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Microlocal partition of energy for linear wave or Schrodinger
equations

Jean-Marc Delort*
Université Paris XIIT (Sorbonne Paris-Nord),
LAGA, CNRS (UMR 7539),
99, Avenue J.-B. Clément,
F-93430 Villetaneuse

Abstract

We prove a microlocal partition of energy for solutions to linear half-wave or Schrédinger
equations in any space dimension. This extends well-known (local) results valid for the wave
equation outside the wave cone, and allows us in particular, in the case of even dimension,
to generalize the radial estimates due to Cote, Kenig and Schlag to non radial initial data.

0 Introduction

The goal of this paper is to revisit the property of space partition of energy when time goes to
infinity for solutions of linear wave equations that has been uncovered by Duyckaerts, Kenig and
Merle [7, [§] in odd dimensions and by Coéte, Kenig and Schlag [4] in even dimensions, and to
extend it to other dispersive equations.

Recall that if w solves the linear wave equation on R x R?

(02 — A )w =0
wli=o = wo

Oqwli=o = w

and if one defines the energy at time ¢ outside the wave cone by

(1) EW (wo, wi, ) =/ 10w (t, )* + |Vow(t, z) ] de,
| |>[¢]

then it has been proved in [7], 8] that, if d is odd, either

vt >0, Ew(wo’wlvt) > [HUJlH%? + ||wa0”iz]

N

(2) or

vt <0, BV (wo,wi1,t) > = [|lwi]|72 + | Vawo|32].

N
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Since t — EW (wg, w1, %t) is non increasing on [0, 4-00[, the above property is actually a conse-
quence of
(3) lim [EY (wo, wi, t) + EY (wo, wi, —t)] = [[wi[|72 + [|Vawol|72.

t——+o0
In even dimension, it has been shown by Coéte, Kenig and Schlag that does not hold in general
(see nevertheless Proposition 1 in [9] for a qualitative version of the result in even dimension).
Though, for radial data, Cote et al. have been able to compute the limit in by an explicit
formula that, for special classes of radial initial data, provides estimates of the form .
Inequalities of the form are important as a tool used to study solutions of energy critical wave
equations. They have been initially introduced for such a purpose in [7, 8] in odd dimensions.
Their version for even dimension have been applied to equivariant wave maps by Cote, Kenig,
Lawrie and Schlag in [I, 2] and to the focusing energy critical wave equation in four dimension
by the same authors in [3].
Our goal in this paper is to address the following questions:
(i) May one refine replacing the energy truncated in the complement of the wave cone by a
similar microlocal expression, cut-off in a smaller domain, so that an equality of the form
still holds?
(ii) Is it possible to prove a property of the form for other dispersive equations? In particular,
this raises the question of determining what would be the natural set that should replace the
wave cone in the definition of the sharp cut-off in ().
(iii) Is it possible to extend the result of equipartition in even dimension of Cote, Kenig and
Schlag [4] to non radial data?
We shall study these three questions in a relatively unified framework. Actually, we shall deal
simultaneously with the half-wave equation and the Schrédinger one. Following some heuristics
explained in subsection below, we define a microlocalized cut-off energy for a solution v of
the half-wave equation (D; — |D,|)v = 0 (where Dy = %%, D, = %8%) in the following way: for
any frequency direction w = é—|, we cut-off microlocally the solution intersecting the outside of

the wave cone |z| > [t| with an angular sector around —w, of angle ¢=3+0 (see the statement of
Theorem in subsection and Figure . We show then that, in any space dimension, a
property of the form holds, so that a significant part of the energy stays in the microlocal
domain in which our energy has been cut-off. We obtain a similar result for the Schrédinger

2
equation (Dt — @)v = 0, with two differences: first, the wave cone |z| > |t| has to be replaced

by the “Schréodinger cone” |z| > |t||£]; second, the limit of the analogous of is no longer
the whole initial energy |[v(0,-)[[2, but only half of it. Let us mention that though we limit
ourselves here to the discussion of half-wave or Schrédinger equations, our method could be used
for more general equations, of the form (D; — p(D,))v = 0, with some radial function p(¢),
the sharp cut-off involved in the definition of the microlocalized energy being then replaced by
2] > [¢][#/(€)]-

As a byproduct of our method, we extend the results of Cote, Kenig and Schlag [4] to non radial
data. Actually, one may express the left hand side of from the quantities that appear in the
study of the half-wave equation, and from other terms, that are the ones responsible for the gap
between odd and even space dimension.

The main theorems of the paper are stated in subsection [I.I] and some heuristics explaining the
choice of our microlocal cut-offs are given in subsection [[.2] We devote section [2] to the study
of the L? boundedness of the sharp cut-off operators that define our microlocal energies. Such
boundedness properties are trivial for the (half)-wave equation but not for the Schrédinger one,
as in this case the sharp cut-off depends both on space and frequency. In section [3] we give the
proof of our main theorems and gather in an appendix some more technical stationary phase
results that are used in sections [2] and [3 as well as some other technical points.



We thank Thomas Duyckaerts for providing us some bibliographical references.

1 Statement of the main results

1.1 Lower bounds for energy channels

For (z,€&) — a(z, &) a bounded (or locally integrable in & for any fixed x) function on R? x R?,
with values in C, and u in S(R?), we set

(11.) ala Deu = Opla)u = 55 [ e*ata i(e) ds.

Let x be in Cgo(Rd) radial, with small enough support, equal to one close to zero and let x be
a similar function on R. For t in R, § € [0, %], we introduce the following cut-offs:

(1.1.2) AW s(t,2,€) = ((x+tm)|t| DR (1t = |o)) Ly

and

x + 1€
|t|]§\(\/m’§‘>—§+5 || >[¢]1€]

For ug in L?(R%), we define the following micro-localized energies of the solution of the half-wave
equation and of the Schrodinger equation respectively:

Ex X Vs(uo, t) = HOP(CLHW(S) [eitlDz‘UO] Hiz

(1.1.4)
ESChr(uO, _ Hop( Schr)[ zt‘D;Pu

O]HLQ’

where D, = 1 8833 Our main theorem asserts that the above quantities are finite and that,
asymptotically when ¢ goes to +o00, Ey(ug,t) + Ey(ug, —t) is larger than a significant fraction of
the total energy of ug, where E, stands for EHX 5 Or Ei%‘r.

Theorem 1.1.1 Let d > 2 for the half-wave equation and d > 1 for the Schridinger equation.
Then if the supports of x, X have been taken small enough, the operators Op(agxzv ) and Op(a SChr)

are bounded on L*(RY) uniformly for |t| > 1. Moreover, for any ug in L*(R%),
(i) For the half wave equation, if § €]0, 3], one gets

(1.1.5) lim [EXYs(uo,t) + B35 (uo, —t)] = [Juoll72.

t—4o00

(ii) For the Schridinger equation, if & € [0, 5[, one gets

1
(1.1.6) Jim [ESS (uo, ) + ESG™ (uo, —t)] = §|yuo\\§2.
Remarks: e The cut-off in means that, if one takes a direction w in S~ and the point
of the wave cone (t, —tw), then we compute in the microlocal energy of e’lP=lyg at time
t > 0 in a domain given by the intersection of the complement of the wave cone {|z| > t}, of a
neighborhood of the slice of the wave cone at time ¢ of the form {z € R% |t — |z|| < t°} and of
an angular neighborhood of the direction —w of aperture o(t~ 2+0)



Figure 1

The shaded area above is essentially the smallest set, outside the wave cone, in which we may
expect to find a significant fraction of Hu0||%2 when we compute the limit for ¢ going to +o0o of the
sum of the truncated energies at ¢t and —t. Actually, if one takes a smooth cut-off outside the ball
of center —tw, of radius |t|%+0, or outside the neighborhood of the wave cone ||z| — [t|| < ¢|t|°,
the stationary phase formula shows that the corresponding localized energy goes to zero when ¢
goes to infinity.

e In the case of the Schrodinger equation, it would be natural to expect that the result
holds true if the cut-off in 1} were localizing for z in a neighborhood of —t£ of radius ~ $3+0
when ¢ goes to +oo (that would correspond to § > —3 in ), while in our statement we

have only a larger radius t1 (corresponding to 6 > 0). This comes from the fact that we are
unable prove L? boundedness of operator Op(a)sccglr) for smaller radii. This might be actually
just a technical problem. 7

e On the other hand, the restriction § < % might be unavoidable. For § = %, there would be
points (x,§) with x orthogonal to & in the support of the cut-off. The estimates we use in our
proof of L? boundedness break at such points. One may not exclude that, without such cut-offs,
the L? boundedness result be false. Actually, if one replaces the usual quantization of symbols
we use here by the Weyl one (which, for non smooth symbols, might not be innocent) it has been
proved recently by Lerner [IT] that the sharp symbol 1g(x,§) gives rise to an operator that is
unbounded on L? for “almost all” subsets E of R? x R?. See Theorem 6.21 of [I1]. Of course,
our goal in this paper is to obtain the smallest possible subset that contains a positive amount
of energy, so that the smaller ¢ in , the better.

e We have indicated in the introduction that our method could be used for more general equations
that the Schrodinger one, namely for (D; — p(D,))u = 0, where p(€) is a radial strictly convex
function. Actually, in subsection when we study several phase integrals that imply ,

we consider a general symbol p(§) instead of just @, as the analysis is not more difficult in that
case. What would have to be done in order to get conclusion also in this more general
case would be to prove the boundedness of a cut-off operator of the form adapted to such
a p. This is certainly possible, but would make the paper longer and more technical. This is why
we limit ourselves to the Schrédinger framework.

Our method applies also to the usual wave equation and allows us to recover the result of
Duyckaerts, Kenig and Merle |7, §]:



Theorem 1.1.2 Let w be a solution to the linear wave equation

(0} — A)w =0
(1.1.7) wi—o = wo

Oywli—o = w1

with data (wo,wy) € HY(RY) x L2(RY). Define the truncated energy at time t by

(1.1.8) EY(wo, wy, t) = / (1Bw(t, o) + [Vowl(t, 2)?) da
<] <t]+clt)

where ¢ > 0,0 > 0. Then, if d is odd, one has

(1.1.9) (i [EXS(wo, wi,t) + EY5(wo, w1, —t)] = lwil|72 + || Vawol|72.

Remarks ) T he above theorem will be a corollary of the case of the half-wave equation in
Theorem Actually, we shall express the left hand side of - ) from energies of the form
EHW5 as and from other terms that, in odd dimension, converge to zero when t goes
to 1nﬁn1ty

e As already mentioned in the introduction, in [8] the authors state an (apparently) stronger
property than (1.1.9). Actually, the quantity ¢ — fx\>t(’8tw(t o)) + \wa(t,x)\z) dx is non
increasing on [0, +oof, so that ((1.1.9) implies that either for any ¢ > 0

—

/| | t(|atw<t,m>|2 + Vaw(t,2)) dz > 5 (w2 + [ VaowolF2),
x|>

or for any t <0

(lwilf2 + I Vowol2),

L\’JM—A

/|>|t|(\8tw(t,x)|2 b [Vaw(t, 2)[?) d

which is the result of [§].

In the case of even dimensions, one may get instead of a lower bound under extra as-
sumptions on the initial data. We shall actually prove the following result, that extends to the
non radial case Corollary 2 of the paper [4] of Cote, Kenig and Schlag.

Theorem 1.1.3 Assume that d is even. Then

(1.1.10) lim [Eg;(wo,wl,t) + EXY;(wg,wl, —t)] = H’le%g + HVzon%g

t—+00

2(—1 % “+o00 i1 el / /
+(2(7r)d)+1Re /Sd_l UO [H(p"2 i (pw))] (p)p' 2 iio(p'w) dp/ | dw

where ug = —iwy + |Dy|wo and where for f € L*([0,+oc[,dp) the Hankel transformation H is
defined by

+oo
(1.1.11) Hf(p') =/0 pfip[)), dp

(which is a bounded operator from L?*([0,+o0],dp) to itself).
Moreover, if one assumes either

(1.1.12) (d=0 mod 4,wy even,w; odd)



or
(1.1.13) (d=2 mod 4,wy odd, wy even),

then the left hand side of 41.1.121) is bounded from below by ||w1]|2, + ||Vzwol2..
Actually, under (1.1.19) or (1.1.13), one has even the stronger statement

(1.1.14) lim EY§(wo,wy, £t) >

Jlim (w122 + Vol 22]

N

for both signs.

Remarks: e By [4], one knows that when (1.1.12)), (1.1.13)) do not hold, one may construct
sequences of initial data such that [|wi]/2; + [[Vawol|%, is equal to one but for which the left
hand side of goes to zero.

e After completion of this work, formula has been also obtained by Coéte and Laurent
in [5].

1.2 Comments on the preceding results

In this subsection, we want to explain heuristically why one may expect the results of Theo-
rem [L.1.1] to hold true.

