
of the regularity assumption. We analyze PDHG under this assumption in Section

e We then present and analyze the restarted averaged primal-dual hybrid gradient in Section [§]and show
that is some situations, it leads to a faster algorithm. A heuristic restart scheme is also presented for
the cases where the regularity parameters are not known. This is a first step in leveraging our new
understanding of saddle point problems to design more efficient algorithms.

e The theoretical results are illustrated in Section [ devoted to numerical experiments.



2 Regularity assumptions for saddle point problems

In this section, we define three regularity assumptions for saddle point problems from the literature. We will
then present their application range.

2.1 Notation

We shall denote X the primal space, ) the dual space and Z = X x ) the primal-dual space. Similarly
for a primal vector z and a dual vector y, we shall denote z = (z,y). This notation will be throughout
the paper: for instance Z and § will be the primal and dual parts of the vector z. For z = (z,y) € Z,
and 7,0 > 0, we denote ||z|ly = (2[|z]|* + L|ly[[*)*/2. The proximal operator of a function f is given by
prox(z) = argming f(2') + 5|z — 2/||%. For a set-value function F : £ = Z, we can define F~': 2 = Z
by w € F(z) & z € F~1(w). We will make use of the convex indicator function

vo(z) = 0 ifzeC
AT V4o ifzgC

In order to ease reading of the paper, we shall use a blue font for results that use differentiable parts of the
objective fo and g2 and an orange font for results that use strong convexity.

2.2 Definitions
The simplest regularity assumption is strong convexity.
Definition 1. A function f: X — R U {+o0} is p-strongly convez if f — &|| - ||? is convex.

Assumption 1. The Lagrangian function is p-strongly convex-concave, that is (x — L(z,y)) is p-strongly
convex for all y and (y — L(z,y)) is p-strongly concave for all x.

This regularity assumption is used for instance in [5]. We can generalize strong convexity as follows.

Definition 2. We say that a function f: X = R U{+oo} has a quadratic error bound if there exists  and
an open region R C X that contains arg min f such that for all x € R,

f(z) > min f + gdist(as, argmin f)? .

We shall use the acronym f has a n-QEB.

Although this is more general than strong convexity, the quadratic error bound is not enough for saddle
point problems. Indeed, for the fundamental class of problems with linear constraints (y — L(z,y) is linear.
Thus, it cannot satisfy a quadratic error bound in y. To resolve this issue, we may resort to metric regularity.

Definition 3. A set-valued function F : Z = Z is metrically subregular at z for b if there exists n > 0 and
a neighborhood N (z) of z such that Vz' € N(z),

dist(F(2),b) > ndist(z', F~(b))

We denote C(z) = [0f(z),09* (v)], B(2) = [Vfa(z), Vg5 (y)] and M(z) = [ATy, —Az]. The Lagrangian’s
subgradient is then L(z) = (B+ C + M)(z). We put a tilde to emphasize the fact that the dual component
is the negative of the supergradient. 3

We have 0 € OL(z*) if and only if z* is a saddle point of L. If 9L is metrically sub-regular at z* for 0,
this means that we can measure the distance to the set of saddle points with the distance of the subgradient
to 0.

Assumption 2. The Lagrangian’s generalized gradient is metrically subregular, that is there exists 7 such
that for all 2* € Z* = (9L)~1(0), OL is n-metrically subregular at z* for 0.



Assumption Strongly convex Linear Quadratic

& smooth program  program
Strongly convex-concave Yes No No
Smooth strongly convex Solve in primal  No Strongly convex obj.
with linear constraints space only & linear constraints
Error bound with inequality No Yes No
constraints
Metric sub-regularity Yes Yes Yes

Table 1: Domain of applicability of each assumption. “Strongly convex & smooth” means that glgs is a
differentiable function and f + fs is strongly convex.

This regularity assumption is used for instance in [I8]. Another regularity assumption considered in the
literature is as follows.

Assumption 3. The problem is a smooth strongly convex linearly constrained problem. Said otherwise,
[+ f2 is strongly convex and differentiable, f and fa both have a Lipschitz continuous gradient, go = ¢{o}
and g = ¢y}, where b € V.

This assumption is used for instance in [I0]. The indicator functions encode the constraint Az = b.

Assumption 4. Suppose that g = 140y and g = 13, rm and we encode the constraints Az —b < 0. Denote
z* a minimizer of and X'* the set of minimizers. The problem with inequality constraints satisfies the
error bound if there exists i > 0 such that

F(z) = max (f(x) + fo(e) = [(") = fola). max (Az —b);) > pdist(z, X")

1<j<m
This regularity assumption is used to deal with functional inequality constraints in [19] but we restrict our
study to linear inequalities to simplify the exposition of this paper. Yet, since it involves primal quantities
only, it is not really adapted to a primal-dual algorithm and we will not discuss it much further in this paper.
The next two propositions show that for the minimization of a convex function, quadratic error bound
of the objective is merely equivalent to metric subregularity of the subgradient.

Proposition 1 ([9]). Let f be a convex function such that Vo € R, f(z) > f(z*) + & dist(x, X*)?, where
X* =argmin f and x* € X*. ThenVx € R, |0f(x)|o = infycore) 9]l > § dist(z, X).

Proposition 2 ([9]). Let f be a convex function such that f(z) < fo implies [|0f(x)|o > ndist(z, X*).
Then f(z) > f(z*) + 2 dist(z, X*)? as soon as f(z) < fo.

For saddle point problems, we have the following result.

Proposition 3 ([I7]). If L is u-strongly convex-concave, then OL is p-metrically sub-reqular at z* for 0
where z* is the unique saddle point of L.

In Table[T] we can see that the situation is more complex for saddle point problems than plain optimization
problems. Indeed, the assumptions are not generalizations one of the other. Yet, metric subregularity seems
to be the most general since it holds for more types of problems. In particular all linear programs and
quadratic programs have a metrically subregular Lagrangian’s generalized gradient [I7].

3 Basic inequalities for the study of PDHG

Primal-Dual Hybrid Gradient is the algorithm defined by Algorithm |1 We shall use the definition of [17]



Algorithm 1 Primal-Dual Hybrid Gradient (PDHG)

Tpy1 = prox, p(zx—7V fa(wg) — A y)
Ukt1 = ProX, g« (Ys—0Vga(yx) + 0 AZp41)
Tyt = Tpp1 — TA (Yrg1 — Ur)

Yk+1 = Ykt

because we believe it simplifies the analysis. Note that the algorithm of [5] can be recovered in the case fo =0
by taking Zj, 1 as a state variable instead of zj,,1 and using z = Zx —7A" (Y —Yr—1) = Tu —TAT (U —Yr—_1):

Ty = prox, ¢ (T — TAT 20k — Gr—1))
Ukt1 = ProXy g« (Ju—0Vga (k) + 0 AZp11)

PDHG is widely used for the resolution of large-dimensional convex-concave saddle point problems.
Indeed, this algorithm only requires simple operations, namely matrix-vector multiplications, proximal op-
erators and gradients, while keeping good convergence properties.

It can be conveniently seen as a fixed point algorithm zj11 = T(zx) where T is defined by

T = prox, ;(v—7V fa(z) — TATy) Y = proxX, . (y—oVgs(y) + 0 Az)
T =z -7AT (G —y) yT =7
T(z,y) = (z",y") 3)

For z = (z,y) € Z, we denote |z[|y = (Z[|z[|* + 1y[[*)'/%. We will first show that this fixed point
operator T is an averaged operator [3] in this norm. Then, we will give an upper bound on the Lagrangian’s
gap and a convergence result. All the results are already known so we defer the proofs to the appendix.

Lemma 1 ([3]). Let p = prox,;(x) and p’ = prox, ;(z') where f is j1;-strongly convex. For all v and 2’,

1+7py ,
5 P =

(L+27pp)llp = P17 <l = 2)* = lp — 2 — p' + ||
Lemma 2 ([I7]). Let T : X x Y — X x Y be defined for any (z,y) by

1 2 / 1 / 2 2
I _ < I _ _
F0) + 5-lp = 2ll” < (&) + 5-ll2’ — 2 ||

T = prox, s (x—7V fa(x) — A y) Y = prox, .« (y—oVgs(y) + 0 Az)
et =z-1AT(j-y) y
T(z,y)=(z",y")
If the step sizes satisfy v = o7||A||? <1, 7Ls/2 < ay <1 1, ap=0Ly/2<1and oLy /2 < as(1—o1|A|?)

then T' is monezpansive in the norm || - ||y, and T is 11 -averaged where

oy — (1 —7v)a
A=t oy - QLY e (1 )y a4
1=y —-ay),
which means for z = (x,y) and 2’ = (z',y')
IT(2) = T +2us 2 — 2|17 + 2ug- 117 — 7|7
Sz =215 = Allz = T(2) = 2" + T()|* .

As a consequence, (z1,) converges to a saddle point of the Lagrangian.



