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Preface i

Preface

Although the roots of the “Finite Element Method” can be found in the work of Courant [84],
the method really took off in the 1950’s when engineers started to solve numerically structural
mechanics problems in civil engineering and in aeronautics. Since then, finite elements have become
ubiquitous in computational sciences and engineering. Numerous academic toolbox and commercial
codes based on the finite element method have been developed over the years and are now available
to a large public. Numerous books, textbooks, and myriads of technical papers, articles, and
conference proceedings have been written on the topic.

We have contributed to this flow in 2004 by publishing Theory and Practice of Finite Elements,
in the Applied Mathematical Sciences series, volume 159. The approach we adopted at that time
was first to present the finite element method as an interpolation tool, then to illustrate the idea
that finite elements can be efficiently used to approximate partial differential equations other than
the Laplace equation and in particular problems for which the Lax-Milgram lemma is not the
ultimate paradigm. One objective of Theory and Practice of Finite Elements was to put the
emphasis on the inf-sup conditions developed by Babuska in 1970 in the context of finite element
methods [14] and stated in a theoretical work by Necas in 1962 [150]. These inf-sup conditions
are necessary and sufficient conditions for the well-posedness of any linear problem set in Banach
spaces. From the functional analysis point of view, the inf-sup conditions are a rephrasing of two
fundamental theorems by Banach: the closed range theorem and the open mapping theorem. For
this reason, we called these conditions the Banach—Necas—Babuska (BNB) theorem. The idea we
followed in Theory and Practice of Finite Elements was to expose fundamental concepts while
staying connected with practical topics such as applications to several PDEs and implementation
aspects of the finite element method.

The present work, called Finite Elements and organized in three volumes, started as a second
edition of Theory and Practice of Finite Elements at the invitation of Springer editors, but as we
progressed in the rewriting and the reorganizing of the material, an entirely new project emerged.
We tried to preserve the spirit of Theory and Practice of Finite Elements by covering fundamental
aspects in approximation theory and by thoroughly exploring applications and implementation
details, but Finite Elements is definitely not a re-edition of Theory and Practice of Finite Elements.
This new book is meant to be used as a graduate textbook and as a reference for researchers and
engineers.

The book is divided into three volumes. Volume I focuses on fundamental ideas regarding
the construction of finite elements and their approximation properties. We have decided to start
Volume I with four chapters on functional analysis which we think could be useful to readers who
may not be familiar with Lebesgue integration and weak derivatives. The purpose of these chapters
is not to go through arduous technical details, but to familiarize the reader with the functional
analysis language. These four chapters are packed with examples and counterexamples which we
think should convince the reader of the relevance of the material. Volume I also reviews important
implementation details that must be taken care of when either developing or using a finite element
toolbox, like the orientation of meshes, and the enumeration of the geometric entities (vertices,
edges, faces, cells) or the enumeration of the degrees of freedom. Volume I contains two appendices
highlighting basic facts on Banach and Hilbert spaces and on differential calculus.

Volume II starts with fundamental results on well-posed weak formulations and their approx-
imation by the Galerkin method. Key results are the BNB Theorem, Céa’s and Strang’s lemmas
(and their variants) for the error analysis, and the duality argument by Aubin and Nitsche. Impor-
tant implementation aspects regarding quadratures, linear algebra, and assembling are also covered.
The rest of Volume II focuses on applications to PDEs where a coercivity property is available.
Various conforming and nonconforming approximation techniques are exposed (Galerkin, boundary
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penalty, Crouzeix—Raviart, discontinuous Galerkin, hybrid high-order methods). The applications
considered are elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell’s equations),
eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows). Vol-
ume II contains one appendix collecting fundamental results on the surjectivity, bijectivity, and
coercivity of linear operators in Banach spaces.

Volume IIT develops more advanced topics. The first quarter of the volume focuses on symmetric
positive systems of first-order PDEs called Friedrichs’ systems. Examples include advection and
advection-diffusion equations and various PDEs written in mixed form (Darcy and Stokes flows,
Maxwell’s equations). One salient aspect of this first part of the volume is the comprehensive
and unified treatment of many stabilization techniques from the literature. The remaining of
Volume IIT deals with time-dependent problems: parabolic equations (such as the heat equation),
evolution equations without coercivity (Stokes flows, Friedrichs’ systems), and nonlinear hyperbolic
equations (scalar conservation equations, hyperbolic systems).

The book is organized into 83 chapters, most of them composed of 10 to 16 pages, and each
chapter is accompanied by exercises. The three volumes contain altogether over 500 exercises with
all the solutions available online. For researchers and engineers, the division in short chapters
is meant to isolate the key ideas and the most important results. The chapters are relatively
independent from each other and the book is not meant to be read linearly. Each volume is
supplemented with a long list of references. In order to help the reader, we try to pinpoint the
exact chapter, section or theorem each time we refer to a book. Short literature reviews are also
included in most of the chapters as well.

When used as a textbook, the division in short chapters is meant to be an aid to teachers
and students. The objective is that one chapter can be covered in time units of 1h to 1h15. The
salient ideas can be developed and exposed in class, while the rest of the chapter can be assigned
as reading material. The exercises are important complements, and teachers are encouraged to use
some of the exercises in class. Whenever possible the exercises have been divided into elementary
steps with enough hints to be doable by reasonably assiduous students. The book is well adapted
to graduate flipped classes as well. A significant portion of the material presented in the book
has been taught in graduate classes at Texas A&M, Ecole nationale des ponts et chaussées, Ecole
polytechnique, and Institut Henri Poincaré. About one third of the material has actually been
taught by the students themselves in flipped classes. The book can be used in many teaching
contexts. Among various possibilities it can be used to teach the mathematical bases of finite
elements at an introductory level, it can also be used to teach practical implementation aspects
(mesh generation, enumeration, orientation, quadratures, assembling), and it can be used to teach
sophisticated approximation techniques over a wide range of problems (elliptic PDEs, mixed PDEs,
first-order PDEs, eigenvalue problems, parabolic PDEs, hyperbolic conservation equations).

A good part of the material is quite standard, but we have also inserted concepts and ideas
which, without being entirely new, will possibly convey some flavor of novelty to the reader. For
instance, we have developed in some details and provided examples on how to orient meshes and
on how the usual differential operators, as well as normal and tangent vectors, are transformed
by geometric mappings. We have developed a step-by-step construction of the usual conforming
finite element subspaces by means of the notion of connectivity classes, and we have illustrated this
notion by numerous examples. Furthermore, we have included two chapters on quasi-interpolation
where we tried to develop a fresh and unifying viewpoint on the construction of quasi-interpolation
operators for all the scalar-valued and vector-valued finite elements considered in the book. We
have also made an effort to work as much as possible with dimensionally consistent expressions.
Although this may lead to slightly more complex statements for norms and error estimates, we
believe that the present choice is important to understand the various physically relevant regimes
in the model problems.
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Some of the techniques that are used to prove stability and error estimates, without being
entirely new, are, in our opinion, not standard in the literature at the time of this writing. In
particular, the techniques that we use are essentially designed to invoke as little a priori regularity
from the solution as possible. One salient example is the analysis of nonconforming approximation
techniques for diffusion problems with contrasted coefficients, and another one concerns Maxwell’s
equations also in materials with contrasted properties. Moreover, we give a unified analysis of
first-order PDEs by means of Friedrichs’ systems, and we show that a large class of stabilization
methods proposed in the literature so far are more or less equivalent, whether the approximation
is continuous or discontinuous. We conclude Volume III by a series of chapters on time-evolution
problems, which give a somewhat new perspective on the analysis of well-known time-stepping
methods. The last five chapters on hyperbolic equations, we hope, should convince the reader that
continuous finite elements are good candidates to solve this class of problems where finite volumes
have so far taken the lion’s share.

Although the reference list is quite long (about 200, 400 and 300 bibliographic entries in each
volume, respectively), the finite element literature is so prolific that we have not been able to
cite all the relevant contributions. Anyway, our objective was not to be exhaustive and to write
complete reviews of the topics at hand but to isolate the key principles and ideas and to refer the
reader to the references we are the most familiar with at the time of the writing.

Acknowledgments. We are indebted to many colleagues and former students for valuable dis-
cussions and comments on the manuscript (W. Bangerth, A. Bonito, E. Burman, A. Demlow, P.
Minev, R. Nochetto, B. Popov, A. Till, M. Vohralik, P. Zanotti). We are grateful to all the stu-
dents who helped us improve the organization and the content of the book through their feedback.
Finally, we thank Ecole nationale des ponts et chaussées, Institut Henri Poincaré, the International
chair program of INRIA, the Mobil Chair in Computational Science, and the Institute of Scientific
Computing at Texas A&M University for the material and financial support provided at various
stages in this project.

June, 2020
Paris, France Alexandre Ern
College Station, Texas Jean-Luc Guermond
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Chapter 1

Lebesgue spaces

The objective of the four chapters composing Part I is to recall (or gently introduce) some elements
of functional analysis that will be used throughout the book: Lebesgue integration, weak deriva-
tives, and Sobolev spaces. We focus in this chapter on Lebesgue integration and Lebesgue spaces.
Most of the results are stated without proof, but we include various examples. We refer the reader
to Adams and Fournier [3], Bartle [16], Brezis [48], Demengel and Demengel [88], Evans [99], Gris-
vard [110], Maly and Ziemer [138], Rudin [169, Chap. 11], Rudin [170], Sobolev [180], Tartar
[189], Yosida [202].

In this book, d is the space dimension, and D denotes a nonempty subset of R%. Vectors
in R?, d > 2, and vector-valued functions are denoted in bold font. We abuse the notation by
denoting position vectors in R? in bold font as well. Moreover, ||-[|;2(ge) denotes the Euclidean
norm in R¢ (we write ||-||;2 when the context is unambiguous), and a-b denotes the Euclidean inner
product between two vectors a,b € R?. For every pair of integers m < n, we use the notation
{m:n}:={peN|m<p<n}

1.1 Heuristic motivation

If one restricts oneself to computational considerations, the Riemann integral is the only notion of
integration that is needed in numerical analysis, since the objects that one manipulates in practice
are piecewise smooth functions (e.g., polynomials) defined on meshes. However, the Riemann
integral becomes useless when one starts to investigate questions like passage to the limit. For
instance, assume that one has an interval I := (a, b), a sequence of finite partitions of this interval,
say (In)newn, and a sequence of real-valued functions (vy)pey defined on I such that vy, is smooth
on each subinterval of I;, for all h € H. Here, H is a countable set with 0 as unique accumulation
point. In the context of finite elements, the index h refers to the size of the mesh that is used to
construct the function v,. Assume also that one can a priori prove that the sequence (vj)pen is
Cauchy in the following sense: for every e > 0, there is h(e) such that f: [vp, () — v, ()| do < €
for all hi,he € HN (O,h(e)). One may then wonder whether v, converges to some object with
interesting properties when h — 0. The answer to this question becomes very intricate if one
restricts oneself to the Riemann integral, but it becomes simple if one adopts Lebesgue’s point of
view. Since the above question arises constantly in this book, we now take some time to recall the
key ingredients of Lebesgue’s theory.
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1.2 Lebesgue measure

To define the Lebesgue integral of a function defined on a subset D of R%, one needs to measure
the volume of sets in R?. For every bounded rectangular parallelepiped R := [a1,b1] X - - - X [ag, ba],
with a; < b; for all i € {1:d}, we define the Lebesgue (outer) measure of R to be its volume, i.e.,

we set [R|:=J;cqq.ay(bi — ai).

Definition 1.1 (Lebesgue’s outer measure). Let R(RY) be the set of all the rectangular par-
allelepipeds in R®. Let E be a set in R?. The Lebesgue’s outer measure of E is defined as

|E|* = inf{Z|Ri| |Ec|JR: Ri eR(Rd)}. (1.1)
ieN ieN
We expect |E|* to be a reasonable estimate of the volume of E if F is a reasonable set. The
outer Lebesgue measure has the following properties: (i) |0|* = 0; (ii) If £ C F, then |E|* < |F|*;
(iii) If { E; }sen is a countable collection of subsets of RY, then | |J, oy Eil* < 3, [Eil* (countable
subadditivity property; see [169, Thm. 11.8]).

Example 1.2 (Countable sets). The outer Lebesgue measure of a countable set A := (J, cy{xx}

is zero. Let indeed € > 0. We have {xy} C R(ay, e7), where R(z,r) is the cube of side r centered
at z. Hence, [{zi}|* < e, ie., [{zr}|* = 0 since € > 0 is arbitrary. Invoking subadditivity yields
|A|* = 0. For example, this implies that the outer measure of the set of the rational numbers is
zero, i.e., |Q* = 0. O

Definition 1.3 (Lebesgue’s measure of a set). A set E C R? is said to be Lebesgue-measurable
if |S|* = |SNE|* +|SNE°|* for every subset S C RY, where E€ is the complement of E in R,

It turns out that not all the sets of R? are Lebesgue-measurable, but the class of Lebesgue-
measurable sets (in short, measurable sets) of R?, say £(R?), is sufficiently vast that we will only
encounter measurable sets in this book. In particular, (i) If E is measurable, then E€ is also
measurable; (ii) Open sets of R? and closed sets of R? are measurable (so that all the usual geo-
metric objects, e.g., parallelepipeds or balls, are measurable); (iii) Countable unions and countable
intersections of measurable sets are measurable.

Henceforth, the map |-| : L(R?) — [0, 0] such that |E| := |E|* for all E € L(R?) is called
(d-dimensional) Lebesgue measure. Since the action of the Lebesgue measure on measurable sets
is simply the outer Lebesgue measure, we infer that (i) || = 0; (ii) If A, B € £(R?) and A C B,
then |A| < |B|; (iii) The countable subadditivity property holds true on countable collections of
measurable sets. By restricting our attention to measurable sets, the property we have gained
is that |A; U As| = |A;| + | A2 for disjoint measurable sets (since (A; U Az) N A; = A; and
(A1 U A) N A§ = As). Moreover, if { Ay }ren is a countable family of measurable disjoint sets, the
union J, oy Ax is measurable and |J, oy Al = > _pen [Axl; see [169, Thm. 11.10].

Example 1.4 (Null sets). Let A C RY. If |A]* = 0, then A is measurable. Let indeed S C R
Then |[AN S|* < JA]* =0, i.e, [ANS|* = 0. Moreover, |S|* > |S N A°* =|SNA°[* + SN A,
and the subadditivity property implies that [S|* < [S N A[* +|S N A°*, whence the result. O

Example 1.5 (Cantor set). To define the Cantor ternary set, one starts with the interval [0, 1],
then one deletes the open middle third from [0, 1], leaving two line segments: [0, 2] U [2,1]. Next
the open middle third of each of the two remaining segments is deleted, leaving four line segments:
[0,3]U[3, é] U[2, ZJU[8, 1]. This process is continued ad infinitum. Setting Cp := [0, 1] and C,, :=
£Cn_1U (5 + 3Cp_1), the Cantor ternary set is defined by Co := {z € [0,1] | # € C, Vk € N}.
Then Cy is measurable (as the complement of a countable union of measurable sets), |Coo| < |Cy|

for all k € N, so that |Cs| = 0, but it can be shown that Cw is not countable. O
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Definition 1.6 (Equality a.e.). Let D C R? be a measurable set, i.e., D € L(R?). Let f :
D — R and g: D — R be two functions. We say that f and g are equal almost everywhere if
H{x € D| f(x) # g(x)}| = 0. Henceforth, we write f(x) = g(x) for a.e. x € D, or f = g a.e. in
D.

Definition 1.7 (esssup, essinf). Let D C R be a measurable set and let f : D — R be a function.
We define

esssup f(x) :=inf{M € R | f(x) < M for a.e. x € D}, (1.2a)
xeD
esseigff(:v) :=sup{m € R | f(z) > m for a.e. ¢ € D}. (1.2b)

Definition 1.8 (Measurable function). Let D C RY be a measurable set. A function f : D — R
is said to be measurable if {x € D | f(x) > r} is measurable for all r € R.

The meaning of the above definition is that a function is measurable if all its upper level sets
are (Lebesgue) measurable; see also [169, Def. 11.13].

Lemma 1.9 (Characterization). Let D C R? be a measurable set. Let f : D — R. The function
[ is measurable iff any of the following statements holds true:

(i) For allr € R, the set {xz € D | f(x) > r} is measurable.
(ii

) For allr € R, the set {x € D | f(x) > r} is measurable.
(i) For allr € R, the set {x € D | f(z) < r} is measurable.
iv) (x)

(iv) For allr € R, the set {x € D | f(x) < r} is measurable.

Proof. Ttem (i) is the definition of the measurability of f. The identity {x € D | f(z) > r} =
Mpeniz € D | f(x) > r — %—H} proves that (i) implies (ii). {z € D| f(x) < r} = Dn{x €
D | f(x) > r}¢ proves that (ii) implies (iii). {x € D | f(z) <7} =N enfz € D | f(x) <7 — n+r1

proves that (iii) implies (iv), and {& € D | f(x) >r} = DN{x € D | f(x) < r}° proves that (iv)
implies the measurability of f. (See also [169, Thm. 11.15].) O

For every subset A C R, let us denote by f~(A) := {x € D | f(x) € A} the inverse image of
A by f. Since every open set in R is a countable union of open intervals, the above result shows
that f is measurable if and only if f~'(U) = {& € D | f(x) € U} is measurable for every open set
U of R.

Example 1.10 (Measurable functions). Functions that are piecewise continuous and more
generally all the functions that are integrable in the Riemann sense are measurable. O

Corollary 1.11 (Measurability and equality a.e.). Let D C RY be a measurable set. Let
f D — R be a measurable function. Let g : D — R be a function. If f = g a.e. in D, then g is
measurable.

Proof. See Exercise 1.2. O

Theorem 1.12 (Pointwise limit of measurable functions). Let D be a measurable set in RY.
Let fr, : D — R for all n € N be real-valued measurable functions. Then

(i) limsup, ey fn and liminf, ey f, are both measurable.

(ii) Let f: D — R. Assume that fn(x) — f(x) for a.e. © € D. Then f is measurable.
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Proof. See Exercise 1.5. O

Example 1.13 (Measurability). Let D := (0,1). Let f : D — R be defined by f(z) := «. Let
C be the Cantor set (see Example 1.5). Let g : D — R be defined by g(x) := —2z if 2 € C, and
g(x) ==z if © € C. The function f is measurable since it is continuous. Recalling that |Cs| = 0,
g is also measurable by virtue of Corollary 1.11 since f = g a.e. in D. O

Theorem 1.14 (Composite functions). Let D be a measurable set in R%. Let g: D — R be a
measurable function. Let f: R — R be continuous. Then fog: D — R is measurable.

Proof. For every subset A C R, we have (f o g)7'(A) = g7 '(f~'(A)). Let U be an open set in
R. Then (fog) Y (U) = g7 (f~1(U)). But f~1(U) is an open set since f is continuous. Hence,
g H(f~1(U)) is measurable since f~1(U) is open and g is measurable. As a result, (fog)~1(U) is
measurable. O

Example 1.15 (Composite functions). Let g : D — R be a measurable function. Then by
virtue of Theorem 1.14, the functions |g|, g + |g|, g — |9l |g|? for every p > 0, €7, cos(g), sin(g) are
also measurable. O

Theorem 1.16 (Operations on measurable functions). Let f : D = R and g : D — R be
two measurable functions and let A € R. Then the functions \f, f+g , |f| and fg are measurable.

Proof. See Exercise 1.6. O

1.3 Lebesgue integral

We say that ¢ : D — R is a simple nonnegative function if there exist m € N, a collection of
disjoint measurable sets { Ax}ref1:m} in D, and a collection of nonnegative numbers {vx }req1:m}
such that g = 37 c 1.,y vela, (Where 1y, (x) := 1 if @ € Ay and 14, (@) := 0 otherwise). The
Lebesgue integral of g over D is defined by [, g(x)dz := Eke{l:m} g | Ak |-

Theorem 1.17 (Simple functions). Let D € L(RY). Let f : D — [0,00] be a nonnegative
measurable function. Then there exist simple functions {gx}ren s.t. 0 < g1 < go... < [ and
limg 00 gk () = f(x) for all x € D.

Proof. See [170, Thm. 1.17]. O

Definition 1.18 (Lebesgue integral). Let f be a nonnegative measurable function. The Lebesgue
integral of f over D is defined in [0, 00| as follows:

/ f(x)dx := sup {/ g(x)dz | g is simple nonnegative and g < f}
D D

Let f be measurable but not necessarily nonnegative. If either [, f*(x)dx or [, f~(x)dz is finite,
where f* :=max(£f,0), the Lebesgue integral of f is defined by

/Df(m)dx ::/Df+(a;)dx_/Df-(a;)dx. (1.3)

We say that [ is (Lebesgue-)integrable on D if both terms in (1.3) are finite.



Part . ELEMENTS OF FUNCTIONAL ANALYSIS 5

This definition agrees with the Riemann integral of f if f is Riemann-integrable. Moreover, since
Jplf(@)|da = [, fH(x)dz+ [}, f~ (%) dz, we have by construction | [, f(z)dz| < [, |f(z)|da.

An important property of the Lebesgue integral is that if f is integrable on D, then fD |f(x)|da =
0 if and only if f vanishes everywhere on D up to a set of zero measure. This leads us to introduce
a notion of equivalence classes. Two functions are said to belong to the same class if they coincide
almost everywhere (henceforth, a.e.), i.e., everywhere but on a set of zero Lebesgue measure. Ele-
ments of Lebesgue spaces are, strictly speaking, equivalence classes, although we refer to them sim-
ply as functions that are defined almost everywhere. For instance, the function ¢ : (0,1) — {0,1}
that is 1 on the rational numbers and is zero otherwise is in the same equivalence class as the
zero function. Hence, ¢ = 0 a.e. on (0, 1). Integrals are always understood in the Lebesgue sense
throughout this book. Whenever the context is unambiguous, we simply write |’ p fdz instead of
[ f(x) dz. We refer the reader to [170, Chap. 1] for more elaborate notions on the measure theory.

Example 1.19 (Cantor set). Let f : [0,1] — R be such that f(z) := 1 if x is in C (see

Example 1.5) and f(x) := 0 otherwise. Then f is measurable (see Corollary 1.11) and fol flx)da =
0. O

Remark 1.20 (Literature). It is reported in Denjoy et al. [89, p. 15] that Lebesgue explained
his approach to integration as follows: “I have to pay a certain sum, which I have collected in my
pocket. I take the bills and coins out of my pocket and give them to the creditor in the order I
find them until I have reached the total sum. This is the Riemann integral. But I can proceed
differently. After I have taken all the money out of my pocket, I order the bills and coins according
to identical values and then I pay the several heaps one after the other to the creditor. This is my
integral.” To get a clearer connection with the integration process, one could say that Lebesgue
went to a grocery store every day in a month, bought items, and asked for credit until the end
of the month. His debt at the end of a 30-day month is fo?,o f(t)dt, where f(t) is the amount of
money he owes per day. What Lebesgue has described above are two different ways to compute

SUF() ar. O

1.4 Lebesgue spaces

This section introduces the Lebesgue spaces and reviews their key properties.

1.4.1 Lebesgue space L'(D)

Definition 1.21 (Space L'). Let D be an open set in R?. LY(D) is the vector space composed
of all the real-valued measurable functions that are Lebesgue-integrable on D, and we equip L*(D)
with the norm || f||L1(py := [ | f| da to make it a normed space.

Theorem 1.22 (Monotone convergence, Beppo Levi). Let D be an open set in RY. Let
(fu)nen be a sequence of functions in LY(D) such that 0 < fo < f1i < ... < fu < foi1 < ... aee.
on D and sup,,cy fD fndx < co. Then f,(x) converges to a finite limit for a.e. x in D. Denoting
by f(x) the limit in question, f is in L*(D) and limpen || fn — fllz1p) = 0.

Proof. See [48, Thm. 4.1] or [170, Thm. 1.26]. O

Theorem 1.23 (Lebesgue’s dominated convergence). Let (fn)nen be a sequence of functions
in L*(D) such that:
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(i) folz) = f(x) ae. in D.
(ii) There is g € L*(D) such that | fn(x)| < g(x) a.e. in D for all n € N.
Then f € LY(D) and f, — f in L' (D).
Proof. See [16, p. 123], [48, Thm. 4.2], [170, Thm. 1.34]. O

Example 1.24 (Application). Let f, : D := (0,1) = R, n € N, with f,(z) :=1if 2 < 1 and
fu(z) := x otherwise. We have f,(x) — x a.e. in D and f,(z) < g:=1 a.e. in D. Hence, f, — x
in L1(D). O

Theorem 1.25 (Fischer—Riesz). L'(D) equipped with the L*-norm from Definition 1.33 is a
Banach space.

Proof. See [3, Thm. 2.16], [16, p. 142], [48, Thm. 4.8], [170, Thm. 3.11]. O

Remark 1.26 (Lebesgue vs. Riemann). The two key results the notion of Lebesgue integra-
tion gave us that were missing in the Riemann integration are Lebesgue’s dominated convergence
theorem and the fact that L'(D) is now complete, i.e., it is a Banach space. This answers the
question raised in §1.1. O

Theorem 1.27 (Pointwise convergence). Let (f,)nen be a sequence in L' (D) and assume that
f € LY(D) is such that || f, — fl|L1(py — 0. Then there exist a subsequence (fy, )ken and a function
g € LY(D) such that f,,(x) — f(x) a.e. in D and |fn, ()| < g(x) a.e. in D for all k € N.

Proof. See [48, Thm. 4.9], [170, Thm. 3.12]. O

Example 1.28 (Dirac mass). The assumption that there exists some g € L'(D) s.t. |fn(z)] <
g(x) a.e. in D for all n € N, is crucial to apply Lebesgue’s dominated convergence theorem. For
instance, consider the sequence of functions in L'(R) s.t. fn(z) := 0 if [z] > L and f,(z) := 2
otherwise. We have f,(z) — 0 for a.e. z in R and [p |f,(z)|dz = 1, but f,, does not converge in
L'(R). Reasoning by contradiction, let us assume that f,, — f in L'(R). Theorem 1.27 implies that
there is a subsequence (f,, Jren S.t. fn, (x) = f(x) for a.e. x in R. For all « # 0, we have f,, () =0

for all ny such that ng > ‘71‘ This implies that f(x) = 0 for a.e. z in R. This argument shows that

Jz |f(x)]dz = 0, but since we assumed that f, — f in L'(R), we also have [, |f(x)|dz = 1, which
is a contradiction. Actually (f,)en converges to the Dirac mass at 0 in the distribution sense; see
Example 4.3. [l

Definition 1.29 (Space L. _(D)). Let D be an open set in R%. The elements of the following

loc
space are called locally integrable functions:

Li,.(D) := {v measurable | ¥ compact K C D, VK € LY(K)}. (1.4)

Definition 1.30 (Support). Let D be a measurable set in R, The support in D of a function
¢ : D = R, henceforth denoted by supp(yp), is defined to be the closure in D of the subset {x €

D | p(a) # 0}.

Definition 1.31 (Space C§°(D)). We denote by C§°(D) the space composed of the functions
from D to R that are C*° and whose support in D is compact. The members of C3°(D) are called
test functions.

Theorem 1.32 (Vanishing integral). Let D be an open set in Re. Let v € LL (D). Then
Jpvede =0 for all ¢ € C°(D) iff v =0 a.e. in D.

Proof. See [48, Cor. 4.24], [138, p. 6]. O
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1.4.2 Lebesgue spaces L(D) and L>°(D)

Definition 1.33 (L? spaces). Let D be an open set in R%. For all p € [1,00], let LP(D) :=
{f measurable | || f||z»p) < oo}, where

1l = < / Iflpdx) " ifpe(loo), (L.5)
esssup|f ()| = inf{M € R | |f(z)| < M a.c. = € D}. (1.5b)
xeD

I fllze (D) :

We write LP(D;R?), ¢ > 1, for the space composed of R-valued functions whose components are
all in LP(D), and we use the Buclidean norm in RY, || f|l¢2ra), instead of |f|, to evaluate the norms

in (1.5). When q = d, we write LP(D) := LP(D;R%).

Lebesgue’s dominated convergence theorem extends to all the LP spaces, p € [1,00), i.e., if the
dominating function g is in LP(D), the convergence of f, to f occurs in LP(D).

Theorem 1.34 (Pointwise convergence). Let p € [1,00]. Let (fn)nen be a sequence in LP(D)
and let f € LP(D) such that || fn — f|lLe(py — 0. Then there exist a subsequence (fn, )ren and
a function g € LP(D) such that fn, () — f(x) a.e. in D and |fn, (x)| < g(x) a.e. in D for all
ke N.

Proof. See [48, Thm. 4.9], [170, Thm. 3.12]. O

Theorem 1.35 (Fischer—Riesz). For all p € [1,00]|, LP(D) equipped with the LP-norm from
Definition 1.33 is a Banach space.

Proof. See [3, Thm. 2.16], [16, p. 142], [48, Thm. 4.8], [170, Thm. 3.11]. O

Among all the Lebesgue spaces, L?(D) plays a particular role owing to the following important
consequence of the Fischer—Riesz theorem.