We consider first the half-wave flow e®P=|. Let a (%, f) be some symbol to be defined and using
notation consider for ¢t > 0 the quantity

2

(1.2.1) Ha+ (% D, ) [¢*1P+ug] ‘ ot e (% D, ) [ 1P<lug] |7,

for ug in L?(R%). Let us rewrite this expression under a “semi-classical form” i.e. set h = ¢t~
_d . _d

(for t > 1) and define vg j, by uo(t,z) =1t 2v07h(%) ie vop(z) =nh 2u0(%), so that |lvopllr2 =

|luol|z2. Then

(1.2.2) s (.00 [=9P o] |, = [las (a0, hDL) [H 1P g, ]
where ay (z, hD,) is defined as in ([1.1.1)) but with a(x, §) replaced by a4 (x, h€) under the integral.
One may rewrite ((1.2.1)) under the form

(1:23) (e HMPrla (0, hD,) ax (2, hDR) e MPr g v )

+ <e%|th‘a_(:c, hD.)*a_(x, hDgc)e*%‘hD”'vo,h, Uo,h>-

To proceed, let us recall some ideas of symbolic calculus for semi-classical pseudo-differential
operators. We shall not give rigorous statements as our symbols will not satisfy the assumptions
that are necessary in order to apply classical theorems of symbolic calculus. The reader may
refer to the books of Dimassi-Sjostrand [6] or of Zworski [I3] for such topics. Let us just say
that, under convenient assumptions on the symbols a4 (x, &), one may prove that, if one sets

(1.2.4) bi(w,8) = |ax(z, &)
then
(1.2.5) ay(z,hDy)* o ay(x,hDy) = by(x,hDy) + R



where ||R[[(z2) = o(1) when h goes to zero (i.e. t goes to infinity). Modulo a remainder going
to zero, we may thus rewrite (1.2.3)) as

(1.2.6) <€_%‘th|b+(fU, th)eﬁhD”Uo,h, Uo,h> + <€’%|hD’”|b—($, th)e_%‘hD”Uo,h, Uo,h>-
Moreover, we have formally
(1.2.7) Tl Dalyy (3, hD,)et Pzl o ¢\ (z, hD,)

modulo negligible remainders, where

(128) ex(o.€) = bi (o F 7.6)

so that, up to a o(1) contribution when h goes to zero, one may rewrite ([1.2.6) as
(1.2.9) ((¢4(z, hDy) + c—(x, hDy))vo p, vo,p)-

If by are chosen so that cy(z,£) + c—(z,&) = 1, one would get that, modulo a remainder going
to zero when ¢ goes to infinity, (1.2.1)) would be converging to Hfuo,hHiz = HUOHQLQ when ¢ goes to
+00. In other words, defining a localized energy of the form (1.1.4)) by

, 2
(1.2.10) EW (g, t) = Ha+<%,Dz>e’t|Dz|uo‘

L2

and taking a_(z,€) = ay(—x,&), so that (1.2.1) would be EHW (ug, t) + EHW (ug, —t), we would
obtain

(1.2.11) lim [EHW(uo,t) + EUW (uy, —t)] = lluol|2.

t——+o0

The question now is to choose a4+ such that the symbols ¢4 defined from a4+ by ,
satisfy ci(z,&) + c—(x,§) = 1, and to try to take these at with the smallest possible support,
this support being located outside the wave cone, in order to get a channel of energy estimate.
As a first try, set

(1.2.12) ar(z,€) = 1, o a—(r,8) = ay(—x,8) = Logst

Then z — ay(x,&) (resp. x — a_(x,§)) is the characteristic function of the shaded half-plane in
the left (resp. right) picture below:

£
]
{z-5>1
e 2<-1
_£
§
Figure 2



By (1.2.4), b+ = a4 and by ([1.2.8)

C.t,_(SC,g) = 1x-é—‘<0’ C—(‘Tﬁf) = 11.%>0

so that their respective supports are obtained pulling the support of a; (resp. a_) of one unit
in the direction of - (resp. —l%) In that way, the union of those two supports exactly covers

€]
the whole plane, so that ¢y +c_ = 1:

Figure 3

Consequently, we would have obtained a channels of energy estimate (|1.2.11]) where, in the left
hand side, unlike in [8, 4], the cut-off energies are taken not on the whole complement of the wave
cone, but only on the subset of it given at each fixed frequency by the shaded area on Figure
Our result for the half-wave equation in Theorem is of that type, except that we cannot
make rigorous the above heuristics if we define a+ as in . Actually, in order to just start
a rigorous proof, we would have to know that operators with symbols a+ are bounded on L2,
so that quantities (1.2.10) would be finite. We show in Appendix below that this is not
the case. We have thus to modify the definition of a4+ in order that the associated operators
be bounded on L?, while retaining as much as possible of the support properties indicated in
figures|2{and . In the statement of Theorem we replace a4 by , which cut-offs along
the shaded area in Figure[I] If one looks at it at time ¢ = 1, in order to compare it with the left
picture in Figure [2| one should concentrate on a neighborhood of point —w. We see that instead
of taking as support of our symbol an half-space whose boundary is tangent to the unit circle at
—w, we consider the complement of the unit disc, intersected with a convenient neighborhood of
—w. If one translates the shaded domain of Figure [I] by tw, and the symmetric one relatively to
the origin by —tw, one obtains instead of Figure [3] the following picture:

Figure 4



In this case, the union of the two shaded areas does not cover the whole plane as in Figure [3]
but it contains a ball of center 0, radius t° for some § > 0, so that when ¢ — 400, this domain
will nevertheless allow one to recover the whole L? norm of the initial condition.

As indicated earlier, the above argument does not provide a rigorous proof, because our symbols
(1.2.12) or (1.1.2)) are not smooth, and do not obey symbolic calculus. We shall have thus to
give direct proofs, using systematically stationary phase formula. The fact that we may further
localize through the cut-offs x, x in , instead of taking into account the complement of the
whole wave cone as in [§] 4], is not a surprise: actually, forgetting the sharp cut-off in , it
is easy to see that the energy outside the neighborhood given by the intersection of the supports
of these two functions goes to zero when time goes to infinity.

The interest of the above heuristics is that they are not limited to the half-wave equation and

; 11Dz |?
ezt|Dz\ by et

work as well for other dispersive models. For instance, if we replace in (|1.2.2
the same reasoning as above would lead us to define a1 replacing ((1.2.12)) by

(1213) a’Jr(:L‘aé) = 1x-§<—17 be(l',g) = 1:1:~f>1

for which we have the analogous of Figure where & has been replaced by €. Again, in order to

Il
avoid issues with L? boundedness of the associated operators, we replace a+( {) by the symbol

in (L.1.3), that cut-offs Sharply for |z| > |t||¢] and smoothly around a ball centered at z = —t&,

with radius |¢]|¢[(y/[¢]|€]) 2" . Unlike in the case (1.1.2), the L? boundedness of the operator
with symbol - unlformly for |t| > 1, is not trivial, and will occupy most of section [2|of that
paper. Moreover, we are able to prove this bosundedness only when, at a fixed frequency, the
radius of the ball on which we truncate is in t11+0, while in the case of the half-wave equation
1.1.2)), we could take instead a ball of radius ¢21°, which is essentially optimal in order to get
1.1.5)). Another difference with the wave equation is that the part of the energy that remains
outside the “Schrédinger cone” |z| > ¢[¢] is half of the initial energy according to (1.1.6)), instead
of the whole of it in . This shows the limitation of our heuristics illustrated by Figures
and [3| and the need for a precise proof.

To finish this subsection, let us comment on the case of the “real wave equation” of Theorem[I.1.2]
and Theorem [1.1.3] For this last result, one has to discuss relatively to the residue of the
dimension modulo 4, while for the half-wave equation conclusion ) holds in any dimension.
This is due to the fact that the truncated energy defined in may be expressed on the one
hand from quantities of the form , for which the above analysm applies, and on the other
hand from other expressions like

(1.2.14) (et Pelb(a, hD,)e Pl ), )

where the sign € € {—,+} is the same on each exponential factor. The functions v ,,vj, are

given from w, D;w. Expression is not the intertwining of b(x, hD,) by eFlhP=1 ynlike in
, so that the preceding heuristics do not apply. Nevertheless, our computations in the proof
of the results for the half-wave equation allow us to treat expressions of the form and
show that these terms give a zero contribution to in odd dimension (as already known)
and provide the extra term involving the Hankel transformation in ((1.1.10]) (as was also known
in the radial case).

2 L? boundedness of sharp microlocal cut-offs

In Theorem we stated that the operators with symbols (1.1.2)), (1.1.3) are bounded on L?,

uniformly in time. We shall prove this statement first for the half wave equation, for which this is



almost immediate, and then for the Schrodinger case, that is more involved. Let us describe our
strategy in this last case. We shall first use a space Littlewood-Paley decomposition in order to
reduce ourselves to operators a(x, D,) with symbols a(z, £) supported for = in some ring. These
symbols involve a sharp cut-off 1|4, so that they do not fall inside the usual framework of
pseudo-differential calculus. We decompose them as sums a = a’ + a” where o’ is the part of
the symbol that corresponds to the convolution kernel of a(z, D,) cut-off close to the diagonal.
We show that symbol @’ satisfies the assumptions of the Calderén-Vaillancourt theorem. We are
thus reduced to the L? boundedness of a”(x, D;). The symbol a”(z,£) is not smooth, but if we
use polar coordinates both in x and &, it turns out that a” is smooth relatively to the angular
variables. Using the classical Hormander generalization of the Hausdorff-Young inequality, we
are able to obtain an £(L?) bound relatively to these angular variables. The contribution of
radial variables is then treated by Schur’s lemma.

In the rest of the paper, if y is some radial function on R¢, we shall denote by abuse of notation
x(r) for x(z) if r = |z|.

2.1 The half-wave equation

We want to prove:

Proposition 2.1.1 Let CLE}ZJ be defined in , Then operator Op(a?&v’é) is bounded on
L*(RY), uniformly in t € R*,

Proof: It suffices to show that the operator

(271r)d /eim-5X<|t|5' (1: + t’;))a(g) d¢

is bounded on L?(R?) uniformly in time, for any exponent &' > 0 and y in C§°(R%). Writing
x = F X, we see that (2.1.1)) is the operator

(2.1.1) u—

1

u —r (27’[‘)d

/ (O (Acu) () de

where for any fixed (

1 iz-eilt] % @ Ctit]t] =0 ¢
Aqula) = g [T R ae

— ei|t|76/x'ceit|t|_5/<' \g;\ U.
Since A¢ is bounded on L?(R?) uniformly in ¢, the conclusion follows. O

2.2 The Schrodinger equation

We want to prove:

Proposition 2.2.1 Let ai%‘r be defined by with § € [0, 3] and Supp x small enough.

Then the operator Op(aif};r(t, -)) is bounded on L*(RY) uniformly in t € R*.

Before starting the proof, let us make some reductions. It is enough to prove the result for
t > 0, and since, for any symbol b(z, ), any A > 0, the symbol by(x, &) = b(Az,£/A) is such that

10



10p(bA) [l 2(z2) = [|OD(b) || £(£.2), one may reduce to the case t = 1. To simplify notation, we shall
just set

(2.2.1) a(z,§) = X(&) Liz>le

and shall show that for some C' > 0, any u in L?(R?) (or in S(R%)),
(2.2.2) 10p(a)ull 2 < Cllul| 2.

If ¢ is in C§°(RY), it follows immediately from (2.2.1)) that
¥ (2)Op(a)u(z)| < Cli(x)] |a(§)] dE
lel<M

for some M, so that (2.2.2)) holds for the symbol ¥ (z)a(z, ). Take 9 equal to one close to zero,
let x be in C§°(R), supported close to 1 and equal to one close to that point. Decompose

e23) =08 =~ ()1 - 0@+t

€l(€) 3+ €l
with
) (1 e[ EFE (!
(2.2.4) (z,8) = (1 —9)( )X<|§’<§>_;+5>1|f>|5(1 )(15\)'

Since y is compactly supported, since & is supported close to 1, equal to one on a neighborhood of
1, and since on the support of e, £ cannot vanish, one sees that e is a smooth function satisfying

1050, e(x,€)| < Cayg

for any «, 8 in N¢. By the Calderén-Vaillancourt theorem, Op(e) is bounded on L?, so that we
just have to study the first term in the right hand side of

Let ¢ be in C§°(R?) and 1) be chosen so that we have a Littlewood-Paley decomposition 1(x) +
S 2 o(27Fx) = 1. Assume moreover that ,) are radial. For any k in N*, define if f € L2(R%)

i 92kd o [ iz r+&€ . m 5 ok

Lemma 2.2.2 Assume that we have proved that supy>i||Axl|z(z2) is finite. Then conclusion of

Proposition holds.

Proof: We have seen that we need to prove boundedness of Op(a), with a given by (£2.2.1)), and

that ¢)(2)Op(a) and Op(e), with e given by (2.2.4)), are bounded on L2. By ({2.2.3), we just have
to obtain the boundedness of

+o00

>~ etz a)0p(ate 9x( (1))

k=1

and by almost orthogonality, to get a bound for

(2.2.6) fusmz—%)op(a(x,s)n('g,’))uHia
k=1

11



for any u in L2(R%). Let ¢ be in C§°(R%) be such that = € Supp ¢ and % € Supp x implies
P(&) = 1. We write

o(2752)Op (a(x,sm('g'))u =zt | e“'fn(@)am,s)@(@ e
= (Apfr)(272)

where Ay = ¢(27%D,), Ay, is given by (2.2.5) and fi is defined by fu(&) = 27FAu(27%¢).
According to the assumption, we may bound ([2.2.6) by

+o0
CY 22 £l < Clul?s
k=1

using the almost orthogonality of the Ay’s. This concludes the proof. O

Our next task is to show that the assumption of Lemma holds. We introduce the kernel

92kd 02k . T+ E& |x’
2.7 Ki(z,2) = z) [ 27 <1>1 <zlfl =) d
(2.27) o) = ) [ 0 g )
so that
(2.2.8) Apf(x /Kk z,x—y)f(y)dy.

Let m be in C’go(Rd) radial, equal to one close to zero and decompose
(2.2.9) Ky, = K, + K} with Kj(z, 2) = m(2"2) Ky (z, 2).
We shall study successively the operators associated to the kernels K and K.

e Study of operator with kernel Kj,
Define the symbol

(2.2.10) b, (z, 1) /m <!£I< >+5 >1§|<| r (Z') d

and set aj (z,n) = b, (282, 27%n). Then the operator with convolution kernel K}, is just Op(a},)
and moreover ||Op(ay,)|z(z2) = [|Op(b))[lz(L2)- We shall prove:

Proposition 2.2.3 For any a, 3 in N%, there is a constant C > 0 such that for any k
(2.2.11) 0900 b,(x,m)| < C.

Moreover the operator Op(ay,) with kernel K; is bounded on L? uniformly in k.

Proof:  Notice that the last statement follows from ([2.2.11) and the Calderén-Vaillancourt

theorem.

When o = 0 in (2.2.11)), the bound follows from (2.2.10). Since b} (z,n) is supported for |z| >

¢ > 0, setting z = rw with r > ¢, |w| = 1, it is sufficient to get uniform estimates for 9, and
r~19,, derivatives of
+o0 0
(2.2.12) / / m(n — pf)x (wa )1p<m( ) 1 4odp.
Sd—1 < > +0 p

12



As 6 > 0, the case of 710 ,-derivatives is clear. If we take one d,-derivative of (2.2.12)), we get
on the one hand an expression that has essentially the same form as (2.2.12)) and on the other
hand a contribution

(22.13) et [t = 0 ((n) b+ 0)) " .

As sup, [sa—1 [(n —70)|df = O(r=(@=1) one gets a O(1) bound for (2.2.13). If one takes
further 0,-derivatives of (2.2.12)), (2.2.13), the same uniform bound holds. This concludes the
proof of the proposition. O

e Study of operator with kernel K/

As we did in ([2.2.10]), we define

Morm) — @(Q_kx) iz (=) T +£ |z| —m)(2)dz
(2.2.14) bi(x,n) = Honre / 7 x<‘£|< 3 >1|5|<| | (|§|)(1 )(2) dzdg.