Lemma 3 ([5]). For all k € N and for all z € Z,

i i 1 1 -
L(Zkt1,y) — L(@, 1) < §||Z —zlly — §HZ — ze41lly — V(Zr1 — 2) (4)

= L _ Al? L+ |-
where V(zker = 2) = (5 = 5 1@ — 2xl® + (55 = g = 9l 1grsr — will?

Lemma 4 ([5]). V satisfies

¥ 1 L 1 7L All2 Lo
V(s — ) = (- — D)l - anl? + (s — Al Lo

-9 — o 2
o 55 5 5 Mk+1 — vl

Oy,

_ 2
= 5 2|l -

We shall denote I' = (1 — af)(1 — /%) so that V(Zs1 — 21) > Tlzngr — 23

Proposition 4 ([5]). Let 20 € Z and let R C Z. If o7||A||*+0Ly- < 1 and 7Ly < 1 then we have the
stability

Iz = 2" [lv < ll20 — 2"[lv
for all z* € Z*. Define z, = %Zle Z; and the restricted duality gap G(Z, R) = sup,cp L(Z,y) — L(x, 7).

We have the sublinear iteration complexity

5 1
G(2;, R) < —sup ||z — Z()H%/ .
2k zZ€ER

4 Linear convergence of PDHG

In this section, we show that under the regularity assumptions stated in Section [2, the Primal-Dual Hybrid
Gradient converges linearly.
We begin with a technical lemma showing that Zx4 is close to zxi1.

Lemma 5. For0<a <1,
. _ w2 . 2 —1 1 2
disty (Zx41, 27)° > (1 — o) disty (241, 2%)" — (@~ — 1);\\yk+1 — il
Proof.
disty (Zx11, Z2*)? = |Zks1 — 2041 + 2011 — Pz (Zep1) I3
= |21 — Pz Zrs) 1T + 1241 — zrt1llf + 2(zkt1 — Pz=(Zo41), Zot1 — 2e41)

_ 1 _ _ _
= |21 — Pz (Zrs) I} + ;Hffkﬂ — 1 |® + 2(xpg1 — Prs (Zpt1), Ths1 — Thy)

1 .. . 1 . N 1, _ _
> — dist(yr+1, Y )2+ —(1 — o) dist(r41, ¥ )2 - —(a P DB — 2]

. . 1, _ _
> (1 - a)disty (241, 2%)° - G P Dl — 2]

for all o € (0,1). Since 2(|Zpq1 — Tp1l|* = TIIAT (Wes1 — ) |1? < Lllyrsr — yrll?, we get the result of the
lemma. O

The next proposition is a slight modification of [I1, Theorem 4].



Proposition 5. If L is p-strongly convex concave in the norm || - ||v, then the iterates of PDHG satisfy for
all k,

(1+ Nzkr1r — 2%l < llzw — 2|13

_r
1+ p/T
where z* is the unique saddle point of L and T' = (1 — ay)(1 — /7).

Proof. From Lemma [3| applied at z = z*, we have

* * = 1 * 1 * 7 (=
L(ZTry1,y") — L(z", Gry1) < 5\\2 — zly — §||Z =z lly = V(Zrsr — 2) -

Since L is p-strongly convex-concave, (z — L(x,y*)) is minimized at 2* and (y — L(x*,y)) is minimized at
y*, we have

— * *  — /’(‘ — * /’[/ — *
L(Zr41,9") — L(27, Yrtr) 2 §||37k+1 — a2+ §Hyk+1 —y*l5-1
We combine these two inequalities with Lemma [4f and Lemma [5| to get for all o € (0, 1)

-1

* * 1
(14 p(l = a)|lzrsr = 2" < llan — 25|17 + ~(ula™ =1) = Dllye+r — ykll* -

We just need to choose v = i so that pu(a™t —1) =T to conclude. O

We next study the second case where some primal-dual methods have been proved to have a linear rate
of convergence [10, 2] [16].

Proposition 6. If f + fo has a L’f + Ly-Lipschitz gradient and is pg-strongly convez, and g + g2 = t{py,
then PDGH converges linearly with rate

n
1+n/T

1+ ) disty (241, 2%)? < disty (2, 2%)2

: 0TOmin (A)*
where n = min(p s, ﬁ), F'=(1-az)(1-7).

Proof. We know by Lemmas [3| and [4] that for all z = (x,y),

_ _ 1 1 _
L@+, y) = L2, Grt1) < 5ll2 — 2|3 — lle = zells = V(21 — 21)
1 1 T
< glle = al} = 3l = 2kl = gl — =l
We shall choose y = y* € Y*. By strong convexity of f + fs,
_ * * % Hf - *1(12
L(@p+1,y7) 2 L2, y") + - [@ea — 2717

For the dual vector, we use the smoothness of the objective, the equality Vf(z*) + Vfa(2*) = —ATy* and
Az* =b.

—L(z,gk11) = —f(x)—fa(x) — (Az — b, Jr11)
L L
> —f(@")—fa(a") = (Vf(z") = Vfa(z"),z — 2") — gH»’C —z*|?

2
— (Az — b, Jr41)
Lf + L} ”

=—L(z",y") + (ATy*,ac —z*) —(z— x*,ATgk+1> — 5



For a € R, we choose * = 2* + aAT (y* — g4+1) so that

L L

2 AT G~y P

Moreover, we can show that |ATy — ATy*|| > Omin(A) dist(7, V"), where opin(4) is the smallest singular
value of A. Indeed, V* = {y : ATy = —V(f + f2)(@*)} = Py-(y) + ker AT is an affine space. Here, we
denoted by Py the orthogonal projection on Y*. We can then decompose § as § = Py«(y) + z where
z€ker AT = (Im A)*. Thisleads to |[ATg—ATy*|| = [[ATPy+(§) — ATy*|| = Omin(a)l| Py (§) — y*|| because
Py (g) —y* € (ker AT)L.

We now develop

—L(z*+aA"(y" = Jrt1), Ues1) > —L(z*,y") + (a—a

1 _ 1 _
E\Ix* +aAT (Y = Ge1) — 2el? — §||33* +aAT (Y = Prg1) — Tpg |)?

I

1 a _
= EHCU* — x| — ;le* — x| + ;<xk — 21, AT (Y = Trrr))

1 1 r a?
< lp* — 2 T 2 - o 2 R AT * = 2
< glle® =l = olla® — zial? + ol — w | + I AT "~ )

Combining the three inequalities, we obtain

1, . 1, . T
§HZ - Zk||2 - §||Z - Zk+1||2 - §||yk+1 - kaiq

Ly+ L 1
Hf = * T ; — *
> Bz =P + (a— 5L — a2 =) AT s — )
We choose a = m and we use ||ATy — ATy*|| > Omin(4) dist(g, V*) to get

1, . 1, . T
§HZ - Zk||2 - §||Z - Zk+1||2 - §||yk+1 - yk|\¢2;—1
OTOmin(A)2/2

u’f = *12 _ *(12
> —||Z - + — 1.
=9 H k+1 ||7' 1 [f [/f I11 ||yk+1 ) ||a' 1

) 2
Denote 1 = min(usT, %) Lemmawith a = L chosen such that n(a=t —1) =T allows us to

conclude. O

Finally, we will show that if the Lagrangian’s generalized gradient is metrically sub-regular then PDHG
converges linearly. Compared to [I8] and [I7], we obtain a rate where the dependence in the norm is directly
taken into account in the definition of metric sub-regularity and does not appear explicitly in the rate.

We denote D(z) = [rz,y], C(2) = [0f(x), 09" (1)), B(=) = [Vfala), Va3 (y)], M(z) = [ATy, —Aa] and
H(z) = [r7'2,07 'y — Az]. This will help us decompose the operator T

Proposition 7. If oL is metrically subregular at z* for 0 for all z* € Z* with constant n > 0, then (I —T) is
metrically subregular at z* for 0 for all z* € Z* with constant T and PDHG converges

n
(2+2v3 max(ayf,ay))

linearly with rate (1 — n*(lay)(1=y/7) 2>.
(\/§n+ (2+2\/§max(af,ag)>)

Proof. First we remark that ~
OL(z) = (B+C+ M)(z) .
We continue with
T(z)=2"=DHz+ (I — DH)z
x—7Vfo(x) —TA y — T € TOf(Z)
y—oVgs(y) +0AT - € 00g™(Y)



so that using the fact that (H — M)(z) = [t~ 'z — ATy, 071y,

z=(C+H)"Y(H—-M-B)2).