Theorem 1.36 (L? space). L?(D;R) is a Hilbert space when equipped with the inner product
(f,9)12(p)y = fD fgdx. Similarly, L*>(D;C) is a Hilbert space when equipped with the inner product

(f,9)r2p) = [p fgda.

Remark 1.37 (Continuous embedding on bounded sets). Assume that D is bounded. For
all p,q € [1,00] with p < ¢, Holder’s inequality implies that

1_1
[fllepy < IDPP" 4| fllLepy, Y € LUD), (1.6)

meaning that LY(D) < LP(D) (this notation means that LI(D) is continuously embedded into
LP(D)). One can show that lim, oo ||fl|zr(py = [|fllze(py for all f € L*°(D). Moreover, if
f € LP(D) for all p € [1,00) and if there is ¢, uniform w.r.t. p, s.t. || fl|Lr(py < ¢, then f € L>(D)
and || f||ze(py < ¢; see [3, Thm. 2.14]. O

Theorem 1.38 (Density of C§°(D)). Let D be an open set in RL. Then C$°(D) is dense in
LP(D) for all p € [1,00).

Proof. See [170, Thm. 3.14]. O

Remark 1.39 (The case of L*°(D)). C§°(D) is not dense in L*°(D). If D is bounded, the
completion of C°°(D) in L>°(D) is C°(D), and the completion of C§°(D) is {v € C°(D) | vjgp =
0}. O
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1.4.3 Duality

Lemma 1.40 (Conjugate, Holder’s inequality). Let p € [1,00] be a real number. The real

number p’ € [1,00] such that % + 1% =1, with the convention that p’ :=1 if p = 00 and p’ := oo if

p =1, is called conjugate of p. Let f € LP(D) and g € L¥ (D). Then fg € L*(D) and

/D £l dz < 1100 9l 2o - (17)

Proof. See [3, Thm. 2.4], [16, p. 404], [48, Thm. 4.6], [170, Thm. 3.8]. O

For p = p’ = 2, Hélder’s inequality becomes [, |fgldz < ||f| r2(pllgllL2(p) for all f,g € L*(D),
which is nothing but the Cauchy-Schwarz inequality in L?(D). This inequality is useful to bound
|(f.9)r2(py| since |(f, 9)L2p)| < [ | fgldz.

Theorem 1.41 (Riesz—Fréchet). Let p € [1,00). The dual space of LP(D) can be identified with
L? (D).

Proof. See [3, pp. 45-49], [48, Thm. 4.11&4.14], [170, Thm. 6.16]. O

Remark 1.42 (L°°(D)). Theorem 1.41 fails for p = co. Indeed, the dual of L>°(D) strictly
contains L' (D) (see [48, p. 102]). O

Corollary 1.43 (Interpolation inequality). Let p,q € [1,00] with p < q. For all v € [p,q],
letting 0 € [0,1] be s.t. - := % + 1%9, we have

£ 1ler oy S NN Zoo 1 I La(py:  ¥f € LP(D) N LI(D). (1.8)

Recall from §A.2 that for two Banach spaces V and W, L(V;W) is composed of the linear
operators that map V' boundedly to W, and that the norm ||| z(v,w) is defined in (A.2).

Theorem 1.44 (Riesz—Thorin). Let po,p1,q0,q1 be four real numbers such that 1 < py < p; <
00, 1 <qgo < q1 <oo. Let T : LP(D) + LP* (D) — L%(D) + L% (D) be a linear operator that
maps LP°(D) and LP* (D) boundedly to L% (D) and L% (D), respectively. Then the operator T maps
LPo(D) boundedly to L% (D) for all 8 € (0,1), where pg and qg are defined by p—le = 110;09 + p%,

a0 = b+ o Moreover, | Tl|czeoo0) < T poo, ooy 1T E Lo p0r)-
Proof. See [189, Thm. 21.2], Bergh and Lofstrom [18, Chap. 1]. O

Remark 1.45 (Interpolation). Corollary 1.43 and Theorem 1.44 are related to the interpolation
theory between Banach spaces (see §A.5). For instance, LP(D) can be defined for all p € (1, 00), up
to equivalent norm, by interpolating between L'(D) and L>(D), i.e., LP(D) = [L*(D), L*(D)] 1 ,;
o7
see Tartar [189, p. 111]. O

1.4.4 Multivariate functions

The following results on multivariate functions are useful in many situations.

Theorem 1.46 (Tonelli). Let f: D1 xDs — R be a measurable function such that the function
Di>x— sz |f(x1,22)| day is finite a.e. in Dy and is in L*(Dy). Then f € LY(Dy x Dy).

Proof. See [48, Thm. 4.4]. O



Part . ELEMENTS OF FUNCTIONAL ANALYSIS 9

Theorem 1.47 (Fubini). Let f € L*(DyxDs3). Then the function Dy > xa + f(x1,x2) is in
LY(D3) for a.e. 1 € D1, and the function Dy > x1 fD2 f(x1,x2) dzg is in LY(Dy). Similarly,
the function D1 > 1 + f(x1,x2) is in L'(D1) for a.e. &3 € Do, and the function Dy > xxo
fDl f(x1,x2)dzy is in LY(Ds). Moreover, we have

/ ( 5 flar e dss ) dn = [ 2 ( 3 o ) des, o)

and both quantities are equal to fDlxD2 flx1,x2) dxy dae, where day das is the product measure
on the Cartesian product D1x D.

Exercises

Exercise 1.1 (Measurability). Let W be a nonmeasurable subset of D := (0,1). Let f: W — R
be defined by f(z) :=1if € D\W and f(x) := 0 if 2z € W. (i) Is f measurable? (ii) Assume
that there is a measurable subset V' C W s.t. [V/| > 0. Compute sup,cp f(z), esssup,cp f(2),
infep f(z), essinfyep f(x). (iii) Is f a member of L>°(D)? (iv) Assume now that W has zero
measure (hence, W is measurable). Compute infyep f(x) and essinfep f(x).

Exercise 1.2 (Measurability and equality a.e.). Prove Corollary 1.11. (Hint: consider the
sets A, :== {w € D| f(x) > r} and B, := {x € D |g(x) > r} for all » € R, and show that
By = (A, N (A\By)) U (Br\Ar).)

Exercise 1.3 (Lebesgue’s theorem). Let D := (—1,1). Let (f)nen be a sequence of functions
in L'(D) and let g € L'(D). Assume that f, — f a.e. in D. Propose a counterexample to show
that the assumption “|f,| < g a.e. for all n € N” cannot be replaced by “f,, < g a.e. for alln € N”
in Lebesgue’s dominated convergence theorem.

Exercise 1.4 (Compact support). Let D := (0,1) and f(x) := 1 for all z € D. What is the
support of f in D? Is the support compact?

Exercise 1.5 (Pointwise limit of measurable functions). Let D be a measurable set in R%.
Let f, : D — R for all n € N be real-valued measurable functions. (i) Show that limsup,,cy fn
and liminf, ¢y f,, are both measurable. (Hint: recall that lim sup,,cy frn () := inf, ensupy>,, fu()
and liminf,en f,,(z) = sup,,cyinfi>, fix(z) for all x € D). (ii) Let f : D — R. Assume that
fu(x) — f(x) for every & € D. Show that f is measurable. (iii) Let f : D — R. Assume that
fu(x) = f(x) for a.e. & € D. Show that f is measurable.

Exercise 1.6 (Operations on measurable functions). The objective of this exercise is to
prove Theorem 1.6. Let f: D — R and g : D — R be two measurable functions and let A € R. (i)
Show that Af is measurable. (Hint: use Lemma 1.9). (ii) Idem for |f]. (iii) Idem for f + g. (iv)
Idem for fg. (Hint: observe that fg = %(f +g)?% — %(f -9)2)
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Chapter 2

Weak derivatives and Sobolev
spaces

We investigate in this chapter the notion of differentiation for Lebesgue integrable functions. We
introduce an extension of the classical concept of derivative and partial derivative which is called
weak derivative. This notion will be used throughout the book. It is particularly useful when one
tries to differentiate finite element functions that are continuous and piecewise polynomial. In that
case, one does not need to bother about the points where the classical derivative is multivalued
to define the weak derivative. We also introduce the concept of Sobolev spaces. These spaces are
useful to study the well-posedness of partial differential equations and their approximation using
finite elements.

2.1 Differentiation

We study here the concept of differentiation for Lebesgue integrable functions.

2.1.1 Lebesgue points

Theorem 2.1 (Lebesgue points). Let f € L'(D). Let B(z,h) be the ball of radius h > 0
centered at x € D. The following holds true for a.e. © € D:

o -
%ﬁ%m /B(m’h) |f(y) — f(z)|dy = 0. (2.1)

Points © € D where (2.1) holds true are called Lebesgue points of f.
Proof. See, e.g., Rudin [170, Thm. 7.6]. O

This result says that for a.e. @ € D, the averages of |f(-) — f(x)| are small over small balls
centered at x, i.e., f does not oscillate too much in the neighborhood of x. Notice that if the
function f is continuous at «, then x is a Lebesgue point of f (recall that a continuous function is
uniformly continuous over compact sets).

Let H C R be is a countable set with 0 as unique accumulation point (the sign of the members
of H is unspecified). Let F : R — R. We say that F is strongly differentiable at z if the sequence

(w Yhew converges.
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Theorem 2.2 (Lebesgue’s differentiation). Let f € L'(R). Let F(x) := [*_ f(t)dt. Then F
is strongly differentiable at every Lebesgue point x of f, and at these points we have F'(z) = f(x).

Proof. See Exercise 2.2. O

In the above theorem, we have F'(z) = f(z) for a.e.  in R. Thus, it is tempting to move
away from the classical sense of differentiation and view F’ as a function in L!(R). If we could
make sense of F/ in L*(R), then F(z) = [*_ F'(t)dt would be an extension of the fundamental
theorem of calculus in Lebesgue spaces. As an example of this possibility, let f := T o) be the
Heaviside function (i.e., f(z) := 1 if 2 > 0 and f(x) := 0 otherwise). Notice that f ¢ L'(R) but
f € Li (R) (see Definition 1.29), and F(z) := [*_ f(t)dt is well defined. Then F(z) = 0if 2 < 0
and F(z) = z if x > 0 (notice that 0 is not a Lebesgue point of f; see Exercise 2.1). We would
like to say that F’ = f in L{ (R). The objective of the rest of this section is to make sense of the

loc
above argument.

2.1.2 Weak derivatives

Definition 2.3 (Weak derivative). Let D be an open set in R%. Letu,v € Li (D). Leti € {1:d}.
We say that v is the weak partial derivative of u in the direction i if

/ ud;pda = —/ v dx, Vo € C§°(D), (2.2)
D D

and we write du := v. Let a € N% be a multi-index. We say that v is the weak a-th partial
derivative of u and we write 07" ... 05" = v if

/ wd ... 95 pdr = (1)l / vpde, Vo € C§°(D), (2.3)
D D

where |a| == a1 + ...+ aq. Finally, we write 9%u := 0" ... 95, and we set 9Oy := u.

1
loc

Lemma 2.4 (Uniqueness). Let u € Li (D). If u has a weak a-th partial derivative, then it is

uniquely defined.

Proof. Let v1,vy € L (D) be two weak a-th derivatives of u. We have

loc
/ vipde = (—1)‘“'/ ud®pdz :/ vo dz, Yo € C5° (D).
D D D

Hence, [,,(v1 — v2)¢da = 0. The vanishing integral theorem (Theorem 1.32) implies that v; = vy
a.e. in D. O

If u € C1*l(D), then the usual and the weak a-th partial derivatives are identical. Moreover,
it can be shown that if a, 3 € N are multi-indices such that o; > 3; for all i € {1:d}, then if the
a-th weak derivative of u exists in Llloc(D)7 so does the SB-th weak derivative. For instance, with
d =1 (writing 9, instead of 9y), if 0,,u exists in L] (D), so does d,u; see Exercise 2.4.

Example 2.5 (1D). Let us revisit the heuristic argument at the end of §2.1.1. Let D := (—1,1).
(i) Let us first consider a continuous function u € C°(D;R), e.g., u(z) := 0 if < 0 and u(z) := =
otherwise. Then u has a weak derivative. Indeed, let v € L'(D) be s.t. v(z) := 0 if < 0 and
v(x) := 1 otherwise. Let ¢ € C§°(D). We have

1 1 1 1
/ udypdr = / 20y pdr = —/ pdr = —/ vpde.
—1 0 0 ~1
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Hence, v is the weak derivative of u. (Notice that ¢ defined by o(z) := 0 if < 0, 9(0) := 1 and
o(x) :=11if > 0 is also a weak derivative of u, but v = ¥ a.e. in D, i.e., v and ¥ coincide in the
Lebesgue sense.) (ii) Let us now consider a function u € L'(D;R) that is piecewise smooth but
exhibits a jump at z = 0, e.g., u(x) := —1 if # < 0 and u(z) := x otherwise. Then u does not have
a weak derivative. Let us prove this statement by contradiction. Assume that there is v € L (D)

loc
s.t. Opu = v. We have

1 1 0 1 1
/ vpde = —/ ulppde = / Orpda — / 20, dz = p(0) +/ pdx,
—1 —1 —1 0 0

for all ¢ € C§°(D). Let {pn }nen be a sequence of functions in C§°(D) s.t. 0 < ¢, () < 1 for all
z €D, p,(0) =1, and ¢, — 0 a.e. in D. Lebesgue’s dominated convergence theorem implies that

1= 1imn_,oo(f_11 v, dr — fol ¢n dx) = 0, which is a contradiction. O

Lemma 2.6 (Passing to the limit). Let {v, }nen be a sequence in LP (D), p € [1, 00], with weak
a-th partial derivatives {0%v, }nen in LP(D). Assume that v, — v in LP(D) and 0%, — go in
L?(D). Then v has a weak a-th partial derivative and 0%v = ¢q.

Proof. The assumptions imply that lim, o [, *vnedz = [, gap da and

lim [ 0%npdz = (=D lim [ v,0%de = (—1)""/ v0%pdz,

n—oo Jp n—oo [ D
for all ¢ € C§°(D). The conclusion follows readily. O

A function v € L{ (D) is said to be locally Lipschitz in D if for all & € D, there is a neigh-

loc

borhood Ny of x in D and a constant Lg such that |[v(z) — v(y)| < Lzllz — yllp2ga) for all
Y,z € Ng.

Theorem 2.7 (Rademacher). Let D be an open set in R, Let f be a locally Lipschitz function
i D. Then f is differentiable in the classical sense a.e. in D. The function f is also weakly
differentiable, and the classical and weak derivatives of f coincide a.e. in D.

Proof. See [99, p. 280], [138, p. 44]. O

2.2 Sobolev spaces

In this section, we introduce integer-order and fractional-order Sobolev spaces. The scale of Sobolev
spaces plays a central role in the finite element error analysis to quantify the decay rate of the
approximation error.

2.2.1 Integer-order spaces

Definition 2.8 (W™P?(D)). Let m € N and p € [1,0]. Let D be an open set in RY. We define
the Sobolev space

W™P(D) = {v € L, .(D) | 9°v € LP(D), Yo € N¢ s.t. |a| < m}, (2.4)

where the derivatives are weak partial derivatives. We write W™P(D;R?), ¢ > 1, for the space
composed of R?-valued functions whose components are all in W™P (D), and we write WP (D)
whenever ¢ = d.
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Whenever it is possible to identify a length scale /p associated with D, e.g., its diameter
(p := diam(D) if D is bounded, we equip WP (D) with the following norm and seminorm: If
p € [1,00), we set

HU||€vaP(D) = Z g'f;"’||a%||1£p(m, |U|€Vmw(D) = Z Ha%”’zp(m,

|| <m lo]=m
and if p = oo, we set

[0l wme(py = max E310%]| ey, [olwmee(p) = max [|0%0] (D),
lo]<m lo]=m

where the sums and the maxima run over multi-indices v € N?. The advantage of using the factor

p is that all the terms in the sums or maxima have the same dimension (note that ||[|yym.»(p)

and |-|yym.r(p) have a different scaling w.r.t. £p). If there is no length scale available or if one

works with dimensionless space variables, one sets ¢p := 1 in the above definitions.

Proposition 2.9 (Banach space). W™P?(D) equipped with the ||-||ym.»py-norm is a Banach
space. For p = 2, the space

H™(D) := W™?(D) (2.5)
is a real Hilbert space when equipped with the inner product (v, w) gm (py = Z‘a|<m fD 0% 0%w d.
Similarly, H™(D; C) is a complex Hilbert space when equipped with the inner product (v, w) gm (p;c) =

Z\a|§m [p %0 0%w du.

Proof. We are going to do the proof for m = 1. See e.g., [3, Thm. 3.3], [99, p. 249], or [189,
Lem. 5.2] for the general case. Let {v,}nen be a Cauchy sequence in W1P(D). Then {v,}nen
is a Cauchy sequence in LP(D) and the sequences of weak partial derivatives {0;vp fnen are also
Cauchy sequences in LP(D). Hence, there is v € LP(D) and there are g1, ..., g4 € LP(D) such that
v, = v in LP(D) and d;v, — g; in LP(D). We conclude by invoking Lemma 2.6. O

Example 2.10 (H*(D)). Taking m := 1 and p := 2 we have
HY(D):={ve L*(D) | 0v € L*(D), Vi € {1:d}},
(notice that L?(D) C L{ (D)) and

loc

1
2
Il = (lolem) + Blolm) s Wlnw = Y. 10wl
ie{l:d}

Let Vo be the column vector in R? whose components are the directional weak derivatives d;v
of v. Then a more compact notation is H'(D) := {v € L*(D) | Vv € L*(D)} and [v|g1(p) :=
[Vvl[z2(p).- O
Lemma 2.11 (Kernel of V). Let D be open and connected set in RY. Letv € WP(D), p € [1,00].
Then Vv =0 a.e. on D iff v is constant.

Proof. We prove the result for D := (—1, 1) and we refer the reader to [138, p. 24], [189, Lem. 6.4]
for the general case. Let u € Ll (D) be such that d,u = 0. Fix a function p € C§°(D) such that

loc

fD pdx =1 and set ¢, := fD updz. Let now ¢ € C3°(D) and set ¢, := fD @ dz. Then the function
V() = [ (o(y) — cop(y)) dy is by construction in C§°(D), and we have 0,1 () = ¢(x) — cpp(2).
Since [, udy1pdz = — [, (8,u)y dz = 0 by assumption on d,u, we infer that

/ ucpdxz/ u(@ww+c¢p)dx:c¢/ updxch/ pde,
D D D D
for all ¢ € C5°(D). Theorem 1.32 shows that u = ¢,. O
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Remark 2.12 (Lipschitz functions). Let D be an open set in R% The space of Lipschitz
functions C%1(D) is closely related to the Sobolev space W1°°(D). Indeed, C%!(D) N L*>(D)
is continuously embedded into W1°°(D). Conversely, if v € Wh(D), then |v(y) — v(2)] <
dp(y, 2)|[|Vv|| L= (p) for all y,z € D, where dp(y, z) denotes the geodesic distance of y to z in
D, i.e., the shortest length of a smooth path connecting y to z in D (if D is convex, dp(y, z) =
lly — 2||¢2); see [189, Lem. 7.8]. A set D C R? is said to be quasiconvex if there exists C' > 1 s.t.
every pair of points @,y € D can be joined by a curve v in D with length(y) < Cllz — y||2. If
D is a quasiconvex open set, then W>°(D) = C%1(D) N L>°(D), and if D is also bounded, then
Wheo(D) = C%1(D); see Heinonen [113, Thm. 4.1]. O

Remark 2.13 (Broken seminorms). Let D C R? be an open set and let {D;}icq1.1y be a
partition of D, i.e., all the subsets D; are open, mutually disjoint, and D \ Uie{ltl} D; has

zero Lebesgue measure. Let v € W!P(D) and p € [1,00). Then one can write |U|€V1,p(D) =
Yicqny (Vo). IIf (p,)- In this book, we are going to abuse the notation by writing |v|€v1,p(D) =
Zze{l n HV’UHIZP(D”. This abuse is justified by observing that (Vv)p, = V(yp,) for all v €

Wlt)cl (D). We stress that it is important that the weak derivative of v exists to make sense of the

above identities. For instance, letting H be the Heaviside function, we have ||V(H‘(,170))Hip(_l ot
|V (Hq, 1))||Lp 01y =0, but H ¢ WLP(D); see Exercise 2.8. O

2.2.2 Fractional-order spaces

Deﬁnltlon 2.14 (WsP(D)). Let s € (0,1) and p € [1,00]. Let D be an open set in RY. We define
WeP(D) := {v € LP(D) | [v|ws»(p) < 00} , where

1
o( N »
0w (D) == (// [o( y||sp+'J‘ dz dy) . p< oo, (2.6)

and vy s, (D) = €SSSUDg yep w Letting now s > 1, we define

WeP(D) := {v € W™P(D) | 8°v € WP(D), Ya, |o| = m}, (2.7)

where m = |s| and o := s — m. Finally, we denote H*(D) := W*2(D). We write W*?(D;RY),
q > 1, for the space composed of R1-valued functions whose components are all in WP (D), and
we write W*P(D) whenever q = d.

Definition 2.15 (Sobolev—Slobodeckij norm). Let s = m+o withm = |s| and o :=s—m €
(0,1). For all p € 1, oo) and all v € W*P(D), we set ||UH1vjvs,p(D) = ||v|\€vmﬂp(D) + €g|v|§vsﬂp(D)
with seminorm |v[y.., p o( = lal=m |6O‘v|§w,p(m. We also set

HUHWS’“’(D) i= max(||[v][wm.(py, {p|v|ws (D))

with seminorm vy s.o(p) = MaxX|q|=m |0V|we.(p). Equipped with this norm W*P(D) is a Ba-
nach space (and a Hilbert space if p = 2).

Example 2.16 (Power functions). Let D := (0,1) and consider the function v(z) := 2® with
a € R. One can verify that v € L*(D) if o > —%, v € HY(D) if & > 1, and, more generally
veH(D)ifa>s— 3. O
Example 2.17 (Hélder functions). If D is bounded and p € [1,00), then C%%(D) < W*?(D)
provided 0 < s < a < 1; see Exercise 2.9. O
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Example 2.18 (Step function). Let D := (—1,1) and consider v(z) := 0 if x < 0 and v(z) :=1
if > 0. Then v € W#P(D) iff sp < 1 as shown by the following computation (notice that sp > 0):

0 1 0
1 1 1 1
ey =2 g dedy=2 [ —— - dz.
v[Fys.p [1/0 ly — a|Pt1 Ty /,1 sp ((1—117)5p |17|Sp) !

The integral ffl ﬁ dz is convergent if and only if sp < 1. O

Remark 2.19 (Limits s|0 and sT1). The expression (2.6), which is usually adopted in the
literature to define |v|yw«»(p), gives |v|wer(p)y — oo as stl even if v € WHP(D). A remedy
to this deficiency has been proposed in Bourgain et al. [38], Maz’'ya and Shaposhnikova [140].

It is shown in [38] that by redefining |v|jy.., = (1—5)%|U|WS,T—' for all s € (0,1), and setting

|v|*W1,p(D) = |v|wr.p (D), there exists ¢, s.t. for all 0,5 with 0 < o < s <1 and all v € W?P(D),

one has |v|;vg,p(D) < c|v|*Ws,p(D) and limg_,; |v|*WS,p(D) = [v|w1r(p) (see Borthagaray and Ciarlet
1

[34, Rmk. 2.3]). It has been proposed [140, Thm. 3] to redefine [v[jy..,py = (s(1=5))? [v|w=» (D)

to improve also the behavior of the seminorm when s)0. It is shown therein that if there is ¢ > 0

WP . _ _
s.t. v € Cg°(R?) , then limg o s|v|€vs’p(Rd) =2p~ 1199 1|||v|\1£p(Rd),
of the unit sphere in R<. O

where |S971| is the measure

Remark 2.20 (Definition by interpolation). Fractional-order Sobolev spaces can also be
defined by means of the interpolation theory between Banach spaces (see §A.5). Let p € [1,00)
and s € (0,1). Then we have

W*P(D) = [LP(D), W'* (D)l ,

and more generally W™ +$? (D) = [W™P(D), WmT1P(D)], , for all m € N, with equivalent norms
in all the cases; see Tartar [189, Lem. 36.1]. Using the interpolation theory may not be convenient
in finite element analysis if one is interested in local approximation properties. Unless specified
otherwise we use the Sobolev—Slobodeckij norm in the book. O

2.3 Key properties: density and embedding

This section reviews some key properties of Sobolev spaces: the density of smooth functions and
the (compact) embedding into Lebesgue spaces or into spaces composed of Holder continuous
functions.

2.3.1 Density of smooth functions

Theorem 2.21 (Meyers—Serrin). Let D be an open set in R%. Let s > 0 and p € [1,00). Then
C>®(D)NW=P(D) is dense in W*P(D).

Proof. See Meyers and Serrin [143] and Adams and Fournier [3, Thm. 3.17]; see also Evans [99,
p. 251] for bounded D. O

Remark 2.22 (p = o). Let m € N. The closure of C*°(D)NW™ (D) with respect to the Sobolev
norm [|-||yym.c<(py differs from W >°(D) since it is composed of functions whose derivatives up to
order m are continuous and bounded on D. O
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The density of smooth functions in Sobolev spaces allows one to derive many useful results.
We list here some of the most important ones.

Corollary 2.23 (Differentiation of a product). Let D be an open subset of R%. Then we
have wv € WHP(D) N L>(D) and V(uv) = vVu + uVv for all u,v € WHP(D) N L>®(D) and all
p € [1,00].

Proof. See, e.g., [48, Prop. 9.4, p. 269]. O

Corollary 2.24 (Differentiation of a composition). Let D C R? be an open set. Let G €
CH(R). Assume that G(0) = 0 and there is M < oo such that |G'(t)] < M for all t € R. Then we
have G(u) € WYP(D) and V(G(u)) = G'(w)Vu for all u € WHP(D) and all p € [1,00].

Proof. See, e.g., [48, Prop. 9.5, p. 270]. O

Corollary 2.25 (Change of variable). Let D, D’ be two open subsets of R%. Assume that there
exists a bijection T : D' — D st. T € CHD';D), T-! € CY(D;D’), DT € L*>(D';R¥*%),
and DT~' € L>(D;R¥™%), where DT and DT~ are the Jacobian matrices of T and T,
respectively. Then we have wo T € WYP(D') for all u € WYP(D) and all p € [1,00|, and
Oy (uoT) (@) = 3 ic(1.ay On,u(T (@) 0y, T(2') for all i € {1:d} and =" € D'".

Proof. See, e.g., [48, Prop. 9.6, p. 270]. O

2.3.2 Embedding

We use the notation V' — W to mean that the embedding of V' into W is continuous, i.e., there
is ¢ such that ||v]|lw < ¢||v|lv for all v € V (see §A.2). The main idea of the results in this
section is that functions in the Sobolev space W*P(D) with differentiability index s > 0 do have
an integrability index larger than p (i.e., they belong to some Lebesgue space L4(D) with ¢ > p),
and if s is sufficiently large, for all w € W*P(D) (recall that w is actually a class of functions
that coincide almost everywhere in D), there is a representative of u that is continuous (or even
Holder continuous). How large s must be for these properties to hold true depends on the space
dimension. The case d = 1 is particularly simple since W1(R) — C°(R) and W11(D) — C°(D)
for every bounded interval D; see [189, Lem. 8.5] (see also Exercise 5.7). In the rest of this section,
we assume that d > 2. We first consider the case where D := R9.

Theorem 2.26 (Embedding of W'?(R%)). Let d > 2 and let p € [1,00]. The following holds
true:
(i) (Gagliardo—Nirenberg—Sobolev): If p € [1,d), then
s e, Dd
WHP(RY) < LYR?Y), Vg€ [p,p'], p* = ip (2.8)
In particular, ||ullpo*@ey < f—: Vul pogay with 1% := 5% for all w € W'P(RY). Hence,
WP(RY) «— LP"(R?), and the embedding into LY(RY) for all q € [p,p*) follows from Corol-
lary 1.43.

(ii) If p=d, then

WhH4(RY) — LI(RY), Yq € [d, o0). (2.9)
(i) (Morrey): If p € (d, 0], then

WP (RY) — LR N CO*(R?),  a:=1- ¢
p
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Proof. See [48, Thm. 9.9, Cor. 9.11, Thm. 9.12], [99, p. 263-266], [180, §1.7.4, §1.8.2], [189, Chap. 8-
9]. O

Remark 2.27 (Continuous function). The embedding (2.10) means that there is ¢, only de-
pending on p and d, such that

u(x) — u(y)] < cllz — Yl ga) |Vl Logay,  for ae. z,y € R, (2.11)

for all u € W1P(RY). In other words, there is a continuous function v € C%%(R?) such that
u = v almost everywhere. It is then possible to replace u by its continuous representative v. We
will systematically do this replacement in this book when a continuous embedding in a space of
continuous functions is invoked. O

The above results extend to Sobolev spaces of arbitrary order.

Theorem 2.28 (Embedding of W*?(R%)). Let d > 2, s > 0, and p € [1,00]. The following
holds true:

LI(RY) Vg € [p, 251, if sp < d,
WeP(RY) < { LI(RY) Vq € [p,00), if sp = d, (2.12)
L*RHNCO*RY) a:=1- L, if sp>d.

