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Abstract
Radio sources in the Very High Frequency (VHF) band can be seized as opportunity
donors in a passive radar configuration such as FM radio stations and VHF omnidi-
rectional range (VOR). A full‐wave simulation of three size classes of aeroplanes shows
that their bistatic radar cross‐section (RCS) are statistically comparable, albeit perform
differently in time while the plane is flying. This difference can be exploited to recognize
the size of the aeroplanes with respect to these classes. Measurements confirm this
possible differentiation between the aeroplanes within the same class. Encouraging initial
results were obtained using convolutional or recurrent neural networks to classify aircraft
classes, combining simulated bistatic RCS results and real trajectories (collected from
automatic dependent surveillance‐broadcastdata).

1 | INTRODUCTION

Automatic target recognition has generated great interest in
aeroplane traffic control and surveillance. The increasing num-
ber of radar opportunity illuminators, for example, radio trans-
mitters, digital audio/video broadcast transmitters, and mobile‐
phone base stations, can be used as natural sources of radio
waves in passive radar systems. Notably, broadcast commercial
transmitters of FM radio (88–108 MHz) [1, 2] and VHF omni-
directional range (VOR, 108–118 MHz) [3–6] prove attractive
due to their high power transmission and wide coverage.

The diversity of opportunity illuminators offers the possi-
bility of setting multistatic recognition systems that combine
several signals scattered from a target. Acquired data in these
systems is more abundant than in a bistatic configuration,
without increasing the risk of being detected. In these bands
mentioned above, the wavelength is between 2.5 and 3.4 m,
making commercial aeroplane identification challenging since
their size is on the order of tens ofwavelengths.Despite this, low‐
frequency signals are less susceptible to weather changes, unlike
optical signals. Consequently, the radar cross section (RCS) in
VHF could be a useful fingerprint to identify the class of aero-
plane, as shown in [6–8]. Although ground reflection interfer-
ence [9] (which may also interfere with the noise at the receiver),

wave polarization [8] and aeroplane heading [10] can make
extremely difficult the extraction of these values in some
particular cases. By exploiting the automatic dependent
surveillance‐broadcast (ADS‐B) data broadcasted (L band) by
the aeroplanes, their position and heading are then known and
their BiStatic‐RCS (BS‐RCS), that is, RCS for separated trans-
mitter and receiver, can be effectively estimated as in [5].

In the literature, model‐ and data‐based classifiers [6, 7, 11–
13] have been applied to similar problems showing the feasibility
of aeroplane recognition from their BS‐RCS signature along the
flight path. However, deep learning classifiers are yet to be used,
given their tremendous success in computer vision for various
classification problems [14]. Unlike recognition from optical
images, typically two‐dimensional [2D] spatial map, BS‐RCS
signature can be either represented as four‐dimensional data
(RCS vs. 2D coordinates of incidence angle and 2D coordinates
of scattered angle) or as a temporal vector series (RCS and angles
coordinates vs. time). While both features appear insightful for
aeroplane recognition, either convolutional neural networks
(CNNs) or recurrent neural networks (RNNs) are proposed to
deal with different representations of RCS. Pre‐processing is an
important step when dealing with a sparse map of data allowing
for faster training of the neural networks when the preprocessed
images exhibit more discriminant patterns.
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Here, we highlight, through simulation and measurements,
discriminant RCS patterns for different sizes of planes. In
Section 2 we present simulation results of BS‐RCS for three
classes of aeroplanes (small, medium, and large) towards better
understanding their similarities and differences. Then, in Sec-
tion 3 we describe how the simulations results are pre-
processed to facilitate the neural network training.

Finally, in Section 4, we train several neural networks to
classify the aeroplane following several approaches: a 2D‐CNN
classifier from the sparse BS‐RCS, a one‐dimension (1D)‐CNN
classifier from the RCS time series and angular position of the
plane with respect to the illuminator and receiver and finally an
RNN from only the RCS time series. A discussion of the
promising results and future extensions then concludes the
study.