Of course, the above integral in dz should be interpreted as an oscillatory integral, i.e. as the
limit when ¢ — O+ of the absolutely convergent integral obtained inserting in the integrand a
ez’ Since this factor disappears at the limit after performing the integrations by
parts that will be made below, bringing to absolutely convergent expressions, we shall not write it
explicitly. Notice nevertheless that the symbol b} (z,n) that we shall estimate in Propositionm
below will not be bounded but will have a logarithmic singularity along |z| = |n|. If we define
al(z,m) = b (2kx,27%y), then the operator with kernel K} is nothing but Op(a}). We shall
prove:

factor like e

Proposition 2.2.4 The operator Op(b}) is bounded on L*(RY) uniformly in k in N*.

Since ||Op(b}) ||E§L2) = [|Op(a})llz(z2) the proposmon implies that the operator with kernel K}/
is bounded on L* uniformly in k. By Proposition and - &), this shows that the
assumption of Lemma [2.2.2 holds, so that this will conclude the proof of Proposition [2.2.1]

The proof of Proposition will be made splitting b} into several pieces, each of them providing
a bounded operator on L“. These pieces will be studied in the following lemmas.

Lemma 2.2.5 Let xg be in Cgo(Rd) radial, equal to one close to zero, with small enough support.
Define

" (o _ 80(271653) i (€=m) x+€
(2.2.15) b q(z,n) N / X<’€|<§>;+5>
§—mn ||
x (1= o) <(1+£2+nz’)5) 1\§|<|z|'i<m) (1 —m)(z) dzdg.

Then Op(b’k’,l) is bounded on L?, uniformly in k € N*.

Proof: Since on the support of the integrand |€ —n| > ¢(1 + €2 + 7}2)%7 making 0,-integrations
by parts in the oscillatory integral, we gain rapid decay in z and an arbitrary negative power of
(L+ 1€+ |n]). We may thus write

by 1 (x,m) = W/X<|§?§;;5> 1|§|<x|H(E)U(£,77) d¢§
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with |U(&,n)] < C(1+ €] + |n])~%1. We write then
" - +
0pf = p(2-t) [ (s (U6 Dot

Since ||U (€, Dz)ull 1242y < C(1 + 1€]) =9 |u| 12, the conclusion follows. O

We shall have next to study the symbol by , obtained replacing (1—xo) by xo in (2.2.15)). Setting
r=rw,n=rw,z=pb, & =p'0 with w,’, 0,0 in ST!, we may write

—k ) o 197
(2216) IkIQ(x7 77) = M / elpe-(p 0 —r'w )X M
; (2m)d (R%)2x (S4-1)2 p/<p/>_5+6

/9/ _ 'r’w’ ” )
- X0<(1 i 2 1y > 1ﬂ<r"<;) (1 —m)(p)(pp')*~" dpdp'dde’.
P2+

Notice that inside the integral, we have r ~ p’ ~ r’ because of the cut-offs. Our main result in
the rest of this section is:

Proposition 2.2.6 Set
145 _1las —5+6
(2.2.17) p(r') = ()20 = ()7~ ()T

Then may be written as a sum of functions of the following two forms:

e On the one hand, functions
(2.2.18) e(27 M Q(w, 7, 1)
smooth in w,w’ and satisfying for any B, 8" in N®=1 any N in N estimates

d(—w, )\ N

(22.19) 18280, Q(w,w' )| < cﬁﬁ,ﬂ(r/)—|ﬂ\—|ﬁf|< e > llog |1 — /|| (r — 1"y

(where d is the distance on S) and supported for d(—w,w') <1 and C~1 < L < C.
e On the other hand, functions

(2.2.20) 027 ) Qf (w, W, r, 1)
that satisfy bounds of the form
—d—1

(2.2.21) 108 (w, o, 7, 7")| < Clrw+r'W)

We shall prove the above proposition in several steps. We first study the df’ integral in (2.2.16)),
namely

o 10—yl r 1,
92.2.22 ipp'6-0 p Lo+0) (2 %) ap.
(22.22) Lo ol o WG 0))

As x has small support, we have |§ — 1‘ < u(r') <1, so that, since in (2.2.16) r > c2% > 1, we
2.2.16

may assume that p’ > ¢ > 0. Moreover, because of the cut-off 1 —m in (2.2.16]), we may also
assume that p > ¢ > 0. In addition to notation (2.2.17)), we define

(2.2.23) v=u(rp) = r

/
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which will be close to 1. Notice also that since d > 0 and p’ ~ 7, we shall have p'u(r’) > ¢ > 0. To

simplify notation, we shall replace in the argument of x in (2.2.22)) (p/ )7%% by the independent
variable p = u(p’), so that we shall consider

N Il
(2.2.24) P00 v po —rw n x((iw + 9') u_1> do'.
§d—1 (1+p/2+72)2 Jod

Since we have seen that p’ ~ 1/, this new parameter p will be equivalent to u(r’) defined in
1
(2.2.17) when we replace y by its value (p/) 27,

Lemma 2.2.7 The integral (2.2.24]) may be written as the sum of

e The following two expressions, for the two possible signs

(2.2.25) P I SE (0,0, o v, s ppl 1)

2

where ST, (0,w, W', p ' v, ;) is a smooth function of (6, w,w’, p' ' v, 1;¢) supported for
-7

(2.2.26) (>c>0, d0,+u") <1, d(—u',w) < 1
satisfying for any o, B, 5 in N&=1 j 4/ ¢/~ N € N

/

—N
(2.2.27) agaﬁaf,agag’ag,agsf% < Cplal=181=3=3" (1) <C>—T—w<w> .

e The following remainders
(2.2.28) e*ipple'w,ud*lR(G, w,w’ o v v, s pp' )

where R(0,w,w’, p/,r" v, ;) is smooth in (0,w,w', o' v, u;¢) and satisfies for any «,B,5 in
N4t 4,404, N in N

!

@ / Y —lal— Y v _
(2.2.29) |050202,090% 0,01 R| < Cp= 1171773 () O TN, e

v Yp

Proof: We set
(2.2.30) A=pp >c>0.

One has \pu? > cpr’(r’>_1+25 as p' ~r’ and by . Since we have seen that p > ¢, ¥ ~r > ¢
and since § > 0, we have Au? > ¢ > 0. If the support of o in is small enough, we have
that |6’ — w'| < 1 on the support of the integrand. Moreover, because of the x cut-off, we have
also |¢ + w| < p < 1. This implies |w + w’| < 1 on the support i.e. the last condition
holds. With notation for v, we define a function

19—l _ o'

(2231) F+(950I7W7WI7V7/J/; pl7r) :X()( ) - 1) ( T )XO(OI_H)
(1_|_p/2 +74/2)2 i

and

(2.2.32)

,0/9/ —

(1+p2+172)2

—vw+ 0
Fo(9,9’,w,w’,v,u;p’,7‘)=Xo( )x( p )[1—Xo(9’—9)—><o(9'+9)].
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One may write as J4 + Jo + J_ where
Jy = /eMG'e/F_l_(Q, 0, —w, v, u; 07" do’
(2.2.33) J_ = /e_i)‘e'elFJr(G,G’,w, —w vl r') do’
Jo = /ei’\a'elFo(H, 0, —w, ' v, ;0 r")do’ .

We notice that in Jy the integrand is supported for d(f, §')+d(w’, §’) < 1 so that the assumptions
of Corollary are satisfied, with w replaced by —w, (p/,7’) in being extra parameters.
Notice that a 8, or 8,» derivative of F; makes gain p'~! ~ r'~!. Consequently, Jy is an
integral of the form , that may be written under the form in terms of a symbol
satisfying (up to the replacement of w by —w). This gives with sign 4+, the
extra estimates of 0, derivatives following from the analogous properties satisfied by F. Since
J_ may be obtained from J; by conjugation and replacing (—w,w’) by (w, —w’), we obtain as
well the contribution to (2.2.25) with sign —.

It remains to study Jy. Since on the support of Fy, |0/ — 0] > ¢ > 0 and |6/ + 60| > ¢ > 0, one
may apply to Jy Corollary which gives expression with estimates , the last
cut-off in the right hand side of this inequality coming from the x factor in Fy and the definition
(12.2.23)) of v. O

To prove Proposition we shall plug the expression of (2.2.24) obtained in Lemma
inside (2.2.16)).

Proof of Proposition : We shall study the contributions to (2.2.16)) given successively by
(2.2.25) and (2.2.28)).

e Contribution of ([2.2.25)) to (2.2.16)

We shall treat explicitly only the contribution of the term with sign + of (2.2.25) to ([2.2.16).
We shall write S 4—1 for ST, ,. We replace in (2.2.16) the df’ integral ([2.2.24) by (2.2.25)) with
= _d-1

2

1
sign +, recalling that 1 = p(p') = (/) "2, We obtain

(2.2.34) (P((;r;dr)/(w i P u(p T T (w, o p, ol )
"
X 1pf<m(%>(pp’)d_1(1 —m)(p) dpdp’
with
(2.2.35) J(w,,p, p ") = /Giprl(l_WI.e)S_ziZI(G,W,w/;p/,rl,V,//J; ¢)do

where p stands for pu(p’) and ¢ for pr'u(p")? ~ pp'u(p’)?. We may apply to this df integral

again Corollary where A = pr’ ~ pp/, with the argument (0,6, w,w’) of F in (A.1.21)
replaced here by (w', 0, —w,w’) and where we consider the case of sign — in the phase of (A.1.21)).

Then conditions (2.2.26|) (with sign 4) imply that the support assumption in the statement of

Corollary is satisfied. The bounds (A.1.20) are satisfied because of (2.2.27)). Moreover,
we have the extra bounds for the J; derivatives in (2.2.27). We may thus write (2.2.35)) using

(A.1.22)) with sign — as

w(p) IS (w, s 0 vy 1, ¢, )
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where u = u(p'), ¢ = ¢ = pr'u(p’)? and ¥ is supported by (2.2.26) for d(—w’,w) < 1 and
satisfies combining (2.2.27) and (A.1.23) estimates

10505 04,007 91 0L S(w, o3 o' v, 1,¢, )|

/ —N
< oy lol=lel=i=7 <p/>*5/<c>—%—lvl<</>*%*I7’I<d(w ) _W)> _

I

Since 1’ ~ p’ ~ r on the support of J, we have thus, using (2.2.23)

4 Z / / /
(2:2.36) 0502050y (w, ', p, 1)
1 lal—la s — v —(d—1) /d(w, —w
< Ol Y1111 )1y ) (A2

p(r')

We make in ({2.2.34) one d,/-integration by parts. We get on the one hand the boundary term

-N

—kp ; /
(2.2.37) — iso((;r)d)/e”’(’"r () (o) T (w, W p, ) (1 — m)(p)a;p

and according to (2.2.36) another term of the form (2.2.34) but with an extra p~'p’~! factor

under the integral. Performing one more integration by parts, we get yet another term of the

form (2.2.37)) (with an extra (pp’)~! factor) and another contribution of the form ([2.2.34)), with
an extra (pp’)~2 factor. We have thus to study on the one hand (2.2.37) and on the other hand

(2.2.34) with (pp')?~! replaced by (pp/)4—3

e Study of (2.2.37): Performing in (2.2.37) one integration by parts in d,, we gain a factor
p~!and a factor (r—7')~1. Iterating this twice, we conclude using (2.2.36)) and the fact that

r ~ 1’ that (2.2.37) may be written as Q(w,w’, 7, "), for a function Q satisfying (2.2.19).

e Study of ([2.2.34) with (pp’)?~! replaced by (pp')4~3: By (2.2.36),we see that the integrand
is O(p~2p'~2). Moreover, performing two 9,-integrations by parts, one may gain a factor

(r' — p’>_2. One has thus to estimate f rmormtse P =2,/=2(r' — s\ dpdp', which brings a
bound of the form (2.2.19) (without logarlthmlc term). Moreover, 2 is supported for
d(w,—w’) < 1 since we have seen that a similar property holds for X.

e Contributions of (2.2.28]) to (2.2.16))
We plug the contribution of (2.2.28)) to (2.2.24)) inside (2.2.16)). We obtain

90(2—k7,) —ip0-(p'w+r'w’) / / /N d—1 /
(2.2.38) W e GO,w,w',r, 7", p, p")p*" " dpdfdp

where
(2.2.39) G(O,w,w' 7,7 p,p) = u(p')d_1R<9,w,w',p’,r', %,M; pp’u)
X L) (0= m) )Ly
with still p(p’) = (p'>_%+§. By , for any N
(2.2.40) G = O () pp ulel)) 1) = O(p N -V (540 4oy,
If one takes a d, derivative of l} one gains a factor (p>_1 by . If one takes a 0y

derivative, one loses u(p') ™!, that is largely compensated by the rapid decay in (2.2.40)). If one
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sets z = pf, one thus sees that by integrations by parts in z, one may rewrite (2.2.38)) under the
form

(2.2.41) g0(2kr)/K(w,w',r, ' o) dp’
where K is a function satisfying
9. / "N < / //—Nol—Nol
(2.2.42) |K(w,w',r 1", p")| S Clp'w+r'w) p 701, ch‘rip/|<<p/<p/>7%+5

for a fixed large enough Ny and a small &' > 0. If we write p'w + 7'’ = rw + '’ + (p — 1w, it
follows from the last cut-off in (2.2.42) (where § < 1) that (2.2.41) is O({rw + W)Y i Ny
has been taken large enough. This gives (2.2.21)). O

Proof of Proposition We have to prove that operator Op(b}) is bounded on L? uniformly
in k, when b}, is given in 1' We have decomposed b, = by ; +b} , and shown in Lemma
that Op(b’k’ﬂ) is bounded on L? uniformly in k. Moreover, bk72 is given by and may be
written by Proposition as p(27Fr)[Q(w, ', 7y r') + QF(w, w7, r")] with Q, QF satisfying
bounds and respectively. Returning to variables z = rw, n = r’w’, this means
that the QF term is a symbol c(z,n) satisfying |¢(x,7)| < C(z + 1)~ %" uniformly in k. The
associated operator is trivially bounded on L?. On the other hand, we have to consider the
operator

(2.2.43) u —>/ e 7R w, W, )G W) dw i

Set f(r',w') =1 =R @(r'w’), so that f is in L?(dr'dw’). We have thus to prove a bound

(2.2.44) H/ )T “"’Jw'le(w,w’,r, ) f(r', W) do’ dr’ < Ol 22 (drdery -
L2(dw) L2 (ar)

We may apply Proposition to the dw’ integral in view of estimates (2.2.19) and since
Dwa/ (w - w') is non degenerate on the support of the integrand, as this one is contained in

d(—w',w) < 1. We thus obtain that the £(L?(dw)) norm of the angular operator in (2.2.44)
compensates the (rr’ ) factor outside the L?(dw) norm, by 1} so that, by the last factor

n (2.2.19), we reduce ) to the estimate
| [ 11oglr =1t = #2106 g

which holds by Schur’s lemma. O

< CHfHLQ(dT’dw’)

L2(dr)

3 Proof of the main theorems

This section is devoted to the proof of the main theorems of subsection [I.I] To show for instance
, , we express the left hand side of these equalities as some explicit phase integrals.
Because of the £(L?) bounds obtained in the preceding section, we may replace the general g
function by a function belonging to any dense subspace of L2. This allows us to study those phase
integrals when the amplitudes in the integrand are smooth and compactly supported outside a
neighborhood of zero. One is thus reduced to the study of the limit of these quantities when the
time parameter goes to infinity. In subsection [3.1], we shall compute such limits for some auxiliary
expressions, using essentially the stationary phase formula. These technical results will be used
in the following subsections in order to complete the proofs of the main theorems, expressing the
phase integrals giving (1.1.5)), (1.1.6]) or (1.1.9) from these auxiliary ones.
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3.1 Some technical lemmas

In order to consider simultaneously the case of the wave and the Schrdodinger equation, we
introduce p : R — R, a smooth function satisfying both conditions:

(3.1.1) p'(p) > 0 for any p > 0

(3.1.2) either (p(p) = p) or (p is strictly convex).