Moreover, W% (RY) — L*(R?) N C°(RY) (case s =d and p=1).

Proof. See [110, Thm. 1.4.4.1], [88, Thm. 4.47] for p € (1,00). For s = d and p = 1, see, e.g., Ponce
and Van Schaftingen [160] and Campos Pinto [55, Prop. 3.4] (if d = 2). O

Our aim is now to generalize Theorem 2.28 to the space WP (D), where D is an open set in
R?. A rather generic way to proceed is to use the concept of extension.

Definition 2.29 ((s, p)-extension). Let s > 0 and p € [1,00]. Let D be an open set in R?. The set
D is said to have the (s, p)-extension property if there is a bounded linear operator E : WP (D) —
WeP(RY) such that E(u)|p = u for all u € W*P(D).

Theorem 2.28 can be restated by replacing R? with any open set D in R? that has the (s, p)-
extension property. A rather general class of sets that we consider in this book is that of Lipschitz
sets in R?. A precise definition is given in the next chapter. At this stage, it suffices to know that
the boundary of a Lipschitz set can be viewed as being composed of a finite collection of epigraphs
of Lipschitz functions.

Theorem 2.30 (Extension from Lipschitz sets). Let s > 0 and p € [1,00]. Let D be an open,
bounded subset of R:. If D is a Lipschitz set, then it has the (s,p)-extension property.

Proof. See Calderén [54], Stein [181, p. 181] (for s € N), [110, Thm. 1.4.3.1] and [88, Prop. 4.43]
(for p € (1,00)), [141, Thm. A.1&A 4] (for s € [0,1], p € [1,00] and s > 0, p = 2) [189, Lem. 12.4]
(for s =1). O

Theorem 2.31 (Embedding of W*?(D)). Letd > 2, s >0, and p € [1,00]. Let D be an open,
bounded subset of R%. If D is a Lipschitz set, then we have

(D) Vg € [p, 251, if sp < d,

(D) Vq € [p,0), if sp = d, (2.13)
L*(D)nC™ (D) a:=1-L if sp>d.

Le
W#P(D) — L4

Moreover, W%(D) < L>(D) N C%D) (case s=d andp =1).
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Remark 2.32 (Bounded set). Note that W*?(D) < L%(D) for sp < d and all g € [1,p] since
D is bounded The boundedness of D also implies that W*?(D) — C%%(D), with sp > d and

a:=1-— 5, and W(D) — C°(D), i.e., there is (Hélder-)continuity up to the boundary. O

Example 2.33 (Embedding into continuous functions). In dimension one, functions in
H'(D) are bounded and continuous, whereas this may not be the case in dimension d > 2 (see
Exercise 2.10). In dimension d € {2, 3}, Theorem 2.31 says that functions in H?(D) are bounded
and continuous. O

Example 2.34 (Boundary smoothness). Let a > 1, p € [1,2), and D := {(z1,22) € R? | 21 €
(0,1), 25 € (0,2%)}. Let u(xy, z2) := 27 with 1—1+TO‘ < B < 0 (this is possible since p < 2 <1+4a).

Then u € WHP(D) and u € L4(D) for all q such that 1 < ¢ < p, where la = % - 1+a Let us
set - 1= % — %, € 1= f;i —l—% > 0, and = pi — ¢. Notice that p, < p* and also p, < pg

smce € > 0. Since one can choose f3 s.t. € 1s arbltrarlly close to zero, we pick f so that pg < p*.

Hence, pg € (pa,p*). But u ¢ LI(D) for all ¢ € (pg,p*), which would contradict Theorem 2.31 if
the Lipschitz property had been omitted. Hence, D cannot be a Lipschitz set in R? (a > 1 means
that D has a cusp at the origin). This counterexample shows that some smoothness assumption
on D is needed for Theorem 2.31 to hold true. (|

We conclude this section with important compactness results. Recall from §A.4 that the em-
bedding V — W between two Banach spaces is compact iff from every bounded sequence in V,
one can extract a converging subsequence in W.

Theorem 2.35 (Rellich-Kondrachov). Let s > 0 and p € [1,00]. Let D be an open, bounded
subset of R%. If D is a Lipschitz set, then the following embeddings are compact:

(i) If sp < d, WP (D) — L9(D) for all q € [1, 72%).

’ d—sp
(ii) If sp > d, W*P(D) < C°(D).
(iii) W*P(D) < W5 2(D) for all s > s'.
Proof. See [3, Thm. 6.3], [48, Thm. 9.16], [99, p. 272], [138, p. 35], [110, Thm. 1.4.3.2]. O
Exercises

Exercise 2.1 (Lebesgue point). Let a € R. Let f : R — R be defined by f(z) := 0 if z < 0,
f(0) :=a, and f(z):=1if > 0. Show that 0 is not a Lebesgue point of f for all a.

Exercise 2.2 (Lebesgue differentiation). The goal is to prove Theorem 2.2. (i) Let h € H (the
sign of h is unspecified). Show that R(z,h) := w — f(x) = %f;+h(f(t) — f(x))dt. (ii)
Conclude.

Exercise 2.3 (Lebesgue measure and weak derivative). Let D := (0,1). Let Cs be
the Cantor set (see Example 1.5). Let f : D — R be defined by f(z) = z if v ¢ Cw, and
flx) =2 -5z if v € Cx. (i) Is f measurable? (Hint: use Corollary 1.11.) (ii) Compute
sup,ep f(x), esssup,cp f(x), infrep f(z), essinfrep f(2), and [ 1z (D)- (iii) Show that f is
weakly differentiable and compute 8, f(z). (iv) Compute f(z) — [ 0:f(t)dt for all x € D. (iv)
Identify the function f¢ € C°(D) that satisfies f = f¢ a.e. on D‘? Compute f¢(z) — [ 0:f(

for all z € D.
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Exercise 2.4 (Weak derivative). Let D := (—1,1). Prove that if u € L{ (D) has a second-
order weak derivative, it also has a first-order weak derivative. (Hint: consider ¢ (x) := [* (o(t) —
cop(t))dt for all ¢ € C§°(D), with ¢, := [, ¢dx, p e C§°(D), and [, pdx =1.)

Exercise 2.5 (Clairaut’s theorem). Let v € Ll (D). Let a, 8 € N? and assume that the weak
derivatives 9%v, 9°v exist and that the weak derivative 9%(0%v) exists. Prove that 9°(9%v) exists
and 9% (0%v) = 9% (0%v).

Exercise 2.6 (Weak and classical derivatives). Let k € N, £ > 1, and let v € C*(D). Prove
that, up to the order k, the weak derivatives and the classical derivatives of v coincide.

Exercise 2.7 (HY(D)). (i) Let D := (=1,1) and u : D — R s.t. u(z) := |z|? — 1. Determine
whether u is a member of H(D;R). (ii) Let uy € C((—1,0];R) and uz € C*([0,1); R) and assume
that u1(0) = u2(0). Let u be such that w1 0) := u1 and u|(g,1) := ug. Determine whether v is a
member of H!(D;R). Explain why u ¢ H*(D;R) if u;(0) # uz(0).

Exercise 2.8 (Broken seminorm). Let D be an open set in R%. Let {Dy,..., D, } be a partition
of D as in Remark 2.13. (i) Show that (Vv)|p, = V(v|p,) for all i € {1:n} and all v € wli(D).
(ii) Let p € [1,00) and v € W P(D). Show that Die(i:n} VD €V1,F(Di) = |U|€V1,p(D). (iii) Let
s €(0,1), p € [1,00), and v € W*P(D). Prove that } ;. (1., |v|p, %s,p(Di) < |v|€vs,p(D).

Exercise 2.9 (W*P?). Let D be a bounded open set in R%. Let o € (0, 1]. Show that C%%(D;R) <
W#P(D;R) for all p € [1,00) if s € [0, ).

Exercise 2.10 (Unbounded function in H'(D)). Let D := B(0, 5) C R? be the ball centered
at 0 and of radius 3. (i) Show that the (unbounded) function u(z) := In(~In(||z|/,2)) has weak
partial derivatives. (Hint: work on D\B(0,€) with e € (0,4), and use Lebesgue’s dominated

convergence theorem.) (ii) Show that u is in H'(D).

Exercise 2.11 (Equivalent norm). Let m € N, m > 2, and let p € [1,00). Prove that the norm
vl :== (JJvll}. + €57 v ’;Vm,p(D))% is equivalent to the canonical norm in W™?(D). (Hint: use the
Peetre-Tartar lemma (Lemma A.20) and invoke the compact embeddings from Theorem 2.35.)



Chapter 3

Traces and Poincaré inequalities

This chapter reviews two types of results on the Sobolev spaces WP (D) introduced in the previous
chapter. The first one concerns the notion of trace (i.e., loosely speaking, the boundary values)
of functions in W*P?(D). The second one is about functional inequalities (due to Poincaré and
Steklov) essentially bounding the LP-norm of a function by that of its gradient. The validity of
these results relies on some smoothness properties on the boundary of the set D. In this book, we
mainly focus on Lipschitz sets. For any subset S C R?, d > 1, int(S) denotes the interior of S and
S its closure.

3.1 Lipschitz sets and domains

Definition 3.1 (Domain). Let D be a nonempty subset of R%. In this book, D is called domain
if it is open, bounded, and connected.

For instance, a domain in R is an open and bounded interval. At many instances in this book
we will need to say something on the smoothness of the boundary D of a domain D C R?, d > 2.
To stay simple, we are going to focus our attention on the class of Lipschitz domains. In simple
words, a Lipschitz domain D in R?, d > 2, is such that at every point « € 9D, the boundary can
be represented in a neighborhood of x as the graph of a Lipschitz function. Equivalently there
exists a cone with nonzero aperture angle that can be moved in the neighborhood of x without
changing direction and without exiting D. Let us now give some precise definitions.

Definition 3.2 (Lipschitz set and domain). An open set D inR?, d > 2, is said to be Lipschitz
if for all x € OD, there exists a neighborhood Vy, of x in RY, a rotation Ry : R* — R?, and two
real numbers a >0, 8 >0 (o and B may depend on x) s.t. the following holds true:

(i) Vz =@ + Ry(BaxIg) with By := Bra-1(0, ), Iz := (=0, ).

(i) There exists a Lipschitz function ¢g : Boa — R such that ¢z(0) =0, ||¢z|lr=(s,) < 38 and
(see Figure 3.1)

DNVe=x+ Ra({(y',v4) € Bo x I | ya < ¢2(¥')}), (3.1a)
ODNVy =2+ Ro({(t/,ya) € Ba x I | ya = da(y)}). (3.1b)

We say that D is a Lipschitz domain if it is a domain and a Lipschilz set.
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Figure 3.1: Lipschitz domain and mappings (Rz,, ¢z, ), (Razy, Pz )-

Definition 3.3 (Cone property). Let D be an open set in R, d > 2. We say that D has the
uniform cone property if for all @ € 0D, there exists a neighborhood Vg of x in RY, a rotation
R, : R — RY, positive real numbers o, B, h, 6 € (0, 5] (which may depend on x) s.t. the following
holds true:

(i) Vo =@+ Ry(BaxIg) with By := Bra-1(0,a), Ig := (=0, ).

(ii) For ally € (DNVy), we have y+ Ry (C) C D with the cone C := {(y',ya) € RIIXR | —h <
ya < —cot(O)[[y'[le2ma-1)}-

Lemma 3.4 (Lipschitz domain and cone property). A domain in R?, d > 2, has the (uni-
form) cone property iff it is Lipschitz.

Proof. See Grisvard [110, Thm. 1.2.2.2]. O

Remark 3.5 (Finite covering). Let D be a domain in R% Since dD is compact, there is a
finite set £ C N and a finite covering |J;., Vi, of 0D with x; € 0D for all i € L. Definition 3.2
and Definition 3.3 can be equivalently reformulated for the finite set {@;};cr with coeflicients
{a, Bi, 0:, hi}ier that are bounded from below away from zero (the change of coordinates described
by the rotation R, being fixed in each V). O

Remark 3.6 (Terminology). In the literature, the term “domain” is sometimes defined without
requiring D to be bounded. We have incorporated this requirement in our definition since we mostly
consider bounded sets in this book. Domains that are Lipschitz in the sense of Definition 3.2 are
sometimes called strongly Lipschitz. It is also possible to weaken this definition. For instance,
some authors say that a domain D in R? is weakly Lipschitz if for every x € 0D, there exists a
neighborhood V, 3 « in R? and a global bilipschitz mapping M, : R¥! x R — R such that
DNV = M,(R&IXR_)NV, and DNV, = My (R¥1x{0})NV;. A strongly Lipschitz domain is
weakly Lipschitz (using the notation of Definition 3.2, it suffices to set My (y', ya) = £+ R (¥, ya+
?=(y"))), but a weakly Lipschitz domain may not be strongly Lipschitz. For instance, the two-brick
domain (see Example 3.7) and the logarithmic spiral {re' | 7 > 0,0 € R,a;e™? <7 < aze™?} C R?
(with positive real numbers a1, as s.t. e ?May < a; < as and 2 = —1) are weakly Lipschitz but
are not strongly Lipschitz; see Axelsson and McIntosh [13]. These examples show that the image
of a strongly Lipschitz domain by a bilipschitz mapping is not necessarily strongly Lipschitz. A
weakly Lipschitz domain is strongly Lipschitz if the mapping M, is continuously differentiable.
The source of the difficulty is that the implicit function theorem does not hold true for Lipschitz
functions; see [110, pp. 7-10] for more details. In this book, we only consider strongly Lipschitz
domains and, unless explicitly stated otherwise, when we say “let D be a Lipschitz domain” we
mean that D is strongly Lipschitz in the sense of Definition 3.2. O

Lipschitz domains have many important properties:
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(i) Outward normal: the outward-pointing unit normal n is well defined a.e. on the boundary of
a Lipschitz domain (this follows from Rademacher’s theorem (Theorem 2.7)). For an interval
in R, the outward unit normal is conventionally set to be —1 at the left endpoint and +1 at
the right endpoint (in coherence with the conventional orientation of R from left to right).

(ii) Onme-sided property: a Lipschitz domain is always located on one side of its boundary, i.e.,
there cannot be slits or cuts; see Costabel and Dauge [82], Grisvard [110, §1.7] for discussions
on domains with cuts.

(iii) Convexity: any Lipschitz domain is quasiconvex (see Remark 2.12). Conversely every convex
domain is Lipschitz (see [110, Cor. 1.2.2.3]).

s?

s

Figure 3.2: (Surprising) example of non-Lipschitz domain: the two-brick assembly.

Example 3.7 (Two-brick domain). Consider the bricks By := (—2,0) x (—2,2) x (0,2) and
By == (=2,2) x (=2,0) x (=2,0), and the two-brick assembly D := int(B; U Bg) illustrated in
Figure 3.2. Let us show that D is not a Lipschitz domain by using the uniform cone property.
For any € € (0,1), let Vg be the ball of radius 3¢ centered at 0. The points a := (e, —¢,0) and
a' := (—¢,¢,0) are both in Vo N D. Let us assume that the uniform cone property holds, and let
¢ = (Ca,Cys )T := Ro((0,0,—1)T). Ttem (ii) in Definition 3.3 requires that @ + $h{ € D, which
in turn implies that ¢, < 0. But also we must have a’ + %hc € D, which implies that ¢, > 0. This
contradiction implies that Item (ii) from Definition 3.3 cannot hold true for any neighborhood of
0. In other words, one cannot find a coordinate system such that the boundary of D is described
by the graph of a Lipschitz function in the neighborhood of the origin. Incidentally, one can show
that D is a weakly Lipschitz domain. Letting % : S? — S? be a bilipschitz homeomorphism of
the unit sphere in R3 that maps the circle S2 N R? to the curve shown in bold in Figure 3.2, a
mapping Mp : R® — R3 satisfying the definition from Remark 3.6 can be defined by Mg(x) :=
kugz’l/J(W) if £ # 0 and My (0) := 0. That My is a bilipschitz mapping results from the identity
[riwi — rows||Z = |r1 — r2]® + rire||wi — wa||% with the notation r; = ||@;| 2, w; == wa—ﬁez O
Remark 3.8 (Stronger smoothness). D is said to be of class C™ or piecewise of class C™,
m > 1, if all the local mappings ¢, in the Definition 3.2 are of class C™ or piecewise of class C™,
respectively. In this case, the outward unit normal is well defined for all ® € 9D and is of class
cm—1L, O

3.2 Traces as functions at the boundary

Boundary values of functions in LP(D), p € [1,00), are in general not well defined. For instance,
with a € (0,1). Then v € L?(D) but v|,,—¢ = oco. The

let D := (0,1)? and v(z1,72) = x,

=R
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main idea of this section is to show that it is possible to define the boundary value of a function
v € W*P(D) if s is large enough. But how large? A first possibility is to invoke Morrey’s theorem
(see (2.10)): if sp > d, one can consider the continuous representative of v to define the boundary
value of v. The purpose of the trace theory is to give a meaning to boundary values under the
weaker assumption sp > 1 (and s > 1 if p = 1) in every space dimension. In what follows, we
consider Sobolev spaces defined on 9D by using the local mappings ¢, from the Definition 3.2:
letting ¥ (&) := (&, p=(€)) for all £ in the open ball B(0, ) in R?~!, we say that v is in W*?(9D)
if vop, € WSP(B(0,)) for all x € D. When D is Lipschitz (resp., of class C*!), this approach
defines W*P(0D) up to s =1 (resp., s = 2). We refer to Grisvard [110, §1.3.3] for more details.

3.2.1 The spaces W;”(D), W*?(D) and their traces
Definition 3.9 (W;"?(D)). Let s >0 and p € [1,00). Let D be an open set in RY. We define

oDy o G D)

Wy () =y P, (3.2)

i.e.,, WyP(D) is the closure of the subspace C§°(D) in W*P(D). For p = 2, we write H§(D) :=
W (D).

We will see below in Theorem 3.19 that W*?(D) = W;*(D) if sp < 1 whereas W;"(D) is a
proper subspace of WP (D) if sp > 1 and D is bounded.

Theorem 3.10 (Trace). Letp € [1,00). Let s > % ifp>1ors>1ifp=1. Let D be a Lipschitz
domain in Re. There is a bounded linear map ~& : W*P(D) — LP(OD) such that:
(i) 78(v) = vjgp whenever v is smooth, e.g., v € C°(D).

(i) The kernel of ~# is WP (D).

(iii) If s =1 and p =1, orif s € (3,3) andp = 2, or if s € (%,1] and p & {1,2}, then
~v& : W*P(D) — WS_%’p((?D) is bounded and surjective, that is, there exists Cys s.t. for
every function g € WS_%’p((?D), one can find a function uyz € W*P(D), called a lifting of g,
s.t.

1
VEug) =g and  ugllwerpy < Crslpliglly -t s (3:3)

where €p is a characteristic length of D, e.g., {p := diam(D).

Proof. See Brezis [48, p. 315] (s = 1, p € [1,00)), Grisvard [110, Thm. 1.5.1.2 & Cor. 1.5.1.6],
McLean [141, Thm. 3.38] (s € (3, 2), p = 2); see Gagliardo [104] for the original work with s = 1,
p € [1,00). O

Remark 3.11 (Notation). The superscript g stands for “gradient” since v&(v) is meaningful for
v € WHH(D), i.e., v8(v) makes sense if the weak gradient of v is integrable. O

Example 3.12 (Elliptic PDEs). Theorem 3.10 (with s = 1 and p = 2) is crucial in the analysis
of elliptic PDEs, where a natural functional setting for the solution is the space H!(D). Whenever
a homogeneous Dirichlet condition is enforced (prescribing to zero the value of the solution at the
boundary), Item (ii) shows that the solution is in H{ (D). When the boundary condition prescribes
anonzero value, the surjectivity of v& : H1(D) — Hz2 (D) is invoked to identify a proper functional
setting (see Chapter 31). O
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Remark 3.13 (W1°°(D)). The trace theory in W°°(D) is not trivial since C°°(D) is not dense
in L>°(D); see Remark 1.39. The situation simplifies if D is quasiconvex since W1 (D) = C%1(D)
in this case (see Remark 2.12). O

Remark 3.14 (Trace of gradient). If v € W?(D) with p € [1,00) and s > 1 + % ifp>1
or s > 2 if p =1, then Vo € W*~1P(D), and we can apply Theorem 3.10 componentwise, i.e.,
~E(Vv) € W15 (D). O

Repeated applications of Theorem 3.10 lead to the following important result to define the do-

main of various finite element interpolation operators (for simplicity we only consider integrability
on the manifold).

Theorem 3.15 (Trace on low-dimensional manifolds). Let p € [1,00) and let D be a Lipschitz
domain in R%. Let M be a smooth, or polyhedral, manifold of dimension r in D, r € {0:d}. Then
there is a bounded trace operator from W*P(D) to LP(M) provided sp > d —r (ors > d —r if
p=1).

When solving boundary value problems, one sometimes has to enforce a Neumann boundary
condition which consists of prescribing the value of the normal derivative d,u := n-Vu at the
boundary; see Chapter 31. Enforcing such a boundary condition is ambiguous if n is discontinuous.
For instance, irrespective of the smoothness of the function in question, the normal derivative on
polygons and polyhedra cannot be continuous. Let us start to address this problem by considering
the simpler case where the boundary enjoys some additional smoothness property.

Theorem 3.16 (Normal derivative). Let p € (1,00) and s — % € (1,2). Let D be a domain in
R with a boundary of class C*', with k :=1 if s < 2 and k := 2 otherwise. There is a bounded
1 J—

linear map ~% : W*P(D) — W* '"%P(dD) so that o (v) = (n-Vv)jop for all v € CY(D), and
letting v, = (v8,~4%) : W*P(D) — WS_%’p((?D) X Ws_l_%’p(aD),

(i) The map 1 is bounded and surjective.

(ii) The kernel of v1 is WP (D).
Proof. See Grisvard [110, Thm. 1.5.1.2] for the statement (i) and [110, Cor. 1.5.1.6] for the state-
ment (ii). O

The above theorem can be extended to polygons (d = 2) as detailed in [110, Thm. 1.5.2.1].
The situation is more subtle when D is only Lipschitz. An extension of the notion of the normal
derivative in this case is introduced in §4.3, and we refer the reader to Example 4.16 where n-Vu
is defined by duality.

3.2.2 The spaces /V[v/s’f”(D)

We have seen that a function v € WP (D) has a trace at the boundary 9D if s is large enough.
Another closely related question is whether the zero-extension of v to the whole space R? belongs
to W#P(R?). For instance, the zero-extension to R? of a test function ¢ € C$°(D) is in C5°(R?).
For every function v € L*(D), we denote by ¥ the extension by zero of v to R?, i.e., v(z) := v(x)
if x € D and v(x) := 0 otherwise.

Definition 3.17 (W*?(D)). Let s >0 and p € [1,00]. Let D be an open subset of R%. We define
W*P(D) := {v € W*P(D) | 5 € WHP(R)}. (3.4)

For p = 2, we write H*(D) := ﬁ//s’2(D).
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Theorem 3.18 (Completion). ﬁ//svp(D) is a Banach space equipped with the norm Hv||ww(D) =
0]l s.pwa). Moreover, HUHWW(D) = ||vllwsrpy if s € N. If s €N and D is a Lipschitz domain in

Rd; HU”Ws,p(D)
m:=|s|, 0 :=s—m, and p is the distance to 0D, i.e., p(x) := infycop || — y||s.

is equivalent to the norm (”UH%s,p(D) B D aj=m Jp (p(®)) TP |0%[P dx)%, where

Proof. See Grisvard [110, Lem. 1.3.2.6], Tartar [189, Lem. 37.1]. O

Theorem 3.19 (W*?(D), WS*(D), W*?(D)). Let s > 0 and p € (1,00). Let D be a Lipschitz
domain in R%. The following holds true:

WeP(D) = WP (D) = WP(D)  (sp < 1), (3.5a)
WeP(D) = WP (D) £ W*P(D)  (sp=1), (3.5b)
WP(D) £ WEP(D) = WHP(D)  (sp> 1,5 — % ZN). (3.5¢)

For all sp > 1, WP (D) is a proper subspace of WP (D). (The above equalities mean that the sets
coincide and the associated norms are equivalent, i.e., the topologies are identical.)

Proof. See Grisvard [110, Thm. 1.4.2.4, Cor. 1.4.4.5], Tartar [189, Chap. 33|, Lions and Magenes
[135, Thm. 11.1]; see also Exercise 3.4 for a proof of the fact that W'?(D) «— W, *(D). O

Remark 3.20 (D = R%). We have W;?(RY) = WP(RY) = WeP(RY) for all s > 0 and all
p € [1,00); see [110, p. 24], [189, Lem. 6.5]. O

Remark 3.21 (Embedding of W*?(D)). The same conclusions as in Theorems 2.31 and 2.35
hold true for W*P(D) since the (s, p)-extension property is available. O

Remark 3.22 (Density). Let D be a Lipschitz domain in R?, s > 0, p € (1,00). Then C§°(D)
is dense in W*P(D); see [110, Thm. 1.4.2.2]. O

Remark 3.23 (Interpolation). Let p € [1,00), s € (0,1). We have W*?(D) = [LP(D), W?(D)],,
with equivalent norms; see Remark 2.20 and [189, Lem. 36.1]. Let us now define

Weg? (D) = [LP(D; R?), Wy P (D)) - (3.6)
It is established in Chandler-Wilde et al. [65, Cor. 4.10] that for p = 2,
H*(D) = Hiy(D). (3.7)

(More generally, we conjecture that W*P(D) = W' (D).) The equality (3.7) together with Theo-
rem 3.19 implies that Hgy(D) = H§(D) if s # 3. O

3.3 Poincaré-Steklov inequalities

We list here a series of functional inequalities that will be used repeatedly in the book; see Re-
mark 3.32 for some historical background and some comments on the terminology.
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Lemma 3.24 (Poincaré—Steklov). Let D be a Lipschitz domain in R?. Let {p := diam(D). Let
p € [1,00]. There is Cps,p, (the subscript p is omitted when p = 2) s.t.

OPs,pHU - QD”LP(D) < €D|U|W1vP(D)a Vv € Wl’p(D)v (3.8)
where v == ﬁ fD vdz. The following holds true when D is convex:
1
1 /2\>

Cps,l =2, Cps i= OPS,Q =T, OPs,p > 5 1_? , p>1. (3'9)

Remark 3.25 (Best constant). The values in (3.9) are proved in Acosta and Durdn [2] for
p =1, in Bebendorf [17] for p = 2 (see also Payne and Weinberger [157] for the general idea), and
in Chua and Wheeden [72, Thm. 1.2] for general p. The constants given in (3.9) for p € {1,2} are
the best possible. Uniform bounds on the Poincaré-Steklov constant for possibly nonconvex sets
are a delicate issue; see Exercise 22.3 and Veeser and Verfiirth [194]. O

Lemma 3.26 (Fractional Poincaré—Steklov). Let p € [1,00) and s € (0,1). Let D be a
Lipschitz domain in R, Let {p = diam(D). Let us set vp, = ﬁ vadx. The following holds
true:

(N
o= 2ol < £ (72) " elwescon (3.10)
We also have |v — vp|wrr(py = [Vlwrepy < €5 " |[vlwsr(py for all v € (0, s].