2 | MODELING AND SIMULATION OF
AIRPLANES

2.1 | Aeroplane models

The dimensions and number of engines of each aeroplane
model (large, medium, and small) are shown in Table 1 (see
Figure 1 for a scaled comparison). A perfect electrical
conductor (PEC) was considered for the models.

2.2 | Simulation results: RCS

Since the size of the aeroplane is comparable to the working
wavelength, no approximation is used, as in [15]. A full‐wave
simulation using the method of moments was carried out in
FEKO (3D electromagnetic simulator). To increase accuracy,
especially on the cross‐polarization simulation results, the
multilevel fast multipole method is not used. See Figure 2 for
the simulation setup and spherical coordinates used for the
simulation. All the simulations were carried out using a
115 MHz monochromatic linearly polarized planar wave.

Here, we have chosen to use simpler models. These models
follow approximate shapes of the different planes used in civil
aviation, but their main characteristics (fuselage length, wing-
span, and number of engines) influencing the values of RCS
correspond to the three classes.

Incident horizontally (resp. vertically) polarized (along ϕ
axis) plane waves were considered with incident direction (θi,
ϕi) ∈ [90, 180] � [0, 180] (due to the symmetry of the planes,
incident angles ϕi larger than 180° are obtained from the
original simulations when synthesizing RCS evolution in time)
and scattered angles (θs, ϕs) ∈ [0, 180] � [0, 360], in both cases
with the angular step of 1°.

Figure 3 shows the histograms of BS‐RCS values of the
aeroplanes (small, medium, and large) for VV (θ − θ), HH
(ϕ − ϕ), and HV (ϕ −θ) cases and for all scattered and incident
angles considered lines above. We observed most of the RCS
values as being concentrated between −10 dBm2 and 40 dBm2

(in accordance with [5], Airbus 321 is comparable to the

medium size model used lines above). The histograms of RCS
between the aeroplanes reveal very similar values, rendering
discrimination from RCS values only difficult. Additionally,
there is not much difference between RCS values for the VV,
HH, and HV cases.

Although the overall BS‐RCS values are similar, for a small
range of incident and scattered angles, some differences are

TABLE 1 Aeroplane models dimensions

Model size Wing span (m) Length (m) Number of total engines

Small 24 29 2

Medium 33.5 40 2

Large 51 60 4

F I GURE 1 From left to right: large, medium, and small aeroplane
models used in field calculations involving bodies of arbitrary shape (FEKO)

F I GURE 2 Simulation setup of aeroplane models, PEC, in FEKO and
definition of spherical coordinates used in the simulations. PEC, perfect
electrical conductor

2 - FIX ET AL.



easily observable. Figure 4 shows the BS‐RCS values when
fixing the direction (θ = 130°and ϕ = 40°) of an incident plane
wave and considering all the scattered angles. From this figure,
especially inside the red circle, we can discern differences
related to the size of the planes.

2.3 | Simulation results: RCS time series

Using the simulation results and ADS‐B data from the aero-
planes, we can also synthesisze the variation of the BS‐RCS of

F I GURE 3 Histograms of BS‐RCS (dBm2), 115 MHz, obtained by
simulation, VV (θ − θ, top), HH (ϕ – ϕ, middle), and HV (ϕ − θ, bottom),
for small, medium, and large aeroplane models. BS‐RCS, BiStatic‐radar
cross‐section

F I GURE 4 VV BS‐RCS, 115 MHz, for different scattered angles
(horizontal axis ϕ and vertical axis θ) considering an incident planar wave
coming from θ = 130° and ϕ = 40°. Red circle highlights the differences.
BS‐RCS, BiStatic‐radar cross‐section
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the aeroplanes for different trajectories. For this case, we
consider a passive radar configuration where the trans-
mitter (Tx) is at 48°39014″N, 1°59039.2″E (close to
Rambouillet, France), and the receiver (Rx) is near Central-
eSupélec, Gif‐sur‐Yvette, France.