The case of the Schrodinger equation corresponds to p(p) = %, but the computations being the
same for any p satisfying the second condition (3.1.2), we formulate our results in these more
general framework.

Let
F : [1,400[x]0, +o0[*xR? — C
(t,p, 0", ¢, ¢") = F(t,p,p'5¢,¢)

be a smooth function of (p, p,r, (, (") satisfying the following conditions:
(i) There are C' > 0, &' € [0,1[if p” =0, &' €]3, 1] if p is strictly convex, such that

(3.1.3)

(3.14)  Supp (F) C {(t,p, 0,7, ¢, ¢ C7 < p,p/ <CC|+ || <0, C7t < % < C}.
(i) For any j,k,k',v,7 in N

(3.1.5) |01080K 0700 F(t, p.pf 7, C. )| < OO0+,

(iii) There is a smooth compactly supported function defined on ]0, +oc[?, (p,p') — Fo(p, p')
such that, for any (p, p’,r,(,¢’), one has the following limits:
e In the case p strictly convex

(3.1.6) lim F(t,p,p/,rVt+tp'(p); (VE,(VE) = Folp, p').

t—+00

e In the case p(p) =p

(3.1.7) lim BﬁaﬁllF(t,p, pir+t¢,¢) = asaﬁl/Fo(p, p) for k+k < 2.

t——+o0

Let €, €, 0,0’ be signs in {—,+} and for F' as above, define

I(t,e,€,0,0/;F) = / ellrteote ) =Hope)ro'v@DIp (¢ p, ol 7ir — ety (p), 1 — € o'ty (p))
(3.1.8)

Lot max(p! (o) ') D' dr

We shall prove the following proposition, giving the limit of (3.1.8]) when ¢ goes to 4+o0o for some
choice of signs. The case of other choices will be treated in a further proposition.

Proposition 3.1.1 Assume , and conditions (1) to (iii) above. Then the following
limits hold for :
e I[feo = —1 or €0’ = —1, one has in both cases

(3.1.9) lim I(t,e,€,0,0;F)=0.

t——+o0

o I[fe=¢ =0 =0 and if we are in the second case in (p strictly convex) , then
holds again.
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o I[fe =€ =0 =0 and if we are in the first case in (p(p) = p), then

(3.1.10) lim I(t,e,e,0,0;F)= <i(6(p+ o)+ iO)fl,Fo(p, p’)>.

t——+o0

In particular, in both cases , we shall have

(3.1.11) lim [I(¢,1,1,1,1; F) + I(t,—1,—1,—1,—1; F)] = 0.
t—4o00

Before starting the proof of the proposition, we compute some intermediary integrals.
Lemma 3.1.2 Denote fort > 0

(3.1.12)
IJr (tv € 6/3 g, OJ; F) = / ei[r(5p+e’p')—t(ap(p)+a'p(p'))]F(t’ P pl’ rr = eatp/(p), r—= G/U,tp,(p/))

XLyt (p) Lospr dpdp' dr

and let I_(t,¢,¢,0,0"; F) be the same integral with 1,4y 1p5, replaced by Losiy )Ly,
Then if e = —1 or €'’ = —1, I.(t,e,€,0,0'; F) goes to zero when t goes to +0o. The same
conclusion holds true if e = € = o = ¢’ and p is strictly convex.

In the case e = € = o =o' and p(p) = p, one has

lim I+ (t7 €, 6,7 g, O-,; F) = /eiET(p+pl)F0(pa p,)17'>010>P/ dpdpldT

t——+o0

lim I_(t,e,é,0,0;F) :/eier(erpl)Fo(p,p’)lr>01p/>pdpdp'dr

t—+o00

(3.1.13)

where the dr integral in the right hand side should be understood as an oscillatory integral, i.e.
converges after making at least two integrations by parts using 8% + 8%"

Proof: We study successively the different cases in the conclusion of the statement.
e Case ecoc =—1 oréco =-1
According to assumption (i) on F, the integrand in (3.1.12)) is supported for

Ir —eatp! (p)] < CtY, |r — o'ty ()| < Ct7.

If e0 = —1 or €0’ = —1, the fact that infx p’ > 0 for any compact subset K of |0, 4+o0[ implies
that, for large enough ¢, the integrand in (3.1.12)) vanishes (since ¢’ < 1), whence the conclusion.
eCasec=¢ =0=0'

Notice that

(3.1.14) I (tye,é 0,0 ;F)=1_(t €, e,0 0;F)

if F(t,p,p,r;¢,¢")=F(t,p',p,m;¢, (), so that it will be sufficient to treat integral I, that may
be rewritten in the case we are considering as

(3.1.15) / e =t WO (8, p, of rsr — 9! (), 7 = 19 (0) Lyt () Lp—pr >0 dppdpdor.

e Sub-case p strictly convex
We replace inside (3.1.15) 7 by t(r + p'(p)) and then make the further change of variables

—= UYL () g

—¢
p 9 2
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We rewrite thus (3.1.15) as

—2438 25" =1, (s,u,v)
(3.1.16) t e 1-01y>0G(t, s, u,v) dsdudv
with

(3.1.17)  ®y(s,u,v) = us + utlf‘s/p’ <t*1+5l¥>

_ 208 [p(t”*‘s/ u ;‘ U) n p(t’“‘s/ u ; U)}

and

3118) Gt s,uv) = 2P| 0 UYWL (1 O,
2 2 2 2

195 17 {s+t1‘5' (p/(t—ué'u‘;i’) _p/<t—1+5'“;1’))H.

Recall that F(t,p,p',7r;(,¢") is supported for p,p’ in a compact subset of ]0,+oo[, for
r < Ct and for |¢| +|¢'| < Ct%. Tt follows that G is supported for

p,(t_1+5,u+v> _p,(t_Hé/u;v)) < o1+

(3.1.19)  |u|+|v] <CtY, s < C, 5

and satisfies by ((3.1.5)
(3.1.20) |0EOF 9IG (t; 5, u,v)| < Crp

for any k,k’,j in N. We notice that, because we are in the case p”’ > 0 on R, the last
inequality (3.1.19) implies that v, that is positive, is also bounded from above on the
support of the integrand in (3.1.16]).

Consider first (3.1.16)) where we insert under the integral a smooth cut-off for |u| > ¢ > 0.
If we make a Os-integration by parts, we get a boundary term, bounded by

, d
(3.1.21) ct1+o / Lococo dy
e<Jul<Ot=9 |u|

that goes to zero if ¢ — 400 as & < 1. On the other hand, the term integrated in s is

also bounded by ([3.1.21]) since s < C on the support of integration by (3.1.19) and because
of (3.1.20). We are thus reduced to (3.1.16) where G satisfies (3.1.20) and is supported

moreover for |u| < 1 and for v, s in a fixed bounded set. The phase (s,u) — (s, u,v)
has at fixed v a unique critical point given by

1 /
(3.1.22) (u=0,s= —§p"(0)v + Ot ), t = 4.

Moreover, at any bounded (s, u,v), we have when ¢ goes to 400

9*®, 9*®, 0*®, 1 :
3.1.23 =1 =0 = -p"(0) + O(t~1+?

( ) Ouds T 0s? Couz 2P (0) + O )

with a small remainder since ¢’ < 1, and with p”(0) > 0. Consider integral (3.1.16)) in dsdu.
If one cuts-off outside a neighborhood of s = 0, then the cut-off 1,5 disappears, and one
gets for any fixed v a phase integral with a unique critical point given by (3.1.22)). As by
(13.1.23]) this critical point is non degenerate, we get for (3.1.16|) an estimate in 1 — o(1)
since ¢’ < 1.
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We may thus assume G cut-off for s < 1. If then v > ¢ > 0, shows that the phase
has no critical point in (s,u) on the support of G. We may then perform one integration
by parts in s or one integration by parts in u in order to bound again the corresponding
contribution to by Ct~119 Tt remains to consider the case when G is supported
for jul < 1, s < 1and v < 1. As u — ®4(0,u,0) has 0 has unique critical point, and as
this critical point is non degenerate by , for s < 1 and v < 1, u — P¢(s,u,v) has
also a unique critical point at some point u(s,t), and this critical point is non degenerate.
Moreover, implies that at any fixed v, the critical value s — ®4(s,u(s,v),v) has a
unique critical point, located at s = —%p"(()) + O(t*H‘S/) by (3.1.22), and that this critical
point is non degenerate. Then the du integral in (3.1.16) has a t—2~1/2 gain in terms of
the large parameter ¢20'~1 (recall that &' > %) and the ds integral gains another such factor,
by the stationary phase formula (with boundary at s = 0 in case of ds-integration). Since
the dv integral is taken on a bounded interval, we conclude that is O(t_1+5/) when
t goes to infinity. As ¢’ < 1, we obtain the wanted conclusion that (3.1.16]), so (3.1.15)),
goes to zero if ¢ goes to infinity.

e Sub-case p(p) = p
We rewrite ([3.1.15) with p(p) = p as

(3.1.24) /eier(erpl)F(t, p. P+t )50l 5 dpdp'dr.

We may perform in (3.1.24) integrations by parts in d, + d,y in order to get a factor (1">_2

under the integral. It follows from (3.1.7) and bound (3.1.5) that (3.1.24)) converges to the
right hand side of the first equality (3.1.13)). This concludes the proof of the lemma.

|

Proof of Proposition [3.1.1;  We notice first that by (3.1.8)) and the definition of Iy, I_ (see
B1.12))
I(t,e,e 0,0 F)=1,(t,e,€,0,0";F)+1_(t,e e 0,0;F).

Then (3.1.9) follows from the statement concerning cases ec = —1 or € 0’ = —1 in Lemma
The second point in Proposition follows in the same way. Consider next the case ¢ = ¢ =

o =o' and p(p) = p. Summing the two expressions in (3.1.13)), we get (3.1.10). Finally, (3.1.11)

is trivial in the case p strictly convex since it follows from the second point of the proposition.

In the case p(p) = p, (3.1.10) shows that the left hand side of (3.1.11) is
(ilp+ ¢ +i0) " +i(~(p+ ) +i0) ™, Folp. ) ) = 27(6(p + 0), Folp, )
which vanishes since Fy is compactly supported in ]0, +-oc[2. This concludes the proof. O

We still have to determine the limit of I(¢,¢€,€,0,0'; F) in some cases that are not covered by
Proposition We shall do that in the following proposition:

Proposition 3.1.3 (i) Assume that p(p) = p. Then we have for e = +

(3.1.25) lim I(t,e,—e,—€,6;F) =0
t——+oo
and
+o00
(3.1.26) lim [I(t,1,~1,1,—~1; F) + I(t,~1,1,—1,1; F)] _27r/ Fo(p, p) dp.
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(ii) Assume that p is strictly convezx. Then still holds and is replaced by

+oo
(3.1.27) lim [I(t,1,-1,1,—1;F)+ I(t,—1,1,—1,1; F)] :7r/ Fy(p, p) dp.
0

t—+o00
We first prove a lemma giving expressions of I (t,€, —¢, €, —€; F).

Lemma 3.1.4 Let 6 be in Cg°(R), even, with small enough support, equal to one close to zero.
(i) If p(p) = p, we have for e = £1

(3.1.28) Ii(t,e,—€,6,—€; F) = /emwlw>glr>0F(t, o +w,pr+t;rr)drdwdp.

(i) If p is strictly convez, define

1 no_ o ;o
(3.1.29) 9(p,p) = /0 (1—a)p"(p+ alp — p)) dav = P p((pp)/ _z;)(zp)(p p)
and
(3.1.30) F(t,p, o, ¢, ¢ = F(t,p, pl trit¢, t¢).

Then when t goes to +00, for e = &,

(3.1.31) I (t,e,—c,e,—;F) =t / etetlrota(o+w 1w g ()1, 01,50

x F(t,p +w,p',r +p'(p);r,r) drdwdp’ + o(1).

Proof: By (3.1.12)), we have

(3.1.32) Li(te,—c e, —¢; F) = / il (0= ~t(p(p)~p()]
x F(t,p,p'srsr —t0'(p), 7 = t' (1) Lrsip(p) Lpspr dpdp'dr,

(i) In the case p(p) = p, (3.1.28) follows from (3.1.32)), replacing r by r + ¢ and p by p' + w.

(ii) In the case p strictly convex, the change of variables r — r + tp/(p) transforms the phase in

(3.1.32)) into e[r(p — p') +tg(p, o) (p — p')?] according to (3.1.29)), so that we have to study

(3.1.33) t / eretlrwtg 0w B (¢ of 4w, ol e p (w4 9 (0 w) — ()
X 1,50lys0 dwdp'dr
using notation (3.1.30). Notice that assumptions (3.1.4]) to (3.1.6)) on F' imply that

(3.1.34)  Supp (F) C {(t,p, 0,7, ¢.C) 07 < pp <CC|+ || <t ot <r<C}

(3.1.35) 810%8l 800 F| < C1-9lt
. ~ , T , ,'i i’ _ ,
(3.1.36) tilinooF(t,Papa%“‘p(p)a\/%’\/i)—Fo(p,p),
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Moreover, by (3.1.29) and the assumption that p is strictly convex we have
0

(3.1.37) (90 + w, ]| = eluwl, 95 [g(p +w, ] = O(1) for fa] =2
w

when p’ stays in a compact set of [0, +o00[ and w stays bounded.