Proof. A direct proof is proposed in Exercise 3.3 following [97, Lem. 7.1]. See also Dupont and
d
Scott [92, Prop. 6.1] and Heuer [116]. The factor I%DI is often called eccentricity of D. O

Lemma 3.27 (Poincaré—Steklov). Let p € [1,00] and let D be a Lipschitz domain. Let {p =
diam(D). There is Crpsp > 0 (the subscript p is omitted when p = 2) such that

Crspllvlle) < ol VollLepy, Vo € WyP(D). (3.11)
Proof. See Brezis [48, Cor. 9.19], Evans [99, Thm. 3, §5.6]. O

Remark 3.28 (Unit). The Poincaré-Steklov constant Cps , is a dimensionless number. Its value
remains unchanged if D is translated or rotated. Moreover, assuming 0 € D, if D = A71D with
A > 0, the two domains D and D have the same Poincaré-Steklov constant. O

Remark 3.29 (Norm equivalence). The Poincaré-Steklov inequality implies that the seminorm
|lwir(py is @ norm equivalent to ||| w1.(py in Wy (D). For instance, for the H'-norm [0l (py =
HU||%2(D) +f%|v|§{1(D) (recall that [v]g1(py = [|Vv||L2(p)), we obtain

Chrs

mHU”Hl(D) < Iplvlm(py < vlla1 (D), Vv € Hy (D). O
PS

Lemma 3.30 (Extended Poincaré—Steklov). Letp € [1,00) and let D be a Lipschitz domain in
Re. Let £p := diam(D). Let f be a bounded linear form on WLP(D) whose restriction on constant
functions is not zero. There is Cps, > 0 (the subscript p is omitted when p = 2) such that

Cospllvllzo(py < Lol Vollzoipy + [F@), Yo € WHo(D). (3.12)
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In particular, letting ker(f) := {v € WHYP(D) | f(v) =0}, we have
Crs pllvll zo(py < €pl|VV||Lr(D), Vo € ker(f). (3.13)
Moreover, if f(1p) =1 (where 1p is the indicator function of D), we have
Crspllv = F()IpllLe(py < €DlIVV||Lo(py, Yo € WHP(D). (3.14)

Proof. We use the Peetre-Tartar lemma (Lemma A.20) to prove (3.12). Let X := W1P(D),
Y :=LP(D) xR, Z:=LP(D),and A: X > v (Vu, f(v)) € Y. Owing to Lemma 2.11 and the
hypotheses on f, A is continuous and injective. Moreover, the embedding X < Z is compact owing
to Theorem 2.35. This proves (3.12), and (3.13) is a direct consequence of (3.12). To prove (3.14),
we apply (3.12) to the function ¢ := v — f(v)1p. This function is in ker(f) since f(1p) =1 and it
satisfies Vo = V. g

Example 3.31 (Zero mean-value). Lemma 3.30 can be applied with f(v) := [U]™! [, vda,
where U is a subset of D of nonzero measure (the boundedness of f follows from |f(v)| <
|U|7% lv]|L»(py by Holder’s inequality). Another possibility is to apply Lemma 3.30 with f(v) :=
|0D; |71 Jop, vds, where 0D is a subset of D of nonzero (d — 1)-measure (the boundedness of f
is a consequence of Theorem 3.10). O

Remark 3.32 (Terminology). The inequality (3.8) is often called Poincaré inequality in the
literature, and it is sometimes associated with other names like Wirtinger or Friedrichs. It turns
out that Poincaré proved (3.8) for a convex domain in 1890 in [158] (the problem is formulated at
the bottom of page 252, and the theorem is given at the bottom of page 258). Poincaré refined his
estimates of Cypg in 1894 in [159, p. 76] and gave Cpg > %6 for a three-dimensional convex domain.
Without invoking the convexity assumption, he has also showed in [158] that the best constant
CZ in the inequality

Cgs”””%?(/:)) < é%(O‘HU”%ﬁ(aD) + |’U|%{1(D))7 \CRS Hl(D)a (3.15)

is the smallest eigenvalue of the Laplacian supplemented with the Robin boundary condition (awv+
Onv)jap = 0 (cf. statement in the middle of page 240: “and we must conclude that k; is the
minimum of the ratio B/A” (in French)). The simplest form of (3.8) on an interval with p = 2
can be traced to the work of Steklov (see [184, Lem. 2, p. 156] for the Russian version published
in 1897 with Cps > /2 and [182, pp. 294-295] for the 1901 French version with Cps = 7 for
functions that are either zero at both ends of the interval or are of zero mean). Steklov makes
ample references to the work of Poincaré in each paper. He revisited the work of Poincaré on
the spectrum of the Laplacian in [183, 185]. He proved in [183, Thm. VII, p. 66] and in [185,
Thm. XIV, p. 107] that CZ in (3.11) is the smallest eigenvalue of the Laplacian supplemented
with homogeneous Dirichlet boundary conditions. He reproved that C% in (3.8) is the smallest
eigenvalue of the Laplacian supplemented with homogeneous Neumann boundary conditions in
[185, Thm. XV, p. 110]. A detailed survey of the literature on the best constant in (3.8) can be
found in Kuznetsov and Nazarov [130]. Note that [183] is cited in [130] for the work of Steklov on
the Laplacian with Neumann boundary condition, whereas the paper in question only deals with
Dirichlet boundary conditions. For mysterious reasons, the paper by Friedrichs, Eine invariante
Formulierung des Newtonschen Gravititationsgesetzes und des Grenziiberganges vom Einsteinschen
zum Newtonschen Gesetz. Math. Ann. 98 (1927), 566-575, is sometimes cited in the literature
in relation to Poincaré’s inequalities, including in [130], but the topic of this paper is not even
remotely related to the Poincaré inequality. One early work of Friedrichs related to Poincaré’s
inequalities is a semi-discrete version of (3.15) published in Courant et al. [85, Eq. (13)]. Finally,
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it seems that the name of Wirtinger has been attached for the first time in 1916 to the inequality
Il fllz20,27) < |fl&1(0,27) for periodic functions by Blaschke in his book [24, p. 105] without any
specific reference. A little bit at odd with the rest of the literature, we henceforth adopt the
Poincaré-Steklov terminology to refer to inequalities like (3.8) and (3.11). O

Exercises

Exercise 3.1 (Scaling). Let D C R? be a Lipschitz domain. Let A > 0 and D :=\"'D. (i) Show
that D and D have the same Poincaré-Steklov constant in (3.8). (ii) Same question for (3.11).

Exercise 3.2 (Poincaré— Steklov, 1D). Let D :=(0,1) and uweC! (D;R). Prove the following

bounds: (i) ||u||L2(D) 2||u’|| py if u(0) = 0. (Hint: u(z) = = o u/( (ii) ||u||2 2(py <
\/i—||u’||2 ) if u(0) =u(l) = (Hmt as above, but distinguish whether x € (O Horze(3,1))
(iil) ||u||L2 D) < glw)3 12(D) + u? with u = fo udx. (Hint: square the 1dent1ty u( ) — u(y) =
L2 ( (iv) max_ 35 [u(z)]? < 2u(1)? + 2||u’||%2(D). (Hint: square u(x) )+ 7w

(v) maxx€5|u(x)|2 < 2(Hu|\%2(D)—i—Hu'H%Q(D)). (Hint: prove that u(z)? < 2u( ) +2Hu'||L (D) and

integrate over y € D.)

Exercise 3.3 (Fractional Poincaré—Steklov). (i) Prove (3.10). (Hint: write [, [v(z)—vp|Pdz =

Jp |DI7P | [ (v(x) — v(y)) dy|pd:1:.) (ii) Prove that [v—vp|wr»p) < €5 " |vlwe.r(py for all v € (0, 5]

and all s € (0,1).

Exercise 3.4 (Zero-extension in W, ”(D)). Let p € [1,00). Let D be an open set in R%. Show

that Wy (D) = W?(D) and |[il|yrsma) < ||ullwie(p) for all u € WyP(D).

Exercise 3.5 (Integral representation). Let v : [0,00) — R be a continuous function with

bounded derivative, and let w : [0,00) — R be such that w(z) = 1 [F(v (x))dt. (i)

Show that |w(z)| < X% where M := SUP,e(0,00) [0zv(T)]. (i) Estiniate w(()) (ni) Show that

O (tw(t)) = —t@tv( ). ( v) Prove that v(z) — v(0) = —w(z) — [, @dt. (Hint: observe that
v(z) —v(0) = [ + (tdv(t)) dt, use (iii), and integrate by parts.) (v) Prove the following integral

representation formula (see Grisvard [110, pp. 29-30])

v(O)—v(x)—l—i/O(( — o dt+/ / ) dt dy.

Exercise 3.6 (Trace inequality in W*?, sp > 1). Let s € (0,1), p € [1,00), and sp > 1. Let
a > 0 and F be an open bounded subset of R4~1. Let D := Fx(0,a). Let v € C*(D)NC°(D). (i)
Let y € F. Using the integral representation from Exercise 3.5, show that there are ¢1(s,p) and
¢2(s,p) such that

1 s—1
[0(y,0)] < a™7[[o(y, )lr0,0) + (e1(8,p) + c2ls,p))a” 7 [0(Y, )lwer (0.0)-
(ii) Accept as a fact that there is ¢ (depending on s and p) such that

v(xg—1,%q) — v(Ta—1,Ya)"
/ / L g — yd|£p+1 ) dzy ... drg_ 1 dzadys < clv|wer (-

Prove that [[v(.,0)| ey < ¢ (a*EHvHLp(D) + a57%|v|ws,p(D)). Note: this shows that the trace
operator v& : C'(D) N C°(D) — LP(F) is bounded uniformly w.r.t. the norm of W*?(D) when
sp > 1. This means that v& can be extended to W*P(D) since C*(D)NCY(D) is dense in W*P (D).
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Chapter 4

Distributions and duality in
Sobolev spaces

The dual space of a Sobolev space is not only composed of functions (defined almost everywhere),
but this space also contains more sophisticated objects called distributions, which are defined by
their action on smooth functions with compact support. For instance, the function % is not in
L'(0,1), but the map ¢ — fol %g@(:v) dz can be given a meaning for every smooth function that
vanishes at 0. Dual Sobolev spaces are useful to handle singularities on the right-hand side of
PDEs. They are also useful to give a meaning to the tangential and the normal traces of R%-valued
fields that are not in W*P?(D;R?) with sp > 1. The extension is done in this case by invoking
integration by parts formulas involving the curl or the divergence operators.

4.1 Distributions

The notion of distribution is a powerful tool that extends the concept of integrable functions
and weak derivatives. In particular, we will see that every distribution is differentiable in some
reasonable sense.

Definition 4.1 (Distribution). Let D be an open set in RY. A linear map
T:CE(D) 3¢ — (T,¢) = T(p) €R or C, (4.1)

is called distribution in D if for every compact subset K of D, there exist an integer p, called the
order of T, and a real number ¢ (both can depend on K ) s.t. for all p € C§°(D) with supp(p) C K,
we have

(T, @) < e mmax (€510l xc))- (42)

|

Let T be distribution of order p. We henceforth abuse the notation by using the symbol 7" to
denote the extension by density of T' to C} (D).

Example 4.2 (Locally integrable functions). Every function v in L} (D) can be identified
with the following distribution:

T, : C3°(D) > ¢ — (T, ) ::/ vpde.
D
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This identification is possible owing to Theorem 1.32, since two functions v,w € L{. (D) are such
that v = w a.e. in D iff [,vpdr = [, wpdz for all ¢ € C§°(D). We will abuse the notation by
writing v instead of T,. Notice that the identification is also compatible with the Riesz—Fréchet
theorem (Theorem 1.41) in L?(D), which allows one to identify L?(D) with its dual space by means
of the L?-inner product. O

Example 4.3 (Dirac mass or measure). Let a be a point in D. The Dirac mass (or Dirac
measure) at a is the distribution defined by (dq, ¢) := ¢(a) for all ¢ € C§°(D). There is no function
f € L, (D) such that o = Ty. Otherwise, one would have 0 = [}, fedz for all p € C5°(D\{a}),
and owing to Theorem 1.32, this would imply that f = 0 a.e. in D\{a}, i.e.,, f = 0 a.e. in D.
Hence, d, & T(L},.(D)). This example shows that there are distributions that cannot be identified

with functions in L (D). O

Definition 4.4 (Distributional derivative). Let T be a distribution in D and let i € {1:d}.
The distributional derivative 0;T is the distribution in D such that (0;T, ) == —(T,d;p) for all
@ € C3°(D). More generally, for a multi-index o € N, the distributional derivative 0T is the
distribution in D acting as (0°T, ) = (=1)I°NT,0%¢). We set conventionally 9°T = T, and
VT = (AT,...,04T)T.

Example 4.5 (Weak derivative). The notion of distributional derivative extends the notion
of weak derivative. Let v € L] (D) and assume that v has a weak a-th partial derivative, say
0%v € L, (D). Just like in Example 4.2, we can identify v and 0“v with the distributions T},
and Tyo, such that (T,,) = [pvda and (They, @) = (=1)1°l [ v0%pdx. This implies that
(Toan, p) = (—=1)1°NT,, 8*¢), which according to Definition 4.4 shows that 9°T, = Tha., i.c., the
distributional derivative of T}, is equal to the distribution associated with the weak derivative of
. O

Example 4.6 (Step function). Let D := (—1,1). Let w € L'(D) be defined by w(z) := —1
if z < 0 and w(z) := 1 otherwise. For all ¢ € C§°(D), we have — [, wd,pdx = fEl Oppdr —

fol Orpdx = 2p(0) = 2(do, ¢). This shows that the distributional derivative of w is twice the Dirac
mass at 0, i.e., we write d,w = 2dg. As established in Example 4.3, §p cannot be identified with
any function in L] (D). Hence, w does not have a weak derivative but w has a distributional
derivative. Consider now the function v(z) := 1 — |z| in L*(D). By proceeding as in Example 2.5,
one shows that v has a weak derivative and d,v(z) = 1 if < 0, and 9d,v(z) = —1 otherwise.
As established in Example 4.5, the distributional derivative of v and its weak derivative coincide.
Notice though that the distributional second derivative of v is 0,,v = —2dy which is not a weak
derivative. O

Example 4.7 (Dirac measure on the unit sphere). (i) Let a € R? Definition 4.4 implies
that (0%0a, ) = (—1)*10%p(a). (ii) Let u : R* — R be such that u(z) := 1 if |Jz|/,z < 1 and
u(x) := 0 otherwise. Let B(0,1) and S(0,1) be the unit ball and unit sphere in R?. We define the
Dirac measure supported in S(0,1) by (ds(0,1), ¢) := fS(OJ) pds. Let e; be one of the canonical

unit vectors of RY. Then (d;u,¢) = _fB(O,l) Oipdr = —fB(OJ)V-(gpei) dz, which proves that
(Oiu, @) = — fS(O 1y T-eip ds. Hence, Vu = —0g(0,1)M- O

Definition 4.8 (Distributional convergence). Let D be an open set in RY. We say that a
sequence of distributions {T), }nen converges in the distribution sense if one has lim,, o0 (Th, ¢) =
(T, ) for all p € C§°(D).

Example 4.9 (Oscillating functions). Let D := (0,1) and f,(z) := sin(nz) for all n > 1. This
sequence does not converge in L' (D), but (T}, ,¢) = fol sin(nz)pdz = fol L cos(nz)y¢’ dz, so that
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limy, oo (T, ) = 0 for all ¢ € C§°(D), i.e., Ty, — 0 in the sense of distributions. Up to an abuse
of notation we say that f,, converges to 0 in the sense of distributions. Likewise one can show that
cos(nx) — 0 in the sense of distributions. Let us now consider g,(z) := sin?(nz) for all n > 1.
Using the identity sin?(nz) = 7 — 4 cos(2nz) and the above results, we conclude that g, — 3 in
the sense of distributions. O

4.2 Negative-order Sobolev spaces

Equipped with the notion of distributions we can now define Sobolev spaces of negative order by
duality using Wy (D).
Definition 4.10 (W~%?(D)). Let s >0 and p € (1,00). Let D be an open set in R%. We define
the space W=*P(D) := (Wg"” (D))I with % + ﬁ =1 (for p =2, we write H=*(D) := W~%2(D)),
equipped with the norm

T
”IWhV*Sm(D)Z:: sup |< ,UO|

— (4.3)
wews ' (D) 1w llwor ()

Identifying L?(D) with the dual space of L?' (D) (see Theorem 1.41), we infer that LP(D) —

W=#P(D) (and both spaces coincide for s = 0 since W(?’p,(D) = L”(D) by Theorem 1.38).
Moreover, any element T € W~5P(D) is a distribution since, assuming s = m € N, we have

1
2 (m+d\ ol ao
T < IO ("3 ) e 05110 e (11
for all compact subset K C D and all ¢ € C§°(D) with supp(¢) C K. The argument can be
adapted to the case where s =m + o, o € (0,1).

Example 4.11 (Dirac measure). Some of the objects in W~%?(D) are not functions but dis-
tributions. For instance, the Dirac mass at a point a € D is in WP (D) if sp’ > d. O

Theorem 4.12 (W~YP(D)). Let p € (1,00). Let D be an open, bounded set in R?. For all f €
W=LP(D), there are functions {gi}icfo:ay, all in LP (D), s.t. || fllw-1.r(p) = MaX;e (0. a} ||giHLp/(D)
and

(f,v)z/govdx—i— Z /gi(’“)ivdx, Yo € W, P(D). (4.5)
D D

ie{l:d}
More generally, for all m € N, one has v € W™"P(D) if and only if v = Z\a|§m 0%go where
9o € LV (D).
Proof. See Brezis [48, Prop. 9.20] for the case m = 1 and Adams and Fournier [3, Thm. 3.9]. O

Example 4.13 (Gradient). Let s € (0,1), p € (1,00), and sp # 1. If D is a Lipschitz domain
in R%, then the linear operator V maps W*?(D) boundedly to W*~1P(D), i.e., we have V €
L(W*P(D); Ws=LP(D)); see Grisvard [110, Thm. 1.4.4.6]. O

Remark 4.14 (Interpolation). Assuming that D is a Lipschitz domain, an alternative definition
of negative-order spaces relies on the interpolation theory between Banach spaces (see §A.5). Let
p € (1,00) and s € (0,1). Recalling the space W ~1P(D) from Definition 4.10, let us set

W=*P(D) := [WHP(D), L (D))1-s,p-
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Theorem A.30 and the definition (3.6) of W (D) imply that

S ’ N s,p /
W=2(D) = [L7 (D), Wy " (D)4 = (Woi” (D))"
The arguments from Remark 3.23 imply that H—5(D) = H=*(D) if s # % since Hy(D) = H§(D)
in this case (see (3.7)). (One can also infer that W~5?(D) = W~5?(D) for sp # 1, if ﬁ//svp(D) =
Woil (D), as conjectured in Remark 3.23.) O

4.3 Normal and tangential traces

The goal of this section is to give a meaning to the normal or tangential component of R%-valued
fields for which we only have integrability properties on the divergence or the curl, respectively,
but not on the whole gradient. The underlying idea is quite general and consists of defining the
traces in a Sobolev space of negative order at the boundary by extending a suitable integration by
parts formula valid for smooth functions. Recall that for any field v = (vi)ief1.ay € Lip (D) =
L (D;R%), the divergence is defined by

Vo= Z 8ivi, (46)

ie{l:d}

and for d = 3, the curl Vxw is the column vector in R? such that (Vxwv); := Zj,ke{l:3} €ijk0jUk
for all ¢ € {1:3}, where ¢;j; denotes the Levi-Civita symbol (g, := 0 if at least two indices take
the same value, €123 = €231 = €312 := 1 (i.e., for even permutations), and €132 = €213 = €391 1= —1
(i.e., for odd permutations)). In component form, we have

Vxwv = (62’03 — (93’02, (93’01 — (91’03, (91’02 — 62v1)T. (47)

Recall also that the following integration by parts formulas hold true for all v, w € C'(D) and all
q € C1(D):

(vxn)wds = [ v-Vxwdr— [ (Vxv)wdxz, (4.82)
oD D 5
/aD(vn)qu_/l)v.qu:z:+/[)(v.v)qu_ (4.8b)

Let p € (1,00) and let us consider the following Banach spaces:

ZP(D) = {v € LP(D) | Vxv € L?(D)}, (4.9a)
Z4P (D) :={v € LP(D) | Vv € LP(D)}. (4.9b)

For p = 2, we write
H(curl; D) := Z%*(D),  H(div; D) := Z?(D). (4.10)

Let (-,-)op denote the duality pairing between W_%’p(Z)D) and W%’p/(aD). The trace operator
~&: Wh' (D) — WP (0D) being surjective (see Theorem 3.10), we infer that there is ¢ e such
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that for all L € W»7(dD), there is w(l) € W' (D) s.t. v5(w(l)) = L and [w(l)| v py <

CWCHlHW%’P’(aD)' We then define the linear map ¢ : Z?(D) — Wﬁi’p(aD) by

W@ww:/

'U-wa(l)dx—/(va)~w(l)d:1:, (4.11)
D

D

for all v € Z%P(D) and all I € W (0D). Note that (4.8a) shows that v°(v) = v|sp xn when v
is smooth. A direct verification invoking Holder’s inequality shows that the map ¢ is bounded.
Moreover, the definition (4.11) is independent of the choice of w(l); see Exercise 4.5.

We also define the linear map 74 : Z4?(D) — Wﬁi’p(aD) by

w@ww:/

v~Vq(l)da:+/(V-v)q(l)d:c, (4.12)
D

D

for all v € Z4P(D) and all | € WP (D), where ¢(I) € W' (D) is such that 48(¢(l)) = I, and
(-, Yap now denotes the duality pairing between W_%’p(aD) and Wr ¥ (0D). Reasoning as above,
one can verify that: v4(v) = v|pp'n when v is smooth; the map vd is bounded; the definition (4.12)
is independent of the choice of ¢(1).

Theorem 4.15 (Normal /tangential component). Let p € (1,00). Let D be a Lipschitz domain
in Re. Let ¢ : Z°P(D) — W™ »P(dD) and 7% : ZY(D) — W~ »P(9D) be defined in (4.11)
and (4.12), respectively. The following holds true:

(i) 7°(v) = vjgpxn and ¥4 (v) = vjgp-n whenever v is smooth.

d

(il) ~< is surjective.

———_z°?(D)

. . c, = Z4P (D)
(iii) Density: setting Z5? (D) := C§°(D)

, Z§P(D) := Cg°(D) , we have

Zg"(D) =ker(y),  Zg*(D) =ker("). (4.13)

Proof. Ttem (i) is a simple consequence of the definition of 7¢ and 9. See Tartar [189, Lem. 20.2]
for item (ii) when p = 2. See [96, Thm. 4.7] for item (iii) (see also Exercise 23.9). O

Example 4.16 (Normal derivative). In the context of elliptic PDEs, one often deals with
functions v € H*(D) such that V-(Vv) € L?(D). For these functions we have Vv € H(div; D).
Owing to Theorem 4.15 with p = 2, one can then give a meaning to the normal derivative of v at the
boundary as (Vo) € H~2 (D). Assuming more smoothness on v, e.g., v € H*(D), s > 3, and
some smoothness of D, one can instead invoke Theorem 3.16 to infer that 4% (v) € H*~3 (D) <
L?(0D), i.e., the normal derivative is integrable. However, this smoothness assumption is often

too strong for elliptic PDEs, and one has to use 7¢(Vv) to define the normal derivative. (|

Example 4.17 (Whitney’s paradox). Let us show by a counterexample (see [199, p. 100]) that
the normal component of a vector field with integrable divergence over D may not be integrable over
OD. The two-dimensional field v(x1,72) = (=22, )T in D := (0,1)? satisfies ||[v(x)|/2 =

zi4xd’ i+l
|z||s', v € LP(D) for all p € [1,2), and V-v = 0. However, v'n is not integrable, i.e., v-n ¢
LY(0D). O
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Remark 4.18 (2D). In dimension two (d = 2), the tangential component is defined using the
linear map ¢ : ZP(D) — Wﬁi’p(aD) as follows:

(<) on = [

V- J_’LU X v)w X
oV (1) d —I—/(VX Yyw(l) da,

D

for all v € ZP(D) and all | € W%’p,(aD), where w(l) € WH?' (D) is such that v&(w(l)) = L.
Here, Vv := (—0yv,01v)" and Vxv := d1v9 — O2v1. Note that V4io = R%(Vv) and Vxv =
—V-(Rz (v)), where Rz is the rotation of angle 5 in R? (i.e., the matrix of Rz relative to the

canonical basis of R? is ({ 7} )). Whenever v is smooth, we have v°(v) = v|sp-t where ¢ := Rz (n)
is a unit tangent vector to dD. O

Exercises

Exercise 4.1 (Distributions). Let D be an open set in R%. Let v be a distribution in D. (i)
Let ¢ € C*°(D). Show that the map C§°(D) 3 ¢ — (v,19y) defines a distribution in D (this
distribution is usually denoted by ). (ii) Let o, 3 € N%. Prove that 0%(9°v) = 9%(0%v) in the
distribution sense.

Exercise 4.2 (Dirac measure on a manifold). Let D be a smooth bounded and open set in
RY. Let u € C?(D;R) and assume that ujpp = 0. Let @ be the extension by zero of u over R
Compute V-(Va) = d11u + . .. + gqu in the distribution sense.

Exercise 4.3 (P.V. 1). Let D := (—1,1). Prove that the linear map 7" : C5°(D) — R defined by
(T, ) :=lim. . flr|>|é| 1 o(2) dz is a distribution.

Exercise 4.4 (Integration by parts). Prove the two identities in (4.8) by using the divergence
formula [, V-¢dz = [, (¢-n)ds for all ¢ € C'(D).

Exercise 4.5 (Definition (4.11)). Verify that the right-hand side of (4.11) is independent of the
choice of w(l). (Hint: consider two functions wy, wy € W (D) s.t. v8(w;) = v&(wy) = I and

use the density of C§°(D) in Wol’p, (D).)



Chapter 5

Main ideas and definitions

The goal of the three chapters composing Part II is to introduce the main concepts behind finite
elements and to present various examples. This chapter introduces key notions such as degrees of
freedom, shape functions, and interpolation operator. These notions are illustrated on Lagrange
finite elements and modal finite elements, for which the degrees of freedom are values at specific
nodes and moments against specific test functions, respectively.

5.1 Introductory example

This section introduces the notion of finite element in dimension one. Let K := [—1,1] and
consider a continuous function v € C°(K). Our objective is to devise an interpolation operator
that approximates v in a finite-dimensional functional space, say P. For simplicity, we assume
that P = Py for some integer k > 0, where P is the real vector space composed of univariate
polynomial functions of degree at most k, i.e., p € Py if p(t) = Zie{o:k} a;t’ for all t € R, with
a; € R for every integer i € {0:k}.

Let us consider (k + 1) distinct points {a;};cqo.x) in K, which we call nodes. We want to
construct an operator Zx : CO(K) — Py, s.t. I (v) verifies

Ik (v) € Py, Tk (v)(a;) :=v(a;), Vi € {0:k}, (5.1)

for every function v € CY(K). These conditions uniquely determine Zy (v) since a polynomial
in P, is uniquely determined by the value it takes at (k + 1) distinct points in R. For the same
reason Py is pointwise invariant under Zx, i.e., Zx(p) = p for all p € P,. To obtain an explicit
representation of Zr (v), we introduce the Lagrange interpolation polynomials defined as follows:

Lot —aj)

,Cga] () := e tommy gy (@ — )" Vt € R, Vi € {0:k}. (5.2)

We set Egl} := 1 if & = 0. By construction, the Lagrange interpolation polynomials satisfy
Ega} (a;) =1 and Ega} (a;) =0 for all j # ¢, which we write concisely as

£la;) =65, Vi je{0:k}, (5.3)

where §;; is the Kronecker symbol, i.e., §;; := 1 if i = j and d;; := 0 otherwise. The Lagrange

interpolation polynomials of degree k € {1,2,3} using equidistant nodes in K (including both
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endpoints) are shown in Figure 5.1. Let us show that the family {Ega]}ie{():k} forms a basis of P.

Since dim(Py) = k+1, we only need to show linear independence. Assume that Zie{o: K} aiﬁga] =0.
Evaluating this linear combination at the nodes {a;};c{o:} yields a; = 0 for all i € {1:d}, which
proves the assertion. In conclusion, the polynomial function Zx (v) defined in (5.1) is Zx (v)(t) :=

e osry V(@)L (t).

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 5.1: Lagrange interpolation polynomials with equidistant nodes in the interval K := [—1,1]
of degree k =1 (left), 2 (center), and 3 (right).

Remark 5.1 (Key concepts). To sum up, we used three important ingredients to build the
interpolation operator Zx: the interval K := [—1,1], the finite-dimensional space P := Py, and
a set of degrees of freedom, i.e., linear maps {0;};cfo:%} acting on continuous functions, which
consist of evaluations at the nodes {a;}icqo.x}, i-e., 04(v) := v(a;). A key observation concerning
the degrees of freedom is that they uniquely determine functions in P. O

5.2 Finite element as a triple

A polyhedron (also called polytope) in R is a compact interval if d = 1 and if d > 2, it is a compact,
connected subset of R? with nonempty interior such that its boundary is a finite union of images
by affine mappings of polyhedra in R4!. In R2, a polyhedron is also called polygon. Simple
examples are presented in Figure 5.2 in dimensions two and three. A polyhedron in R? (resp., R?)
can always be described as a finite union of triangles (resp., tetrahedra).

I
I
|
i
!
I

Figure 5.2: Examples of polyhedra in R? and R3. The hidden edges are shown with dashed lines
in R?. From left to right: triangle, square, tetrahedron, hexahedron, prism.

The following definition of a finite element is due to Ciarlet [76, p. 93].

Definition 5.2 (Finite element). Let d > 1, an integer ng, > 1, and the set N := {1l:ng,}. A
finite element consists of a triple (K, P,X) where:
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(i) K is a polyhedron in R? or the image of a polyhedron in RY by some smooth diffeomorphism.
More generally, K could be the closure of a Lipschitz domain in R? (see §3.1). K is nontrivial,
i.e., int(K) # 0.

(ii) P is a finite-dimensional vector space of functions p : K — R? for some integer ¢ > 1
(typically ¢ € {1,d}). P is nontrivial, i.e., P # {0}. The members of P are polynomial
functions, possibly composed with some smooth diffeomorphism.

(iii) X 4s a set of ng, linear forms from P to R, say ¥ := {o;}icnr, such that the map Py :
P — R"» defined by Px(p) = (Ui(p))ie/\/ is an isomorphism. The linear forms o; are
called degrees of freedom (in short dofs), and the bijectivity of the map Py is referred to as
unisolvence.