Figure 5 shows the position of the Tx, Rx, the plane's
trajectory (obtained from real ADS‐B data for about 6 min),
and a ‘zoom’ version of the trajectory (between 3.5 and
5.5 min), all of them in Lambert 93 coordinates (spatial units in
metres). The aeroplane moves from left to right (approaching
landing at Orly airport). The RCS versus time (in min, 2 Hz of
sampling) for this trajectory is shown for each of the three
plane sizes and polarizations (VV, HH, and HV) in Figure 6.

From Figure 6, we note that the ranges of values of RCS,
per polarization, are similar (as expected from the histograms,
cf. Figure 3) besides a peak of 7 dB (around 3.85 min) above
the remaining cases, which corresponds to the large aeroplane.

What is different is the frequency of fluctuation of the
received power (see Figure 6), which varies according to the
size of the aeroplane: high frequency for large plane, medium
frequency for medium plane and low frequency for small
plane, and all polarizations. We recall that, in our simulation, we
used the same trajectories for each aeroplane class; the space of
angles is swept at the same rate. The frequency of fluctuations
indicates, in this case, the angular frequency due to the
sweeping throughout the peaks (width and number) of the
scattered wave due to the illumination of the object: large
objects will induce a greater number of thinner peaks
compared to smaller objects, as in Figure 4.

We can also see that the RCS of the HH and VV polari-
zations are about 15 dB higher than the HV polarization
(although this might not always be the case, see histograms,
Figure 3). We note that in all the cases, we have used a single
trajectory and single movement dynamics (same speed and
orientation); hence, the frequency of fluctuations of RCS in
real life will depend on the speed of the planes.

3 | PRE‐PROCESSING

To train the neural network, we synthesized the evolution of
bistatic RCS values considering real flight paths. An ADS‐B
decoder was used to retrieve real trajectories of the aero-
planes and their type. Note that the trajectories of the planes
(for this data collection) are very similar: approaching Orly
airport. We collected 269 trajectories, using ADS‐B data and
synthesized the bistatic RCS values for each trajectory, class of
plane sizes, and sources (11 VORs around Paris). Two different
data representations were used: 2D images and 1D vector.

3.1 | 2D image, aspect: bistatic angles

A natural way of representing the bistatic radar data is through
images of BS‐RCS values for bistatic and aspect angles [4, 5].
Figure 7 shows the definition of these angles used here. A
database was constructed using 2D images (181 � 361 pixels, 1

pixel per angle) of BS‐RCS variations for each trajectory and 11
sources (see Figure 8) where the colours represent the relative
BS‐RCS values in dBsm (for VV polarization) for each
coordinate.

The blue zones in Figure 8 correspond to the absence of
ADS‐B data (hence, no RCS is attributed to those coordinates).

Note that in this case, information of the angular position
and orientation of the plane is given indirectly to the neural
network.

3.2 | 1D vector

A 1D vector data of synthesized RCS values, ordered according
to time, was also considered to train the neural network.
Neither information on position, nor information on orienta-
tion, of the plane, was available (see Figure 6). While taking
measurements, we noticed that we could easily differentiate the
received power evolution of each aeroplane.

As an example, Figure 9 shows the evolution of the relative
received power (after pre‐processing) in dB for four aeroplanes
and two classes: small and medium. The planes were
approaching Orly airport and, hence, followed a similar flight
path although not precisely the same path, speed, and attitude).
The received power in Figure 9 contains the reflected signal on
the aeroplane (from RBT VOR) and the direct path; these
signals are strongly attenuated due to losses in the propagation.