We shall study (3.1.33)) in two steps.
e Step 1: Integral cut-off for w > ¢ >0

Take 6 in C§°(R), equal to one close to zero and consider

(3.1.38) I = t/eitd’("w”’/)(l — ) (W)F(t, 0 +w,p,r+p (0 +w);rr +p (0 +w) —p(p))
X 1,50lys0 dwdp'dr

where
o(r,w, p') = e(rw + g(p' +w, p)w?).

If we make one J,-integration by parts in (3.1.38)), we get the boundary term
(3.1.39)

Z-E/eietg(PUrw,p')wg(l _ 0)(w)}3’(t,p/ + w, p/7p/(p/ + w); ij/(p/ + w) . p/(p/))w—11w>0 dwdp/

and a term of the form where the prefactor ¢ has been replaced by 179 because of
, and where (1 — 0)(w) is replaced by w=!(1 — 6)(w). In this last term, we perform one
more integration by parts using %. We get a new boundary term of the form 1} with
an extra t=9 factor and w—! replaced by w™2, and a contribution of the form 1’ with the
prefactor ¢ replaced by t'=20" and (1 — 0)(w) replaced by (1 — 6)(w)w 2. Taking (3.1.34) into
account, we see that this last integral is O(t*‘;/), S0 goes to zero when ¢ goes to infinity. The same
is true for multiplied by an extra ¢~% factor. We thus have just to study the limit of
when ¢ goes to infinity. In this last expression, we notice that by the integrand
is supported for =1 < p/ + w < C, C~ < p/ < C and for |p/'(p/ +w) —p'(p))| < Ct¥ 1. As
0 < 1 and p” > 0, dominated convergence shows that goes to zero.

As a conclusion of Step 1, we have shown that contributes to o(1) in (3.1.31)).

e Step 2: Integral cut-off for w <« 1

We have to study

(3.1.40) t / WYY E (t, ' +w, o, r+p (0 +w)srr+p (o +w) =9 (0)) LrsoLwso dwdp'dr

with 6 supported close to zero and we have to show, in order to get (3.1.31)), that we may replace
the argument of F' by (¢, p' +w, p',7+p'(p');7,7), up to a remainder contributing to o(1). Write

(3.1.41)
F(t, o +w o r+0 () +w)irr+ (o +w) = () =F(t,p +w,p 7+ (p);r,7)
+wG(t,p,w,r)

where by (3.1.35), G satisfies

(3.1.42) 90 0. G| < O (+7+k+0)
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and by (1.39)
(3.1.43) SuppG c {C7' < g <Cr <Ot Y.

Consequently, (3.1.40) is the sum of the first term in the right hand side of (3.1.31)) and of a
remainder that may be written

(3.1.44) / eiﬁtg(pl+w’p/)w29(w)lw>0M(t, o w) dwdp
with

+m . ~
M(t, p/,w) = t/ UG (t, o w, ) dr
(3.1.45) 0 .
= ieé(t, o, w,0) + ie/ eit&w&é(t, o w,r)dr.
0

By (3.1.42) and ([3.1.43) we get that
(3.1.46) M (¢, w)| < Ct' 7.

If we denote by M (¢, p', w) the integral term in the right hand side of (3.1.45)), another integration
by parts shows that

1. ~ 1 [T, «
wMi(t,p/,w) = —;f)rG(t,p',w,O) — t/ U RG(t, pl  w, ) dr
0
whence

1 - too ~
Ow[wMy] = —E&ﬂ@wG(t,p', w,0) — ie/ erUrg2Q(t, plyw, ) dr
0

1 [t | ~
— t/ e 920, G(t, p'yw, ) dr
0

which is by (3.1.42), (3.1.43), O30 =971 4 O(t1=%") = O(t'~%) since &' > 1. Together with
(13.1.46)), this implies

(3.1.47) |M(t, 0, w)| + [wdy My (t, o, w)| = O ).

We plug next decomposition (3.1.45) M(t, p/,w) = ieG(t, p',w,0) + M, inside (3.1.44). We get

two contributions:

(3.1.48) / eietg(pl+w’p/)w29(w) Luw>0i€G(t, p',w,0) dwdp’

(3.1.49) / ei6t9(9/+w’pl)w29(w)1w>0M1 (t, 0, w) dwdp'.

To conclude the proof, we have to show that these two expressions are o(1) when ¢ goes to +oo.
If we insert under these integrals a cut-off for /tw < 1, it follows immediately from ,
(]3.1.43[), d3.1.47[) that we get a bound in t2 79 = o(1) since &' > 1. On the other hand, if we
cut-off for v/tw > 1, we may use that, for # with small enough support, w = 0 is the only
critical point on that support, so that making one 0,-integration by parts, we get a O(t%_‘y) or
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a O(t'~*"logt) bound, using (3.1.43), (3.1.47), which is again o(1). This concludes the proof of
Step 2 and thus of the lemma. O

Proof of Proposition : We recall from the definition (3.1.8)) of I, the definition (3.1.12f) of
I and (3.1.14)) that

(3.1.50) I(t,e,é 0,0 F)=1,(t,e,é 0,0 ;F)+ 1 (t,€ e 0 0;F).

By the case e = —1 in Lemma we conclude that (3.1.25)) holds true, both in cases (i) and
(ii) of the proposition. We are thus left with proving (3.1.26) and (3.1.27]).

e Proof of (3.1.26)

We plug expression (3.1.28) inside the expression of I(t,e,—e, e, —e€; F') given by (3.1.50). We
obtain, using the definition of F' given after (3.1.14)

(3.1.51) I(t,e,—e€,e,—€; F) = /ei"w1r>o[F(t,p' +w, p i+t 7)o

+Ft,p, 0 —w,r+t;r, T)lw<0] drdwdp’.

We define

(3.1.52) Fi(t,p,p,r)=F(t,p,p,r +t;r,7)Ls0+ F(t,p, 0, —7r +t; =1, —1)1<0.
By assumptions ,

(3.1.53) Supp F1 C {(t,p,p,7);C™" < p,p/ < C,|r| < Ot}

and for any j,k, k' in N with 0 < j <1
(3.1.54) 040Kk Fu(t, p, o' 1) < Ct7I7
By (3.1.51), we may write

(3.1.55) I(t,1,-1,1, -, F)+I(t,—-1,1,-1,1; F) = /e"wW(t,w,r) drdw
with
(3.1.56) W (t,w,r) = /[Fl(t, P+ w, p ) lyso + Fi(t o, 0 — w,r) <o) dp'.

By (3.1.53), (3.1.54)), W is a Lipschitz function of r, supported for w in a compact subset of R
and for |r| < Ct" and satisfies for 0 < j <1,0< ¢ <1 and any k in N

(3.1.57) 18708 (wdy ) *W (¢, w, 7)| < Ct9%

Moreover by (3.1.7)), (3.1.52), (3.1.53))

(3.1.58) lim W(t,0,r) :/Fo(p’,p') dp'.

t——+o00

We decompose (3.1.55) as Iy + Iy with
I = /eimW(t,O,T)G(w) dwdr

(3.1.59)
I = / T (1w, ) — W (E, 0, 7)]0(w) duwdr
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where § € C5°(R) is equal to one on the w-support of W. By (3.1.57), (3.1.58), when ¢ goes
to oo, Iy converges to the right hand side of (3.1.26). We are thus left with showing that I
converges to 0 when ¢ goes to infinity. We write W (t,w,r) — W (t,0,r) = wW (t,w,r) with,

because of (3.1.57)),
(3.1.60) 10 (w0 )FW (£, w,7)] < CEIVL o

if 0 <j <1, ke€N. By one 9, integration by parts in Is, we have

I, = ‘/e"w&W(t,w,T)Q(w) dwdr.

By (3.1.60) and &,-integrations by parts, we get that |Io| < Ct~% f‘r|<ct5/ (rw)~20(w) dwdr
which goes to zero if t goes to infinity since ' > 0. This concludes the proof of (3.1.26)).

e Proof of (|3.1.27))

We plug expression (3.1.31)) in (3.1.50)). We obtain that, up to some o(1) remainder, the integral
I(t,e,—e€,€,—¢; F) is given by

t/eiEt[rw'Fg(p,er’p,)wQ]FJr(t, o' w, ) Lysolrso drdwdp’
(3.1.61)

- / / 21 ~
+t/e7’6t[m’_g(p —w,p)w ]F_(t, 0w, ) 1y<olrso drdwdp’

with since 6 is even
F—f—(ta p/a w, T’) - F(tu pl + w, p/7 T+ p/(pl)a r, 7”)9(’[1))
F_(t,p',w,r) = F(t,p', o —w,r +p/ ()i, 7)0(w).

By (3.1.35)), for any j,k,¢ in N

(3.1.62)

(3.1.63) 10008 0L Fi(t, pf,w,r)| < CtA=90GHR)
and by ((3.1.34))
(3.1.64) Supp Fi C {(t,p/,w,r);C~ < p < Cow < C,|r| < Ct7 Y.
Moreover, by (3.1.36)
: > ra TN .
(3.1.65) tLIerooFi (t,p,O, \/i) = Fo(p', p').

Denote by J ((t) (resp. J_ ((t)) the first (resp. second) line in (3.1.61). We decompose
(3.1.66) Toe(t) = oo (8) + TL (1)

where J, (t) is obtained inserting a cut-off xo(v/#w) under the integral, with xo € C§°(R) equal
to one on [—1,1]. We get

(3.1.67) Ty () = / N0 (w) (2, o'y w) P (£, % %) 1,50 drdwdy
with
(3.1.68) Q5 (t, ol w) = o ET )0ty
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If Q4 (00, p/,w) is the corresponding expression at t = +00, we have when p’ stays in a compact

set
jw|?

Vvt
Since the integrand in (3.1.67) is supported for |w| < C, |r| < ct' =2 according to (3.1.64]),

we see that if we substitute inside (3.1.67)) Q€ (oo, p/,w) for Q% (¢, p’, w), the error generated is

% by 0, we get an error in

1 ' LErw € ’ ~ ,
\/i/o | et oo, w o) (16 0 VLo drdwiyl do.

If one makes one O,-integration by parts and uses (3.1.63[), and the fact that the integrand is
supported for |r| < Ct‘s/_%, one gets that this error is O(ti_‘s/) = o(1) since &' > 3. Up to a o(1)
remainder, and since F+|w:0 = I:L|w:0, we may thus express

Q5 (t, 0, w) = Q5 (00, p )| < C——

O(t¥ 1) = o(1) as &' < 1. If we replace next in Fy the argument

(3.1.69) T () + T (1) = / o ()0 (0 w) (11,0, - ) Lo drduwdy

r
7)
with

Q8 w) = 05 (00, w) + O (00, )

1.
(3 70) _ eisg(p’,p')wz Luao + e—ieg(p’,p/)um 1uo

Notice that Q€xo(w) has two 9y-derivatives in L*, so that we may rewrite (3.1.69) as

(3.1.71) /M )y (t /.0, )1T>0 drdp’

S

where M(p',() is the Fourier transform in w of yo(w)Q¢(p’,w), that satisfies |Mc(p,()| =
O({¢)™?). By dominated convergence, we deduce from (3.1.69), (3.1.71) and (3.1.63) that

Jim [T (8) + T //M )Lrso0drFo(p’, p') dp’
—ic [ <<w+ze0> (6l w)xo(w) Y Eolo/ ')

Let us study next the contributions J .(t) in (3.1.66]), obtained inserting in the integrals (3.1.61)
the cut-off (1 — xo)(v/tw). We obtain

(3.1.72)

I _ jerw(q _ € / > ;) W /
(3.1.73) Jte(t)—/e (1 Xo)(w)Qi(t,p,w)Fi(t,p,\/i,\/z)lr>odrdwd,o.

We make one integration by parts in r. We obtain the boundary term

1— N
(3.1.74) ie/(:io)(mﬂi(t,p',w)Fi(t,p', v O) dwdp’

%7
and according to (3.1.63]), a term similar to (3.1.73)), but with a gain in =%~ inside the
integral. Repeating the process, we end up with terms of the form (3.1.73)), but with a gain

t2(%76/)w*2 inside the integral (that, using (3.1.63)), (3.1.64)) will provide a o(1) remainder since
&' > 1), terms of the form (3.1.74)), with a 279w extra gain under the integral (that are also
0(1)) and ({3.1.74]) itself. According to (3.1.68]), this may be written as

(3.1.75) ze/(l_XwO)() tieg (0 5.0 )u Fi<t p,%,())

1:|:w>0 dw.
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As by (3.1.64)), % and p’ are bounded on the support of the integrand, we have

w

(3.1.76) ‘aw [g<p’ £

,p’)wz} ‘ > clw| > ¢

(see (3.1.37)), and we may perform a 0O,-integration by parts to write the sum of the two

expressions (|3.1.75)) corresponding to the two possible signs as

_/ gica (o' 0w g [(1_X0)(w) i LAk ]dwdp'
0 w o Owlg(p + G )w?]

+/ eieg(ﬂ’%vp’)wz’aw[(l_m)(w) F+(t’p/’%’0) }dwdp/.
<0 w O [Q(Pl - %’p,)wQ]

By (3.1.63)), (3.1.65) at » = 0, (3.1.76) and dominated convergence, this goes, when ¢ tends to

400, to
_ ieg(p’,p")w? __—ieg(p’,p ) w? (1 - X())(IU) F0<p/7 pl)
(3.1.77) // [e loso—c¢€ lw<0} Ow[ 502 } dw 977 d
that may be rewritten using notation (3.1.70)) as
1—
(3.1.78) iE/<(1>2M,96(p’,w)>Fo(p’,p’)dp’

interpreting the inner bracket as an oscillatory integral in w.

/

Consequently, we have expressed the limit when ¢ goes to 400 of J| (t) + J' (t) by (3.1.72)
and the limit of JY (t)+J” (t) by (3.1.78). By (3.1.66)), the limit of J; () + J_ (t) is the sum

of these two expressions, namely

(3.1.79) ie/<(w+i60)1,Q€(p/,w)>Fo(pl,p/) dp'.

Since by (3.1.61)) this is the limit when ¢ goes to +oo of I(t, €, —¢, €, —¢; F'), it remains, in order
to get ([3.1.27)), to express the sum of quantities (3.1.79) corresponding to e = 1 and ¢ = —1 as

the right hand side of (3.1.27)). The definition (3.1.70) of Q¢ may be rewritten as
Q(p', w) = coslg(p', p)w?] + iesgn(w) sinfg(p', p)w?].