Remark 5.3 (Proving unisolvence). To prove unisolvence, it suffices to show that dim P >
nsp = card X2 and that @y is injective, i.e.,

[oi(p)=0,Vie N] = [p=0], Vp € P. (5.4)
Owing to the rank nullity theorem, ®yx is then bijective and dim P = ng,. O

Remark 5.4 (L(P;R)). X is a basis of the space of the linear forms over P, ie., L(P;R).
Indeed, dim(L(P;R)) = dim(P) = ng,. Moreover, if the vector X = (X;)ien € R™® is s.t.
Sien Xioi(p) = 0 for all p € P, taking p := 5" (X) yields 3, X2 = 0. Hence, X; = 0 for all
ieN. a

Proposition 5.5 (Shape functions). (i) There is a basis {0;}icnr of P s.t.
ai(GJ—) = 517‘, \V/Z,j eN. (55)

The functions 0; are called shape functions. (i) Let {¢;}ien be a basis of P. Then defining the
generalized Vandermonde matrix V € R™:*"h with entries Vi; := o;(¢;) for all i,j5 € N, the
shape functions are given by
0; = Z (Vﬁl)ij(bj, Vie N. (5.6)
JEN

Proof. (i) The shape functions are given by ; = ®3'(e;) for all i € N, where (e;);en is the
canonical basis of R"». (ii) To show that the matrix V is invertible, we consider X € R™h s.t.
XV = 0 and set p := Y, Xi¢i. Then XTV = 0 implies that oj(p) = 0 for all j € N,
and (5.4) in turn implies that p = 0. Hence, X = 0 since {¢;}ien is a basis of P. Finally,
O'k(zjeN(V_l)ij(bj) = Zje/\[(v_l)ijok((bj) = Zje/\[(v_l)ijvjk = ;% for all k € N. This proves
that 91' = ZjeN(V_l)ij¢j' O

Proposition 5.5 gives a practical recipe to build the shape functions. One first chooses a basis
of P and evaluates the associated Vandermonde matrix )V and its inverse. The components of the
shape function 6; in the chosen basis are then ((V71);;)jen for all i € N. One must be careful
in choosing the basis {¢; };cnr when working with high-order polynomials, since the matrix ¥V may
become ill-conditioned if the basis is not chosen properly. The computation of the shape functions
can be affected by roundoff errors if V is ill-conditioned.

Remark 5.6 (Vandermonde matrix). For d = 1, if one uses the monomial basis {x?};cnr with
the dofs o4(p) := p(a;), then V is a classical Vandermonde matrix with entries V;; = a’ for all
i,j€N. O
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5.3 Interpolation: finite element as a quadruple

The notion of interpolation operator is central to the finite element theory. The term “interpola-
tion” is used here in a broad sense, since the degrees of freedom (dofs) are not necessarily point
evaluations. For the interpolation operator to be useful, one needs to extend the domain of the
linear forms in X so that they can act on functions in a space larger than P, which we denote by
V(K). The space V(K) is the fourth ingredient defining a finite element.

Definition 5.7 (Interpolation operator). Let (K, P,X) be a finite element. Assume that there
exists a Banach space V(K) C L*(K;RY) s.t.:

(i) PCV(K).
(ii) The linear forms {o;}ien can be extended to L(V (K);R), i.e., there exist {G;}ien and cx

such that 6;(p) = oi(p) for all p € P, and |6;(v)| < es|lv|v k) for all v € V(K) and all
i € N. We henceforth abuse the notation and use the symbol o; instead of &;.

We define the interpolation operator Zx : V(K) — P by setting

Ik (v)(x) = Z o (v)8;(x), Vo € K, (5.7)
ieN

for allv e V(K). V(K) is the domain of Ik, and P is its codomain.
Proposition 5.8 (Boundedness). Zx belongs to L(V(K); P).

Proof. Let ||-||p be a norm in P (all the norms are equivalent in the finite-dimensional space P).
The triangle inequality and Definition 5.7(ii) imply that || Zx (v)[|p < (cs Y ;cp 10l P) J0]lv (k) for
all v € V(K). 0

Proposition 5.9 (P-invariance). P is pointwise invariant under Tk, i.e., Zx(p) = p for all
p € P. As a result, L is a projection, i.e., TxoTlx = Tk.

Proof. Letting p = 3, s a;0; yields Ii(p) = >, ;s @j0i(0;)0; = p owing to (5.5). This shows
that P is pointwise invariant under Zx, and it immediately follows that Zx is a projection. O

Example 5.10 (V(K)). If one builds Zx (v) by using values of the function v at some points in
K, like we did in §5.1, then it is natural to set V (K) := C°(K;R?) (recall that K is a closed set in
R? so that functions in C°(K;RY) are continuous up to the boundary). Another possibility is to
set V(K) := W*P(K;R?) for some real numbers s > 0 and p € [1,00] such that sp > d (or s > d
if p = 1); see Theorem 2.31. If Zx(v) involves integrals over the faces of K, then one can take
V(K) := W9P(K;R?) with sp > 1 (or s > 1 if p = 1). More generally, if Z (v) involves integrals
over manifolds of codimension d’, then it is legitimate to set V(K) := WP (K;R?) with sp > d’
(or s > d if p=1). We abuse the notation since we should write W*?(int(K); R?), where int(K)
denotes the interior of the set K in RY. O

5.4 Basic examples

5.4.1 Lagrange (nodal) finite elements

The dofs of scalar-valued Lagrange (or nodal) finite elements are point values. The extension to
vector-valued Lagrange elements is done by proceeding componentwise.
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Definition 5.11 (Lagrange finite element). Let (K, P,X) be a scalar-valued finite element
(q :=1 in Definition 5.2). If there is a set of points {a;}ien in K such that for all i € N,

oi(p) :=plai;),  VpeP (5.8)

the triple (K, P,Y) is called Lagrange finite element. The points {a;}ien are called nodes, and the
shape functions {0;}icar, which are s.t.

Gi(aj) = 5ij7 V’L,] € N, (59)
form the nodal basis of P associated with the nodes {a;}icnr-

Examples are presented in Chapters 6 and 7. Following Definition 5.7, the Lagrange interpola-
tion operator I% acts as follows:

Ti () (@) == > v(a:)bi(x), Ve K. (5.10)
1EN

By construction, Z% (v) matches the values of v at all the Lagrange nodes, i.e., Zk(v)(a;) = v(a;)
for all j € N. The domain of Z& can be V(K) := C%(K) or V(K) := W*P(K) with p € [1, ]
and ps >d (s > dif p=1).

5.4.2 Modal finite elements

The dofs of modal finite elements are moments against test functions using some measure over K.
For simplicity, we consider the uniform measure and work in L?(K;RY) with ¢ > 1. We are going
to use the notation (v, w)r2(kra) ‘= [ (v, W)e2(ra) dz.

Proposition 5.12 (Modal finite element). Let K be as in Definition 5.2. Let P be a finite-
dimensional subspace of L*(K;RY) and let {C;}ien be a basis of P. Let ¥ := {0; }ien be composed
of the following linear forms o; : P — R:

oi(p) = K|~ (&i,p) 2 (ke me). Vpe P, VieN. (5.11)

(The factor |K|~* is meant to make o; independent of the size of K.) Then the triple (K, P,X) is
a finite element called modal finite element.

Proof. We use Remark 5.3. By definition, dim(P) = card(X). Let p € P be such that o;(p) =0
for all i € N. Writing p = >°, .\ @G, we infer that |K|_1||p||%2(K;Rq) =2 jen @oj(p) =0, so
that p = 0. [l

Examples of modal finite elements are presented in Chapter 6. Let us introduce the mass
matriz M of order ng, with entries

M = K7 G, G regmay, Vi EN. (5.12)
By construction, M is symmetric, and since

(MX, X)p2(mran) = Z M Xi X5 = [K|7HIENT 2k may
1,jEN

for all X € R™» with & = Zje/\/ X;¢j, we infer that (MX, X)p2gnay > 0. Moreover, we observe
that (MX, X)p2grneny = 0 implies { = 0, i.e., X = 0 since {(; }ien is a basis of P. In conclusion, M
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is symmetric positive definite. Furthermore, one readily sees that M =V, where the Vandermonde
matrix V is defined in Proposition 5.5. Hence, 6; = ZjeN(M_l)ijCj for all i € N. Following
Definition 5.7, the modal interpolation operator Z}} acts as follows:

1
TR)(x) =Y | 5= (G v)emy | Oi(x), Vo€ K. (5.13)
K]
€N
The domain of 7% can be defined to be V(K) := L*(K;R%), or even V(K) := LY(K;RY) if
P C L*>(K;RY). One can verify that 7% is the L?-orthogonal projection onto P; see Exercise 5.2.
Finally, if the basis {¢;}ien is L2-orthogonal, the mass matrix is diagonal, and in that case the
shape functions are given by 0; := (|K|/[|Gil|72(x.pq))Gi for all i € N

5.5 The Lebesgue constant

Recall from Definition 5.7 that the interpolation operator Zg is in L(V(K); P). Since P C V(K),
we can equip P with the norm of V(K) and view Zx a member of L(V(K)). In this section, we
study the quantity

1 Zx (0)[lv (%
IZk |l z(vixy) == sup e IV

, (5.14)
vevik)  vllvix)

which is called the Lebesgue constant for Zx. We abuse the notation by writing the supremum
over v € V(K) instead of v € V(K) \ {0}.
Lemma 5.13 (Lower bound). |Zx||zvky) > 1.

Proof. Since P is nontrivial (i.e., P # {0}) and since Zx (p) = p for all p € P owing to Proposi-
tion 5.9, we infer that

T T
IZx () llv(x) > su |1 Zx (P) v (1) -1 O

veEV(K) ||UHV(K) peEP ”p”V(K)

The Lebesgue constant arises naturally in the estimate of the interpolation error in terms of the
best-approzimation error of a function v € V(K) by a function in P, that is, infyep [[v — pllv (k).
In particular, the next result shows that a large value of the Lebesgue constant is associated with
poor approximation properties of Zx .

Theorem 5.14 (Interpolation error). For all ve V(K), we have
Il =Zr @)llveey < A+ I Zxlleev o) ok llv = plive), (5.15)
and ||[v=Zk (v)||v k) < HIK”L(V(K));ngD lv=pllv (k) if V(K) is a Hilbert space.

Proof. Since I (p) = p for all p € P, we infer that v — Zg(v) = (I — Ik )(v) = (I — Ik )(v —p),
where T is the identity operator in V(K), so that

lv=Zx (V)lvxy < (I = Zr)(v = p)llviry < 1+ 1 Zllcov ) lv = pllv ik,

where we used the triangle inequality. We obtain (5.15) by taking the infimum over p € P. Assume
now that V(K) is a Hilbert space. We use the fact that in any Hilbert space H, any operator
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T € L(H) such that 0 # T o T = T # I satisfies ||T'||zz) = [[I — T||z(m); see Kato [124], Xu and
Zikatanov [201, Lem. 5], Szyld [188]. We can apply this result with H := V(K) and T := Zk.
Indeed, Zx # 0 since P is nontrivial, Zx # I since P is a proper subset of V(K), and Zx oZx = Tk
owing to Proposition 5.9. We infer that

v =T @)llvi) < M —Zklleev iyl = pllviy = 1 Zxllcevopllo = pllvix)
and we conclude by taking the infimum over p € P. O

Example 5.15 (Lagrange elements). The Lebesgue constant for the Lagrange interpolation
operator 7§ with nodes {a;}icar and space V(K) := C°(K) is denoted by AN = ||Z%|| £(co(x))-
Owing to Theorem 5.14, we have [|v —Z% (v)||co(ry < (1+AN) inf,ep ||[v—pllco(x). One can verify
(see Exercise 5.6) that AN = H)\NHCO(K) with the Lebesgue function MV (x) = Y ien |0i(z)| for
all z € K. O

Example 5.16 (Modal elements). Consider a modal finite element with V(K) := L?(K;R%)
(see Proposition 5.12). Since I is the L?-orthogonal projection from L?*(K;RY?) onto P, the
Pythagorean identity

Hv||2L2(K;Rq) = ||I?(U)||2L2(K;Rq) + v — I?(”)H%%K;Rq)

implies that ||Z% | z(z2(x;re)) < 1, which in turn gives ||Z%| z(z2(k;re)) = 1 owing to Lemma 5.13.
(I

Let assume that V(K) is a Hilbert space with inner product (-,-)y (k). Following ideas devel-
oped in Maday et al. [137], we now show that the Lebesgue constant can be related to the stability
of an oblique projection. Owing to Theorem A.16 (or Exercise 5.9), we introduce the functions
¢ € V(K) for all i € N s.t. (¢i,v)v (k) = 0i(v) for all v € V(K). Let us set Q := span{q; }icn,
and let Q* be the orthogonal to @ in V(K) for the inner product (-, W (K)-

Lemma 5.17 (Oblique projection). Let Tx be defined in (5.7). Then Tk is the oblique
projection onto P along QF, and the Lebesgue constant is || Ik | zovx)y = a;(l;) with apg =
: (p7Q)V(K)

infpe P SUPgeqQ Ty o Tallv i

Proof. (1) Unisolvence implies that PNQ*+ = {0}. Indeed, if p € PNQ*, then p € P and o;(p) = 0
for all i € N, so that p = 0. Let now v € V(K). We observe that Zx (v) € P and

(¢, I (v) = v)y (k) = 0i(ZK (v)) — 04 (v) = 0, Vie N.

Hence, Z (v) —v € Q*. From the decomposition v = Zx (v) + (v — I (v)), we infer that V (K) =
P + Q*. Therefore, the sum is direct, and Zx (v) is the oblique projection of v onto P along Q.
(2) We have

(Zr (v), 9)v (k (v, @) vk
apo|| T (0) v ) < sup o ZVED gy T TVED <)y ey,
qeQ ||‘J||V(K) qeQ HQHV(K)

for all v € V(K), showing that | Tk ||z (x)) < aISlQ. To prove the lower bound, let us first show
that Zx (Il (p)) = p for all p € P, where Il is the V(K )-orthogonal projection onto Q. We first
observe that

(IK(HQ(p))7Q>V(K) = (HQ(p)aq)V(K) = (p,Q)V(K),

for all ¢ € @, where we used the fact that both Zx and Ilg are projections along Q*. The above
identity implies that Zx (Ilg(p)) —p € PN Q*+ = {0}. Hence, Zx(Ilg(p)) = p. Since P is a
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finite-dimensional space, a compactness argument shows that there is p* € P with |[p*|ly(x) = 1
CDvius - Gipee (0", vx) = (Mo(P*), @)v k), we infer that apg =

llallv(x)
(Mo (P*),9) *
SUPgeq W = [Iq(p*)|lv (k). We conclude that

such that apg = sup,cq

IZx Mo Nlveo P lvey 1
T (p*)llv (k) Moe*)llvix) arg

1 Zr |l covixy) >

Further results on the Lebesgue constant for one-dimensional Lagrange elements can be found
in §6.3.1.

Exercises

Exercise 5.1 (Linear combination). Let S € R™»*"" be an invertible matrix. Let (K, P,¥)
be a finite element. Let ¥ := {&;}icnr with dofs &; := Y, .\ Siwow for all i € N. Prove that
(K,P,%) is a finite element. Write the shape functions {éj}je_/\f and verify that the interpolation
operator does not depend on S, i.e., Zx (v)(x) = Zx (v)(x) for all v € V(K) and all € K.

Exercise 5.2 (Modal finite element). (i) Let (K, P,¥) and (K, P, %) be two modal finite
elements. Let {( }ien, {@}Z—GN, be the two bases of P s.t. the dofs in ¥ and 3 are given by
oi(p) = |K|7 (G, p)r2(krey and &;(p) = |K|71(G,p)r2(xrey for all i € N, Prove that the
interpolation operators 73 and fﬁ are identical. (ii) Prove that (p, Z¢ (v) — v)r2(x;re) = 0 for all
p € P. (iii) Let M be defined by (5.12), and let MY, := |K|~(0;,0;)2(x;roy for all i,5 € N,
where {0;};cn are the shape functions associated with (K, P,%). Prove that M? = M~1,

Exercise 5.3 (Variation on P3). Let K := [0,1], P := Py, and X := {01,02,03} be the linear
forms on P s.t. o1(p) := p(0), o2(p) :=2p(3) — p(0) — p(1), o3(p) := p(1) for all p € P. Show that
(K, P,X) is a finite element, compute the shape functions, and indicate possible choices for V(K).

Exercise 5.4 (Hermite). Let K :=[0,1], P :=P3, and X := {01,032, 03,04} be the linear forms
on P s.t. o1(p) := p(0), o2(p) :== p'(0), o3(p) := p(1), oa(p) := p'(1) for all p € P. Show that
(K, P,X) is a finite element, compute the shape functions, and indicate possible choices for V(K).

Exercise 5.5 (Powell-Sabin). Consider K := [0, 1] and let P be composed of the functions that
are piecewise quadratic over the intervals [0, %] U [%, 1] and are of class C! over K, i.e., functions
in P and their first derivatives are continuous. Let ¥ := {o1,...,04} be the linear forms on P s.t.
a1(p) := p(0), oa2(p) :== p'(0), o3(p) := p(1), o4(p) := p/(1). Prove that the triple (K, P,X) is a

finite element. Verify that the first two shape functions are

122 iftelo, ), Cfra =30 iftelo,l],
el(t)_{2(1—t)2 if t € [1,1], 92@_{ 1

and compute the other two shape functions. Note: a two-dimensional version of this finite element
on triangles has been developed in [161].

Exercise 5.6 (Lebesgue constant for Lagrange element). Prove that the Lebesgue constant
AV defined in Example 5.15 is equal to I Zk zcory)-  (Hint: to prove ||k zicory) = AN,
consider functions {v;}ien taking values in [0,1] s.t. > ;o\ 9 = 1in K and ¢;(a;) = d;; for all
,7€N)
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Exercise 5.7 (Lagrange interpolation). Let K := [a,b] and let p € [1,00). (i) Prove that
ol =iy < (0= a) 7 lvlloci) + (b — @) "2 [0/ | Loy for all v € WHP(K) (Hint: use v(x) —
v(y) = [J'(t)dt for all v € C'(K), where |v(y)| := min.ex [v(z)|, then use the density of
CHK) in WYP(K).) (ii) Prove that W1?(K) embeds continuously in C°(K). (iii) Let Z% be
the interpolation operator based on the linear Lagrange finite element using the nodes a and
b. Determine the two shape functions and prove that Z% can be extended to W1P(K). (iv)
Assuming that w € WP (K) is zero at some point in K, show that ||wl|ex) < (b— a)||w|| o (x)-
(v) Prove the following estimates: [|(v — Zk (v)) || Le(x) < (b — a)||v” || Le(x)s v — TR (W)l o) <
(b= )0 — T4 )l o)s T ooaer < 10l] oy, for all p € (1,00] and all v € W2P(K).

Exercise 5.8 (Cross approximation). Let X,Y be nonempty subsets of R and f: XxY — R
be a bivariate function. Let N := {1:ng,} with ng, > 1, and consider ng, points {z;};en in X
and ng, points {y;}jen in Y. Assume that the matrix F € R™2 %"t with entries Fy; := f(x;,y;) is
invertible. Let ZCA(f) : X xY — R be s.t. ZCA(f)(z,y) == Zi)jeN(}'*T)ijf(:zr, y;)f(xi,y). Prove
that Z4(f)(w, yx) = f(2,yx) for all z € X and all k € N, and that Z°A(f)(zx, y) = f(ak,y) for
ally € Y and all k € NV.

Exercise 5.9 (Riesz—Fréchet in finite dimension). Let V' be a finite-dimensional complex
Hilbert space. Show that for every antilinear form A € V', there is a unique v € V s.t. (v,w)y =
<A,w>v/7v for all w € V, with H’U”V = ||A||V/
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Chapter 6

One-dimensional finite elements
and tensorization

This chapter presents important examples of finite elements, first in dimension one, then in mul-
tiple dimensions using tensor-product techniques. Important computational issues related to the
manipulation of high-order polynomial bases are addressed. We also show how to approximate
integrals over intervals using the roots of the Legendre and Jacobi polynomials.

6.1 Legendre and Jacobi polynomials

Legendre and related polynomials are useful tools to design high-order finite elements. Their roots
are also important to construct nodal finite element bases and to devise approximate integration
rules called quadratures.

Definition 6.1 (Legendre polynomials). The Legendre polynomials are univariate polynomial
functions R — R defined for every integer m > 0 by

(-ym ar

omm! dtm

L, (t) ==

(A=) +t)™). (6.1)

Proposition 6.2 (L?-orthogonality). The Legendre polynomials are L?-orthogonal over the
interval (—1,1), and the following holds true:

1
2
Ly (t) Ly (t) dt = ————pmn,s Vm,n > 0. 6.2
RO e mon > (6.2)

Legendre polynomials satisfy many useful properties. The most important ones are that L,, is
a polynomial of degree m, L,, is an even function if m is even and an odd function if m is odd,
Lin(—=1) = (=1)™ and L,,(1) = 1, L], (-1) = 2(-=1)™ 'm(m + 1), and L], (1) = 2m(m + 1). We
also have for all m > 1,

L2 = 1)L (1) = 1Ln(t) — Lon (1), (6.33)

m

Li(t) =mLy,_1(t) +tL,,_1(t), (6.3b)
(1 — 3L (t) — 2tL], (t) +m(m + 1)L, (t) = 0, (6.3c)
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and finally (m+1)Ly,41(t) = (2m+ 1)t Ly, (t) — mLy,—1(t) (Bonnet’s recursion formula). The first
four Legendre polynomials are the following:

05 N i
\ ST S

Lo(t) =1

Li(t) =t ' ]
Lo(t) = 3(3t* = 1) ]
Ly(t) = $(5¢° — 31) |

Al 4

-1 -0.5 0 0.5 1

Definition 6.3 (Jacobi polynomials). Let a,f € R be such that o > —1 and 8 > —1. The
Jacobi polynomials are univariate polynomial functions R — R defined for every integer m > 0 by
=™
2mm)

JeP(t) = (1—t)(1+ t)*ﬁ(i—z((l — 1) (14 1)), (6.4)

The Jacobi polynomials are orthogonal w.r.t. to the L?-inner product in the interval (—1,1)
weighted by the function (1 — #)¥(1 +¢)7:

1
/ (1= %1+ )P TP ) TP () dt = oo sdoum,  ¥mym > 0, (6.5)
1

oatf+l  I(m+a+1)I'(m+p+1)
2m+a+pB+1 m!T(m~+a+68+1)
for every natural number n). The Jacobi polynomials satisfy the following recursion formula for

all m > 1:

, where I' is the Gamma function (s.t. T'(n + 1) = n!

with ¢ a,8 1=

2(m+1)(m+a+B+1)2m+a+ 5)ng’_€1( ) =
Cm+a+B+1)((2m+a+B+2)2m+a+ B)t+a® —BAIEA (1)
—2(m+a)(m + B)(2m + o+ B+ 2)J57 (t).

Jo8 is a polynomial of degree m and J7(—1) = (—1)m(m+5) JoB(1) = ) The Legendre
polynomials are Jacobi polynomials with parameters o = = 0, i.e., L ( )= (t) for all m > 0.
The first three Jacobi polynomials corresponding to the parameters a=p=1are

("
0
m

3
Jotty=1, gty =2, Jyit) = Z(5t2 —1).

The Jacobi polynomials JL! are related to the integrated Legendre polynomials as follows (see
Exercise 6.1):

/t Ly (s)ds = — 21 (11— @),  Ym>1. (6.6)
—1 m

We refer the reader to Abramowitz and Stegun [1, Chap. 22] for further results on the Legendre
and Jacobi polynomials.



Part II. INTRODUCTION TO FINITE ELEMENTS 49

6.2 One-dimensional Gauss quadrature

A quadrature formula on, say, the reference interval K := [—1,1] allows one to approximate the
integral of functions ¢ in C°(K) as follows:

1
| otnds 3w, (6.7)

le{l:m}

for some integer m > 1. The points {& }ief1:m} are called quadrature nodes, are all in K, and are
all distinct. The real numbers {w;};e{1:m} are called quadrature weights. By a change of variables,
the quadrature (6.7) can be used on any interval [a,b]. Letting ¢ := £(a +b) and § := b — a, (6.7)
implies

b
/ o(t) dt ~ Z Fowip(c + 30&). (6.8)
@ le{l:m}
The largest integer kg such that equality holds true in (6.7) for every polynomial in Py, is
called quadrature order, that is, we have

/p(t)dt: Y ww(&),  YpEPy, (6.9)

-1 le{l:m}

and there is ¢ € Ppy41 s.t. fil q(t)dt # Zle{l:m} wiq(&). At this stage, it suffices to know that
the higher the quadrature order, the more accurate the quadrature (6.7). We refer the reader to
Chapter 30 for estimates on the quadrature error and for quadratures in multiple dimensions.

Lemma 6.4 (Quadrature order). Let {§i}icq1.my be m distinct points in K. Let {L1}icq1:m)
be the associated Lagrange interpolation polynomials, i.e., L1(&;) = &5 for all 1,5 € {1:m}. Set
wy = fil Li(t)dt for alll € {1:m}. Then the quadrature (6.7) is at least of order (m — 1) and at
most of order (2m — 1), i.e., m — 1 < kg <2m — 1.

Proof. Let p € P,,,_1. Since the m quadrature nodes are all distinct, the Lagrange interpolation
polynomials {£i}ie(1:m) form a basis of Py,—1. Thus, we can write p(t) = >_;c(q.,,y P(&)Li(1),
whence we infer that

[ pa= 3w [ oma= Y an@).

-1 le{l:m} le{l:m}

owing to the linearity of the integral and the definition of the weights. Hence, kg > m — 1.
Moreover, the polynomial ¢(t) := Hze{l:m} (t — &)? is of degree 2m and is not integrated exactly
by the quadrature (which approximates its integral by zero). Hence, kg < 2m — 1. O

For all m > 1, one can show that the m roots of the Legendre polynomial L,, are distinct and
are all in the open interval (—1,1). The most important example of quadrature is the one based
on these roots, which we henceforth call Gauss—Legendre nodes.

Proposition 6.5 (Gauss—Legendre). Let m > 1. Let {§}icq1:my be the m roots of the Legendre
polynomial Ly, (t) (all distinct and in (—1,1)). Let the weights be defined as in Lemma 6.4. Then
the quadrature (6.7) is of order kg = 2m — 1. Moreover, all the weights are positive and are given

by
2

wp =
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Proof. (i) Order of the quadrature. We already know from Lemma 6.4 that m —1 < kg < 2m —1.
Consider a polynomial p € Py,,_1. The Euclidean division of polynomials shows that there are
p1,p2 € Ppu_1 such that p = py L, + pe. Using that kg > m — 1, the L2-orthogonality of Legendre
polynomials, and the identity p(&) = p2(&) (since L, (&) = 0 for all I € {1:m}), we infer that

1 1
[ pdi= [ ma= 3 am@= Y wn@)

-1 -1 le{l:m} le{l:m}

This shows that kg > 2m — 1. Hence, kg = 2m — 1.

(ii) Let us prove (6.10) for all I € {1:m}. Let £; € P,,—1 be the Lagrange interpolation polynomial
associated with the node ¢, i.e., £;(&;) = 0;; for all [, j € {1:m}. Since the polynomial £;(¢t)(1 —
t)L. . (t) is of degree (2m — 1), it is integrated exactly by the quadrature. Hence, we have

1
| e -0, @ d=a - o)L,
-1
Moreover, integrating by parts and since | 711 (El [ —t)) "Lm (t) dt = 0 owing to the L?-orthogonality
of the Legendre polynomials, we obtain

[ a0 -z, wat = —21Ly,
1

Next, we observe that £;(t) = Ltf—g)%(&) since both functions are polynomials in P,,_; having
the same roots and taking the same value 1 at & owing to 'Hopital’s rule. Thus, £;(—1) =

—%;1) m Combining the above identities leads to

Ln(-1)?2 1
1+& L&)

which proves the claim since L,,(—1)? = 1. O

wi(l =&)L, (&) =2

In some situations, it is interesting to use quadratures with nodes including one or the two
endpoints of the interval [—1,1]. The Gauss-Lobatto quadrature corresponds to the case where
both endpoints are included. The nodes of this quadrature for m > 3 are {—1, 1} plus the (m — 2)
roots of the polynomial L/, _,(t), which can be shown to be all distinct and contained in the open
interval (—1,1).