From Figure 9 we can appreciate the differences in the
power evolution between classes: in amplitude in general, as
well as in relative level between the main peak (highest level)
and secondary ones (close to the main peak). At this stage, we
recall that we cannot compare the frequency of fluctuations on
the received power due to the different speeds of the plane. It

F I GURE 5 Position of Tx (near Rambouillet) in green, Rx (near
CentraleSupélec‐Gif) in red, plane's trajectory in blue (ADS‐B data for
6.3 min), and the trajectory zoom in thick red line (between timestamps 3
and 5 min). The plane is moving from left to right. Lambert 93 coordinates
(ms). ADS‐B, automatic dependent surveillance‐broadcast
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can also be seen that there are differences between the two
aeroplanes of the small class. Note that the power evolutions
related to the medium class (Boeing 737) are very similar since
they have similar flight path and attitude.

A software‐defined radio (SDR), along with a software
developed by SDR Technologies, was used to collect the
aeroplane's scattered power (I‐Q sampling). It was centred at
VOR frequency (114.7 MHz) and connected to a PC (com-
manded by a Python script). The receiver was installed close to
CentraleSupélec‐Gif using a horizontally polarized VHF
antenna.

4 | CLASSIFIERS BASED ON DEEP
LEARNING

Our classifier aims to predict a label y ∈{1, 2, 3}, which
respectively maps to small, medium, and big classes of

F I GURE 6 Evolution of BS‐RCS of aeroplanes (VV, HH, and HV,
from top to bottom, respectively), for 2 min, considering a source at 48°
39014″N, 1°59039.2″E and receiver near CentraleSupélec. The trajectory of
the plane is the one labelled as ‘Plane traj. Zoom’ (thick red line) in
Figure 5. BS‐RCS, BiStatic‐radar cross‐section

F I GURE 7 Definition of bistatic and aspect angles

F I GURE 8 2D image of BS‐RCS variations (in colour) for bistatic and
aspect angles, 181 � 361 pixels (similar to [5]), for a single trajectory and 11
VORs (hence, 11 different illumination angles of the aeroplane). BS‐RCS,
BiStatic‐radar cross‐section; VOR, VHF omnidirectional range
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aeroplanes, from input features X ∈ X , which can be either a
vector, a matrix, or a tensor. The classifier is mathematically
represented by an operator:

f P : X → f1; 2; 3g
X ↦ by ¼ f PðXÞ

where P is all the parameters of the classifier.
In a supervised learning framework, we usually distinguish

from P two types of parameters for neural networks:

(i) learnable parameters W from labelled dataset
fðXi; yiÞgi¼1;…;N generally called the weights,

(ii) hyperparameters H, for example, the number of layers,
filters, choice of regularizers, optimizer, dropout, and so
on.

The main difference between these parameters lies in the
fact that H is only tunable in a heuristic manner [16], whereas
W is learnable by minimizing the following cost function, also
called the empirical risk:

Wopt ¼ arg min
W

1
N

XN

i¼1
L yi; f PðXiÞ
� �

ð1Þ

where L is generally the cross‐entropy loss function for clas-
sification problems. Solving Equation (1) is complicated since
the empirical risk is non‐convex w.r.t. W and the training set
could be huge. To reduce this computational cost, W is

iteratively updated using mini‐batch gradient descent with
optimizer as RMSprop, ADAM [17], and so on. Furthermore
the mini‐batch gradient is usually computed with the back‐
propagation algorithm [18].

In the following subsections, we consider two cases for X
being either the partially observed BS‐RCS or the BS‐RCS time
series with or without the emitter/receiver polar and azimuth
angles.

For all the experiments, the models are trained with Ten-
sorflow [19] and Keras [20] on an Nvidia GTX 1080Ti.