Thus
T(z) = DH(C + H)"*(H - M — B)(2) + (I - DH)z
(I -=T)(2)=DH(I —(C+H) " (H—-M—B))(2) =DH(z — %) .
OL(2) = (B+C+ M)(2) = B(2) + (C+ H)(2) + (M — H)(2)
B(Z)+ (H — B— M)(z) + (M — H)(z) € 0L(%)
so that
(H-B—-M)(z—2)=(H—-B—-M)(DH)"Y(I -—T)(z) € dL(%)
Using the fact that B is Lipschitz-continuous with constant 2max(ay,ay) in the norm || - ||y and that

lzllv = [|D~/2%]|, this leads to

ndisty (z, 2%) < ||(H B—M)(z—2)||v«
<N(H = M)(z = 2)|[ve + | B(z — 2) v+
< ((H — M)(DH)™||lvs,v + 2max(ay, o))

< [(DH) v (I = T)(2) v
_ (||D1/2(H . M)H71D71D1/2||
+2max(ay, o) |[DVZHTIDTIDVR|)|(I - T)(2) v
= (I -DY*MH'D™'/?|
+2max(ay, ag)|[DTVEHTD V) (I = T)(2)]lv
Moreover, |[D™"2H='D™22|* < |l||* + 207 || Al]*||z||* + 2[|y]|* < 3||2]* and
||I o D1/2MH71D71/2Z||2
= ||z —oTAT Az + o2 2 AT |2 + || — 7Y/20 2 Az + y|?
< 2| — o AT AP |le|® + o7 | AlP|lyl*) + 2(7al| A [l]|* + [ly]1%)
< 4|22
Gathering these three inequalities gives
|z — Pz« (2)||v = disty (2, 2*) <n~! (2 + Qmax(af,ag)\/g)ﬂ(l —T)2)|lv
Finally, we remark that
disty (z, 2%) = ||z = Pz-(2)||lv < [lz = Pz-(2)llv < 2= Pz-(2)llv + |z — Zllv
<72+ 2max(ay, ag)V3)[[(1 - T)(2)|lv
+[(DH) v (I =T)(2)llv
< (V34071 (2 + 2V3max(ay, o)) (T = T)(2)llv

Then, to prove the linear rate of convergence, we recall that for all z* € Z*,

IT(2) = 2" [} < llz = 2" I} = (L= )X =y = D)(2)II5



Combined with the metric sub-regularity of (I — T'), we get

772(1 - af)(l — ﬁ)
(\/377 + (2 +2v3max(ay, 0‘9)))

IT(2) = 2[5 < llz = 2" [} = 5 disty (2, 2)?

Choosing z* = Pz+(z) leads to
disty (T'(2), 2%)* < |T(2) — Pz-(2)|I¥
- (1_ 1°(1—ay)(1 —7)
(\/gn + (2 + 2\/§max(ozf, Qy

2) disty (z, 2*)?
))
and thus the linear rate of PDHG follows directly from this contraction property of operator 7. O

5 Coarseness of the analysis

5.1 Strongly convex-concave Lagrangian

Suppose that f is pr strongly convex and that g* is jg« strongly convex. Then L is p, strongly convex in the
norm || - ||y with gz = min(us7, pg+0). Note that in this case, the objective is the sum of the differentiable
term g(Az) and the strongly convex proximable term f(z). We have seen that this implies a linear rate of
convergence for PDHG with rate (1 — cur) with ¢ close to 1. We may wonder what is the choice of 7 and o
that leads to the best rate.

We need p;, = min(us7, pug-0) the largest possible and o7||Al|*> < 1. Hence, we take 7 = %m

and o = 1/l:ff* ”—i”. We do have o7||A||*> < 1 and also n = Mﬁgfﬁg*. This rate is optimal for this class of

problem [22], which is noticeable.

We have seen in Proposition [3] that metric sub-regularity of the Lagrangian’s gradient is a more general
assumption than being strongly convex-concave. However, applying Proposition[7]with n = iy, leads to a rate
equal to (1 — cu?) which is much worse than what we can show using the more specialized assumption. This
means that metric sub-regularity applies to more problems but is not a more general assumption because it
leads to a coarser analysis.

5.2 Quadratic problem
We consider the toy problem

)
min —xr
z€R 2

ar =2»

where a,b € R and p > 0.
The Lagrangian is given by L(z,y) = 22 + y(ax —b). Its gradient is VL(z,y) = [uz + ay, ax — b]. Since
\/;mf;rr

VL is affine, it is easy to see that VL is globally metrically sub-regular with constant ¥~~—————— in
the norm || - ||y .
Let us now try to solve this (trivial) problem using PDHG:

Tpy1 = o — T(pa) + ayr)
Ur+1 =Yk — 0(b— aTpi1)
Thy1 = Tpg1 — Ta(Jrr1 — Yk)

Yk+1 = Yr+1

10
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Figure 1: Comparison of the true rate (line above) and what is predicted by theory (2 lines below) for
a = 0.03, 7 = ¢ = 1 and various values for p.

This can be written zxy1 — 2. = R(z, — 2z%) for

R [(1 —o7a®)(1 — 1)

o —ra(l - am2)]

(1 —o7a?)

Hence, we can compute the exact rate of convergence, which is given by the largest eigenvalue of R different

from 1.
n°T

We shall compare this actual rate with what is predicted by Proposition|7] that is (1

where I' = (1—ay)(1—/7), 7y =o071a?, ag =0, ay = p/2 and n = —””272%2”“2_’” and what is predicted by
Proposition |6 that is (1 + ﬁ)*l. On Figure 2| we can see that there can be a large difference between
what is predicted and what is observed, even for the simplest problem. Moreover, although the actual rate
improves when p increases, metric sub-regularity decreases, so that theory suggests the opposite of what is
actually observed. On the other hand, using strong convexity explains the improvement of the rate when p
increases but does not manage to capture the linear convergence for p = 0.

6 Quadratic error bound of the smoothed gap

We now introduce a new regularity assumption that truly generalized strongly convex-concave Lagrangians
and smooth strongly convex objectives with linear constraints and is as broadly applicable as metric subreg-
ularity of the Lagrangian’s gradient.

6.1 Main assumption

Definition 4. Given 3 = (8;,8,) € [0,+00]?, 2 € Z and 2 € Z, the smoothed gap G is the function

defined by
Gp(z;2) = sup L(z,y') — L(z',y) — B

~x I 4 2_& I 2
sup e LA o S B

We call the function (z — Gg(z, 2)) the smoothed gap centered at 2.

11
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Although the smooth gap can be defined for any center 2, the next proposition shows that if 2 = z* € Z*,
then the smoothed gap is a measure of optimality.

Proposition 8. Let 8 € [0,+00)2. If 2* € Z*, then z € Z* & Gs(z;2%) = 0.

Proof. We first remark that Go(z, z*) is the usual duality gap and that G (z; 2*) = L(z,y*) — L(z*,y) > 0.
Moreover, Go(z, 2*) > Gg(z,2*) > Goo(z;2*) > 0. Since z € Z* = Go(z; 2*) = 0, we have the implication
z€ 2% = Gg(z;2%)=0.

For the converse implication, we denote

By i «
yp(x) = argmax L(z,y') — o ly* = /|
y o
* * ﬁ *
= argmax(Az,y) = ¢"(v') — g3(4') — 2 lly" — v/'II”
y o
. O
= ProX, /g, (g*+g3) (y + BA(E)
By the strong convexity of the problem defining G(+; 2*), we know that
sup L(z, o) = o2 Iy = o/lI* = L(z,y™) = S2lly™ =y 17 + 5 llws (@) = y*[1°
' o 20 20
> L'y + 52 ls(a) — v I
- 20
With a similar argument for x3(y), we get
* By * (12 /Bw * (12
. > 7Y _ ~x _ .
Gp(z27) 2 5 llys(@) = y7II° + 5 llws(y) — 27|
Thus, if Gg(z;2*) =0, then yg(z) = y* and z(y) = z*.
* * * g
ys(z) = y" <y = ProxX, /3, (g++gz) (v* + 5 Ax)

Y

o o o
S0y — (y +—Ax)+ —0g* (v*) + —
y y By

=0e-Az+ 09" (y")+ Vg (y") @ x e X*

Vas(y*)

and similarly zg(y) = «* < y € Y*, which completes the proof of the proposition. O

Assumption 5. There exists 3 = (8;, 8,) €]0,+oc]?, n > 0 and a region R C Z such that for all z* € Z*,
Gg(-,2*) has a quadratic error bound with constant 7 in the region R and with the norm || - ||y,. Said
otherwise, for all z € R,

Gp(z;2") >

N3

disty (z, 2*)?

The next proposition, which is a simple consequence of [13, Prop. 1] says that even though QEB is a
local concept, it can be extended to any compact set at the expense of degrading the constant.

Proposition 9. If Gg(-,2*) has a n-QEB on {z : dist(z, Z*)y < a} then for all M > 1, Gg(-,2*) has a
15-QEB on {z : dist(z, Z*)y < Ma}

We now give a few examples to show that this assumption is often satisfied.