Proposition 6.6 (Gauss—Lobatto). Let m > 2. Let {&}icq1:m} be the Gauss-Lobatto nodes,
i.e., the m roots of the polynomial (1 —t*)L! _|(t) (they are all distinct and in [—1,1]). Let the

weights be defined as in Lemma 6.4. Then the quadrature (6.7) is of order kg = 2m—3. Moreover,
all the weights are positive and are given by

2 1
m(m — 1) Ly—1(£)%’

In particular, we have w1 = wy,, =

wp =

Vi e {1:m}. (6.11)

m(m—1)"°

Proof. See Exercise 6.2. O

The case where one keeps only one of the two endpoints leads to the Gauss—Radau quadrature.
For brevity, we focus on the right-sided version which keeps the right endpoint &,, = 1. The left-
sided version keeping the left endpoint £, = —1 can be derived from symmetry arguments. The
nodes of the right-sided quadrature are the m roots of the polynomial L., (t) — Ly,—1(t), which can
be shown to be all distinct and contained in (—1, 1] (notice that 1 is a root of this polynomial).
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Proposition 6.7 (Gauss—Radau, right-sided). Let m > 1. Let {fl}le{hm} be the Gauss—
Radau nodes, i.e., the m roots of the polynomial L, (t) — Ly,—1(t) (they are all distinct and in
(=1,1]). Let the weights be defined as in Lemma 6.4. Then the quadrature (6.7) is of order
ko = 2m — 2. Moreover, all the weights are positive and are given by

! 2
Trar @ Telmolh wn=15 (6.12)

w; =

Proof. See Exercise 6.3. O

Examples of quadratures on the reference interval [—1,1] are presented in Table 6.1. The
Gauss—Legendre quadrature of order 1 is called midpoint rule, the Gauss—Lobatto quadrature of
order 1 is called trapezoidal rule and that of order 3 Simpson’s rule. For quadratures of higher
order, we refer the reader, e.g., to Karniadakis and Sherwin [123, §B.2].

type order | nodes weights

G-Rad 0 1 2

G-Leg 1 0 2

G-Lob 1 1,1 1,1

G-Rad 2 —1.1 3.4

G-Leg 3 | -, 1,1

G-Lob 3 -1,0,1 1,34

GRad | 4 | =ipfo g6 g | 166 106 2
Gleg | 5 | -0 %8 [3,53

G-Lob | 5 |—-1,-¥5 Y51 | 15511

Table 6.1: One-dimensional quadratures on the reference interval [—1,1]. G-Leg: Gauss—Legendre,
G-Rad: Gauss—Radau, G-Lob: Gauss-Lobatto.

6.3 One-dimensional finite elements

In this section, we present important examples of one-dimensional finite elements. Recall that Py,
k > 0, is the real vector space composed of univariate polynomial functions of degree at most k.
For convenience, degrees of freedom (dofs) and shape functions of one-dimensional finite elements
using the polynomial space Py, are numbered from 0 to k.

6.3.1 Lagrange (nodal) finite elements

Following Definition 5.11, the dofs for Lagrange finite elements are chosen as the values at some
set, of nodes.
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Proposition 6.8 (Lagrange finite element). Let k > 0. Let K be a compact interval with
nonempty interior, and let P := Py. Consider a set of ng, 1= k + 1 distinct nodes {ai}1e0.x} 0
K. Let ¥ := {01}1eq0: 1}y be the linear forms on P such that o1(p) := p(ar) for alll € {0:k}. Then
(K, P,Y) is a Lagrange finite element.

Proof. We use Remark 5.3. We observe that dim P = k + 1 = ng, = card . Moreover, let p € P
be such that o;(p) = p(a;) = 0 for all [ € {0:k}. Then p = 0 since p is of degree at most k and has
(k + 1) distinct roots. O

The shape functions of a one-dimensional Lagrange finite element are the Lagrange interpolation
polynomials {Lga]}ie{o, k} defined as in (5.2). Following (5.10), the Lagrange interpolation operator
acts as follows:

Th)t) = Y v, Vek, (6.13)
1e{0:k}
and possible choices for the domain of Z& are V(K) := C%(K) or V(K) := W1(K); see Exer-
cise 5.7.

The Lagrange interpolation polynomials based on (k + 1) equidistant nodes (including both
endpoints) in the interval K := [—1, 1] are henceforth denoted by {£}'};c(0.x}. The graphs of these
polynomials are illustrated in Figure 5.1 for & € {1,2,3}. Explicit expressions are as follows:

Lo(t) =51 —t), L§(t):=$t(t—1), L3(t) = 5t +3)(t — H) (A —1),
Li(t) =31 +1), L) :=@+1)(1—1t), LI(t):=FE+1)({t—3)(t—1),
L3(t) = $(t+ 1), L3(t) = 2Z(t+1)(t+ $)(1 —t),

Li(t) = 15t + D+ 5)(t = 5)-

Although the choice of equidistant nodes appears somewhat natural, it is appropriate only when
working with low-degree polynomials; see §6.3.5. An alternative choice is to consider the Gauss—
Lobatto nodes. The corresponding Lagrange interpolation polynomials for k = 3 (four nodes) are
illustrated in the left panel of Figure 6.1.

6.3.2 Modal finite elements

Let us illustrate the construction of §5.4.2 in the one-dimensional setting.

Proposition 6.9 (Legendre finite element). Let k > 0. Let K := [—1,1], P := P, and
Y= {o1}ieq0:x} be the ng, :=k + 1 linear forms on P s.t.
20+1 !
o1(p) = T+ Litp(t)dt, VI e {0:k}, (6.14)
-1

where Ly is the Legendre polynomial of order . Then (K, P,X) is a finite element, and the shape
functions are 0, :== L; for all | € {0:k}.

Proof. Use (6.2) and Proposition 5.12. O
Following (5.13), the Legendre interpolation operator acts as follows:
. 204+1 (1
TRO)(E) = Y <— / Li(s)v(s) ds> Li(t),
1€{0: k} -1

for all t € K and all v € V(K) := L'(K).
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Figure 6.1: Left: Lagrange interpolation polynomials for Gauss—Lobatto nodes and k& = 3. Right:
Hybrid nodal/modal shape functions for £ = 4 (see §6.3.3).

6.3.3 Canonical hybrid finite element

Hybrid finite elements mix nodal and modal dofs. When constructing H!-conforming approxima-
tion spaces (see Chapter 19), it is convenient that all the basis functions but one vanish at each
endpoint of the interval, say K := [—1,1]. This calls for using the values at +1 as nodal dofs on
Py. For k > 2, some or all of the remaining dofs can be taken to be of modal type. Taking all
of them to be moments against polynomials in P;_o gives a finite element called canonical hybrid
finite element. A multidimensional extension is presented in §7.6.

Proposition 6.10 (Canonical hybrid finite element). Let k¥ > 1. Set K = [-1,1] and
P :=Py. Define oo(p) := p(—1), ox(p) := p(1), and, if k > 2, let {p}ieq1:x—13 be a basis of Py
and define o1(p) == [ puuds for all l € {1:k—1}. Set ¥ := {o1},cq0:}- Then (K, P,X) is a finite
element.

Proof. See Exercise 6.6. O

The corresponding interpolation operator is denoted by Z%- (the superscript is consistent with
the notation introduced in §16.2 where the letter “g” refers to the gradient operator). Its action
on functions v € V(K) :== WH(K) is s.t. 7% (v)(£1) = v(£1) and f_ll(If((v) —v)qds =0 for all
q€Pr_o.

Proposition 6.11 (Commuting with derivative). Let k > 0. Let % be the interpolation
operator built from the canonical hybrid finite element of order (k+1). Let I be the interpolation
operator built from any modal finite element of order k. Then L% (v)' = ZR(v") for allv € WH(K).

Proof. Integrating by parts, using the properties of 7% (i.e., f_ll(IIg((v) —v)rds=0forallr € Py_
and Z% (v)(£1) = v(£1)) and recalling that Z}2 is the L?-orthogonal projection onto Py, (see §5.4.2
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and Exercise 5.2), we infer that for all ¢ € Py,

/11 % (v) qdt = — /11 I% (v)q dt + {I[g((v)qr_

1

1 1 1 1
= —/ vg dt + [Uq} = / vgdt = / IR (v")qdt.
1 - -1 1

This proves that Z% (v)' = Z}2(v') since both functions are in Pj. O

The shape functions of the canonical hybrid finite element can be computed explicitly once a
choice for the basis functions {/ }icf1:5—1} of Px_2 is made. An example is proposed in Exercise 6.6
using Jacobi polynomials (see the right panel of Figure 6.1 for an illustration).

6.3.4 Hierarchical bases

The notion of hierarchical polynomial bases is important when working with high-order polynomi-
als. It is particularly convenient in simulations where the degree k varies from one element to the
other.

Definition 6.12 (Hierarchical basis). A sequence of polynomials (Px)ren is said to be a hier-
archical polynomial basis if the set {Pi}ic(o:x} is a basis of Py for all k € N.

The monomial basis (i.e., Py(t) = t*) is the simplest example of hierarchical polynomial basis.
Another example is the Jacobi polynomials introduced in §6.1. They form a hierarchical basis with
the additional property to be L2-orthogonal with respect to the weight (1 —¢)®(1 +¢)~.

The Lagrange shape functions do not form a hierarchical basis, i.e., increasing k to (k + 1)
requires to recompute the whole basis of shape functions. The shape functions of modal elements
form, by construction, a hierarchical basis. Finally, the shape functions of the canonical hybrid
finite element do not form in general a hierarchical basis. One can obtain a hierarchical basis though
by slightly modifying the dofs. For instance, the following shape functions form a hierarchical basis:

Oo(t) == 1(1 1), (6.15a)
(1) =21 —-t) 1 +t) T 1), Vie{lik—1}, k>2, (6.15b)
Or(t) == (1 +1). (6.15¢)

The corresponding dofs are o (p) := p(—1), ox(p) := p(1), and oy (p) := fil pJh dt+B p(—1)+

B p(1) for all | € {1:k — 1}, where oy := 40;71171117 ﬁli = —2011111171 _11(1 + t)Jllf1 dt, and ¢;—11,1
defined in (6.5).

6.3.5 High-order Lagrange elements

The Lagrange polynomials oscillate more and more as the number of interpolation nodes grows.
This phenomenon is often referred to as the Runge phenomenon [171] (see also Meray [142]). A
classic example illustrating this phenomenon consists of considering the function f(z) := (1+2)~1,
x € [—5,5]. The Lagrange interpolation polynomial of f using n equidistant points over [—5, 5]
converges uniformly to f in the interval (—z, z.) with z. ~ 3.63 and diverges outside this interval.

The approximation quality in the maximum norm of the one-dimensional Lagrange interpola-
tion operator using ng, := k + 1 distinct nodes is quantified by the Lebesgue constant; see Theo-
rem 5.14. Since the Lebesgue constant is invariant under any linear transformation of the interval
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K, we henceforth restrict the discussion to K := [—1,1]. It can be shown that the Lebesgue con-
stant for equidistant nodes grows exponentially with k. More precisely, Ay ~ WZHW) as k — oo

where v := 0.5772- - - is the Euler constant; see Trefethen and Weideman [191]. A lower bound for
the Lebesgue constant for every set of points is 2 In(k) — C for some positive C; see Erdés [94]. If
the Chebyshev nodes {al ‘= cos (M) }le{ltn .y are used instead of the equidistant nodes, the

2ngp

Lebesgue constant behaves as 2 In(k) + C + g, with C := 2(y +1In(£)) =0.9625- - and oy — 0
as k — oo, showing that this choice is asymptotically optimal; see Luttmann and Rivlin [136]
and Rivlin [167, Chap. 4]. The Gauss-Lobatto nodes, which include the two endpoints, lead to
an asymptotically optimal Lebesgue constant with upper bound % In(k) + C, with C' ~ 0.685; see
Hesthaven [114, Conj. 3.2] and Hesthaven et al. [115, p. 106]. Note that the Lagrange polynomial
bases using the Gauss—Lobatto nodes are not hierarchical since the set of ng, Gauss—Lobatto nodes
is not included in the set of (ng, + 1) nodes.

Another important class of sets of nodes is that consisting of the Fekete points. These points
are defined from a maximization problem. Let {a;}icar be a set of nodes in K := [—1,1] and let
{®i}icnr be a basis of Py, (recall that N := {1:ng,}). Recall the (generalized) ng, Xng, Vandermonde
matrix V with entries V;; = ¢;(a;) for all i,j € N. Since the Lagrange polynomials can be

expressed as Ega} (t) = Zje_/\f(v_l)ij ¢ (t) (see Proposition 5.5), a reasonable criterion for selecting
the interpolation nodes is to maximize the determinant of V with respect to {a;};cn (observe
that the solution to this problem does not depend on the chosen basis, since a change of basis only
multiplies the determinant by a factor equal to the determinant of the change of basis matrix). It is
shown in Fejér [101] that the Fekete points and the Gauss—Lobatto nodes coincide on any interval.
The notion of Fekete points extends naturally to any dimension, but the concept of Gauss—Lobatto
nodes can be extended to higher dimension only by invoking tensor-product techniques as we show
in the next section.

6.4 Multidimensional tensor-product elements

We show in this section that the one-dimensional finite elements presented in §6.3 can be extended
to higher dimension by using tensor-product techniques when K C R? is a cuboid, d > 2, i.e., when
K has the Cartesian product structure K := Hle[z;, 2] where z;* € R are such that z; < z;"
for all ¢ € {1:d}.

6.4.1 The polynomial space Qy 4

Tensor-product finite elements in R? make use of the polynomial space

Qk,d =Pr®...QP. (616)
—_——

d times

This space is composed of d-variate polynomial functions ¢ : R* — R of partial degree at most k
with respect to each variable. Thus, we have

Qkﬂd:span{x?...xgd, Ogﬂl,...,ﬁdgk}. (6.17)

We omit the subscript d and simply write Q; when the context is unambiguous. Let g :=
(B1,...,Bq4) € N? be a multi-index, define ||3|¢~ := max;e(1:q} Bi, and consider the multi-index
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set Br.qa == {8 € N? | ||B|ls=~ < k}. Polynomial functions ¢ € Q4 can be written in the generic
form

q(x) = Z agx”, xf = ..:zrgd, (6.18)

with real numbers ag. Note that card(By,q) = dim(Qx ) = (k + 1)<.
A direct verification leads to the following useful characterization of the trace of polynomials
in Qk,d-

Lemma 6.13 (Trace space). Let H be an affine subspace of RY of co-dimension | € {1:d—1}.
Let Ty : R™U — H be an affine bijective mapping. Then qr o T € Qpa—y for all g € Qg q.

6.4.2 Tensor-product construction of finite elements

We begin with tensor-product Lagrange finite elements with nodes obtained by invoking the tensor
product of nodes along each Cartesian direction. This leads to the following construction.

Proposition 6.14 (Tensor-product Lagrange). Let K := Hle [z, 2] be a cuboid in R?. Let
P := Qy,a for some integer k > 1. For all i € {1:d}, consider (k + 1) distinct nodes {a;}ief0: )
in (27, 2]. For every multi-index B := (B1,...,B4) € Bia, let ag be the node in K with Cartesian
components (a; g, )icq1:qy- Let ¥ :={0s}pen, , be the degrees of freedom (dofs) on P s.t. op(p) =
p(ag) for all B € By,q. Then (K, P,X) is a Lagrange finite element.

Proof. See Exercise 6.7. O

The following property (see Exercise 6.9) is important for the construction of H!-conforming
finite elements spaces using tensor-product finite elements.

Lemma 6.15 (Face unisolvence). Consider the cuboid K = H?Zl[zf 2. Assume that a; o =

RNt

z; and a;j = z:r for all i € {1:d}. Let F' be one of the faces of K. Let N be the collection of

3

the indices of the Lagrange nodes on F. The following holds true for all p € Qp.,q:
[0j(p) =0, Vj e Np] < [pr=0] (6.19)

Table 6.2 presents examples for k € {1,2,3} in dimensions d € {2, 3} with equidistant nodes in
each Cartesian direction. The bullets conventionally indicate the location of the nodes. It is useful
to use the tensor product of Gauss—Lobatto nodes when k is large, since it can be shown that the
Fekete points in cuboids are the tensor products of the one-dimensional Gauss—Lobatto nodes; see
Bos et al. [35].

The shape functions of a tensor-product Lagrange finite element are products of the one-
dimensional Lagrange polynomials defined in (5.2):

Os(x) == H Egl:](xi), Vo € K, (6.20)
ie{l:d}

for all 5 € By, 4. The Lagrange interpolation operator acts as follows:

T ()(x) == Y wvlag)is(x), VxeK, (6.21)
BEBL,a

and possible choices for its domain are V(K) := C%(K) or V(K) := W*P?(K) with real numbers
p € [1,00] and sp > d (or s > d if p = 1). Note that in general Z%(v)(x) cannot be factored
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Q Q2 Q3

Table 6.2: Two- and three-dimensional Lagrange finite elements Q;, Q2, and Q3. Only visible
degrees of freedom are shown in dimension three.

as a product of univariate functions, except when the function v has the separated form v(x) =
[Ticqi:ay vi(@:i) with v; € C%([z;,x]), in which case Z& (v)(z) = [Licg:ay I[I;_,_zﬂ (vi)(x5).
The tensor-product technique can also be used to build modal and hybrid nodal/modal finite

elements in cuboids; see [35]. Finite element methods based on nodal bases using tensor products
are often referred to as spectral element methods; see Patera [156].

6.4.3 Serendipity finite elements

It is possible to remove some nodes inside the cuboid while maintaining the approximation proper-
ties of the full tensor product. This is the idea of the serendipity finite elements. The corresponding
polynomial space, S, is then a proper subspace of Q. The main motivation is to reduce compu-
tational costs without sacrificing the possibility to build H'-conforming finite element spaces and
without sacrificing the accuracy of the interpolation operator. Classical two-dimensional examples
consist of using the 8 boundary nodes if £ = 2 and the 12 boundary nodes if k£ = 3 (see Table 6.3).
If £ = 4 one uses the 16 boundary nodes plus the barycenter of K. A systematic construction of
the serendipity finite elements for all dimensions and all polynomial degrees is devised in Arnold
and Awanou [10].

SQ Sg S4

Table 6.3: Two-dimensional serendipity Lagrange finite elements Sy, S3, and Sy.
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Exercises

Exercise 6.1 (Integrated Legendre polynomials). Let k£ > 2 and set P, 0.~ ={peP;|p£l) =

0}. Show that a basis for P( ) are the integrated Legendre polynomials {f Li(s)ds}ieqi:k—1}-
Prove (6.6). (Hint: consider moments against polynomials in P,,,_o and the derlvatlve at t =1.)

Exercise 6.2 (Gauss—Lobatto). The goal of this exercise is to prove Proposition 6.6. (i) Prove
that kg = 2m —3. (Hint: for all p € Pa,,_3, m > 3, write p = p1(1 —tQ)L' _1+p2 with py € Pyyy—3

m (Hint: compute f L (t)(14t)L, _,(t)dt
using the quadrature and by integrating by parts.) (iii) Assume m > 3 and let I € {2:m—1}. Prove

that L!,_o(&) = (1—=m)Ly—1(&) and (1-&)LY, 1 (&) +m(m—1)Ly,—1(&) = 0. (Hint: use (6.3).)
Let £; € ]Pm,g be the Lagrange interpolation polynomial s.t. £;(§;) = d;;, for all [, j € {2:m—1}

and py € P, —1.) (ii) Prove that w; = w, =

(i.e., & and &, are excluded). Prove that £;(t) = Li::él(t) W (Hint: compare the degree
m—1

of the polynomials, their roots, and their value at &.) Finally, prove (6.11). (Hint: integrate the

polynomial £;(¢)(1 —¢)L,_ 2(t)) (iv) Let [|plIZ == >ojcq1.my wip(&)?. Verify that [|-[|¢ defines a

norm on Py with k := m — 1, and prove that |[p|| 2y < [[plle < (ZE)3 ||p||p2(x) for all p € Py,

with K = (=1,1). (Hint: write p = pp—1 + ALy with py_1 € Pr_1 and A\ € R, and compute

6112 ¢, and [lp]12.)

Exercise 6.3 (Gauss—Radau). The goal is to prove Proposition 6.7. (i) Prove that kg = 2m—2.
(Hint: for all p € Poy,,—o, write p = p1(Ly, — Liyp—1) + p2 with p; € Py, and py € Pp—1.) (ii)
Prove that w,, = -3. (Hint: integrate the polynomial Mﬂn 1(t).) (i) Assume
m > 2 and let [ € {1:m—1}. Prove that L), (&) = —L!,_,(&). (Hint: use (6.3a) and (6.3b).)
Let £; € Py,,—2 be the Lagrange interpolation polynomial s.t. £;(;) = d;; for all I,j € {1:m—1}

(i.e., & is excluded). Prove that £;(t) = L%?t_)éfgll)(t) 72;;;&1(&). (Hint: compare the degree

of the polynomials, their roots, and their value at &.) Finally prove (6.12). (Hint: integrate the
polynomial £;(¢)(1 —¢)L],_ 1(t) )

Exercise 6.4 (Inverse trace inequality). Let K :=[—1,1]%. Let m > 3 and let {{}ieq1:m) be
the Gauss-Lobatto (GL) nodes in [=1,1]. Set I, q := {1...m}% and I, ; := {2:(m — 1)}*. For
any a € Ip, g4, let @, € K be the node with Cartesian coordinates (aa)l =&, forall i € {1:d}.
The set (@q)acr,, , consists of the tensorized GL nodes in K. Let k := m — 1 and define the
polynomial space @g)d ={q € Qpa|qlan) =0, Va € I°, .d}» 1., polynomials in Q? h.q vanish at all
the tensorized GL nodes that are located inside K. Prove that

24 LK\ ?
< (24 Yy L
lvll2x) < <k(k+ 1)( +%) |6K|> llvllz2 oK),

for all v € Q%d. (Hint: use Exercise 6.2.)

Exercise 6.5 (Lagrange mass matrix). Let M € R":*"sh he the mass matrix with entries
f cl E[a L(t)dt for all i,j € N. Prove that M = (VTV)~! where V € R"s:X"en ig

the (generahzed) Vandermonde matrix with entries V;; := (25 12 L;_1(a;). (Hint: see Proposi-
tion 5.5.)

Exercise 6.6 (Canonical hybrid element). Prove Proposition 6.10. (Hint: use Remark 5.3.)
Compute the shape functions when p; = Jll_"l1 foralll € {1:k—1}. (Hint: consider the polynomials

J0, g, for all € {1:k—1}, and J',.)
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Exercise 6.7 (Qi,q Lagrange). Prove Proposition 6.14. (Hint: observe that any polynomial
q € Qp,q is such that q(x) =37, (9.5} %a(®1, ..., 2a—1)7 and use induction on d.)

Exercise 6.8 (Bicubic Hermite). Let K be a rectangle with vertices {z; }1<i<4, P := Q3,2, and
Y = {p(2i), 02, 0(2:), 00, p(2i), 02, p(2i) }1<i<a. Show that (K, P,¥) is a finite element. (Hint:

write p € Q32 in the form p(x) = 3=, o1,y Vij0i(21)0;(22), where {01,...,04} are the shape
functions of the one-dimensional Hermite finite element; see Exercise 5.4.)

Exercise 6.9 (Face unisolvence). Prove Lemma 6.15. (Hint: use the hint from Exercise 6.7.)
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Chapter 6. One-dimensional finite elements and tensorization




Chapter 7

Simplicial finite elements

This chapter deals with finite elements (K, P,¥) where K is a triangle in R?, a tetrahedron in
R, and more generally a simplex in R?, d > 2. The degrees of freedom (dofs) ¥ are either nodal
values in K or integrals over the faces or the edges of K, and P is the space Pj 4 composed of
multivariate polynomials of total degree at most k£ > 0. We focus our attention on scalar-valued
finite elements. The results extend to the vector-valued case by reasoning componentwise.

7.1 Simplices

Definition 7.1 (Simplex, vertices, normal). Let d > 1. Let {zi};cf0:qy be a set of points in
R< such that the vectors {z1 — z0,...,24 — 2o} are linearly independent. The convex hull of these
points is called simplex in R?, say K := conv({z;}ieqo:ay). By definition, K is a closed set. The
points {2zi}ieqo:ay are called vertices of K. The outward unit normal vector on OK is denoted by
Nng.

Example 7.2 (d € {1,2,3}). A simplex is a compact interval if d = 1, a triangle if d = 2, and a
tetrahedron if d = 3 (see Figure 5.2). O

Example 7.3 (Unit simplex). The unit simplex in R? is the set {x € R? |0 < x; < 1,Vi €
{1:d}, > icqo.ay i < 1} This corresponds to setting zo := 0 and z; — 2o := e; for all i € {1:d},
where {e;};c(1:q4} is the canonical Cartesian basis of R?. The unit simplex has volume %. O

Definition 7.4 (Faces, edges). The convex hull of the set {zo,...,zq} \ {z:i} is denoted by F;
for all i € {0:d} and is called the face of K opposite to the vertex z;. For alll € {0:d—1}, an
I-face of K is the convex hull of a subset of {2zi}icqo:ay of cardinality (14 1) (i.e., usual faces are
(d — 1)-faces). By definition, l-faces are closed sets and are subsets of an affine subspace of R of
codimension (d—1). The 0-faces of K are the vertices of K. The 1-faces of K are called edges. In
dimension d = 2, the notions of edge and face coincide. In dimension d = 1, the notions of vertex,
edge, and face coincide.

Example 7.5 (Number of faces and edges). The number of [-faces in a simplex in R? is equal

to (‘f:ll), e.g., there are (d 4 1) faces and vertices, and for d > 2, there are @ edges. O
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Remark 7.6 (Geometric identities). Let ny p, be the value of ng on F; for all i € {0:d}.
Then {ng|F, }icf1:4y is a basis of R?. Let cr, be the barycenter of F;, cx that of K, and Iz the
identity matrix in R?*?. We have

> |Filngr, =0, > |Filnkir ® (ck —cx) = |K [T (7.1)
i€{0:d} i€{0:d}
See Exercise 7.2. These identities hold true for any polyhedron in R?. [l

7.2 Barycentric coordinates, geometric mappings

Let K be a simplex in R? with vertices {2;}ic{0.4}. For all & € R? and all i € {1:d}, we denote

by \;(x) the components of the vector & — z¢ in the basis (21 — 2o, ..., 24 — 20), €.,
T—z0= Y, Ni(x)(zi — 20). (7.2)
ie{1:d}

Differentiating (7.2) twice, we infer that >, o. 4 D2)\;(x)(h1, h)(zi—2z0) = 0 for all hy, hy € RY,
The vectors {z; — 20 }ie {1y being linearly independent, this implies that D?A; (2)(hy, he) = ... =
D?)\i(x)(h1, hy) = 0. Hence, ); is an affine function of , i.e., there exist v; € R and g; € R? such
that \;(z) = v; + g;-@ for all x € RY, where a-b denotes the inner product in R<. Note that D),
is independent of  and DX;(h) = g;-h for all h € R%. In other words, we have V); = gi-

To allow all the vertices of K to play a symmetric role, we introduce the additional function
Ao(@) :=1=3c(1.4y Ai(®). Then we have

Z Ai(z) =1 and x = Z Ai(x)z;, (7.3)

i€{0:d} i€{0:d}

for all x € R%. A consequence of the above definitions is that \;(z;) = d;; for all 4,5 € {0:d}.
This implies that the functions {A;};cfo:4y are linearly independent: if the linear combination
>_ic{0:a} BiAi(®) vanishes identically, evaluating it at the vertex z; yields §; = 0 for all j € {0:d}.
Moreover, since K is the convex hull of {2;};c 0.4}, we infer that 0 < A\;(z) < 1 for all x € K and
all i € {0:d}.

Definition 7.7 (Barycentric coordinates). The functions {\i}ic0.ay are called barycentric
coordinates in K.

It is shown below that the barycentric coordinates are also the shape functions of the Py 4
Lagrange finite element.

Example 7.8 (Unit simplex). Since =}, 5 i€, (7.2) shows that the barycentric coordi-
nates in the unit simplex of R? are \g(x) := 1 — Yic{1:ay Ti and Ai(x) == w; for all i € {1:d}. O
The following construction plays an important role in this book. Let S! := conv({Z;} ecq0:13)

be the unit simplex in R! with barycentric coordinates {XJ }ieqo:1y (see Example 7.8).

Proposition 7.9 (Geometric mapping). Let K be a simplex in R, let | € {1:d}, and let
o : {0:l} — {0:d} be an injective map, i.e., o chooses (I + 1) distinct integers in {0:d}. Let



Part II. INTRODUCTION TO FINITE ELEMENTS 63

S i= conv({2,(j) }jefo:1}) be an l-face of K or K itself if | = d. Let Ts : S — RY be the geometric

mapping s.t. Ts(T) = 3 .ci0.1y /\ (Z)z,(j) for all T € S'. Then S = Ts(S'), and the mapping Ts
is a smooth diffeomorphism.

Proof. We first notice that Ts(2;) = z,(;) for all j € {0:1} and that Ts is an affine mapping
since Ts(Z) = zi, + X je(1.1y i (Zo(s) — zm) Let {0;};eq0:13 be any nonnegative numbers s.t.
> jeqo.y 05 = 1. We have

N Oizegy= Y. 0;Ts() = (Zezj)

j€{0:1} Jje{0:1} Jje{0:1}

Since S = conv({zg(J)}Je{o 1) and St = conv({Z;};eo:1}), this proves that S = T(S'). Moreover,
the mapping Ts is of class C* since it is linear. We now show that the linear mapping DT :
R! — R! is invertible by verifying the injectivity. Let h € R! be such that DTS(h) = 0. Writing

h= 2ojelt: nh h;(Zj — 2o) and since DTs(2; — 2o) = Ts(2;) — Ts(20) = Zo(;) — Zo(0), We infer that
0=>icr1.1y "i(20(j) — Zo(0)), implying that h = 0. O

A S

Figure 7.1: Geometric mapping Ts (d = 3, I = 2). The face S of K is highlighted in gray, and the
vertices of both S% and S are indicated by bullets.