Then (3.1.79) is just
(3.1.80)

ie/<(w+ieO)_l»COS[Q(p’,p’)w2]>Fo(ﬂ’,p’) dp’—/[/wdw] Fo(p', ) dp'.

|l

Since the last dw integral is just f0+oo siny dy = 5, the sum of expressions (3.1.80)) for ¢ = 1 and

Y

e = —1, which gives (3.1.27)), is just

i [ (i) = (w—i0)coslglels o )u?] )l )~ 7 [ ol d

ZW/Fo(p’,p’) dp’

expressing (w + i0)~! — (w — i0)~™! as —2indy. This gives the right hand side of (3.1.27) and

concludes the proof.
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3.2 Proof of the main theorem

We shall give here the proof of Theorem [1.1.1}

e Case of the half-wave equation

Let us write explicitly the truncated energy Eigé(uo,t) defined in 1) as, using |'

€D,

(3.2.1) E)Ii\gé(u(), t) = <Op(a§§~z5) [eiﬂDl‘luO} , Op(ai\g(s) [eit‘Dz|u0]>

1 . . o
= @ /em(ﬁ—n)wt(il—nl)l'r>|tX(|t| 5(j¢| — |x]))2
(37 (o) (1737 (o 4L ) o €)oo dsnds,

Because of the boundedness property in Theorem it suffices to prove (1.1.5) when ug is

taken in a dense subspace of LQ(]Rd). Consequently, we may assume that in (3.2.1), ug is in
C3°(R? —{0}). Setting = = rw, & = pf, n = p'¢’, we may rewrite (3.2.1)) as

1 N 'nl N /
(3.2.2) EXNW(ug,£t) = @ / el (p0—p'0")Fit(p—p")

X X(t0(t — r))Qx(t_‘s_% (rw =+ t@))x(t_‘s_% (rw £ t0"))
X Losyr™ Y pp" ) Yo (p0) o (00 dpdp drdwdfde’

for any ¢ > 0. We apply Corollary to the df (resp. df’) integral in (3.2.2) with ¢’ =1
(resp. € = —1) and € = . We get first a contribution to (3.2.2)) coming from the principal term

(A.1.25) for both integrals, which is

(27;‘”1 / e =03 (70t — ) 2x (702 (r — 1))

d—1

X (pp') 7 Lisyiio(—epw)in(—ep/w) drdwdpdp’.
We notice that for ¢ large enough, (¢ (r — t))x(t_‘s_% (r—1t)) = x(t°(r—1)) since x = 1 close
to zero, so that we may rewrite this contribution as

1 a—

IGav Sy / e == 3 (470t — )2 (pp)) T Lrsiio(—epw)iin(—ep/w) drdwdpdp'.

(3.2.3) )

We get also a remainder, coming from (A.1.27)) for at least one of the df or df’ integrals in
(3.2.2). This remainder will be given by expressions of the form

(3.2.4) /eie(rt)(ppl)f((té(r — t))2rd71t2(d71)(5’%) S_g(w, p, plyr, t: 127 1r) drdwdpdy’,

where the factor S_; comes from products of expressions of the form (A.1.27) and (A.1.25)), or
from two factors (A.1.27)), and satisfies in any case bounds

(3.2.5) 101090505 [S—alw, p, /7,8 Q)] < Ct (3+9) () <oty
Let us define
(3.2.6) Flt,p,0',m:6,¢) = (PR (¢ k(5 ) (o) / it (pw) g (p/e) doo
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(3.2.7) Fg(t.p,p',r;¢.¢) = x(t°) x(t7°¢) (%)d_l"””(g)

x tQ(d‘1)5/S_d(w,p, oottt + Q) dw

where « is supported close to one and equal to one on a neighborhood of 1.

Notice that F' and Fr satisfy the support condition with &' = § because 1 is taken in
Ce (R — {0}).

Estimates (3.1.5)) with ¢’ replaced by § follow immediately from (|3 in the case of F' and from
in the case of Fr. Moreover, (3.1.7) holds for F' and Fgr w1th the limits

i F(t.p. o7+ 66.0) = (00)'F [ ao(pw)ia(p) do
(3.2.8) t=+oo gd—1
Jim  Fr(t, p. o+, =
as 6 > 0. In addition, by (3.1.8) with p(p) = p, we may rewrite (3.2.3) and (3.2.4) respectively
as
1
(3.2.9) I(t,—e€,e,—€,6; F), I1(t,—¢€,¢,—¢€,¢; FR).

Thus EHW(S(U(), t) + E;IXV(;(UO, —t) is the sum of li and for e = 1 and € = —1 and
thus by (3 may be written

1

(3.2.10) (2m)dH
HI(t1,—1,1,—1; Fg) + I(t,—1,1,—1,1; FR)

[I(t,1,-1,1,-1; F) + I(t,—1,1,-1,1; F)]

If we apply (3.1.26|) with Fy given by the right hand side of (3.2.8) for F' and Fr respectively,
we get

. 1 +oo R _
i[85, 0) + B0 0] = g [ [ fin(o) " dps = ol
” @m)* Jo  Jsa

t—4o00

i.e. the conclusion (1.1.5)).

e Case of the Schrédinger equation

The truncated energy for the Schréodinger equation in (1.1.4)) is

2
¢ 1Dz

0), Op(a3") (¢ % o) )

1 2
_ zac &— )—H ¢|
- (27r)2d/ €506 11 i

T +t€ T +1in .
X X —— |x —— )o(€)tio(n) dzdédn
<|t|ra<mf\> 2”> <|t|rn<m|nr> 2”)

with § € [0, %[ Again, by Proposition we may assume that 7 is in C§°(R? —{0}). Setting
x=rw, &= pl, n=p0, we write for t > 0,

(3.2.11)  ESU(ug,t) = <Op( Sl (it %5,

(3.2.12)
ESChr(uo, +t) = % /6irw~(P9—p/9/):|:it(p(p)_p(p/))x( rw x tp19 6>X< rw + tp’91’ >
) tp(Vip) *" to'(Vip) 2"
Td_llr>t max(p,p’) (Ppl)d_lﬂo (PQ){LO (p’«9’) drdwd@d@’dpdp’
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where p(p) = %. We apply Corollary to the df (resp. df’) integral with ¢ = 1 (resp.
(A.1.31

¢ = —1) and e = +. We obtain from (A.1.31]) for both integrals a main contribution given by

1 —ielr(o—=0")— — (o r—t r—t /
(3213) (27‘(‘)d+1/€ ( (p—p")—t(p(p)—p(p )))X< p1+6)x< p1+5>
tp(Vip) * tp'(Vip) 2

d—1

X 1oy max(p,p’) (PP’) Tﬁo(—epw)m drdwdpdp’

and a remainder, coming from the replacement of at least one of the df or df’ integrals in (3.2.12)

by (A.1.33)). If one notices that (A.1.31) may be also written under form (A.1.33) with S_%

replaced by Si%, with 5’7%;1 satisfying (|A.1.34]) with in the right hand side <C>__7 replaced

d—1
by ()™ 2 77, we see that the remainder is of the form

. / / - - /
(3:2.14) / eze(r(pp)t(p(p)p(p»)X( r tf’1+5>x< roty 1+5>
tp(Vip) ? tp' (Vitp') 2

d—1,(d-1)(0-3 r r 6—1
PO Sl LD = L) L drddpdf

where S_,; satisfies

(3.2.15) 0040100 01S_a(w, p. 5,8, Q)] < CLHE=3) () =4,

We define thus

(3.2.16) F(t,p,p’,r;C,C’)=X<W>X<Ws>“<:>

and

(32.17)  Fr(t,p,p,13¢,¢) = X<tp<\/fi>é+6>x<tp/<\/;/>§+6> (%)‘UK(%)

xt(dl)(‘H;)/ S_a (w p,p/,£ C—/I,t;t‘s_%r) dw
Sd—1 tp tp

where k € C§°(]0,4+o0]) is equal to one on a large enough compact set. Then the support
conditions (3.1.4) are satisfied by F' and Fg with ¢’ = § 344 e] ,1[ since 0 < § < % Inequalities

(3.1.5)) follow from the expressions of F, Fr and from 1} Fmally, (3.1.6)) holds, with

d—

1 _—
Fulp.!) = (p)'5" [ iolpo)aa(p/e) do for F
.
Fy(p,p') = 0 for Fpg.

Then the sum of (3.2.13)) and (3.2.14) is given again by the sum of the two quantities (3
associated to the F, Fr given by 43.2.16[) 3.2.17) and thus ESChr(uo, t) —|— ESChr(uo, —t) may be

written as (3.2.10)) for these functions Applying (3.1.27)) with the values 8)) of Fy, we obtain
conclusmn of Theorem This concludes the proof.

(3.2.18)
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3.3 The case of the wave equation

We shall prove in this subsection Theorem We re-express first the energy defined in (1.1.8)).
If w is the solution of (1.1.7)), define

u= (D + |Dz|)w, up = —iwy + |Dz|wy

(3.3.1) u— u+u
Dow == 2 )

u,wa:R<

where R is the Riesz transform R = ‘g”

el
Proof of Theorem and of Theorem By (1.1.7), we have u = ¢?1P=lyug so that (1.1.8)

may be written

it| Dyl

1 .
B .1, 1) = 11 o — Pl 2,

t ¢ ta(e
(3.3.2) [t|<|z|<[t|+c|t|

1 . . N2
+ 1H1|t|<\x|<\t|+c\t|5(eltID””'R“O +e P Rag) ||

Again, to prove the theorem, we may assume that g is in C§°(R? — {0}). Then if y € C5°(R%)

is equal to one close to zero, it follows from non stationary phase that, if § > 0 and NV is an
arbitrary integer, for |z| ~ |t[,

‘OP((l -X) (:c + tm> t|~° *) [eit\DzluO] ’ <o

A similar estimate holds if we cut-off ¢?|P=luq for |z| > [t| 4 ¢/|t|° for any ¢/ > 0. Consequently,
up to a perturbation going to zero when [t| goes to infinity, we may rewrite EXY; (wo, w1, t) as

<Op< o (0,) 6P, O (1)

N 7Re <Op(“HW,5(t"))eit‘D”UO’OP( oxs(—t, '))efit‘D“”'ﬂ0>
<Op( AW s(—t, ) e P y, Op (@I (—t, ) e =Pl g )
+ 1 (O (@ (1.9) P+ Rug, Op (al1¥ . )) 1% R

+ fRe (Op(at¥t, )P Rug, Op (kW s(~t, ) ) 1P Raiy )

1 {OD ()P B, Op (@l (—1,) =P+ R

(3.3.3)

that is, using notation (1.1.4) and the fact that R = — Rug,

1
o S wo, wi, 1) = 7 | EXWy(uo,t) + B (0, 1) + EYY5(Ruo, ) + EXY5(Riio, —1)|

1
5 X}X&(uo, ) + EX % 5(Ru0, t)]

where we define

~ 1 ;
(3.3.5) E\Vs(uo,t) = Wz/llmblt@ @-(§—n)+it(1€]+n])

X X((fE +tm)ltlfﬁ )x((x - tﬂ)| |*%*5)

< X([H (18] = 1)) 0 (€) o (—n) dédnda.
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For t > 0, € = 4, rewrite

~ 1
HW _
Ey xs(uo, et) = (2r)2d

X7
~(4—6 2 d—1/ nd-1 - N 10/ / ’
XX (0t =) (pp') T Lrsitio(pB)tio(—p'0" ) drdpdp’ dOA dw.

( ) eim‘(pe_ple)+i5t(p+p/)><((Tw + etG)t_%_‘s)X((rw — et@')t‘%_‘s)
3.3.6

Let us show:

Lemma 3.3.1 One has if d is odd

(3.3.7) lim [Ef(%(uo,t) + BTV, (ug, —t)] —0

t——+o0

while if d is even

i HW HSHW
i (B8, + B0 0]

(3.3.8) -
2(—1)2 a1 i
B <(2W>)d“4+ e 07 00 () (') '

, 00| X -

where H is the Hankel transform (1.1.11) acting on the function p — p%ﬂo(pw) at fived w.

Proof:  As in subsection we apply Corollary to the df and df’ integrals in (3.3.6)),
except that now we have to use (A.1.24)) with ¢ = 1 for both integrals (up to the change of

variables 8/ — —6’ in order to reduce the df’ integral to form (A.1.24)). In that way, the
e« 3(d=1) factors of (A.1.25)) do not cancel each other, and we get that 1| is given by a main
contribution of the form

d—1

pies (d—1) /e—ie(p+p’)(r—t)>~<(t—5(r _ t))Z(pp’)%lwt

(339) G

x/ o (—epw) i (—ep'w) dwdpdp' dr
Sd—1
up to a o(1) remainder. Set
r — A N ~ (= —
(3.3.10) F(t,p. i, ¢) = (3 ) (pp') " /S olpw)in(p'w) dw (7€) (t7°C)

for some function x € C3°(]0,+00[) equal to one on a large enough compact subset. Then

assumptions (3.1.4)), (3.1.5) are satisfied with ¢’ = §, and (3.1.7]) holds with

d—1 . .
(3.3.11) Folo. ) = ()% [ (o) de
Moreover, (3.3.9) may be rewritten according to (3.1.8) as
1
(27)d+1
so that the quantity to be computed in (3.3.7)), (3.3.8)), which is nothing but the sum of ([3.3.6))
(or of (3.3.9))) for e = —1 and € =1, is just

1
(2m)d+1

eieg(d_l)l(t, —€,—€,—€,—¢; F)

(3.3.12)

3@V 1, -1, -1, ~1; F) + e~ 3@V (£,1,1,1,1; F)]
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up to a o(1) remainder. If d is odd, (3.1.11) implies that the limit of (3.3.12) vanishes, hence
(13.3.7). If d is even, d = 2¢, we use (3.1.10) to write that limit as

(2730,“ ”Z< —2(p+ )", Folp, p/)>

with Fpy given by (3.3.11)). This gives (3.3.8). O
End of the proof of Theorem |1 We need to study the limit when ¢ goes to infinity of the

sum EQ (wo, w1, t) +EC75(7U077~U17 —t) ie. by (3

(3.3.13)
tilﬁloo 1 [Z Ex 2.0 (U0, €t) + Z EX 2.0 (U0, €t) + Z Ruo, et) + Z Eig(;(Rﬁo, Gt)}
e==+
- tilinoo Re [Z Eg\gé(uo, et) + Z Ex \;(V(;(Ruo, et)].
e=+ +

By Theorem the first limit is equal to ||u0\|%2 = Hwﬂ\%g + || Vawo||2,. By (3.3.7), when d
is odd, the second limit is zero, so that we obtain .