Proposition 10. If L is p-strongly convez-concave in the norm ||-|lv, thenVz € Z, Goo(2;2%) > §lz—2*|13

12



Proof. Goo(2;2%) = L(z,y*) — L(*,y) = §llz — 2*[I¥ o

Proposition 11. Suppose that f, f2,g,92 are convex piecewise linear-quadratic, which means that their
domain is a union of polyhedra and on each of these polyhedra, they are quadratic functions. Then for all
B € [0,+00[?, there exists n(B) and R(B) such that Gg(z;z*) > @dis‘sv(z,z*)2 for all z € R(B) and
z* e ZzZr.

Proof. The proof follows the lines of [I7]. The class of piecewise linear-quadratic functions is closed under
scalar multiplication, addition, conjugation and Moreau envelope [23]. Hence for all 8 € [0, +oc[?, Gs(-, 2*)
is piecewise linear quadratic. As a consequence, its subgradient 0,Gg(-, 2*) is piecewise polyhedral and thus
there exists n > 0 such that it satisfies metric sub-regularity with constant n at all z* € Z* for 0 []]. Since
Gg(-,2z%) is a convex function, this implies the result by Proposition O

6.2 Linear programs

In the rest of the section, we are going to show that linear programs do satisfy Assumption [5| and give the
constant as a function of a Hoffman constant [15].
We consider the linear optimization problem

T
5
minc z (5)

Ag.x =bg
AI,:x S b[
TN Z 0

where A is a m x n matrix, b € R™, E and I are disjoint sets of indices such that EU I = {1,...,m} and
N, F are disjoint sets of indices such that NUF = {1,...,n}.
A dual of this problem is given by

(A:7F)Ty +cp =0
(A:n)Ty+en >0
yr >0

It happens that the set of primal-dual solution of an LP is characterized by a system of linear equalities
and inequalities. This holds true because a feasible primal-dual pair with equal values is necessarily optimal.
We get the following system

c'z+bTy=0

Ap.x =bg

Ar.x < by

zn 20 (6)
(A r) Ty +cr=0

(A:7N)Ty +cny >0

yr >0

Let us denote the Hoffman constant [I5] of this system by 6. This constant verifies
dist(z, 2*) < 0(|c"z + b y|* + |Ap,.x — b | + dist(A; .z — by, RL)?
+dist(zn, RY)? 4+ [[(A,p) "y + cp?

+ dist((A.x) Ty + e, RY)? + dist(yr, RL)2) /2

13



It is known that the Lagrangian’s subgradient of an LP satisfies metric sub-regularity with a constant
proportional to 6 [20] . We shall show that the same holds for the QEB of the smoothed gap centered at z*.

Proposition 12. For any 8 > 0, R > 0 and z* € Z*, the linear program satisfies the quadratic error
bound: for all z such that Gg(z;2*) < R, we have

dist(z, 2*)2
.
02 (VEWE+ il + el + 2 (V24 il + o ) + 3VE)

Hence, for R of the order of %, G%(~,z*) has a 5-QEB with c independent of 0.

Gp(z;2") >

Proof. First of all, we calculate the smoothed gap for .

" B ]
Gp(z:2") = sup {e,a) + Iy (wn) + (Az,y') = (0,9) = Ty (1) — o lly' = oI
2/ €ERn+m g

! ﬂ *
— (e} = Iy (2ly) — (A2, y) + (by) + Ipy (yr) — o[l — 2 [
g
= (c,x) + Ipy (en) + (Ap.x — bp,yp) + %HAE,: —bg|®

g

g
% T

+Ips (yr) = ((Aip) Ty + cp k) + %H(A:,F)Ty +eplf?

p . Bk
+ 5 [l max (0,97 + = (Ar.x = b)) II” = 5= lly7lI* + (b, v)
o 20

p .
+ EHmaX (O,xN —

(AN Ty + en)IP = ook P

Let us denote Sg’(x,y*) = Gp((z,y*);2*) and Séj(y,x*) = Gp((z*,y); 2*) so that Gg(z;2*) = Sg’(x,y*) +
SP(y, 2*). We know that dist(z, X*) < 8(|cTe+bT y* 2+ Ap,2—bg | *+dist (A .a—bs, RL )2 +dist (zy, RY)2) /2
Our goal is to upper bound this by a function of S};(x, y*).

First, we note that S};(x, y*) = {c, ) + Iy (n)+(Ap.z—bp,yp) + 35l Ap2 — be|?+ %H max (0,y; +
Z(Arx — br))|* — %Hy}”z + (b, y*) is the sum of many nonnegative terms:

(Asz* +¢)z; =0 VieF
(ALy" +ci)ai =0 Vie N
Ig, (2;) >0 Vie N
%(Ajﬁx —b;)2 >0 VjeE
B «, 0 2 B, . 2 * .

25 max (0,97 + B(Aj’:x —b;))" — %(yj) —(Aj. 2 =bj)y; >0 Vjel

Suppose that Séj (z,y*) < e. Then each of these terms is smaller than e. The most complex term is
the last one. We shall consider separately 2 sub cases: I_ = {j € I : y; + Z(A;.x —b;) < 0}, and
I+ = {j el: y; + %(Aj7;$ — bj) > O}

If j € I, then

B £, O 2 B "
2 max (0,55 + E(Aj,:x — b)) — %(yj)2 —(Ajx —by)y; =
Hence, if S§'(z,y*) < ¢, then > jer, max(0,4;.x — bj)? < >jer, (Ajuz — b;)? < 2Be/o

If j € I_, then —(A;.x—b;) > gy;, so that (A;. 2 —b;) < 0. Combining both cases, 3, ; max(0, 4; .z —
bj)2 = Zje[+ max(O,Aj,:x — bj)2 S 266/0’.

g
%(Aj,:z —b;)%.
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We now look at (¢, )+ (b,y*) = (c+ ATy* x) + (b— Az, y*). SE (,y*) < e implies 0 < (c+ATy* 2) <e
Then we need to focus on the complementary slackness (b — Az, y*) = (bg — Ap.x,y5) + (br — Ar.2,y7).
Since Sg(m,y*) < e implies ||Ag.x — bg||* < 2B¢/0, we get

(b — Ap.2,y5)| < lyellllAs.z — bell < V/2B¢/0llyell -

For I, |3 jer, v (b — Aj.o) <y [llIbr, — Ar, .ol < ly7llv/28¢€/o
For I_, since —%(y}f)Q > 14,2 - b;)y;,

ﬁ * g 2 5 *\2 *
€2 pa 55 Max (0,97 + B(Aj,:x —b;))" - 25 i)™ = (Aj.a = bj)y;
B
= Z 7(3/;‘)2 — (A — bj)y;
: o
jeI_
1 *
> Z —§(Aj,:w —bj)y; >0
jel_

Combining the three cases, we get

V2Be/o(lypll + llyrl) < (¢, 2) + (b,y") < v2Be/a(lyrll + llyrll) + 3e

Finally, for = such that zn > 0,

(leTa + b y* 2+ Ag.x — bp||? + dist(A; . — by, RL)? 4 dist(zy, RY)2) "/

2 2.2 2By 1/2
s((ﬁ(lly%ﬂwmme) +§+%>
2
< ﬁ(Hnyn + vzl +3e+zﬁ

The argument for the dual problem is exactly the same. Hence
dist(z, Z )SG( 7(\/§+II$FII+H$NH) Gp(z2%)
Qﬂ * * * *
23+ il + i)y Galz2) +3Ga(z:27))

If Gg(z;2*) < R, we get the quadratic error bound
dist(z, Z2*)?
3 -
(V2 il + ) + 22+ il + ) +3VR)

Gp(z;2") >
O

7 Analysis of PDHG under quadratic error bound of the smoothed
gap

In this section, we show that under the new regularity assumption, PDHG converges linearly. Moreover, we
give an explicit value for the rate. This result is central to the paper because it shows that the quadratic
error bound of the smoothed gap is a fruitful assumption: not only is as broadly applicable as the metric
subregularity of the Lagrangian’s generalized gradient, but also the rates it predicts reach the state of the
art in all subcases of interest.
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Theorem 1. Under Assumption [3, if R contains {z : ||z — Pz-(20)|| < disty (20, 2*)}, then PDHG
converges linearly at a rate

(1 +A ) disty (2511, 2%)2 < disty (21, 2*)

1+ n/T
where T' = (1 —ay)(1—/7) and A = — " ———.
! v max(1/B. .0 +1/B,)

— Ba

Proof. Tn this proof, we will use the notation 8 ® z = (8., B,y) and |z[|3y = ==||=]|* + %yHyHQ We have

. 1 o
L(Zks1,y) — L(@, Y1) < *||Z e = 51z = 2 ly = V(Eerr — 21)

so, for z* = Pz« (z0), we get the stability of the set {z : ||z — Pz+(z20)|| < disty (20, Z2*)}.
For z* = Pz (z),

_ _ B _ B
GB(Zk+1§ 2*) = supsup L(Tr11,y) — ?y”y - y*||(2,_1 — L(x, Jrq1) — f\\ﬂf - 513*\\2
E

