FLEXIBILITY AND ANALYTIC SMOOTHING IN AVERAGING THEORY - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2021

FLEXIBILITY AND ANALYTIC SMOOTHING IN AVERAGING THEORY

Résumé

Using a new strategy, we extend the classical Nekhoroshev's estimates to the case of Hölder regular steep near-integrable hamiltonian systems, the stability times being polynomially long in the inverse of the size of the perturbation. We prove that the stability exponents can be taken to be (l-1)/(2nα_1 ...α_{n−2}) for the time of stability and 1/(2nα_1 ...α_{n−1}) for the radius of stability, l > n + 1 being the regularity and the α_i 's being the indices of steepness. Our strategy consists in deriving a perturbation theory which exploits a sharp analytic smoothing theorem to approximate any Hölder function by an analytic one. In addition, an appropriate choice of the free parameters in the problem enables us to have a first grasp on the relation connecting the time and radius of stability to the threshold that the size of the perturbation must satisfy in order for the theorem to apply. Particular attention is payed to a geometric presentation of the construction of the so-called resonant blocks, in order to shed a definitive light on the nature of the steepness condition. We also investigate the convex setting, using a similar approach.
Fichier principal
Vignette du fichier
BMM_alleluja.pdf (1.84 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03226888 , version 1 (16-05-2021)
hal-03226888 , version 2 (05-11-2021)

Licence

Domaine public

Identifiants

Citer

Santiago Barbieri, Jean-Pierre Marco, Jessica Elisa Massetti. FLEXIBILITY AND ANALYTIC SMOOTHING IN AVERAGING THEORY. 2021. ⟨hal-03226888v1⟩
64 Consultations
51 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More