4.1 | Classification from the sparse BS‐RCS

As shown in Section 2.2, the BS‐RCS contains highly specific
features pertaining to the aeroplane model and its content, had
it been fully observed, could be used as a fingerprint of the
plane allowing for its classification, see Figure 4. However,
when a plane flies along a trajectory, only a subpart of BS‐RCS
is observed w.r.t. four angle coordinates (θi, ϕi, θs, and ϕs). For
solving this sparsity issue, we first use multiple transmitter
signals located at different positions to cover more incidence
angles. Second, we reduce the dimension of the features by
considering only a 2D map containing the BS‐RCS w.r.t. aspect
and bistatic angles. We collected 269 airliner trajectories from
ADS‐B data around Paris. For each trajectory, 11 BS‐RCS are
synthesized with a single receiver location and across 11
different positions of illuminators. In our scenario, these lo-
cations correspond to VOR donor positions, but other types
of transmitters, such as radio or DVB‐T stations, could be
considered. For any sparse map, a clear distinction between
measured and unobserved BS‐RCS is needed for forcing neural
network's attention to capture BS‐RCS variation along the
trajectory path. From the BS‐RCS histogram (see Figure 3), an
offset of 30 dB m2 is added, such that 0 dB m2 corresponds to
the unobserved regions. In Figure 10, the stacked BS‐RCS
using all collected trajectories is plotted. Each map contains
269 � 11 = 2959 BS‐RCS trajectories due to the diversity of
transmitter positions.

In the first glance, this map appears to be an excellent
candidate for discriminating each class of aeroplane. In prac-
tice, the class of aeroplane should be recognized from a single
trajectory; therefore, the BS‐RCS map will be incomplete.
Indeed, for n transmitters and m receivers placed at different
locations, we will have at most n � m trajectories in the BS‐
RCS map by combining the incident and reflected angles. In
Figure 8, a typical BS‐RCS map is plotted for one single airliner
trajectory using 11 illuminator positions and one single
receiver. The discrimination regions are less obvious than from
the stacked BS‐RCS (Figure 10). Fortunately, CNNs are, today,
the state‐of‐the‐art algorithms for image classification [14] and
more sensitive to variation discrepancy than human eyes.
Additionally, this architecture of deep learning is motivated by
the performance provided in visual image recognition fields
even though our data are slightly different from optical images
and are sparse because most angular domains remain unseen.
Therefore, we proposed Mercury2D, a 2D‐CNN for classifying

F I GURE 9 Received relative level (dB) of power, HH, after pre‐
processing of reflected signal on aeroplanes approaching Orly airport. Two
classes are present; on the top figure, a small (jet CRJ701) and a medium
size (Boeing 737) aeroplane. On the bottom figure, a medium (Boeing 737)
and a small size aeroplane (aeroplane with propeller ATR‐42 500)
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these maps. The architecture is described in Table 2. As the
network aims to classify images, the architecture follows
standard design principles in deep learning applied to com-
puter vision problems: the architecture is built from stacking
blocks of a 2D convolutional layer, a non‐linear ReLu (Recti-
fied Linear Unit) activation, a pooling layer and a dropout layer
followed by two fully connected layers. The number of con-
volutional kernels and the value of the dropout are all hyper-
parameters (in H ) to be found before running the
optimization of W and these are specified in the table.
The activation of the first fully connected layer is a ReLu while
the last layer uses a Softmax for outputting a probability dis-
tribution over the three classes under consideration.

A total of 807 BS‐RCS maps is used to train, validate, and
test the Mercury2D network. 70% of the whole dataset is used
for training (N = 565 in Equation (1)), 15% for the validation

and 15% for testing. During the training phase, Mercury2D
weights W are randomly initialized using the Glorot uniform
initializer [21] and are optimized over 200 epochs with the
categorical cross‐entropy loss. For each epoch, a mini‐batch
gradient is computed over 64 samples, ADAM optimizer is
used to update the weights W. The learning rate is a hyper-
parameter set to lrðepÞ ¼ 0:001

1þ0:1�ep, where ep denotes the cur-
rent epoch number. Mercury2D has 3, 427, 811 trainable
parameters W (the values of the convolutional kernels and the
weights of the fully connected layers). Loading the data and
training the network last in total 135 min.