1 1 1 " ~
< sup gz — 2| — Pl zep |l — Sz == 1Zv = V(21 — 2x)
For the right hand side, 8 ® (z — 2*) + (2 — zg+1) — (2 — 2) =0 so that S ©® 2= © 2* + 241 — 2 and
1 1 1 .
L= 2l = iz -zl — 2l - 2By

1, ., 1, . 1
Sl =2l = 312" = 2l + Sl = 23y

1 .. . 1. . 1
< B disty (zx, 2%)% — B disty (zpp1, 2%)% + §||zk+1 - Zk”?aflv

where the last inequality comes from our choice of z*. We also have

~—

1 1 -
5 diStv(Zk, Z*)2 — 5 diStv(Zk+1, Z*)z — V(2k+1 — Zk

[E —Zk||v—*||z — 2e1lly = V(Zep1 — 2) > 0

l\:JM—l

Using the assumption, this leads to: VA € [0, 1],
1 : *\2 1 : *\2 A 2 7 (=
3 disty (zx, Z2%)° — 3 disty (zg+1, Z2%)° + §||Zk — Zk—&-l”ﬁ—lv —V(Zg+1 — 2x)
A
> 77] disty (Zk+1, Z*)2

Using Lemma [5] we get

1 1 A
5 diStv(Zk, Z*)2 — 5 diStv(Zk+1, Z*)Q ZIBJ 7||.’Ek — Th+1 H
A (a=t = 1)\
+ (%"‘f)*“yk_ylwrl” V(Zks1 — 2)
1—a)X
> (=) disty (2541, 27)?
Moreover, V(Zp11 — 2i) > Lllzksr — 2l|} (Lemma 7 so taking v = - and A = m <1
leads to Qﬁ —&-wzm—l—% =3I +1/8,) <% and ﬁ < L, so that
diStv(Zk,Z ) (1 + )\1 n /F) diStv(Zk+1, Z*)Q
and thus a linear rate of convergence. O
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Strongly convex-concave Lagrangian If the Lagrangian is strongly convex concave, then we can take
B = (+00,+00) and n = p (Proposition , so that we recover the rate of Proposition

Back to the toy problem We consider again the linearly constrained 1D problem min,cr{52? : az = b}
where a,b € R and g > 0 introduced in Section and we calculate the quadratic error bound of the
smoothed gap.

Gz, 27) = sup 222 + yl(az — b) — 22 (y — )2 + sup —La? — laz 1)
y 2 20 D)
— g—i(x —z*)?
H_2 * g 2 _ 1 Bs 2 Ba, e
== —b)+ — —b b — - —
0+ (@ 0) + 5 (@@ O b (e - 51
MT—’_ UEZ = *\2 UTGQ — *\ 2
S 1 . ( n ota® ora? )”, *HQ
> -—min(pur+ ———,——)||2 — =
2 fo Be + put v
According to Theorem |1} the rate is thus (1 + p)~! where
3 agT 2 agT. 2
- n B r min (,UT + 53 ) Bsz)
L+n/T  max(1/8:,T +1/8y) 1 1 min (W =y BUT;T)/F

with I' = (1 — p7/2)(1 — Vora?). Since the algorithm does not depend on 3, or 8, we can choose them
so that they minimize the rate (or maximize p). On Figure |1, we can see that the rate of convergence
explained using the quadratic error bound of the smoothed gap is as good as the rate using strong convexity
(Assumption [3) when g is large and does not vanish when p goes to 0. On top of this, for small values of ,
we obtain a much better rate than what is predicted using metric sub-regularity.

With the analysis including a || 2511 — 2|3 term (available in Appendix Proposition, we can explain
an even better rate. When we plot the curve of the rate as a function of py (with the legend “slow-fast
double concentration rate”) we can see that this more complex analysis manages to explain the improvement
of the rate for an increasing strong convexity parameter, together with its degradations when the parameter
becomes too large.

8 Restarted averaged primal-dual hybrid gradient
8.1 Presentation of RAPDHG

In this section we will see how our new understanding of the rate of convergence of PDHG can help us design
a faster algorithm.

Let averaged PDHG be given by Algorithm [2} On the class of convex functions, averaged PDHG has an
improved convergence speed in O(1/k) in the worst case while PDHG has a convergence in O(1/vk) [1].

However, when averaging, we loose the linear convergence for well behaved problems. We thus propose to
restart the algorithm as in Algorithm 3] The following proposition shows that RAPDHG enjoys an improved
rate of convergence where the product 87 is replaced by max(83,7n). Hence for problems where 7n(3) is a
decreasing function of 3, like linear programs, we will expect an improved convergence rate by averaging and
restarting.

Proposition 13. Under Assumption@ with By = By = B, if the restart frequency K satisfies KB > 2 and
Kn > 4, then RAPDHG converges linearly at a rate 2='/%. Moreover, if K = [max(2/83,4/n)], then the

rate is exp ( - WM ln(Z)) A exp ( —min(8/2,n/4) 1n(2)).
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Figure 2: Comparison of the true rate (line above), what is predicted by theory using previous theories and
what is predicted by using quadratic error bound of the smoothed gap for a = 0.03, 7 = ¢ = 1 and various
values for p.

Proof. Summing for k between 0 and K — 1 and using the fact that the Lagrangian is convex-concave,
we get

L(:%Kay) 7L($,§IK) <

Iz = 20ll3 —

Iz = 2kl —

2K

which leads to

. _ B .
L(ixc,y) = L xc) - Dl = 2"} <

and so, as soon as K3 > 1, since the maximum of the right hand side is attained at z =

GplZk, 2")
We now use Assumption |§| to get

1_KBp_

KKg-1

2K

2K

1 KB

< * 2
SOK KB — 1||Z 20llv

12 = zoll§, > nll" — Zx ||

1
K

K—

k=

—

0

We choose z* = Pz+(z0) and K such that K3 > 2 and Kn > 4 in order to get

diStv(EK,

1
zZ*)? < 3 disty (29, 2%)?

If we choose K = [max(2//3,4/n)] we thus get a linear convergence

1
disty (2, 2%)? < Q—Sdistv(io,z*)Q

gexp(—

1
[max(2/5,4/n)]

18

V(zk—&-l — 2y)

B
o = zoll? = Sl = =1

KB—1

sK . B 2
ln(2)> disty (20, 2¥)

KpBz"—z¢
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Algorithm 2 Averaged Primal Dual Hybrid Gradient — APDHG(zo, yo, K)
For k€ {0,..., K —1}:

Tpy1 = prox, p(zx—7V fa(wg) — A y)
Yk+1 = ProXggs (Y —0oVgs(yr) + 0 AZp41)
Thi1 = Tpr1 — TA (Jrs1 — Uk)

Yk+1 = Yk+1

k K
~ _ 1 — ~ _ —
Tht1 = T371 E Li+1 Ye+1 = 57 E Yi+1
1=0 1=0

Return (Zx, 9k )

Algorithm 3 Restarted Averaged Primal Dual Hybrid Gradient — RAPDHG(zo, yo)

Let K = C/n and zy = (20, y0).
For s > 0:

zs+1 = APDHG(zs, K)

where sK is the total number of iterations. O

8.2 Heuristic adaptive restart

In general, we do not know the set of saddle points, so that computing the smoothed gap with a saddle point
as reference point is not possible. We propose the following approximation. For z* equal to the projection
of z onto Z*, we have:

. B,
G(,2) = max Lz, ) — La',y) — Sl = 2| (7)
> max Lz, /) — L(',) - 812" = &% = Bl — ="}

n(2p)
2

= Gap(z,2%) = Bllz = "I} > Iz — 213 = BlIz — ="}, (8)
and thus Gg(z,2) is a good approximation to the measure of optimality Gag(z,2*) as soon as § is small
enough (and 2 is closer to z* than z). In the numerical experiment section, we will use it as a stopping
criterion with 8 = (0, ) where ¢ is the dual infeasibility and Z = z.