7.3 The polynomial space P; 4

The real vector space Py, 4 is composed of d-variate polynomial functions p : R? — R of total degree
at most k. Thus, we have

Piq :=span{z{" ... 25", 0 < ai,...,aq <k, a1 + ... +aqg < k}. (7.4)

The importance of the polynomial space Py 4 is rooted in the fact that the Taylor expansion of
order k of any d-variate function belongs to Py 4. Another important fact is that for every smooth
function v : R¢ — R,

[vEPra] <= [DFu(z) =0, Vo c R (7.5)

The vector space Py, 4 has dimension (see Exercise 7.4)

e k+1 if d =1,
dimpk,dz( ; )z Lk+1)(k+2) if d =2, (7.6)
Lk+1)(k+2)(k+3) ifd=3.

We omit the subscript d and write P, when the context is unambiguous.
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An element « := (aq,...,a4) of N is called multi-inder, and its length is defined as |a| =
a1+ ...+ ag. We define the multi-index set Ay 4 := {a € N? | |a| < k}. Note that card(Ax q) =
dim(Py q) = (k;d). Any polynomial function p € P 4 can be written in the form

p(x) = Z agx®, with % :=a7" ... 25" and a, € R. (7.7)
OCE.A;C’d

Let H be an affine subspace in R? of dimension [ € {1:d—1}. Given a polynomial p € Py 4,
the following result gives a characterization of the trace of p on H which will be used repeatedly
in the book.

Lemma 7.10 (Trace space). Let H be an affine subspace in R? of dimension | € {1:d—1}.
Then pjg o Ty € Pry for all p € Py q and every affine bijective mapping Ty : R! — H. Moreover,
qoTwi € Py q for all ¢ € Py, and every affine mapping Ty : R — R,

Proof. We observe that D*+1 (piroTH)(y) =0forally € R! by using the chain rule and the fact
that Ty is affine. Then we apply (7.5). The second statement is proved similarly. [l

7.4 Lagrange (nodal) finite elements

We begin with a simple example where we set k := 1; see Table 7.1.

Proposition 7.11 (Simplicial Lagrange, k := 1). Let K be a simpler in RY with vertices
{zi}icqo:ay. Let P =Py q. Let ¥ :={0i}icq0.ay be the linear forms on P such that o;(p) = p(z;)
for alli € {0:d}. Then (K, P,X) is a Lagrange finite element and the shape functions are 6; == ;.

Proof. Let p € P. We use (7.2), L.e., £—20 = 3 _;c(1.4y Ai(®)(2i — 20), that p is affine, the linearity
of Dp, and the first identity in (7.3) to infer that

p(x) = p(z0) + Dp(x — 20) = p(20) + Z Xi(x)Dp(z; — 20)
ie{l:d}

= > (M@ ®(20) + Dplzi — 20))) = Y Ni(x)p(zi),

i€{0:d} i€{0:d}

for all £ € R?. Now we use Remark 5.3. We have dim P = d + 1 = card ¥, and the above identity
shows that any polynomial in P vanishing at the (d + 1) vertices of K vanishes identically. Hence,
(K,P,Y) is a finite element. Finally, owing to the above identity applied with p := 6;, we have
0j() =2 ic(o:-ay 2i(®)0;(2i) = Xic (0. ay Ni(®)dij = Aj(x) for all @ € K. This proves that 0; = A;
for all j € {0:d}. O

We now extend the above construction to any polynomial order k£ > 1 using equidistributed
nodes in the simplex K. Other choices are discussed in Remark 7.14.

Proposition 7.12 (Simplicial Lagrange). Let K be a simplex in R?. Let k > 1, P := Pr.a,
and Agq = {a € N? | |a| < k}. Set ng, = (k;d) and consider the set of nodes {@a}aca, 4 -1
a,— 2o = Zie{l;d} F(zi—20). Let ¥ := {04 }aca, , be the linear forms on P s.t. 04 (p) := p(aa)

for all « € Ay q. Then (K, P,X) is a Lagrange finite element.
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Proof. We use Remark 5.3. Since card¥ = card Ay q = (k‘gd) = dim P 4, we need to prove the
following property which we call [Py q]: Any polynomial p € Py 4 vanishing at all the Lagrange
nodes {aq }aca, , of any simplex in R? vanishes identically. Property [Py 1] holds true for all k > 1
owing to Proposition 6.8. Assume now that d > 2 and that [Py 4—1] holds true for all & > 1 and
let us prove that [Py 4] holds true for all £ > 1. Assume that p € Py, 4 vanishes at all the Lagrange
nodes of a simplex K. Let Fjy be the face of K opposite to the vertex zy and consider an affine
bijective mapping Ty, : R9~' — Hy, where Hy is the affine hyperplane supporting Fy. Then
po = po Ty, is in Py 41 owing to Lemma 7.10, and by assumption, po(Tﬁol (aq)) =plas) =0
for all a, € Fy. Moreover, a, € Fy iff |a] = k. Let us set B = (k= |B|,B1,.-.,Ba—1) for all
B € Ak.d—1, so that B e Ap.q and |B| = k. Setting bg := TI}[} (a,é) for all 5 € Ay, q—1, we obtain all
the Lagrange nodes of the simplex TE:(F) in R, Since po(bg) = plag) =0 for all 8 € Ay a-1,
we infer owing to [Py,q-1] that po = 0. Since T4, is bijective, we obtain p;z = 0. Denoting by
Ao € Py 4 the barycentric coordinate associated with zg, this implies that there is ¢ € Pr_1 4 s.t.
p = Aogq (see Exercise 7.4(iv)). Let us prove by induction on k that ¢ = 0. For k = 1, we have
already proved [P; 4] in Proposition 7.11. Let us now assume that [Py_1 4] holds true for k& > 2.
Since k > 2, ¢ vanishes at all the Lagrange nodes a, s.t. |a| < k (since A\g(aq) # 0 at these nodes),
i.e., |a| <k — 1. Hence, g vanishes at all the Lagrange nodes a,, @ € Aj_1 4. Since these nodes
belong again to a simplex, [Px_1,q4] implies ¢ = 0. [l

We have established the following result in the proof of Proposition 7.12.

Lemma 7.13 (Face unisolvence). Let F be one of the (d+ 1) faces of the simplex K C RY. Let
NF be the collection of the indices of the Lagrange nodes on F. The following holds true for all
pE Pk,d-’

[oj(p) =0, Vi € NF] <= [pr =0]. (7.8)

Table 7.1 presents examples of node locations and shape functions for k € {1, 2, 3} in dimension
d € {2,3}. The bullets conventionally indicate the location of the nodes; see Exercise 7.5 for
some properties of these nodes. Possible choices for the domain of the interpolation operator are
V(K):=C%K) or V(K) := W*P(K) with p € [1,00] and sp > d (or s > d if p = 1); see §5.4.1.

Remark 7.14 (High-order). Other sets of Lagrange nodes can be used. For instance, the Fekete
points from §6.3.5 can be extended to simplices, although finding Fekete points on simplices for
high polynomial degrees is a difficult problem. We refer the reader to Chen and Babuska [66] and
Taylor et al. [190] for results on triangles with degrees up to k = 13 and k = 19, respectively; see
also Canuto et al. [58, p. 112]. A comparison of various nodal sets on triangles and tetrahedra can
be found in Blyth et al. [26]. O

Remark 7.15 (Modal and hybrid simplicial elements). A hierarchical basis of Py 4 can be
built by combining a hierarchical univariate basis of Py ; with the barycentric coordinates; see
Ainsworth and Coyle [6] and Exercise 7.6. One can also introduce a nonlinear transformation
mapping the simplex to a cuboid and use tensor products of one-dimensional basis functions in the
cuboid; see Proriol [162], Dubiner [91], Owens [154], Karniadakis and Sherwin [123, §3.2]. Another
possibility is to use Bernstein polynomials, i.e., the basis {(f;)tm(l — )P M b egoipy if d = 1; see
Ainsworth et al. [7], Kirby [125] for scalar-valued polynomials and Kirby [126] for the extension to
the de Rham complex (see also §16.3). O

Remark 7.16 (Prismatic Lagrange elements). Let d > 3 and set @’ := (x1,...,24-1) for
all z € R%. Let K’ be a simplex in R9~! and [z, 2] be an interval with z; < zJ. The set
K :={zx e R'|2 € K', 24 € [2;,2]]} is called prism in R Let k > 1 and let PRy, :=
span{p(x) = pi1(«’)p2(xq) | 1 € Pra—1, p2 € Pr1}. Examples of prismatic Lagrange elements
based on K and PR with equidistributed nodes are shown in Table 7.2 for k € {1,2,3}. O
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Py Py P3
O
i Ai(20 — 1) NN —1)(3N\ —2)
AN +INBN — 2 £ 3N
27N\ Ak

Table 7.1: Two- and three-dimensional Py, Po, and P3 Lagrange elements. Visible degrees of free-
dom are shown in black, hidden degrees of freedom are in white, and hidden edges are represented
with dashed lines. The shape functions are expressed in terms of the barycentric coordinates. The
first, second, and third lines list shape functions associated with the vertices (i € {0:d}), the edges
(1,7 € {0:d}, i < j), and the faces (i,7,k € {0:d}, i < j < k).

7.5 Crouzeix—Raviart finite element

The Crouzeix—Raviart finite element is based on the polynomial space P; 4. It has been introduced
in [86] to approximate the Stokes equations. Let K be a simplex in R? with vertices {zi}icqo:ay-
Recall that the face of K opposite to z; is denoted by Fj.

Proposition 7.17 (Finite element). Let K be a simplex in R?, set P := P14, and define the
following dofs on P:

1
o (p) 1=
7l r,

Set ¥ :={0{" }icfo:ay- Then (K, P,X) is a finite element.

pds, Vi € {0:d}. (7.9)

Proof. Since card¥ = dim P = d + 1, it suffices to verify that any polynomial p in P satisfy-
ing of®(p) = ﬁ Jp, pds = 0 for all i € {0:d} vanishes identically. Since p € Py 4, we have
P = X jc(o:ay P(%j)A;, where {A;}jeq0.ay are the barycentric coordinates in K. Owing to Ex-
ercise 7.3(iii), we infer that oi™(p) = 3. c(0.43 P(2)0i"(A)) = ézj#p(zj) since of®(\;) = 0
and o®()\;) = L|F;| for all j # i. Hence, >z P(2;) = 0 for all i € {0:d}. This implies that
0=>",,pP(2j) =220 P(2;) = p(2i) —p(zi) for every pair (i,1') such that i 7 . Hence, p takes a
constant value at all the vertices of K, and this value must be zero since, say, Zj £0 p(z;) =0. O
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PRl PRQ ]P)R3

s R

Table 7.2: Nodes for prismatic Lagrange finite elements of degree 1, 2, and 3. The bullets indicate
the location of the nodes. Only visible nodes are shown.

Using the barycentric coordinates {A;}icfo:4y in K, one can verify that the shape functions are
0" (x) :==1—dAi(z) for all i € {0:d} and all € K. Note that ¢}, =1 and 6" (2z;) =1—d. The
Crouzeix—Raviart interpolation operator acts as follows:

o= Y oot ¥ (g [ eas)ere. @)

i€{0:d} i€{0:d}

for all x € K. A possible choice for the domain of Z¢* is V(K) := W (K) since the trace theorem
(Theorem 3.10) applied with p := 1 implies that any function in W!(K) has a trace in L'(0K).
The two- and three-dimensional Crouzeix—Raviart elements are shown in Table 7.3.

Table 7.3: Py Crouzeix—Raviart elements in dimen-
sions two and three. Visible degrees of freedom are
shown in black, hidden degrees of freedom are in white,
and hidden edges are represented with dashed lines.
The shape functions are expressed in terms of the
barycentric coordinates.

1_2/\i 1_3/\z

Remark 7.18 (Definition as a Lagrange element). The mean-value over a face of a polynomial
in [Py 4 is equal to the value this polynomial takes at the barycenter of the face. Another possible
choice for the dofs is therefore to take the values at the barycenter of all the faces. The resulting
finite element is a Lagrange finite element (see Definition 5.11), and W1(K) is no longer a

legitimate domain for the interpolation operator. One possible choice is the smaller space V(K) :=
C°(K). O

7.6 Canonical hybrid finite element

We now present a finite element based on the polynomial space Py 4 whose dofs combine values
at the vertices of the simplex K with integrals over the [-faces of K for [ > 1 (hence the name
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hybrid). It is a useful alternative to Lagrange elements that has interesting commuting properties,
which will be invoked in §16.3 in the context of the discrete de Rham complex (hence the name
canonical).

Let K be a tetrahedron in R3. Let Vi, €k, and Fi be the collections of the vertices, edges,
and faces of K, respectively. Let Ty : S* — E for all E € x, and T : S — F for all F € F, be
affine bijective mappings (see Proposition 7.9), where S and S? are the unit simplices in R and
R2. Let k& > 1 be the polynomial degree. The canonical hybrid finite element involves vertex dofs,
edge dofs if k > 2, surface (or face) dofs if k¥ > 3, and volume (or cell) dofs if k& > 4. We consider
the following dofs:

o.(p) == p(2), z € Vk, (7.11a)
1 - e
0pm(p) = ] [E(MWOTEl)de, E €&k, me{1:ng}, (7.11b)
1 _
T (P) = Gl /F(cmoTFl)pds, F e Fg, me{l:nl}}, (7.11c)
1
ol (p) :== m /szmpdx, m € {1:nS,}, (7.11d)

where {fm bme{1:ne,} 15 a basis of Px_o1 with ng, := (kzl) if k> 2, {Cm}meqi:int,) 18 a basis of
Py_3,2 with nih = (kgl) if £k > 3, and {wm}me{lzngh} is a basis of Py_4,3 with ng, := (kgl) if
k > 4. The above construction is possible in any dimension. If d = 2 for instance, the vertex dofs
are defined in (7.11a), the edge (face) ones in (7.11b) if k£ > 2, and the cell ones in (7.11d), where
‘W’m}me{l:n;h} is a basis of Pr_3 o with ng, := (kgl) if £ > 3.

Proposition 7.19 (Canonical hybrid finite element). Let k > 1. Let K be a simplex in
RY, let P := Py q, and let ¥ := {o0;}ienr be the collection of all the dofs defined in (7.11). Then
(K, P,X) is a finite element.

Proof. We use Remark 5.3. Since we use polynomials in P,_;—1; to define the dofs of the [-faces,
and the number of [-faces is (dﬂ) = (dﬂ) (see Example 7.5), the total number of dofs for all the

I+1 d—1
[-faces is (kjl) (‘;ﬂ) Vandermonde’s convolution identity implies that

e (5 )ED) ()

je{0:d}

It remains to prove that if p € Py, 4 is such that o;(p) = 0 for all i € A, then p vanishes identically.
First, p vanishes at all the vertices of K. If k£ = 1, this concludes the proof. If k > 2, fix an edge
E of K. Since p o T vanishes at the two endpoints of E, poTg = AAi1q, where Ao, Ay € P11 are
the local barycentric coordinates over ST and q € Pr_> 1. Since the dofs of p attached to £ vanish,
we infer that [, g1 Ao ¢?>dl = 0, which implies that ¢ = 0. Hence, p is identically zero on all edges
of K. If k = 2, this completes the proof since all the Lagrange nodes for k = 2 are located at the
edges of K. If k > 3, we proceed similarly by fixing a face F' of K and showing that p is identically
zero on all faces of K. If k = 3, this completes the proof since all the Lagrange nodes for k = 3
are located at the faces of K. For k > 4, we finally infer that p = Ao ... Aagx where {Ai}icq0:a}
are the barycentric coordinates of K and gx € Pj_4,4. Since the dofs of p attached to K vanish,
we infer that fK Ao - - Aaq% dz = 0, which implies that gx = 0, i.e., p = 0. [l

_ The shape functions associated with the vertices, the edges, the faces, and K are denoted by
{2} zevi {ﬂE,m}EEf)K,me{l:n:h}v {CF,m}FGJ-'K,me{lznzh}a and {U’m}me{l:n;’h}a respectively. All
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these functions are in P, 4 and form a basis thereof. Recalling Proposition 5.5 the shape functions
are computed by inverting the generalized Vandermonde matrix V' after choosing a basis of P;, 4. A
basis of Py, 4 with a structure close to that of the above shape functions can be found in Fuentes et al.
[103, §7.1]. The proposed basis can be organized into functions attached to the vertices of K, the
edges of K, the faces of K, and to K itself, and the associated generalized Vandermonde matrix V
is block-triangular. The interpolation operator has domain V(K) := C%(K) (or V(K) := W*P(K)
with sp>d, p € [1,00] or s > d, p=1) and it acts as follows:

Tr@)(@) = Y oi(&@) + Y. Y 0hn)ism®)

z€VK Eecfx me{l:ng }
+ Y Y hn@Crm@) Y o5, (0)dm(®).
FeFrx me{l:nf } me{l:ng,}

Remark 7.20 (Dofs). The interpolation operator Z- is independent of the bases {ftm }me(1:ne,}5
{Cm}me{l:nfh}, and {U’m}me{l:n;h} (this follows from Exercise 5.2). It is also independent of the

choice of the mappings T and Tp. Let for instance Tr and Ty be two geometric mappings
associated with the face F'. Then Ty Lo Ty is affine and bijective from R? to R%. Hence, (, o
(T},?1 oTr) € Py for all m € {1:nf, }, so that ¢, o (TIZ1 oTr)=>" 3 SunCp for some real
numbers Sy, i.€.,

ne{l:nt

<mngl = Z Smn(CnOijl)

ne{l:nf,}

Since the mappings T and Ty are bijective, the matrix S € R™6XMan g invertible, and we use
again Exercise 5.2 to conclude. O

Exercises

Exercise 7.1 (Lagrange interpolation). Let Zx be the P; Lagrange interpolation operator on
a simplex K. Prove that | Zx (v)|cox) < ||[v]lcoxy for all v € CO(K). (Hint: use the convexity of
K and recall that K is closed.) Does this property hold true for Py Lagrange elements?

Exercise 7.2 (Geometric identities). Prove the statements in Remark 7.6. (Hint: use the
divergence theorem to prove (7.1).)

Exercise 7.3 (Barycentric coordinates). Let K be a simplex in R?. (i) Prove that \;(z) =
1- %nmﬂ.-(m — z;) for all € K and all 7 € {0:d}, and that V\; = _%nKIFr (ii) For all
x € K, let K;(x) be the simplex obtained by joining @ to the d vertices z; with j # ¢. Show that
Ai(e) = B2 (iii) Prove that [, Aidz = Zi|K| for all i € {0:d}, and that e, Mids = §|F]
for all j € {0:d} with j # i, and fF Aids = 0. (Hint: consider an affine mapping from K to the
unit simplex.) (iv) Prove that if h € R? satisfies DA;(h) = 0 for all i € {1:d}, then h = 0.

Exercise 7.4 (Space Py ). (i) Give a basis for Py 4 for d € {1,2,3}. (ii) Show that any polynomial
p € Pj.q can be written in the form p(z1,...,2q) = r(z1,...,24-1) + aq(21, ..., 24q), with unique
polynomials r € Py 4—1 and ¢ € Py_1 4. (iii) Determine the dimension of Py 4. (Hint: by induction
on d.) (iv) Let K be a simplex in R%. Let F, be the face of K opposite to the vertex zg.
Prove that if p € Py 4 satisfies pjp, = 0, then there is ¢ € Pr_14 s.t. p = Aog. (Hint: write
the Taylor expansion of p at zq4 and use (7.2) with z4 playing the role of zy.) (v) Prove that
{Ag”...)\gd | Bo+ ...+ Ba =k} is a basis of Py 4.
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Exercise 7.5 (Nodes of simplicial Lagrange FE). Let K be a simplex in R?, and consider the
set of nodes {a;}ienr with barycentric coordinates (%, ce %), Vig,...,iq € {0:k} with i+ ...+
iqg = k. (i) Prove that the number of nodes located on any one-dimensional edge of K is (k + 1)
in any dimension d > 2. (ii) Prove that the number of nodes located on any (d — 1)-dimensional
face of K is the dimension of Py 4_1. (iii) Prove that if & < d, all the nodes are located on the
boundary of K.

Exercise 7.6 (Hierarchical basis). Let k£ > 1 and let {6y, ..., 0;} be a hierarchical basis of P, ;.
Let {\o, ..., Aq} be a basis of P; 4 and assume that \; : R — R is surjective for all i € {0:d} (i.e.,
\; is not constant). (i) Show that the functions (mapping R? to R) {0p()\;), ..., 0x()\;)} are linearly
independent for all i € {0:d}. (Hint: consider a linear combination },c .5y c0i(Ai) € Pyq and
prove that the polynomial 3~ .y by € Pr,1 vanishes at (k+ 1) distinct points.) (ii) Show that
the functions (mapping R? to R) from the set Sk 4 := {0a; (A1) ... 00y (Aa) | (a1, ... cq) € N, |a] <
k} are linearly independent. (Hint: by induction on d.) (iii) Show that (Sk q)r>0 is a hierarchical
polynomial basis, i.e., Sk.q C Sk+1,4 and Sy 4 is basis of Py, 4. (Note: the (d + 1) vertices of K do
not play here the same role.)

Exercise 7.7 (Cubic Hermite triangle). Let K be a triangle with vertices {zo, z1, z2}. Set 3 :=
{p(2:), 0u,0(2:), Oz, p(Zi) bo<i<a U {p(ak)}, where ar is a point inside K. Show that (K, P52, %)
is a finite element. (Hint: show that any p € Ps o for which all the dofs vanish is identically zero
on the three edges of K and infer that p = cA\gA1 A2 for some ¢ € R.)

Exercise 7.8 (P; 4 canonical hybrid FE). Compute the shape functions of the Py 4 canonical
hybrid finite element for the unit simplex for d = 1 and d = 2 (provide an expression using the
Cartesian coordinates and another one using the barycentric coordinates).

Exercise 7.9 (P42 Lagrange). Using the Lagrange nodes defined as in Proposition 7.11, give
the expression of the P4 » Lagrange shape functions in terms of the barycentric coordinates.

Exercise 7.10 (Quadratic Crouzeix—Raviart). Let K be the unit simplex. Let a € (0,1).
Let g1 := (,0), g2 := (1 — ,0), g3 :== (1 —a, ), g4 := (o, 1 — @), g5 := (0,1 — @), g6 := (0, ).
(i) Compute A\o(gj)? + Ai(gj)? + A2(gj)? for all j € {1:6}, where \g, A1, A2 are the barycentric
coordinates of K. (ii) Let 0; € L(P22;R) be defined by o;(p) := p(g;) for all p € Py5 and
J€{1:6}. Let ¥ := {0} }cq1:6}- Is the triple (/,P32,%) a finite element? (iii) Let F;, i € {0:2},
be one of the three faces of K. Let T, : [—1,1] — F; be one of the two affine mappings that realize
a bijection between [—1, 1] and F;. Let {qo, ¢1} be a basis of Py 1. Let wa;yr € L(P22;R), 7 € {0:2},
k € {0:1}, be defined by wa; ik (p) = ﬁ Ir. (QkOTF_'il)pdS for all p € Py . Let ¥ := {w;},c(0:5}-
Is the triple (K, P2 2, X) a finite element? (Hint: consider the points Tx, (&), ¢ € {0:2}, k € {0:1},
where &y, & are the two nodes of the Gauss—Legendre quadrature of order 3, then use Step (ii).)



Chapter 8

Meshes

In Part III, composed of Chapters 8 to 17, we introduce the notion of meshes, show how to
generate a finite element on each cell composing the mesh, and estimate the interpolation error
in each mesh cell. We also derive important discrete inverse and functional inequalities in each
mesh cell. Moreover, we discuss in some detail finite elements in H(div) and H (curl). In the
present chapter, we study how to build a mesh of a bounded subset D C R, i.e., a finite collection
of cells forming a partition of D. This is indeed the first important task to realize when one
wants to approximate some PDEs posed in D. The viewpoint we adopt in this book is that each
mesh cell is the image of a reference cell by some smooth diffeomorphism that we call geometric
mapping. We show how to construct the geometric mapping and we present various important
notions concerning meshes. We also discuss mesh-related data structures and mesh generators.

8.1 The geometric mapping

Let K be a polyhedron in R?, called reference cell. We want to build a smooth diffeomorphism
(i.e., an invertible mapping) Tk from K to K := Ty (K) using a set of geometric nodes {9i}ien e
in K with Ngeo := {1:nge0} for some integer ngeo. In practice, these nodes are provided by a mesh
generator. The key idea to build Tk is to use a Lagrange finite element in K , say (IA( , ﬁgeo, f]geo),

with reference Lagrange nodes {g;}icn,., Iin K. This finite element is called geometric finite

geo

element. It is standard to assume that cho is a space of d-variate polynomials and that there is
an integer kgeo > 1 s.t.

Pr,...d C Pgeo c C*(K). (8.1)

ge07

Notice that nge, > d + 1 since kgeo > 1. Let {wz}ze Nyeo De the shape functions of the geometric
finite element.

Definition 8.1 (Geometric mapping). The geometric mapping Tk : K — K is defined by

= Y di@)g, VEEK. (8.2)

leNgeo

Since 121\1(@) = ¢§;; for all 4,5 € Ngeo, we have Tk (g;) = g;. Notice that this construction
implies that Tk is of class C°°. We henceforth assume that Tk is a C*° diffeomorphism. Some
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care has to be taken when choosing the geometric nodes {g;}icn,., to ensure that Tk is indeed
bijective when T is not affine. Some counterexamples are shown in Figures 8.1 and 8.2.

VAN SA
— SO

Figure 8.1: Py-based generation of a triangle (top left), Po-based generation of a curved triangle
(top right), P-based generation of a parallelogram (bottom left), Q;-based generation of two
quadrangles, the second one with a nonbijective mapping (bottom right).

We adopt the usual convention that consists of identifying vectors in R? with column vectors.
This allows us to identify Tk with the column vector with entries (Tk); for all i € {1:d} and the
Jacobian of Tk with the matrix with entries

(JK)” = 8J(TK)Z, V’L,] S {1d}, (83)

where i is the row index and j the column index. The field Jx is R**%-valued and it is constant

over K if Tx is affine. Notice that the sign of det(Jx) is necessarily constant over K since we
assumed that det(Jx)(Z) # 0 for all € K (this is indeed a necessary condition for Tk to be
bijective). Contrary to what is done sometimes in the literature, we do not require that det(Jx)
has any particular sign.

Example 8.2 (Simplex generation). Let K be the unit simplex in R? with barycentric co-
ordinates {:\\i}ie{o:d} No(®) =1 - > ic{1:ay Ti and (@) == 7; for all i € {1:d}). Let K be a
simplex in R4, Taking ﬁgeo =Py 4 and the ngeo := (d + 1) vertices of K as geometric nodes, the
geometric mapping Tk : K — K is s.t. Ti (&) := Dic{o:d} Ni(Z)z; for all Z € K. In dimension
two, taking ﬁgeo = Py, ie., Ngeo := 6, we can prescribe six geometric nodes in K and build
a triangle with curved faces. See Figure 8.1 (top row) for illustrations. When using high-order
elements, some care must be taken to ensure that the geometric mapping Tk is indeed invertible.
Figure 8.2 presents two examples where the mapping T is not invertible. For the one shown on
the left, the enumerations chosen for the geometric nodes of K and K; are not compatible. The
example shown on the right is slightly more subtle since the singularity comes from the fact that
the shape functions of the Py o Lagrange finite element can take negative values and that some
geometric nodes of Ko are too close. [l

Example 8.3 (Quadrangle generation). Let K= (0,1)? be the unit square in R2. Let us set
zo = (0,0), z1 := (1,0), z2 := (0,1), and 23 := (1,1). Taking ﬁgeo = Py 2, so that nge, = 3,
we can prescribe three geometric nodes in K to build a smooth diffeomorphism. Let zy be one
vertex of K and let 21, z2 be the other two vertices of K sharing an edge with zy. Let z3 be the
fourth vertex of K. Upon setting Tk (%) := (1 —Z1 — Z2)20 + T121 + T222, we observe that K is a
parallelogram. In particular, z3 = Tk (23) = —z¢ + 21 + 22, 1.e., 20 + 23 = 21 + z2. To generate a

~

more general quadrangle, we can take Pyeo := Q1,2, 50 that nge., = 4, and use the four vertices of K



Part III. FINITE ELEMENT INTERPOLATION 73

Figure 8.2: Left: incompatible enumeration of the geometric nodes. Right: compatible enumera-
tion, but some geometric nodes are too close.

as geometric nodes. In this case, Tk () = (1—71)(1 —22) 20+ 71 (1 —Z2) 21 + (1 — &1 ) T2 20 + T1 T2 23.
The mapping T is a smooth diffeomorphism whenever the nodes of K are properly enumerated.
See the bottom row of Figure 8.1 for illustrations. In the rightmost example, T is not invertible
because the nodes are not properly enumerated. O

8.2 Main definitions related to meshes

Definition 8.4 (Mesh). Let D be a Lipschitz domain in R%. We say that T, is a mesh of D if
Th, is a finite collection of closed subsets of D, called mesh cells (or mesh elements), such that (i)
the interiors of the mesh cells are all nonempty Lipschitz domains in R? that are mutually disjoint
and (i) all the mesh cells cover D ezactly, i.e.,

D= |J K (8.4)

KeTy

The subscript h refers to a level of refinement. It is common in the literature to set h =
maxgeT;, hix with hi = diam(K) 1= maxg, z,ck ||€1 — T2||e2, where ||| g2 is the Euclidean norm
in R, and to call h the meshsize.