A fine‐tuning of Mercury2D hyper‐parameters H, that is,
the number of layers, size of kernel, number of filters and
dropout, and so on, is performed in a heuristic manner to
avoid under‐ and over‐fittings. In Figure 11, we plotted the
evolution of categorical cross‐entropy loss and accuracy as a
function of the number of epochs. As shown, loss and accu-
racy metric of train, validation and test are approximately
stabilized after 150 epochs. The best accuracy is around 90%
with a loss of 0.38. We can notice that the validation set and
test set have similar behaviour potentially indicating the correct
prediction of generalization error. However, there is a gap
between the train and test/validation performance, almost
10% drop in terms of accuracy. This gap shows the difficulty of
Mercury2D to generalize using a sparse BS‐RCS map even
with 11 trajectories.

4.2 | Classifying from temporal series

In the previous section, the aeroplane model is classified from
the BS‐RCS, which is only sparsely observed. We now consider
the problem as a temporal series classification, that is, directly
classifying the aeroplane model from a 5‐dimensional sequence
of BS‐RCS and polar/azimuth angles w.r.t. the illuminator and
receiver. We will consider two typical architectures for classi-
fying the temporal series: 1D‐CNN, called Mercury1D and an
RNN, called Jupyter1D.

The networks are all trained for 200 epochs, with the
ADAM optimizer (α = 0.001) and a cross‐entropy loss. The

F I GURE 1 0 Stacked BS‐RCS map with 30 dB m2 offset versus aspect
and bistatic angles for each class of airliners (colour bar dB m2). BS‐RCS,
BiStatic‐radar cross‐section

TABLE 2 Mercury2D architecure. Conv2D (s1 � s2 � c) is a
convolution of kernel size (s1 � s2) with c output channels, stride (1 � 1).
MaxPool2D (s1 � s2) is a max‐pooling with kernel size (s1 � s2) and stride
(s1 � s2)

Input size (181 £ 361)

Convolutional layers Conv2D (6 � 12 � 32), ReLu,

MaxPool2D (3 � 6), Dropout (0.5)

Conv2D (6 � 6 � 64), ReLu,

MaxPool2D (3 � 3), Dropout (0.5)

Conv2D (3 � 3 � 128), ReLu,

MaxPool2D (2 � 2), Dropout (0.5)

Fully connected layers Fully connected (512), Relu

Fully connected (3), Softmax
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learning rate is adapted with the following schedule: α = 10−3

for the first 80 epochs, α = 5.10−4 for the next 60 epochs then
α¼ 1

3 10
−3 for the next 40 epochs and α = 2.10−4 for the last

20 epochs. This adaptive learning rate was chosen empirically
so as to hopefully get a better classifier.

The angular excursion of the trajectories depends on the
visibility of the plane from the illuminator and receiver. When
pre‐processing the trajectories, they have been resampled at a
variable angular step so as to contain 390 datapoints. The
polar/azimuth angles with respect to the illuminator and
receiver are normalized in [0, 1]. The BS‐RCS is not
normalized.

In the metrics reported in the next sections, the real risk is
estimated with a threefold cross‐validation. This means, for
each fold, approximately 2/3 of the data for the training set
and 1/3 for the validation and test set. The splits contain
N = 5918 series (538 trajectories with 11 illuminators) for the
training set, 1485 series for the validation set (135 trajectories

with 11 illuminators), and 1474 series for the test set (134
trajectories with 11 illuminators). The validation set is used for
early stopping, and the accuracy on the test sets are averaged
over the folds to report the real risk estimation of the trained
classifiers.