For RAPDHG, we do not know either the value of the quadratic error bound of the smoothed gap. We
propose the following heuristic to adaptively restart the algorithm. Let Zg; be the primal-dual point at the
last restart. We restart when G_2__ (Zx,2;) < 0.5 G_2_(Zs, Z;). We then compare 2, and Z; and restart

k—s+1 R—s+1

at the best of these in terms of smoothed gap. Note that disty (2, Z2*) < disty (Zs, £2*). This adaptive
restart is formalized in Algorithm 4 We added an additional safeguard for cases where the smoothed gap is
increasing in the first phase of the algorithm.
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Algorithm 4 RAPDHG with adaptive restart

s=0
for k€ {0,...,K -1} do
zpr1 = T(21) - see (3)
1

~ 1 k+ _
Sl = gt 2t 2 .
if G_2 (Zkt1,2641) <05 G_2 (Zsy1,Zk41)

k—s+1

k—s+1

or Gk—§+1 (Zk+1s Zr+1) > 10 G%M(ZSJA, 2k:+1) then
s=k
if Gk—i-;—l (5k+17 2k+1) < G#W(Z;H_l, zk-&-l) then
Reassign zi41 < Zr+1
else

Keep current iterate

9 Numerical experiments

In the last section, we present some numerical experiments to illustrate the linear convergence behaviour of
PDHG and RAPDH{

9.1 Small linear program

The first experiment is on a small LP where the dual optimal set is known:

min —7.1‘1 — 9$2 — 18I3 — 17.1‘4
zER* x>0

2x1 4+ 4dao 4+ 623 4+ Ty < 41
1+ T2 + 223 + 224 < 17
Ty 4 229 + 323 + 314 < 24

To give an estimate the quadratic error bound constant, we compute for several values of 8 the quantity
7(8) = miny %. We can do it because Z* is known for this small problem. Using a similar idea we
can also get an estimate of the metric subregularity constant of the Lagrangian’s gradient, here n ~ 0.0187.

On Figure [3] we can see that the rate of convergence matches what is predicted by theory. Moreover,
RAPDHG is much faster than PDHG. Yet, note that thousands of iterations for a LP with 4 variables and

3 constraints is not competitive with the state of the art.

9.2 Larger polyhedral problem

We then run an experiment on a more realistic problem. We run PDHG and RAPDHG with adaptive restart
on the following sparse SVM problem:

n
min » max(0,1 — y;z; . w) + ||w|1
weR? P}
where (y;, z;:)1<i<n are the data points from the ala dataset [6] (d = 119 and n = 1,605). We normalized
the data matrix so that ||z. ;|2 = 1.

The convergence profile is given in Figure [df The behaviour of the algorithms is similar to what was
seen in the small size problem. Here however, we can see clearly two phases. In the beginning, we observe
a sublinear convergence, where restart and averaging does not help. Then the linear rate kicks in after a
nonnegligible time. We believe that it comes from something related to the condition Gg(z;2*) < R in

IThe code is available on https://perso.telecom-paristech.fr/ofercoq/Software.html
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Figure 3: Table: Estimates of the quadratic error bound of the smoothed gap for several smoothing param-
eters. Figure: Comparison of PDHG and RAPDHG on the small linear program. The restart period of 200
was chosen because for 8 = 1/100, we have 7(5) ~ 2/100, so that K = [max(2/8,4/n)] = 200.

Proposition Note that this cold start phase is quite long. On our laptop computer with 4 Intel(R)
Core(TM) i5-7200U CPU @ 2.50GHz it took 5.7s while the adaptive proximal point method of [20] took
0.93s to solve the problem.

9.3 Ridge regression

In this experiment, we test on a problem where restarting does not help. We consider least squares with ¢
regularization

1
min §||A:c — b||? + 50|

where A and b are given by the real-sim dataset [6]. Since we know the strong convexity-concavity parameter
of the Lagrangian, we choose the step sizes o and 7 as in Section [5.1]

We can see on Figure |5 that, as expected, restart and averaging does not help: Zy is consistently better
than Z; so that the curves for PDHG and RAPDHG with adaptive restart match. We added a comparison
with restarted FISTA [12] to show that the choice of step sizes indeed suffices to get an algorithm with
accelerated rate.

9.4 TV-L1

We consider the minimization of the following non-polyhedral function
min Aflz — Iy + [[ D[,

where [ is the cameraman image, D is the 2D discrete gradient, ||z[l21 = >_ cp /221 + 275 and A = 1.9.

This problem is not piecewise linear-quadratic but is rather structured. Indeed, it is equivalent to a second
order cone program. We can see in Figure [6] that this is a difficult problem for PDHG but that RAPDHG
does improve the convergence speed significantly. The solution we obtain is shown in Figure [7}
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Figure 4: Comparison of PDHG and RAPDHG: sparse SVM on the ala dataset.

10 Conclusion

In this paper, we have tried to understand the linear rate of convergence of primal-dual hybrid gradient.
Even on a very simple problem, we have seen that current regularity assumptions are not sufficient to explain
the behavior of the algorithm. We have then introduced the quadratic error bound of the smoothed gap and
argue that this new condition is more widely applicable and more precise than previous ones. Finally, we
showed how this new knowledge can be used to improve the algorithm.

This work opens several perspectives:

e Can the quadratic error bound of the smooth gap be used to understand better the convergence rate
of other primal-dual algorithms? Interesting cases would be the ADMM, the augmented Lagrangian
method and coordinate update methods to cite a few.

e We have seen in that the smoothed gap at a non-optimal point can approximate the smoothed gap
at an optimal point. Considering it as a stopping criterion would be an alternative to the KKT error,
which implicitly requires metric sub-regularity to make sense, and duality gap, which is 4+o0o0 nearly
everywhere for linearly constrained problems.

e Our first attempt for the design of a primal-dual algorithm with an improved linear rate of convergence
has shown the usefulness of our regularity assumption. Would we be able to design an optimal algorithm
for the class of problems with a given quadratic error bound of the smoothed gap function?

A Proofs of Section [3

Lemma (1| Let p = prox, ¢(v) and p’ = prox, (=) where f is j1j-strongly convez. For all z and ',

1 9 , 1., 9 14Ty ,
p — < g — _ Ty —
F)+ 5ol — 2l < f@) + 5ol — 2l - p

I

(L+27pp)lp =1 < |2’ —2|® = |Ip — 2 — p' + 2|2
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Figure 5: Solving /5 regularized least squares on the real-sim dataset.
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Figure 6: Comparison of PDHG and RAPDHG on the /; ROF problem.
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Figure 7: Left:original image — Right: solution, 59% of the pixels are unchanged

Proof. p=argmin, f(z) + 5|z — z|?
Yet, iz f(2)+ 5z —z|* - IE#HP— z||? is convex and 0 € dh(p). This implies the first inequality
by Fermat’s rule.
We now apply the first inequality at (z,p’) and at (2/,p) and then sum.
1 2 / L 2 ’ 1, 2 1+7—,uf 2
lp — — _ < — _ I | P
F )+ gellp =P+ £+ ol — 21 < 16 + 5l — a2l — L o + 1)
1 112 1+Tﬂf / 2
+o-llp =27l 5 I =l
Rearranging the squared norm terms we get
(Lt 7up)llp’ = pl* < (p =9,z — )

Ip == +a'I? = Ip = + llo = &'|* = 20p = 2 = @) < llz = o/|* = (14 27517 1p —

Lemma [2| Let T : X x Y — X x Y be defined for any (x,y) by
z = prox, (z—7V fo(x) = TATy) § = prox, . (y—oVgs(y) + o Az)
et =z -71AT(5-y) y
T(z,y) = (a*,y")

If vy = orl|A|2 < 1, 7Ls/2 < ay < 1, ay = 0Ly/2 < 1 and oLy /2 < af(l — o7|A||?) then T is
nonexpansive in the norm || - ||y, and T is 1j%\—awemgeal where

)\Zl—af—w—\/(1—C¥f)2’)/+((1_7)af_ag)2/4

> (1= —-ay),
which means for z = (z,y) and 2’ = (2, )

IT(2) = TV +20p |7 = 2" + 20117 = 517 < N1z = 2l = Allz = T(2) = 2" + T

As a consequence, (zi) converges to a saddle point of the Lagrangian.
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Proof. Since the proximal operator of a convex function is firmly nonexpansive, for (z,y), (z',y")
(14 2us7)|2 — &> < lo—7V fo(x) = TATYy — 2’ +7V fo(z') + TATY/||?
— ||z=7V fa(z) = TATy — 7 — 2'+7V fo(a') + TATy/ + 7'||?
= |lz=7V fo(x) — 2'+7V fo(2') | + 2| AT (y — o)|?
= 27(z—7V fo(z) = &'+7V fo ('), AT (y = ¢/))
—lz=7V fo(2) = T = 2'+7V fo(a') + 2| = T| AT (y = ¢)II?
+21(x—7V fo(z) = — '+7V fo (2 )+ 7, AT (y — ¢/))

€z,

= lz—7V fa(z) — 2'+7V fo(z)||? = ||[z—7V fo(x) — T — 2’ +7V fo(2') + T'||?

—2r(@ -2, AT (y—))
We also have
le—7V fa(x) — 2'+7V fo(2)|* = ||z — /|| + 72|V fa(z) — V fo(2)||P
—27(Vfo(z) — Vfo(a'),x — 2')
2T
<z —2'|* - (ff — )|V fa(2) = V fo(2")|]?
o =7V fo(2) =% — &' + 7V fo(a') + &' = |lo — 2 — 2" + Z'|* + 72|V falx) — Vfa(a)[|?
—27(Vfa(x) = Vfa(a'),z —2' -2 +7')
>(1—ap)lz—z—a' &> +7°(1 — a; )|V fa(z) = Vfola)]?
for all ooy > 0. Hence,
42z =2 |? <o —a'|> = A —ap)lle—z—2' +Z|* - 27z - &', AT (y —¢/))

2T 1 9

_ (ff — a7 72) |V fo(z) — V fa(a')?