End of the proof of Theorem In this case, we have to add to the ﬁrst contribution |lwy |3, +
[Vzwol|%, the last line of (3 1} which is given, according to ), by

—1)%
2 ((277)02+1

Re [ H(p's tolp)) () 5" o) do
gd-1

since the contribution coming from Ruyg is equal to the one given by wg. This gives ((1.1.10)).

To prove the last statement of Theorem we notice that if wy is even and w; is odd (resp. wy
is odd and w; is even) then ug(n) = —iwi(n) + |n wo?n) is real valued (resp. purely imaginary).
If we set f(p,w) = p% Uo(pw), the last term in (1.1.10) may be written as a positive multiple of

/Sd_1 (H(f(-,w)), f(-,w)) dw

when ((1.1.12)) holds since then f = f, and where we denoted by (-,-) the L?(dp') scalar product
As H is a posmlve operator we thus get that is bounded from below by |w:||? 72 T
|Vzwo||25. Under (1.1.13), the same conclusion holds since then f = —f.

Finally, (1.1.14)) follows if we show that ¢t — EXY;(wO, w1, t) is an even function. This is clear as,
under condition (resp. (1.1.13])), the solution w of the wave equation satisfies for any
(t,z), w(—t,—x) = w(t,z) (resp. w(—t,—x) = —w(t,z)). This concludes the proof. O

A  Appendix

A.1 Stationary phase related properties

We shall first state some phase integral estimates in a general framework and write then the
corollaries we use in the bulk of the text.

Let M, N be two boundaryless riemannian manifolds of dimension m and n respectively, with
N compact. Denote by das the riemannian distance on M. Let ® : N' x M — R be a smooth
map, (x,y) — ®(z,y) and let

X0, XN XMXMxM—=R

Al1l
(A-L11) (2,9, 2) = (s, 2, )
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be smooth in (z,y, 2z, 2’) and satisfy for any o € N, 3,~v,+" € N™ j N € N, estimates

0B o1 57 B / 18—l / dm(ys )\ T
(A12) ‘axayazaz/ %X(M?UC,Z/’Z,Z )’ < Cl”' <T>

Denote by L the projection of the support of x on the (z,y) variables and assume that for any
x in N, y — ®(x,y) has a unique critical point y(x) such that (z,y(x)) € L, and that moreover
this critical point is non degenerate. Finally, assume that for some small positive §”,

(A13)  Supp (x(m2,9,2,2") C{(w,2,y,2,2);dm(y, y(x)) < 6" and da(y, 2') < 8"}

For A > 1, define

(A.1.4) I(z, 2,2\ p) = //\/t M@ (2, y, 2, 2) dy

where dy is the riemannian measure on M. Our first result is the following:
Proposition A.1.1 There is a function
S_m : N x Mx Mx]0,1] xR —C
(A.1.5) 2 , ,
(x7Z7Z 7M7C) _> S-%(x7z7z 7M’C)
smooth in (x,z,2',() and satisfying for any a € N*, 8,8/ €e N ~ €N, j,N in N

—N

(L) 1202000005y (o5, s )] < Cprlot P (ALY

supported inside

(AL7) (@22, 1, C)s dpa(y(2), ') < 25"}

such that one may write if " > 0 is small enough and \u?> > ¢ > 0,
(A.1.8) I(z, 2,2\ p) = ei)‘(b(m’y(x))umS_%(x, 2,2 ).
Moreover, the symbol S_% may be decomposed for ( > ¢ as

m m
2 2

e’ 1P~ |det (Hess (¥} (z,y(x)))) (), 2, )G
+S_%_1($7 2, Z,u 13 C)

(a1g) S-z@adim0)=(m

where Hess () (z,y(x))) is the Hessian matriz of y — ®(x,y) at point y(x), (p,q) is the signature
of that matriz, and where S,%,l satisfies with 5 replaced by 5 + 1 in the right hand
side.

Moreover, if x depends smoothly on some parameter w, then so does I, and S,%, S,%,l above
are also smooth functions of w. Their Oy -derivatives of order ¢ may be estimated then by inequal-
ities of the form with a constant C' depending only on the constants obtained in
for the Oy -derivatives of order ¢ of x.

Proof:  Replacing in ®(z,y) by ®(x,y) — ®(x,y(z)), we may always assume that the
critical value is zero. By compactness of A/, we may reduce ourselves to the case of x staying in
a small enough open subset U of A/ such that for any x in U, y(z) stays in a same chart domain
of M. By (A.1.3), for small enough &”, y stays as well in this chart domain. From now on, we
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shall thus assume that in (A.1.4)), x is compactly supported for y in a ball of center 0 in R and
that y(x) = 0 for any x in U. Making the change of variables y = py’, we rewrite (A.1.4]) as

(A.1.10) I(z, 2,25\ p) = um/ ei/\"Q(I’l(x’yl’“)Xl(u,:c,y',z,z’) dy’

where, since ® has a non degenerate critical point at y(x) = 0, ®; satisfies on the domain
ly/|u = O(6") with §” < 1 properties

ay'(I)l(x70nU') =0, az’él(may,a p) = A($) + O(:U"y,’)

(A.111) ’ , "
Oy ®1(x,y', 1) = O(1),Va € N, |a| > 3

for some non singular matrix A(x), and where x; satisfies because of (A.1.2)) estimates

i qa ! —|a]—|y|—g dM /"Ly/VZ -
(AL12) N O R
and
(A.1.13) xi(p, 2,0, 2,2") = x(u, 2, y(x), 2, 2')|J (2)]

where J(z) is a jacobian such that
_1 _1
(A.1.14) |det Hess (®] (0, 1)) 2|J(z)| = |det Hess (P} (x,y(z)))| 2.

Take xo in C§°(R™) with small enough support, equal to one close to zero and decompose in

(AT10) [ = Ip + I, with
(A115) Io(.CE, 2, Z/; )\a /’L) = Mm / ei)\uzél(%y/’u))(l(uv z, ylv 2, z/)XO(y/) dy/

For §” small enough so that (A.1.11)) holds, ' — ®1(z,y, p) has a unique critical point in Supp xo
at ' = 0, that is non degenerate, with zero critical value, so that by the stationary phase formula,
the above integral is a symbol of order —% in A2 of the form || with ¢ = Au?. Moreover,

its 0, (resp. 0,, resp. 0,/)-derivatives are estimated from the same derivatives of x1, and from
its O/-ones, so that (A.1.12) implies that bounds (A.1.6) hold true, using also that
<dM(uy’,z)> M <\uy’—21>_N N <\ZI>‘N N <dM(y(fv),Z)>‘N

1 [ I [

since 3’ is bounded on the support of yq in . The support condition follows from
. Finally, expansion is just the first term in the expansion of the stationary phase
formula.

We are left with studying the integral I, given by expression where we replace g by
1 — xo. Since, on the support of the integrand, u|y’| = O(6"), it follows from that, if

(1=x0)(¥) #0,

|0y @1 (2,9, )| ~ [y 2 >0
if ¢ is small enough. We may thus integrate by parts in 3’ and conclude that

_ntyd T
<)‘N2y/> N< M(:uyvz)> dy’

(2, 2,25\, )| < Cum/ p

ly'|>c
for any N’ € N. As Au? > ¢, we get a bound in

pm ()N /

'Y [1 +
ly'|>c

y - ZHN dy < Cum(AMQ)_N<;>N-
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As derivatives are estimated similarly, this shows that I; contributes to S_%_l in 1) This
concludes the proof. O

We study now integrals of the form (A.1.5) when there is no critical point on the domain of
integration.

Proposition A.1.2 Let x be a function of the form satisfying and compactly
supported in y. Let ® : M x N — R be a smooth map such that there is ¢ > 0 with for any

(z,y) e N x M, |Vy®(z,y)| > c. Then may be written
(A.1.16) I(z, 2,2\ p) = ei/\q)(x’z),umG(m, 2,2\ )
where G is smooth in u,x,z,2 and satisfies for any o € N*, 3,3 e N* j N € N

(A.1.17) 1020200, 01G (2, 2,2 A, )| < Cp1o1=181=3 (\ ) =N,

Proof: Consider first the case when on the support of x, one has da(y,2) > ¢ > 0. Then the
last factor in shows that y and its derivatives are O(u’Y) for any N. Since y — ®(z,y)
has no critical point uniformly in (z,y), integrations by parts in 8, in (A.1.4) show then that a
bound in O(A™N ) holds for any N for I and its derivatives, which implies (A.1.16), (A.1.17).
We are thus reduced to the case when y is supported for da(y,2) < ¢ < 1. As y stays in a
compact subset of M, we may thus assume that y, z belong to a same chart domain of M and
set, in local coordinates, y = z + 3/, with |y/| < 1. Then may be rewritten

(A118) ei)ﬂb(m,z) / ei/\él(xjay/)xl(lu’a JI, y/a Z, Z/) dyl

where ® satisfies
(A.1.19) 0y @1(x, 2,y")| ~ 1, [0800®1(, 2,9/)| = O(ly']), ¥ — 0

and where y1 is such that, by (A.1.2)

/ . / 7N
|8Z8$85’8383’X1’ < CM—IOé\—IﬁI—WI—J<M> .
w

If we make 0, integrations by parts in (A.1.18), we conclude that this integral is O™ (M) ™)
for any N. Using (|A.1.19)), we get as well the estimates (A.1.17)) for the derivatives. O

We specialize now the above results to the case N’ = M = S%~! to obtain the corollaries used in
subsection We denote by d the distance dg.

Corollary A.1.3 Let
F: (9,0',w,w',1/,u) — F(070/7w>w,71/7:u“)

be a function defined on (S¥~1)* x [0, 1]x]0, 1] with values in C, smooth in all variables, satisfying
for any o, o/, B, 8" in N1 5 4" in N the bound

i
and supported for d(6,0") + d(0',w") < §". Then if 6" > 0 is small enough, the integral

’ ;e ! i/ d’ -
(A.1.20) 0505, 8585,858&F(Q,@’jw,w’al/,/l)‘ SC/L*|aI*W|*J*J< ( ,w)>

(A.1.21) / eiiAO'GIF(Q,H',w,w', v, ) do’
Sd—l
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may be written, when A\u® > ¢ > 0, under the form

(A.1.22) eii/\ud_lSi%(G,w,w', v, s Ap?)
where the symbol S_a_1 satisfies for any a, B, 5" in N1, j 4/ ~ in N
2

-N
(A.1.23) \65‘8585,858Z/62S?(G,w,w',u,u;g)\gcﬂ—al—lﬁ—j—j’<d(9u’w)> ()T,

Moreover, S_a_1 is supported for d(0,w'") < 28". In addition, if F' depends smoothly on some ex-
2

tra parameter w, so does S_a—1, with 8&—dem’vatz’ves of (A.1.25) estimated from the aﬁl—derivatives
2

of F.

Proof: Consider for instance the case of sign + in the phase of . We apply Proposi-
tion with x =60, y =0, 2 = w, 2/ = W' and some extra implicit variable v. The phase is
then 0" — 6-6’, and because of the support condition on F', #’ = 6 is the only critical point that
has to be considered. This critical point is non degenerated and the critical value is equal to

1. Consequently (A.1.22) is just (A.1.8]) and ({A.1.6|) provides (A.1.23)), the fact that we get also

estimates for 9, derivatives following from the last statement in Proposition The case of
sign — in the phase of (A.1.21]) follows by conjugation. |

In the preceding corollary, we did not make use of the expansion of Proposition We write
a second corollary with the notation that we use in section [3

Corollary A.1.4 Let x be in C§°(R), x equal to one close to zero, with small enough support
and denote also by x(x) the radial function x(|z|) for any x in RY. Let f be in C°(R? — {0}).
Let e,¢ € {—,+}, 4 €]0, %], p>0,7r>0,t>1. Then the integral

(A.1.24) / PO\ (17270 (rw + etf)) f(pB) dO
Sdfl

may be written as the sum of a principal term

d—

(A.1.25) e () T RN () Ty (70 (r — 1) f(—epw)
and a remainder, supported for
(A.1.26) Cl<p<C, |r—t] < tatd

for some C > 0, that may be written as
(A.1.27) eic€rrg (w, po 7, t; t26717,p)t(d71)(67%)
2
where for any o € N1 ¢ 5~ in N
(A.1.28) 08050007 _ s (w, p, 7, 15| < ct(%*f?)lal*(%ﬂ?)qng”.
2
Proof: We make in (A.1.24)) the change of notation r = tr’ so that we have to study

/
(A.1.29) / eigtr/pwex(M)f(pH) do
gi-1 7
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where p = 972 €]0,1]. The integrand is supported for |r' — 1| < u, |w+ €f| < p and for
p in a compact subset of ]0,+o0o[. We set A = rp = tr'p. We have \u?> > ¢ > 0 by the
preceding conditions and the fact that 6 > 0. We apply Proposition |A.1.1] to (A.1.29) with
T =w,y =0,z = —cw, no 2’ variable, and smooth dependence in the extra parameter r’ of y in
, with uniform estimates when one takes p0d,/-derivatives. The unique critical point in the
support of the integrand is §(w) = —ew. The support assumption is satisfied if Supp x is
small enough, as well as estimate by the preceding remarks. The Hessian of § — ¢/w - 0
at f(w) is of signature (d — 1,0) if e = 1 and (0,d — 1) if e = —1, and its determinant has
absolute value 1. One thus gets from the first term in the asymptotic expansion
returning to the r variable.

The remainder is given by (A.1.27) according to (A.1.9)), the estimates (A.1.28) following from
(A.1.6) and from the fact that the coefficient of the exponential in (A.1.29) admits uniform

estimates when we take uo, = t%+‘58r derivatives. This concludes the proof. O

We state an analogous corollary, used in section [3| to study the integrals associated to the
Schrédinger operator.