In addition to the performance metrics of the model
processing a single BS‐RCS time series, we consider combining
the predictions from the 11 illuminators. The trained model
takes as input the BS‐RCS time series from a single illuminator.
However, the model can be tested by either considering the
prediction from a single BS‐RCS time series (from a single
illuminator) or the predictions from the 11 illuminators. These
11 predictions can be combined, using either a voting strategy
or an averaging strategy. For the voting strategy, the assigned
class is the one getting the highest number of votes from each
of the 11 predictions. For the averaging strategy, the 11 class
probabilities are averaged before determining the class of the
plane. For computing the average probability over the aero-
plane classes, each probability vector (associated with the tra-
jectory of the plane seen from one illuminator) is weighted by
the original angular length of the trajectory, owing to the hy-
pothesis that a longer trajectory implies higher confidence in
the discrimination of the aeroplane's class.

4.2.1 | Mercury1D: 1D convolutional neural
network

The 1D‐CNN architecture is built from three successive
convolutional blocks followed by a hidden layer and the last
softmax layer as given in Table 3.

In addition to the dropout layers, all the convolution layers
are L2‐regularized with a factor of 0.008. The amount of
dropout and regularization factor belongs to the hyper-
parameters H found empirically. This architecture has a total of
1.775.641 trainable parameters W (convolutional kernels and
weights of the fully connected layers). For training, a minibatch
contains 64 samples. Loading the data and training a model
(three times, one for each fold) takes around 20 min. The
performances of the best (in terms of their validation loss) out
of 10 runs are given in Table 4. The accuracies estimated from
the threefold cross‐validation are also provided: they do not
differ significantly from the performances of the best single
run. Combining the individual predictions of the model on all
11 illuminators, by either averaging or voting, brings a better
predictor (≈+ 6% accuracy) than the one with a single
illuminator.

The evolution of losses and accuracies of the best single
run (the one leading to the model with the lowest validation
loss), out of 10 runs, are shown in Figure 12.

4.2.2 | Jupyter: GRU recurrent neural network

The RNN is built from one layer of GRU cells, followed by a
dense layer and the last softmax layer as given in Table 5.

(a)

(b)

F I GURE 1 1 Loss and accuracy w.r.t. number of epochs for
Mercury2D
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Besides, to test the performances of an RNN, this model also
only takes the BS‐RCS time series and not the polar/azimuth
angles as for the model in the previous section. The benefit of
getting rid of the angles is that it allows us to get rid of the
ADS‐B antenna. Indeed, in a real application, ADS‐B may give
false information (intentionally or not).

The architecture has a total of 265.475 trainable pa-
rameters W (weights of the gates of the GRU units and
weights of the fully connected layers). For training, a min-
ibatch contains 512 samples. Loading the data and training a
model (three times, one for each fold) also takes around
20 min. The performances of the best model, when it
comes to validation loss, out of 10 runs are given in Ta-
ble 6. The accuracies estimated from the threefold cross‐
validation are also provided; they do not differ signifi-
cantly from the performances of the best single run.
Combining the individual predictions of the model on the
11 illuminators, by either averaging or voting, by far yields a
better predictor (from +10% to + 15%) than the one with a
single illuminator. The benefits of combining the predictors
on multiple illuminators are much higher than with
Mercury1D.

The losses and accuracies of the best run out of 10
runs are shown in Figure 13. The performances of the
RNN are pretty surprising. Indeed, the model does not
have access to the angles and therefore has no obvious
means by which to know the parts of the BS‐RCS that are
sampled. Also, as the BS‐RCS time series is stretched to fit
a length of 390 samples, the fequency content of the series
gets distorted. It is, therefore, rather astonishing that the
model can classify the plane from such input, and further
investigations are required to fully understand why it per-
forms so well.