Similarly,

(L 2pg0)lg=F 1P < lly =y I? = Q= aglly =g -y + 71> +20(5 — 7', Az - 2"))

20 _
(L— —a, 102) Vg2(y) — Vg (y')|?
o

We then proceed to

1, _ _ _ ..
IT(@,5) - T, y)} = —lo = rAT(G—y) — & + 74T @ — )P+ —llg - 7|1

Lz~ + 7A@~ )~ AT — 9P

e -2, AT (G- y) - AT ) + g 7
< o=/~ T g~z -2+ 2| - 23— 7 ATy~ o))
+rlAT G-y =7 +y)* - 2@ -7 AT (@G —y) - AT )
F oy 1P Ty gy 4 25— 7 A - )

2T _ L
—(ff — o ')V falw) = V fa2))|[P=2pp |2 — 2|7

20 _ L
—(7- '0?)IVg2(y) — Voo (y)I? =200 |5 — 7|7
.
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lfaf

1
T (z,y) — T )|} < ;HZE —2||? - ||95 —z—a +7)?
A
~Za—a AT G-y 7 + 7 AT )|
+A+NTAT G-y -7 + )|
2Nz —z -2 +3 AT (G—y) - AT G —))
1 1-« 3 B
+;||y—y’||2— Hy—-g—y + 7>
_2i_*12v \V4 29z — 7112
(7, VIV falw) =V fala)|P=2ps |7 — 7|
(22— 0710%) |[Ves(y) — Var() 22010 |7 — 7|1
Lg* ag a g2y g2y Hg* [|Y Yy
1 1
T (z,y) — Ty} < ;Ilw —|* + glly —y|I?

A . . )
~Zfe-z +7A (@G —y) -+ —TATG )|

A 3 B A 1—ar— A\
~Zy -Gy +7IP (- — LD e— 5 -2+ 7|
g T

=
l—a, — A\ _ _
+ ((1 + A+ AT A7 - —2 )Il(y —y—7 +y)?
2T ’ P — —/|2
*(ff — ')V falm) = V fola) P —2psllz — 2|
20 _
—(L - —a,0%)[Vaa(y) — Voo (y)]

g

where A € [0,1—ay] and « > 0 are arbitrary. We choose ay = 7L;/2 <1 and ay = 0Ly~ /2 < 1. We choose
A and a such that

:1—Olf—>\

Q>

T+A+r)y=1-y— A

that is A=1—,/y and a = A= IV hen f2=0and g2 = 0. In the case fs and g2 non zero, we take

X~ v
—(1- A
)‘Zlfo‘f*w*\/(1*0‘f)27+((1*7)0‘f*O‘g)z/‘i’ =T o
—ay —

Note that as soon as ay < (1 —y)ay, we have (1 —ay)(1 —,/7) <A< 1—ayp. We continue as

1 1 A ) . )
IT(@,y) = T@ Y < —lle=2IP+ —lly=y'I* = Zlz -2 + TAT (G —y) -2+ — ATy — )|

A _ B B - - e
= “ly=g -y + 7127 - 2 lg =117
We get that T is S-averaged with % = ), that is g = %H
For the convergence, we use Krasnosels’kii Mann theorem [3]. O

Lemma [3] For all k € N and for all z € Z,

L(Zg+1,y) — L(@, Yr41) < *||Z — zlly - *HZ — 2kl =V (Zhr — 21)

s A * _
where V(zky1 — 2) = (3 — S 1ker — 2l + (& — 5L — L) giys — gell?



Proof. By Taylor-Lagrange inequality and convexity of fo and g3,

Fo(a1) < fola) +{V falai), B — ) + L [7an — o

Ly Lt
< fo(@) + (V fal@n)s Ervr — ) + [ @an = 2nl P+ — 2]
* [ — * * — L —
95 (Tra1) < g5 (k) + (Va3 (k) Tra1 — Ur) + TQIkaH - kaz
* * — Ly — Ofg;
< g5(y) + (V3 (), Trrr — v) + = [1Tnen — wel*+ 2 |y — 2

By definitions of Zx41 and §x41, for all x € X and y € Y, we have:

= - 1 1+7uy _
f(@r41) < f(2) + (Valmr) + Ay, x — Tpga) + ng ] T”Hf — |

1, 2
- §H$k+1 — x|

1+ 0y

2% lly — yk+1||

_ _ _ 1
9 (Gr+1) < g (y) + (Voa(yr) — AZps1,y — Y1) + %Hy —ynll® —
L 2
- %”yk+1 Yk ||
Summing these inequalities and using the relations zp 11 = Ty — TAT (Yk+1 — yx) and yr4+1 = Grt1 yields

L(Zk41,y) — L(2, Y1) = f(@hg1)+f2(Trr1) + (AZky1,9) — 97 (y)—95(v) — f(2)—f2(2)
— (A2, Jrt1) + 9" (Jrr1)+92 (Urv1)

1+ A 1+opuy:

e

1
ly = el = o= lle =zl = = -

_ 9 1 _
- 2*||xk+1 = Zpp1ll” — =T — Tpr1, T — Tr)
T T
+ (AZps1,y) — (A2, Pp1) + (A e, — Tis1) — (ATig1, Y — Ury1)
_ 1, Le, Lo+,
— N Er — 2l =Tk — vl P T — 2kl ST — w1
2T 20 2 2

.
2T

@i — ]
1 1 T N
= 5l =zl = Sllz = 2l = S1AT G —w)I?
(@ = T + 7AT Grr1 — y), AT G — 0k)) + (AT = 2), Gk — 9)
1. Ly Ly, _
= lzne = 2l e — el + =5 ke — el

1 T B 1,
§||Z — ziplly + §|\AT(yk+1 —yr)l* — §||Zk+1 - zell%

1
= Slz— it -
Ly, Lo«
s — 2]l = e — el
We can then write
T _ 1, _ Le L« _
§|\AT(yk+1 —yr)l* — §||Zk+1 - Zk||\2/+7f|\$k+1 —zi* + 79||yk+1 — yl?

L 1 A2 L
< (= glER — el + (- +

1 — 2
- %)Hykﬂ - yk”

= —V(Zky1 — 2)
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where V(z) >0 assoonasy<1. So

1 =
- "”/1 = 2||Z - ZkHV e §||Z - Z’f"rl”%/ - V(Zk‘f‘l - Zk)

1
L(Try1,y) — L(z, yk+1)+2

Lemma @ V satisfies

- 1 Ly 1 T||AII?  Lg«..
V(ir = 20 = (g — s — el + (o — DA — Ly — g
(1-ap)(t - v3)
> O ey
Proof. For all « €]0,1],
- 1 L 1 7|AI2 Ly
V(Zkt1 — 21) = (5 7 )||l’k+1 - $k||2 (% T T 9 79) - kaQ
1 Ly 1 T||A|I? L~
= (= H i — e+ AT e~ I+ (s — DA B
1 _
> (1 - ap) (- ) ek — el + (1~ a2 AT (s — w)l?)
1 7||A|? Ly
e e R L
> (1 a)(1 — )k — a2
1 _ oT||A|? oLy
(5 0 (-t - THAE TRy e

We have vy = o7||A||? <1, 7Ls/2 < ay <1,a, =0Ly/2 <1 and aLg*/2 <ap(l—o7|Al?), so

1
V(Zk41 — 21) > (1 —ap)(1—a)llapr — zxl-

1 _
+ 5(1 —ag—y—(1—as)(a"' - 1)7) Y1 — ywll2-:

We want
(l—ap)(l—a)=1—y—a;—(1—as)(a " =1)
l1—-v—-a _
l-a)=—TJ"% (4711
(=)= - 07 = 1)y
af(l—7v) —«
04:’}//047 f(l ) g
—ay
1—~) —
a2+o¢af( ) O‘g_,YZO
1—af
1
o= L (rt V) <A
where r = 20=9=% > (4 With this value of a, we obtain

l—ay

- 1
Vizker —2) > 5(1- af)2(2 +r =12+ 4y) 261 — 2l

1
> S (1= ap)(d = v)llzrn = 2y

And if Ly = Ly~ = 0, we get V(Zpy1 — 21) > 1_2‘ﬁ||zk+1 — z||3
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Proposition 4| Let zo € Z and let R C Z. If o7||A||*+0Ly- <1 and 7Ly <1 then we have the stability
lzx = 2" llv < llz0 = 2"[lv
for all 2z € Z*.