Corollary A.1.5 Let x be a cut-off as in the preceding corollary, f in CP(RY — {0}). Let ¢, €
in{—,+}, d €0, %] Then if Supp x is small enough, p >0, r >0, t > 1, the integral

-, tpl
(A.1.30) [e Tﬂwﬂx<m+€fi+5>ﬂp9) o
s tp(Vip) *
may be written as the sum of a principal part

d—1 d—1

(A.1.31) e~ (2m) 2 e“ﬁ'l(d‘l)(rp)‘?x(lﬂ;
tp(\/tp) *

=t

and a remainder, supported for

_1
(A.1.32) Cl<p<O, r—tol < tp(Vip) *°

that may be written as
- d—1
(A.1.33) e PS4 (w, P, tL - l,t;t‘s_%rp)tT(a*%)
2 p

where for any o € N¢, ¢, 5.~ in N

(A.1.34) 92009, 07S s (w0, 1", )| < Ce (=8 e ()= 52,
2

_1
In particular, by (A.1.39), S_as1(w, p,7',t;C) is supported for |r'| < (V/tp) 2+
2

Proof: 'We set r = tp(r’ + 1). We rewrite (A.1.30) as

1y 2 AV ! 9)
(A.1.35) ele'tp? (147w 6X<W> f(pb) do.
/ (Vip) 2"

_1
The integrand in (A.1.30)) is supported for |r — tp| < tp(v/tp) 2+5, and for p in a compact subset
of ]0, +o0[, so that since (A.1.32)) holds trivially for the support of (A.1.31)), it does also for the
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support of the remainder. Set u = =15, Then 1 €]0,1] since § < 3 and if A = (14 1/)p?, we
get A >c¢>0and A\ > ¢ > 0 as r' is small. We define

F@n%ZMMPJﬁX<< Zx;llgy;w>i(xy>i(yz>f@y)
po\2 p

where x¥ € C(‘)’O(Rd) is equal to one on a large enough neighborhood of Supp x. Then integral
(A.1.35) may be rewritten as

(A.1.36) /ei“/’\(ew)'oF(—ew, 0, —ew, w; p,r’) do

since, as by (A.1.32) |r'| < p, the first cut-off in the definition of F imposes that on the integrand
of (A.1.36) |w+ €| < p, which in turns implies that the y cut-offs are equal to one at their
argument. Moreover

o 99’ 9P gp Loy / oo |1gl-p—i { 4B 2\ T
(A.1.37) 070, 07050,00 F(x,y, 2, 5 p,7")| < Cpa <T>

for any «a,a’,,p,¢,7, N. We may apply to (A.1.36) Proposition where in (A.1.2) we

have no 2’ variable and we insert the extra parameters (p,r’), allowing a u~! loss for every 0,

derivative. We thus get for (A.1.36) a decomposition of the form (A.1.8))-(A.1.9)) with m replaced
by d—gl and with a remainder in (A.1.9)) given by (A.1.33) with S_ 411 satisfying estimates given
2

by |D (with m = %) This gives (A.1.33)) taking into account the extra parameters (p, '),
as at the end of the statement of Proposition This concludes the proof. O

We state next the analogous of Corollary when the support of F' does not contain any
critical point.

Corollary A.1.6 Let F' be a function satisfying (A.1.2(). Assume moreover that there is ¢ >
0 such that the projection on the (0,6") space of the support of F is contained inside the set

{min[d(0,0"),d(0,—0")] > c}. Then integral (A.1.21) may be written as
(A.1.38) eﬂ)‘e'“,u,d_lR(H, w,w' v, s M)

where R satisfies for any «, B, 8" in N1, 4§/ ~ N in N

(A.1.39) 1050505005 O R(0, w, ', v, 11 ¢)| < CpleI=IF=I=1" )N
Proof: One has just to apply Proposition withz=0y=0,2=w,2/ =u. |

To finish this subsection, we prove a variant of the well known Hérmander estimate of the £(L?)
norm of an operator given by a phase integral with non degenerate mixed Hessian.

Proposition A.1.7 Let M be riemannian manifold of dimension d, ® : M x M — R a smooth
function. Let m : M x Mx]0,1] — C be a function (z,y,u) — m(x,y,pn), smooth in (z,y),
supported in a compact subset K x K (independent of pn) of M x M. Assume that m satisfies
for any o, B in N4, N € N bounds of the form

-N

o —la|— dM(.%',y)
(A.1.40) |@%m@wwﬂ§awﬂmuww%4777>
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with a constant A independent of o, B, N and Co g n depending on o, 3, N. Assume that at
any point (z,y) of K x K, Dy Dy®(x,y) is a non degenerate bilinear form. For u in C§°(M),
supported in K, define if A > 1

(A.1.41) Thu(z) = /ei)‘q)(x’y)m(x,y,u)u(y) dy
where dy denotes the riemannian measure. Then there is C > 0 such that

_d
uniformly in p €0, 1].
Proof:  'We notice first that if m is supported for da((z,y) > ¢ > 0 then (A.1.40) implies a
uniform bound |8285m(z,y, )| < Cq,pA so that the result follows from the usual theorem (see
Hormander [I0] Theorem 1.1 or Sogge [12] Theorem 2.1.1). We may thus assume m supported
for dy(z,y) < 1. By compactness of K, we may moreover reduce to the case when z,y stay in

a same local chart and are thus reduced to an integral of the form (A.1.41f), with m supported
in a neighborhood of 0 in R¢ x R?. We write

Tyl = [ Koy, 2)ulw)ate) dyd
for any u in S(R?), with
(A.1.43) Ky(y,z) = /ei’\[q)(z’y)_q)(x’z)}m(x,y,u)m(m,z,,u)dx.
It is enough to show that there is C' > 0 such that for any p €]0,1], A > 1

,udsup/\KA(,uy,uz)]dz < CANT?
(A.1.44) Y

pf Sup/ | Kz (y, pz)| dy < CAXN™
z
by Schur’s lemma. But one may write

(A.1.45) WKy, iz) = / AP HE) ) M (2 y, 2) do

where by (A.1.40), M, satisfies for any a € N N e N,
(A.1.46) 109 M, (2,9, 2)| < Callz —y) Nz —2)"N

and is supported for plz| < 1, ply| < 1, p|z| < 1. Moreover, if we set

Pu(z,y, 2) = ®(pz, py) — ©(pw, pz)
1
— (=) [ (Do), ey + (1~ @)2) da
0
it follows from the assumption on ® that

’Dx&),u(.fﬁ,y, Z)’ ~ :u’2|y - Z|

for (x,y, z) in the support of the integrand. Making in (A.1.45|) integrations by parts in z, we

bound this quantity by
CARP M2 (y — 2)) 7

from which (A.1.44]) follows. This concludes the proof. |
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A.2 Non boundedness of a sharp half-space cut-off

In the heuristics of subsection [I.2] we indicated that one could not use a sharp cut-off along a
half-plane because such an operator is not L? bounded. Let us prove this statement. Consider

X € C§°(RY) a radial function equal to one close to zero, and let us replace the symbol a s of
(13 by

A21 Wt 2 €)= ((x _ t—) ¢ ““5)11

( ) X0 ( 5) X |§‘ | ‘ ?.%>1

with § €]0, 1.

Proposition A.2.1 For any large enough t, the operator Op(dil};v) is not L? bounded.

Since we want to prove non L?-boundedness, we may as well replace z by tx i.e. consider instead

of , fort>1
e (1 (- S

From now on, t is fixed, and the constants may depend on t. Moreover, it suffices to prove non L?-

boundedness on the space of L? radial functions. If u is radial, and if we write (&) = |¢] %U(K )
for some function v in L?([0, +00], dp), the operator we have to study is thus v — Bv where

+oo
(A.2.2) Bu(r) = / e a(t,r, p)v(p)dp
0
with
(A.2.3) a(t,r, p) = / eiPrf=1) (T’P)%lmle(t%%(TW —0)) do
§d—1

which is independent of w since y is radial, and where we ignored some multiplicative constant.
We have to show that B is not bounded from L?([0,+ool[,dp) to L?([0,+occ[,dr). We shall
actually show that B is not bounded on L?([1,4oc[,dp), so that we may assume that a is also

cut-off for p > ¢ > 0. Moreover, we shall use (A.2.3)) taking w = ey, first vector of the canonical
basis.

Lemma A.2.2 Forr > 1, r close enough to 1, defineu = /1 — % and set a(t,u, p) = a(t, (1 —
u?)~Y p) for u > 0 small enough. Then when p > ¢ > 0, one may decompose

(A.2.4) a(t,u, p) = ao(t,u, p) + @i (t, u, p) + R(t,u, pu’)
where, for large enough t, ag satisfies for any «, B in N
(A.2.5) 10908 a0(t, u, p)| < C(p) P12,
a1 may be written as
(A.2.6) ay(t,u, p) = €IS (¢, u, pu?)
and where S, R satisfy for any «, 5 integers, and a non vanishing continuous function A(u)
a0 =3_p
|8uag S(t’ u, C)| S C<<> 2

(A.2.7) S(t,u,¢) = Aw)x (2270 (r = 1))¢2 +0(CT), ¢ = +oo
|R(t,u,¢)| < C(Q)
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Proof: By 1) since § < %, one has |r — 1| < 1 on the support of a if ¢ is large enough.
Moreover 7 > 1 on that support. Passing in local coordinates for 6 close to w = e in the integral,

one may rewrite (A.2.3)) as
(A.2.8) a(t,u,p) = /Rd_1 eip(lﬂﬂ)—l [,/177;/271] 11,\/@<U2P%M(ylv“) dy’

where M is C* on R"~! x R, supported for (y',u) close to (0,0) (and depends on t). We notice
that in the regime pu? < 1, (A.2.8) may be written as a contribution to R in (A.2.4). We shall
thus assume pu? > 1 from now on. We split

/ /

(A.2.9) M(y',u) = M(y’wxo(y ) +M(y' uxa (%)

U
with xo € C§° (R9=1) equal to one close to zero, with small enough support, and 1 = 1 — xo.
We denote the corresponding decomposition of @ as ap + ai. In ao, if xo has been taken with
small enough support, we may forget the sharp cut-off in and notice then that if we set
A= p(l —u?)"Y p = wu, then with a factor xo(y'/u) under the integral is of the form
(A.1.4) with y replaced by ¥/, 2z = 2’ = 0 and no parameter z. By Proposition it follows
that ao(t, u, p) may be written as

(A.2.10) (qu)%S_% (t,u, pu?(1 —u®)~h)
since pu? > 1, for S satisfying
(A.2.11) 02078 _aca (t,u,O)] < Cu= ()2

It follows that (A.2.5) holds.
Consider now af, given by the substitution of the last term in (A.2.9) to M in (A.2.8). If we

make the change of variables v/ = ouy, with ¢ in S2, ¢ > 0, we obtain
(A.2.12)

At ,0) = i1
]0,+00[xSd—2

d—1

“1®(u,o — —
P g ys—10 T M(oup,u)x1(op)u o2 dodyp

where
P(u,0) =u?[V1- o022 —1]

is smooth and has ¢ = 0 as its unique critical point in ¢. Moreover, in the integrand the factor
M (oup, u)x1(op)u?=1o?=2 is smooth, supported for |u| < 1, oju| < 1 and ¢ > ¢; > 0, and each
Oy derivative of it gains o~!. In addition, g—f(u,a) < —co < —cep < 0 on the support of the
integrand. Since o|u| < 1, the sharp cut-off 1$(u,0)>—1 implies that the integrand is supported
for 0 bounded. We may thus insert under the integral in a cut-off for ¢ < Cq. If we
make a further change of variables v = —®(u, o) for any fixed u, we thus reduce (A.2.12)) to

(A.2.13) /} i eip“2(1_“2)71”11,<1p%N(v,go,u)ud_l dvdyp
0,+o00[xXS9—

where N is smooth and supported for v in a fixed compact subset of ]0, +00[ and for |u| < 1.
As pu? > 1, if we make integrations by parts in v in (A.2.13)), each of them gains a factor (pu?)~1.
Moreover, the boundary terms generated in the process are of the form

d—1__

(A.2.14) eipu2(1_u2)71(pu2) = INy(u), LN
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where N is in C5°([0, +o00) and Ny is given by
(A.2.15) No(u) = —i(1 — u2)/N(1,g0,u) de.

Notice that v = 1 corresponds in to ®(u,0) = —1 i.e. the boundary term is
equal, up to a non zero factor coming from the change of variables, to the function y (t%_‘s (rw—ﬁ))
restricted to rw - # = 1 and integrated in @ on this hypersurface of S9~!. Since y is radial,
X(t%_‘s(rw — 0)) restricted to rw - 6 =1 is just X(t%_‘s(r —1)) and Ny is a non zero multiple of

that function. Moreover, the phase in (A.2.14]) is the one in 1' restricted to w - 6 = % ie.

p(1 —r). Consequently, we have written a; as
(A.2.16) at = e?" VS (u, pu?) + R(u, pu?)

where the first term comes from with £ =0,..., L with L chosen so that % — L <0,
and R is provided by an expression of the form where one has performed at least L + 1
O,-integrations by parts, that have gained a factor (pu?)~L~!. It follows that R satisfies the last
estimate , while S obeys the first two lines of . This concludes the proof of the

lemma. O

Proof of Proposition We have to show that operator B given by is not bounded
from L%([1, +oo[,dp) to L*([1,+oc[,dr) (since a is supported for » > 1). It is enough to show
that there is a > 0 small such that 1y 4 1424 © B is not L? bounded. This operator may be
written as a sum Bj + By + Bz with

+oo
(A.2.17) B1v(r) = 1j14a,1424)(7) / e ag(t, V1 -1, p)v(p) dp
1
+00 1 .
(A:2.18) Byv(r) = Litsa,1+24)(r) / $(tVI=r (1= 7)) uip)dp
1 r
+oo 1
(A.2.19) B3v(r) = Lj14a,142q] (7“)/ e””"R(t, 1-— r‘l,p<1 — 7)>v(p) dp
1 r

according to (A.2.2)), (A.2.4)), (A.2.6). On the domain r > 1+ a > 1, inequalities (A.2.5)) show

that ag is a symbol in the Hérmander class S? 1, so that By is bounded on L?. As r stays in a

compact set, it follows from the last estimate (A.2.7)) that || Bsv||r2gry < Cl|v][12(qp). It remains
to prove that if & > 0 has been fixed small enough, By is not bounded on L?. We may replace
e?v(p) by v(p) in order to check that. Using the expansion of S in (A.2.7), we may write

d—3

Bao) = Livansaa®) [A( 1= D - 0) (1) [0 oo
too
o[ T e |

When d > 3, take in (A.2.20), v = vy = 1 k41)(p), & € N*. Then for a close enough to 0,
positive, (A.2.20)) shows that [|Bavk|r2(gr) goes to infinity if k goes to infinity while vkl z2(4,) =
d

(A.2.20)

1. This is the wanted conclusion in that case. When 2 < d < 3, the last term in (A.2.20) has
L2(1[1+a’1+2a} (r)dr) norm obviously bounded by C||v||z2, so that it is enough to check that

d—3

+oo
U= 1j14a,1420] (7“)/1 p z v(p)dp

is not L? bounded, which is obvious. This concludes the proof. O
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