5 | CONCLUSION

Our simulations have demonstrated that, in general, the BS‐
RCS values of aeroplanes of different sizes (large, medium,
and small) are similar, rendering their discrimination on the
sole basis of BS‐RCS values difficult. We have further
demonstrated that it is more sensible to look for the angular
frequency of the BS‐RCS when the aeroplane is moving to

TABLE 3 Mercury1D architecure. Conv1D (s � c) is a convolution
of kernel size s with c output channels, stride 1. MaxPool1D(s) is a max‐
pooling with kernel size s and stride s

Input size (390 £ 5)

Convolutional layers Conv1D (10 � 80), ReLu,

MaxPool1D (5), Dropout (0.2)

Conv1D (15 � 130), ReLu,

MaxPool1D (5), Dropout (0.35)

Conv1D (10 � 180), ReLu,

MaxPool1D (4), Dropout (0.4)

Fully connected layers Fully connected (512), Relu

Dropout (0.5)

Fully connected (3), Softmax

TABLE 4 Mercury1D accuracies

Single illuminator Voting Averaging

3‐fold cross‐validation 89.16% 94.52% 95.52%

Single run (test set) 90.91% 95.52% 97.01%

(a)

(b)

F I GURE 1 2 Loss and accuracy as a function of epochs for
Mercury1D

TABLE 5 Jupyter architecure

Input size (390 £ 1)

Recurrent layers GRU (256, L2 regularized 10−4),

Fully connected layers Dropout (0.5)

Fully connected (256), Relu

Dropout (0.5)

Fully connected (3), Softmax
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discriminate the planes by sizes; larger planes will scatter power
with thinner and more peaks. These simulation results may be
used to synthesize the BS‐RCS evolution for arbitrary trajec-
tories, which in our case is based on real trajectories, and
include many radio sources and different receiver positions.
Then, multiple scenarios, based on real trajectories, could be
considered to train neural networks, which need a huge
collection of data that are rarely available by measurement.
Some measurements of the scattered power have been carried
out in a passive radar configuration (Tx RBT VOR, Rx near
CentraleSupélec—Gif‐sur‐Yvette) for aeroplanes landing at
Orly airport. These experiments indeed confirm sufficient
differences in the received power from the aeroplanes to

discriminate between them. It might even be possible to
differentiate among planes of the same class. This work only
considers the RCS values but future works could investigate
the impact of including the scattering‐parameter phase on the
classification accuracy.

We experimented three approaches: a 2D‐CNN classifier
of the sparse BS‐RCS, a 1D‐CNN classifier of the BS‐RCS
time series and angles, and an RNN taking as input only the
BS‐RCS time series. These three approaches deserve specific
comments.

For the 2D‐CNN, we framed the problem as a classi-
fication problem from a sparsely observed BS‐RCS image,
where the unobserved parts were filled with a specific value.
That value was chosen to correspond to a significant
attenuation of the reflected signal. It is unclear whether that
specific value was the right choice. We expect to improve
the performance by reconstructing the BS‐RCS image with a
convolutional auto‐encoder before classifying it. That
reconstruction is trainable because we work with simulated
data so that we have both the sparse BS‐RCS and the
complete BS‐RCS. The underlying hypothesis is that training
a reconstruction network could fill the image locally by
incorporating local correlations that could be learnt from the
reconstruction task.

The other approach would be 1D network classifiers on
the BS‐RCS. In these experiments, combining the predictions
from multiple illuminators yields significantly better results.
This might be explained by the fact that some parts of the BS‐
RCS appear to be more informative than others. Further in-
vestigations are required to better understand these
improvements.

The RNN works surprisingly well, considering that it does
not have direct access to the angles and therefore has no
obvious way of knowing which parts of the BS‐RCS are
observed. Further investigations are required to completely
understand how the model succeeds in classifying the aero-
plane from such poor and distorted input. These performances
may, to some extent, rely on the regularity of the recorded
trajectories approaching Orly airport. It is possible that for
these recorded trajectories, the stretching of the series does not
have a significant impact on the ability to classify the plane.
Whether the network would still perform well on more arbi-
trary trajectories remains to be observed.

Finally, we still need, in the future study, to confront the
network with real data, either by completely training with
the real data or simply by fine‐tuning a network pretrained on
the simulated data.
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