Define z, = %Zle Z; and the restricted duality gap G(2,R) = sup,cp L(Z,y) — L(z,y). We have the
sublinear iteration complexity

5 1
G(zk, R) < = sup ||z — zolff -
2kz€R
Proof. For any z* € Z*, L(Zgy1,y") — L(x*, Jx+1) > 0 which implies by Lemma the stability inequality
Lt =zl < S~y < gl — 2ol

We then sum for k between 0 and K — 1 and use convexity in z and concavity in y of the Lagrangian:

=

K(L(ik,y) — L(z,jk))

IN

L(ZTrt1,y) — L(z, Ury1)
0

£l
I

K-1
1 -
<l =20l = Slle = 2xlly = Y0 V(Eren — =)
k=0

In particular,

G((Zk, k), R) < 53= sup Iz = 2ol = llz — 2k} -
FAS

B Idea to take profit of strong convexity

The goal of this section is to derive a finer analysis in the case where we solve a linearly constrained problem
whose objective function is strongly convex. In the toy problem of Section we can show that the largest
singular value of the matrix R is 1 — . Yet, its spectral radius is much smaller. This implies that a
contraction on disty (23 — 2*)? is not enough to account for the actual rate. We propose here to combine
it with a contraction on ||zx11 — 2x||¥. The rationale for this addition is that for large strong convexity
parameters, the primal sequence will behave as if it were tracking arg min,  L(z’,y;). This is a kind of
slow-fast system where the dual variable is slowly varying and the primal variable is fast.

Proposition 14. Suppose that g > 0, g = 1y and Gg(-,2*) has a n-QEB where 5% > ﬂi + /N — Nz-
Then, for all C' > 0,

(14 M) disty (zes1 — 2°)2 + Mllzass — z6llZ < p((l ) disty (2 — 25)% 4+ A |z — z,HH?V)

2upoT

where, denoting o = 2usorHL "

o if 2upm(1 — 1) < Cny, then A\ =0, Ay = B%F —1 and

CnefBe | NyBe_1Y .
T ) 17(1_+ Y ) 1) :

= 1
P max(( + T
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Lo -+ U= O, (1-an) (ay ' — 1)+ 4

o if 2u;7(1 — aq) > Cny and 2uf(1[ima1)—0nw > ZW“*%)QM(l_al) , then we take
1—ay-C)ng 2
AL = _%Jrﬁ;fgit;%)(% LlHﬁ, Ay = ‘3%_)‘1(2}1107121_&1)_0%) — 1 and we have
P= (1+ 1 2p7(A=cn)=Cne (1 l?llilifﬁg)’ly)r -1 1 >_1
B T T mmriean (B, T o mlican Ol -e2)(ay — 1)+ 5)
o if 2us7(1 — 1) > Cny and 2,Lfr(1ﬁii;1r)fcnz < _i#lgﬁfij(g;;;fgit;%)(a;l_l)—s_i, then Ay = 0,
A= %fﬁ and

p=max ((1+Cn)~" (1 +mn,)7")
In order to use this proposition, we shall compute p for a grid of values of C' and select the best one.

Proof. We shall write the proof for py > 0, even though we state the proposition for p, = +oo only. We
apply Lemmato z =z and 2/ = z,_1 so that T'(2) = zp41 and T(2') = z:

2kt = 25207 [T — 20]1* < M2k — 20113 = Tllze = 201 — 261 + 23 -

|Zhi1 — Zl|? = llzngr + 7AT (yrsr — yr) — 26 — TA" (yr — v ||

> (1 —o)l|wpgr — ffkﬂz - (Oéfl - 1)THAT(3/k+1 — Yk — Yk — yk71||2

We choose a; such that 2us(a;t —1)7 = Lie ag=(1+ 2#507)_1 € O(uy), which leads to

lzk41 = 2z llF+20p (1 — an)[ensn — xl]® < llzg = 2613
We also have
77% _ * (12 77y — * (|12 — *
3||9€k+1 —z*|7 + 5||Z/k+1 =yl < Gp(zp41,27)
1

1 1 § 1
< glla =21 = llzn =21 + grllan — ol + gprlvees el

20x

—V(Zkg1 — 21)
Moreover, since 0 € 9g(yx+1) + Vga(yr) + AZr11 + %(yk_i'_l — Yr),
_ * 1 * *
lys41 = Ykllo—r < Vo ([[ATpr — Az™| + ;Hym =yl + Loz llye — ™)
g
_ « o * *
<VAZe+1 — 2" + ;Hykﬂ =Y llo-1 +oLggllys — y*llo—
g

yr — Y12

= * o *
k1 = ykllo—1 < 29 Zngr — 2" [17-0 + 4;||yk+1 — 5 4oLy
g

We then sum the three inequalities with factors \;, i € {1,2,3}.

)\2’179; _ « )\27’] 2)\30’ _ % )\2 «
(555 = 207 ) I@rs = 2120 + (B3 = 220 Y giews = 97121 + Sollanrs — =713
2 2 Iig 2

)\1 )\2 )\1 )\2 /\3
+ (5 +Appm(1—ar) — E) [@rg1 — @el2-0 + (7 23, + 7) Y1 — yell%-
+ AV (Zppr — 21)
< A2 *(2 A1 2 *1(|2
< 3”% =2y + ?sz — zk—1|liy + 2 30 Lgg [lyx — y* |51
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We combine with

k11 = "B = (1= ag)lonsn = @20 = (07" = DFwss = wpsalos
> (1= ag)ares — 20 = (03" = Dllgss = wl21
and
1 * (12 1 *(12 7 (=
Slersr =27y < Sllan = 27V = V(Zksr — 2x)
to get
)\ = A A A 2 30 A A .
(BB = xa7) (1 = az) + 5 + S llowss — I + (52 = 222 4 224 2 lyea — v 120
2 2 g 2 2
>\ r
(G Mgl = an) = 22+ et Mg )||xk+1 — a2
A1 Ao A3 A7)z
T Y [ (R | C YRIPY L V PARA
2 28, 2
Ao+ A . .
< P2 R Aok — )+ A0 L i — 9

To get the rate, we then need
p((/\znz —2X37) (1 — a2) + A2 + )\4) > X2+ M\

4 30
,0()‘27711 &

+de + M) 2 Ao+ A+ AdgoLy;

A
p()\l + 2/\1uf7(1 —ay) - 6—2 + (e + A4)F) >\

T

A
p()\l — ﬁ—Q + A3 — ()\gnm — 2)\3'y) (a;l -1+ (A + )\4)F) > M
y

We choose as = /1, A3 = % and Ay = 1. We shall let the choice of C for a 1D grid search
since the rate will depend a lot on its value.

We assume that i i + (gt —1).
Case 1: if QMfT(l — Ozl) < Cny,, we choose A\; = 0 and \y = == — 1. this leads to

p(1+/\4+017$) >14 N\

4\
p(1+ A+, MSU) > 14 A+ 4hgo Ly
g
—ﬂ—+(1+A4) —0>0
1 (1-a-COm 1

— One(1— ag)(agt — 1) +

> (1 — Qg — C)ﬂm
27(1 — az)

B
— (1 —a2)(0y" = 1) +nafag = 1) 20

_Fy+ 279(1 — az)

Supposing that 1y = +00 and Ly; = 0, we get a rate p = max((l + C”TB”)*l, 1+ %)’1)
F+ U —One(1—az)(ag '~ 1)+ 4

1 _r
.3 x (I1—ag)
Case 2: if 2up7(1 — a1) > Cn, and 2H«f(1[ia1)*c”7w > it ST d—a)
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a C)ne -1
B T Gay) e (1-a2) (ay '~ 1)+ 5

2upT(l—o)

a o)
and \y, = £= /\1(2””1(} a)=Cna) 1. We get

We choose A\ =

p(1+)\4+C77:,3) > 14 M\
4)\30’
g

P()w + 0772:)\1) >\

p(M+Cnedi) =

p(1+/\4—|—77y— )21+)\4+4)\30Lg;

Supposing that p; = 400 and Lg; = 0, we get a rate p = max((1 + 5_";4)*1,(1 + ) = 0+
mln(cmmy)l‘ )—1.

R = —on-ieniey’ )"
(1—as—C)ng —1 1
7T Jrﬁ Cnz(1-az)(ay " —1)+5-
Case 3: if 2p57(1 — 1) > Cn, and 2,uf'r(1 a—cm < Lalel 22#”(17&1)
We choose Ay =0 and \; = m We get
p(l + an)
4
p(l + 1y — 30) > 1+ 4A30Lg;
,0()\1 JFC% ) >\
]. - aQ - C)nm —1
A LU One gy g - ~1)+T) = p(M +Cmahi ) 2 A
P(1 3, 71 = an) N (1 = az) (e J+L) Zp(M+Cnedi) 2 M
where the last inequality holds because —z- + % — One(1 —ag)(agt — 1) + T > 2up7(1 —
-T
I~ _
)2Mf‘r(1 1) —Cnz ﬁz; +T'=CneM
Supposing that p1y = 400 and Lg; = 0, we get a rate p = max((1+Cn,)~ ', (1 +n,)7"). O
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