Figure 8.3: Reference cell K (left), mesh (right). The three arrows indicate the action of the
geometric mapping for the three mesh cells K, K/, K.

The mesh cells have often a simple shape. For simplicity, we assume in this book that all the
mesh cells have been generated from a fixed reference polyhedron K € R? (see §8.1) so that there
is a smooth diffeomorphism Tk : K> K forall K € Tr. Figure 8.3 presents an illustration using
P; geometric mappings to generate triangular cells. More generally, it is possible to consider a
finite set of reference polyhedra to generate the mesh cells. One can for instance build meshes
mixing triangles and quadrangles in dimension two, etc.
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Remark 8.5 (Approximation of D). It happens sometimes that generating meshes that parti-
tion D exactly is too complicated, or that it is only possible to construct meshes of approximations
of D. For instance, this situation arises when the boundary of D is curved; see §13.1 for examples.
Unless specified otherwise, meshes are assumed to partition D exactly. O

Definition 8.6 (Simplicial/affine mesh). The mesh T, is said to be simplicial when the ref-
erence cell K is a simplex, and the mesh Ty is said to be affine when all the geometric mappings
{Tk}keT, are affine.

In this book, we often consider simplicial affine meshes, and we speak of triangulations when
d = 2. An example is shown in Figure 8.4.

A AATaS
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VTS b v A ATe Sy B

Figure 8.4: Part of a triangulation around a two-dimensional NACAO0012 airfoil profile.

Definition 8.7 (Faces, edges, and vertices of a cell). Let K € T, be a cell. Assuming d = 3,
the faces, edges, and vertices of K are defined to be the images by Tk of the faces, edges, and
vertices of the reference polyhedron K, and these geometric entities are collected in the sets Fr,
Ex, and Vg, respectively. The same definition is valid in dimension d = 2 with the exception that
the notions of edge and face coincide. The same definition is valid in dimension d = 1, with the
exception that the notions of vertex, edge, and face coincide. We assume in the entire book that
we have either F C 0D or int(F) C D for all K € T, and all F € F.

Remark 8.8 (Geometric nodes). The notion of geometric nodes introduced in §8.1 and the
notion of vertices are different. In general, the vertices of a cell form a subset of its geometric
nodes. These two sets coincide if the geometric element is a P; 4 or Q; 4 Lagrange element. O

Definition 8.9 (Mesh faces, edges, and vertices). Let T;, be a mesh. Assume d = 3. We say
that a closed two-dimensional manifold F C D is a mesh face if there is a mesh cell K € Ty, s.t. F
is a face of K, i.e., F € Fr. Similarly, a closed one-dimensional manifold E C D is a mesh edge
if there is a mesh cell K € Ty, s.t. E € £k, and a point z € D is a mesh vertex if there is a mesh
cell K € Ty, s.t. z € Vk.

Another important notion is that of interfaces and boundary faces.

Definition 8.10 (Interfaces, boundary faces). A subset F' C D is an interface if F has
positive (d—1)-dimensional measure and there are two distinct mesh cells K;, K, € Ty, such that
F = 0K, N 0K, and F is a subset of a face of K; and of a face of K,. A subset F C D is a
boundary face if F' has positive (d—1)-dimensional measure and if there is a mesh cell K; € Ty,
such that F := 0K; N 0D and F is a face of K;. All the interfaces are collected in the set Fy, all
the boundary faces are collected in the set ]-',?, and we define

Foim FOUFD. (8.5)
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The subscripts {l, 7} in the definition F' := 0K; NOK, refer to the left cell and to the right cell.
The notion of left and right cell will be unambiguously defined later by orienting all the interfaces.
Distinguishing the left from the right cell will be important when defining jumps across interfaces
(see Definition 18.2). In addition, we also have F' = K; N K, since the mesh cells have mutually
disjoint interiors by assumption. Furthermore, we observe that a boundary face is always a mesh
face, but an interface is not necessarily a mesh face since the notion of interface depends on the
way adjacent mesh cells come into contact. An illustration is presented in Figure 8.5. For the
mesh shown in the left panel, we have F;, = |J ke, FK- For that shown in the central panel,
we have F;, C UKeTh Fr but UKeTh Fx ¢ Fp. For that shown in the right panel, we have

]:h ¢ UKETh ]'—K and UKETh ]:K ¢ ]:h-

Figure 8.5: Three examples of a triangulation of a square. Left panel: the mesh is composed of
2 cells and there is one interface. Central panel: the mesh is composed of 3 cells and there are
3 interfaces. Right panel: the mesh is composed of 5 cells and there are 7 interfaces. The three
meshes contain 4 boundary faces.

The meshes shown in Figure 8.3, in Figure 8.4, and in the left panel of Figure 8.5 fall into the
important class of matching meshes. Matching meshes play a central role in this book since they
facilitate the construction of discrete spaces composed of piecewise smooth functions having an
integrable gradient, curl or divergence (see Chapter 19 and onwards).

Definition 8.11 (Matching mesh). A mesh Ty, is said to be matching if for all cells K, K' € Ty,
s.t. KN K' is a manifold of dimension (d — 1), then K N K’ is an entire face of K and an entire
face of K'.

Proposition 8.12 (Mesh faces). Let Tj, be a matching mesh. Then,

Fn=J Fx. (8.6)
KeTy,

Proof. Let F € Fp,. If F € F?, we infer from Definition 8.10 that F' € Fg,, whence F €
UKeTh Fr. If F e Fp, we have F' := 0K;NOK, = K;NK,, and we infer from Definition 8.11 that
F e Fi, N Fk,, whence F' € UKeTh Fr. We have thus shown that F;, C UKeTh Fr. Conversely,
let K € T, and F € Fg. If F C 0D, we infer that F' € ]—',?. Otherwise, our assumption on the
faces of a mesh cell in Definition 8.7 implies that int(F) C D, and since the mesh cells form a
partition of D, we infer that there is a mesh cell K’ # K s.t. KNK' C F and KN K’ is a manifold
of dimension (d — 1). Since the mesh is matching, K N K’ is a full face of both K and K’ so that
F' = K N K', which proves that I € F;;. We have thus shown that Jy .7 Fx C Fp, and this
completes the proof. O

One can verify that Definition 8.11 implies that if KNK’ # () and K # K’, then the set K N K’
is a face, an edge (if d = 3), or a vertex that is common to K and K’. For matching meshes we
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denote the collection of the mesh edges (if d = 3) and the collection of the mesh vertices as follows:

5h = U SK, Vh = U VK. (87)
KeTh KeTn

Remark 8.13 (Euler relations). Let T, be a matching mesh of a polyhedron D in R%. If d = 2,
let I be the degree of multiple-connectedness of D (i.e., the number of holes in D). Let Ng, N,
Ny, Nf , N\‘? be the number of mesh cells, edges, vertices, boundary edges, and boundary vertices,
respectively. Then we have

Ne—Ne+N,=1-1, N?-N?=o. (8.8)

If d = 3, let additionally J be the number of connected components of the boundary of D, and let
Ng, Nfa be the number of mesh faces and boundary faces, respectively. Then we have

Ne—=Ni+N.—Ny=—-141-J, NP -N2+N2=2(J-1). 0

8.3 Data structure

A mesh is a data structure produced by a mesh generator. This data structure consists of a cloud
of points, called geometric nodes, that are numbered and connected. There are many ways to
construct this data structure. Let us give an example. We start by enumerating the geometric
nodes {g1,...,9n,., } Where Ny, is the number of geometric nodes. This enumeration is said to
be global. The geometric nodes are defined by their coordinates in R?. These quantities are stored
in a two-dimensional array of size dx Ngeo, which we denote by

coord(1:d, 1:Ngeo), (8.9)

and we say that coord is the coordinate array of the mesh. For all k € {1:d} and all n € {1: Ngeo !,
coord(k, n) is the k-th coordinate of g,,.

The geometric nodes are organized into mesh cells by means of a connectivity array, in such
a way that every mesh cell is assigned ngeo, geometric nodes. Let us enumerate the mesh cells as
{K1,...,Kn_,} where N; is the number of mesh cells. The geometric nodes associated with any
mesh cell can be recovered from a two-dimensional array of size N.XNgeo, Which we denote by

j—geo(1:Ne, Lingeo). (8.10)

For all m € {1:N.} and all n € Ngeo (recall that Ngeo := {1:ngeo}), the integer j_geo(m,n) is the
global index of the n-th node in the m-th cell. The second index in the array j_geo provides the
local enumeration of the geometric nodes for each mesh cell. Using the connectivity array and the
coordinate array, it is possible to rewrite the geometric mapping Tk from Definition 8.1 as follows:

(Tk,, (x)), = Z U (&) coord(i, j_geo(m,n)), (8.11)
nGNgco

for all Z € K, all m € {1:N.}, and all i € {1:d}.

Example 8.14 (Enumeration in a simplex). Figure 8.6 shows an example of local and global
enumerations. Here, the geometric reference element is the two-dimensional P; Lagrange element,
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i.e., Ngeo = 3. We consider three mesh cells with global indices 56, 213, and 315. The values of the
connectivity array are j_geo(315,1) = 13, j_geo(315,2) = 37, j_geo(315,3) = 250, j_geo(56,1) =
13, j_geo(56,2) = 37, j_geo(56,3) = 53, etc. We have adopted the convention that for any m,
the value of j_geo(m,n) increases with n. This choice will be instrumental in Chapter 10 when
orienting the mesh. Note that the sign of det(Jx) is different in the cells 315 and 56. O

250 Global index of geometric node

® Local index of geometric node

Global index of mesh cell

Figure 8.6: Example of local and global enumerations of geometric nodes for three triangular mesh
cells.

In many situations, it is useful to have two-dimensional arrays providing the global indices
of the faces, edges, and vertices of any mesh cell. The reason is that finite element matrices
are assembled by means of a loop over the mesh cells (see §29.2.3), and that these arrays are
instrumental to identify degrees of freedom attached to the mesh faces, edges, and vertices. Let
us focus on matching meshes and let us enumerate the mesh faces, edges, and vertices in Fp,, &,
and Vy, from 1 to N¢, N, and Ny, respectively, i.e.,

Frn={Fitjei:ny:  En={Ej}jeqi:ny Vo ={2}jeq1: N

Let net, nee, and ney be, respectively, the number of faces, edges, and vertices of a mesh cell.
For instance, ne = 4, nee = 6, and n.y = 4 for a tetrahedron. We introduce the following
two-dimensional arrays:

jcf(1:Ng, Lings), jce(1:Ng, Linge), jcv(1:Ng, Lingy). (8.12)

For all m € {1:N.} and all n € {1:n¢}, the integer j_cf(m,n) is the global index of the n-th face
in the m-th cell, and similarly for j_ce and j_cv. In other words, we have

TKm (Fn) = Fj_cf(m,n)a TKm (En) = Ej_ce(m,n)a TKm (277«) = Zj_cv(m,n)-

Notice that the arrays j_cv and j_geo are different in general, just like the vertices and the
geometric nodes may be different objects.

Remark 8.15 (Alternative data structure). Another choice is to consider the two-dimensional
arrays j_cf(1:N., 1:nct) (as above) together with the two-dimensional arrays j_fe(1:N¢, 1:ng) (pro-
viding the global indices of the edges of a given mesh face, where ng is the number of edges of
a face, assuming that this number is face-independent), and j_ev(1:N, 1:2) (providing the global
indices of the two vertices of a mesh edge). The information stored in the array j_ce (resp., j_cv)
can then be recovered from the arrays j_cf and j_fe (resp., j_cf, j_fe, and j_ev). The reader must
be aware that all these compositions involve memory accesses that may be time consuming. O
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Figure 8.7: Meshing a two-dimensional domain.

8.4 Mesh generation

Mesh generation is a basic ingredient of finite element methods. Generating a mesh is often a
time-consuming task, especially for complex three-dimensional configurations. Mesh generators
involve two types of tasks: (1) representing geometrically the boundary of the domain by using
suitable mappings parameterizing paths or surfaces; (2) meshing the lines, surfaces, and volumes
that have been identified in the first task. This section briefly describes how to organize the above
two tasks. The material is meant to provide some basic understanding of the process.

8.4.1 Two-dimensional case

Let us consider a two-dimensional domain D and let us think about how D can be geometrically
represented.

1. D is entirely defined by its one-dimensional boundary, 0D.
2. The boundary 9D can be decomposed into its connected components.
3. Each connected component can be partitioned into a union of paths.

4. Each path can be assigned two extremities (possibly by cutting the paths that are closed).
These points are referred to as the vertices of 9D.

5. Each path can be mapped to the interval [0, 1].

As an illustration, consider the domain shown in Figure 8.7. Its boundary is composed of two
connected components. The external component is the union of the three paths PQ, QR, and RP.
The internal boundary is transformed into a path that is homeomorphic to a segment by cutting
it at S. In conclusion, the boundary of D is decomposed into the union of four paths: 0D; := PQ,
0Dy := QR, 0D3 := RP, and 0D, := SS.

A general algorithm for a two-dimensional mesh generator is obtained by reading in reverse
order the above list:

1. Locate the vertices of 0D and partition 0D = Une{l_Na} dD,, so that each elementary path
. P

0D, is limited by two vertices (possibly identical). Here, Ng denotes the total number of
elementary paths.
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2. Connect the two vertices of dD,, for all n € {1:NZ} by a parameterized path v, : [0,1] —
dD,,.

3. Letting Uie{l:ln}[‘rnJ*l?xmi] be a partition of [0, 1] into I,, small segments, the boundary
mesh on 0D is UnE{l:Ng} Uie{l;jn} ”Yn([zn,ifl, ZZ?n,z])

4. Finally, mesh the interior of D by extending the boundary mesh. This last step usually
involves an advancing front method where mesh vertices are progressively inserted inside the

domain and connected to the other vertices to form new triangles (see Figure 8.8); see, e.g.,
Rebay [166] and the references therein.
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Figure 8.8: Triangulation of a circle by an advancing front method. Various stages of the mesh
generation process are illustrated.

8.4.2 Three-dimensional case

The above algorithm extends to dimension three. As in dimension two, the algorithm is deduced
from the geometric description of three-dimensional domains. Let D be a three-dimensional do-
main.

1. D is entirely defined by its two-dimensional boundary, 0D.
2. The boundary 9D can be decomposed into its connected components.

3. Each connected component can be decomposed into a union of orientable surfaces with edges,
say 0D = Une{L noy 0Dn (N2 is the total number of these surfaces). For instance, a sphere
can be decompose& into two hemispheres. The orientation of the connected components of
0D says on which side of D the interior of D is.

4. Each orientable surface dD,, can be mapped to a two-dimensional domain 8D721D C R? by a
mapping v, : (?DiD — 0D,.

5. Each two-dimensional domain dD?" for all n € {1: N2} can be described by means of the
algorithm from §8.4.1.

An illustration is presented in Figure 8.9. The domain is a cone. Since the boundary of the cone
is connected but has no edges, it is decomposed into two simpler surfaces by separating the base
and the lateral surface. The base is homeomorphic to a disk, dD?". The lateral surface is further
transformed by cutting it along the segment PQ. The surface thus created is homeomorphic to a
triangle, (?D%D. When meshing the two sides of the triangle associated with the segment PQ, one
must make sure that the two one-dimensional meshes coincide.

An algorithm to mesh a three-dimensional domain is obtained by reading the above list from
bottom to top:
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Q
Q @
Figure 8.9: Geometric representation of a three-dimensional domain.

1. Construct a mesh h)lz of each two-dimensional domain D?P for all n € {1: N2} by applying
the algorithm from §8.4.1.

2. A mesh for 0D,, is defined to be 7;?71 1=y (T)2) for all n € {1: N2},
3. The union U, (. noy 7;1‘971 is the boundary mesh.
4. Finally, mesh the interior of D by extending the boundary mesh.

Remark 8.16 (Extruded meshes). Some applications use either cylinders or domains that are
homeomorphic to cylinders. A possible strategy to mesh the interior of domains of this type consists
of meshing first its right section, which can have any two-dimensional shape, then extruding the
mesh of the right section along the generatrix. Depending on the elements chosen to mesh the
right section, the volume mesh is typically composed of prisms of triangular or quadrangular base.
These prisms can be further decomposed into tetrahedra if needed. [l

Exercises

Exercise 8.1 (Curved triangle). Consider the Py transformation of a triangle shown in the
upper right panel of Figure 8.1. Consider a geometric node of K that is the image of the midpoint
of an edge of K. Show that the tangent vector to the curved boundary at this node is collinear to
the vector formed by the two vertices of the corresponding curved edge. (Hint: use the properties
of the Lagrange Py shape functions.)

Exercise 8.2 (Euler relations). Let 7;, be a matching mesh in R? composed of polygons all
having v vertices. (i) Show that 2N, — N2 = vN.. (ii) Combine this result with the Euler
relations to show that N, ~ %NV and Ne ~ -5 N, for fine enough meshes where N\? = Nca <
min(Ny, Ne, Ne).

Exercise 8.3 (Connectivity arrays j_cv, j_ce). Write admissible connectivity arrays j_cv and
j_ce for the following mesh where the face enumeration is identified with large circles and the cell
enumeration with squares.
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Exercise 8.4 (Connectivity array j_geo). Define a connectivity array j_geo for the following
mesh such that the determinant of the Jacobian matrix of Tk is positive for all the cells.

[N

6
Exercise 8.5 (Geometric mapping). Let z1 := (0,0), 22 := (1,0), 23 := (0,1), z4 := (3,3).
Consider the triangles Ky := conv(z1, 22, z4), K2 := conv(za, 23, 24), and K3 := conv(zs, 21, 24).
(i) Construct the affine geometric mappings Tk, : K1 — Ko and Tk, : K1 — K3 s.t. Tk, (2z1) = 22,
Tx,(z4) = 24, and Tx,(21) = 23, Tk, (24) = z4. (Hint: Tk, is of the form Tk, (x) = zo + I, (x —
z1).) (ii) Compute det(J x, )J]I_(i and det(J g, )J]I_(i Note: the transformation v +— det(Jx)J ' voTx
is called contravariant Piola transformation; see (9.9¢).
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Chapter 9

Finite element generation

In the previous chapter, we have seen how to generate a mesh from a reference cell and a collection
of geometric mappings. We now show how to generate a finite element in each mesh cell from a
reference finite element. To this purpose, we need one new concept in addition to the geometric
mapping: a functional transformation that maps functions defined on the current mesh cell to
functions defined on the reference cell. Key examples of such transformations are the Piola trans-
formations. These transformations arise naturally in the chain rule when one investigates how
the standard differential operators (gradient, curl, divergence) are transformed by the geometric
mapping. The construction presented in this chapter provides the cornerstone for the analysis
of the finite element interpolation error to be performed in Chapter 11. Recall that ||-||,2 is the
Euclidean norm in R? and a-b denotes the corresponding inner product.

9.1 Main ideas

Let 7, be a mesh generated as described in Chapter 8. This means that we have at hand a
reference cell K (recall that K is a polyhedron) and a geometric mapping Tk : K — K for every
mesh cell K € Tp,. Given an integer ¢ > 1, our goal is now to define a finite element in K composed
of R?-valued functions defined on K. To this purpose, we assume that we have at hand a fixed
finite element (K, P, X), where P is composed of R%-valued functions defined on K, and X is the
collection of the degrees of freedom (dofs) for these functions.

The triple (l? P, ) should not be confused with the geometric finite element (l? , ﬁgeo, Egeo)
whose only use is to define K, whereas (IA( ,ﬁ, f) is used to interpolate R%-valued functions.
The interpolation is said to be isoparametric whenever [ﬁgco]q = P and subparametric whenever
[ﬁgeo]q - P. The most common example of subparametric interpolation consists of using affine
geometric mappings together with shape functions that are quadratic or of higher polynomial
order.

Definition 9.1 (Reference element). (l? P, 2‘) is called reference finite element, and with
obvious notation {7; bienr and {0;}ien are called reference dofs and reference shape functions,
respectively.

Recalling Definition 5.7, we also assume that we have at hand a Banach space V(IA() C
LY'(K;R?) such that P C V(K) and such that the linear forms {;}icar can be extended to
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L(V(K);R) (we use the same symbol 3; for simplicity). The interpolation operator Ty V(K)— P
associated with (K, P, ) is defined as follows (see (5.7)):

Iz(0)(&) =Y 6:(0)0:(2), VZeK. (9.1)
ieN
The operator Zp is called reference interpolation operator.
Since our goal is to generate a finite element on K and to build an interpolation operator

Tk acting on functions defined on K, we introduce a counterpart of the space V(IA( ) for those
functions, say V(K). The new ingredient we need for the construction is a transformation

~

Vi V(K) = V(K), (9.2)

which we assume to be a bounded linear isomorphism. A simple definition of 1 g is the pullback
by the geometric mapping, i.e.,

Y (v) :=voTk, Vv € V(K). (9.3)

We will see that this definition is well-suited to nodal and modal finite elements. However we will
also see that this definition is not adequate when considering vector-valued functions for which the
tangential or the normal component at the boundary of K plays specific roles. This is the reason
why we use a general notation for the functional transformation ¢ .

Proposition 9.2 (Finite element generation). Let (K, P,X) be the reference element with
extended dofs {G:}ienr € L(V(K):R). Let K € Tp, be a mesh cell. Assume that we have at hand
a Banach space V(K) and a bounded linear isomorphism ¢ € L(V(K):V(K)). Then the triple
(K, PK, EK) s.1.

Pi = (P) = {p= v () | B € P}, (9-4a)
YK = S‘OQ/JK:{UKJ' = 8i|ﬁo¢K}ieNC£(PK;R), (94b)

is a finite element. The dofs in X can be extended to L(V(K);R) by setting ok ; := 0; 0k for
alli e N.

Proof. We apply Remark 5.3 to prove that (K, Pk, Yk ) is a finite element. Since ¥ is bijective, we
have dim(P) = dim(P) = ng,. Let p € P bes.t. ok,i(p) =0foralli € N. Then o;(¢k(p)) = 0 for
alli € NV, so that i (p) = 0 by the unisolvence property of (IA(, ﬁ, f) This implies that p = 0 since
Y is an isomorphism. Finally, since (7; oY) p = 81.‘13 o, the linear map 0; o : V(K) - R
is an extension of ok ; : Px — R to V(K) (we use the same notation for simplicity), and we have
ok, € LIV(K);R) since |og ;(v)| < ||8i||£(V(f();1R)||7/’K||£(V(K) V(IA())||U||V(K) forallv e V(K). O

The linear forms {ox ;}ien are called local dofs. The following functions, called local shape
functions:

Oxi = it (0), Vie N, (9.5)

satisfy ok (0K ;) = 0:(Vr (0K ;) = a-@-) = 0;; for all i, j € N. The local interpolation operator
Tk : V(K) — Pg acts as follows:

IK(’U)(w) = Z UK,i('U)eK,i (ilt), Ve € K. (96)
ieN

The following result plays a key role in the analysis of the interpolation error.
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Proposition 9.3 (Commuting diagram). We have Ty = 1/11}1 oZg oYk, i.e., the following
diagram commutes:

Vi ~

V(K) V(K)
S
Py — YK B

i.e., Pk is pointwise invariant under Lk, that is, Ik (p) = p for all p € Pk.

Proof. Let v in V(K). The definition (9.4) of (K, Pk, X k) implies that

Tz (Wr(v) = Z oi(YK (v 9 = Z 0k,i(V) Vi (0k,i) = U (T (v)),

iEN iEN

ow1ng to the linearity of ¢x. Hence, the above diagram commutes. Let now p € Px. We have
Ik (p) = ¥i' (Tg (WK (p) = ¥ (wK( )) since 1k (p) € P and P is pointwise invariant under Ty
Hence, Zi (p) = p. D

Example 9.4 (Lagrange elements). Let (I?,ﬁ, f) be a Lagrange finite element with nodes
{@;}ien and V(K) := CO(K); see §5.4.1. Set V(K) := C°(K). The map g : V(K) — V(K) de-
fined in (9.3) is an isomorphism in £(V (K); V(K)). The finite element (K, Pg, ¥ ) constructed in
Proposition 9.2 using ¥k is also a Lagrange finite element. Indeed, we have ok ;(p) := 7; (¥ K (p)) :=
Vi (p)(@;) = (poTk)(a;) for all p € Pk. Setting

ag ;= TK(al), Vi € N,

we infer that {ax ;}icn are the Lagrange nodes of (K, Px,¥k). The Lagrange interpolation
operator Zx acts as follows:

Ti()(x) = > vlaki)fxi(x), VYxeK. (9.7)
1EN

Note that even if P is a polynomial space, Px := {po Ty L pe ﬁ} is not necessarily a polynomial
space unless Tk is affine. O

Example 9.5 (Modal elements) Let (K, P, 2) be a modal finite element with dofs 7;(p) :=
‘K‘ Iz (;pdz for all p€ P and all i € N, where {C; }ic is a basis of P, and let V(K) := LY(K);

see §5.4.2. Set V(K) := L*(K). The map v : V(K) — V(K) defined in (9.3) is an isomorphism
in L(V(K);V(K)). The finite element (K, Px,X k) constructed in Proposition 9.2 using ¢ is
also a modal finite element. Indeed, we have for all p € Pk,

oxi(p) = 5i(Wxc (p) : lKl/g )(po Tic) () dz

1 ~
= —= =N _(CKZ OTK)(pOTK) d'r =T CK’ide’

with (ki = aKZi o Tgl, = |det(Jg)| ™! ‘If‘, and Jx is the Jacobian matrix of Tk defined
n (8.3) (ax =1if Tk is aﬁine) O
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9.2 Differential calculus and geometry

In this section, we present basic identities from differential calculus and geometry showing how
the usual differential operators (gradient, curl, and divergence) and normal and tangent vectors
are transformed by the geometric mapping. We refer the reader to (4.6) for the definition of the
divergence operator and to (4.7) for the definition of the curl operator with d = 3 (the material
can be adapted to the case d = 2 by proceeding as in Remark 4.18).

9.2.1 Transformation of differential operators

Let K be the reference polyhedron in R? and let K € T, be a mesh cell. Let Tk : K > K
be the geometric mapping and let Jx be the Jacobian matrix of Tk (see (8.3)). Recall that we
use boldface notation for R%valued functions and for functional spaces composed of R%-valued
functions. For instance, we write C'(K) := C'(K;R?) for all [ € N. The following result is of
fundamental importance.

Lemma 9.6 (Differential operators). Let v € C1(K) and v € CY(K). The following holds
true for all € K :

V(voTk)(®) = Ik ()" (Vo)(Tk (2)), (9-8a)
Vx (T (voTk))(@) = det(T () I (2) (V<) (T (2)), (9-8b)
V-(det(J ) (v 0 Tk))(@) = det(Tx (2))(V-0) (T (2)). (9-8¢)

Proof. (1) Proof of (9.8a). Since the link between the Jacobian matrix of Tk and its Fréchet
derivative (see Definition B.1) is that DT (Z)(h) = Jx (Z)h for all h € R?, we can use Lemma B.4
(chain rule) with n :=1 to infer that

D(v o Tk)(®)(h) = Dv(Tk (2))(DTk (z)(h)) = Do(Tk (%)) (I (z)h).
Using the gradient to represent the Fréchet derivative yields (9.8a) since
V(voTg)(Z)-h =D(voTk)(x)(h) =Dv(Tk(Z))(Jx(Z)h)

= (Vo)(Tx () (Jx (@)h) = (Jx (&) (V0)(Tk (2)))-h.

(2) Proof of (9.8¢). This identity is deduced from (9.8a) by integrating by parts. Since Tk is

bijective, the ratio ex := ﬁ:%i gl is constant over K and is either equal to —1 or 1. Moreover,

the volume measure in K at  and in K at Z are s.t. dz = |det(Jx (Z))| dZ. Let ¢ € C3°(K) be a
smooth scalar-valued function compactly supported in K. Integrating by parts and using (9.8a),
we infer that

[ (0 (Tic(@)a(Tic(@) det(1c(@)) 07 = e [ (V0)(@)a(z) da
K K
~—cx [ (@Va)(@)do = —cx [ (090)(Tk (@) Wet(Tx ()| 02

- /z?((” o Tk)-(J V(g o Tk))(®) det(Jx (2)) dZ

—/I?((det(JK)J;{l(voTK))-V(quK))(éz\)dEE

:AvmwmmwﬂMWMn@ma
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which proves (9.8¢) since ¢ is arbitrary.

(3) Proof of (9.8b) in R3. Let € be the Levi-Civita symbol (g;;5 := 0 if at least two indices
take the same value, €193 = €231 = €312 := 1, and €132 = €913 = €321 := —1). Recall that
det(Jr) = €ijr(Tr)1iTr)2; Tr)se = €ijpn(Tx)in Tr)j2(Jr)rs and (VXv); = €;510;vk, with the
Einstein convention on the summation of repeated indices. For all ¢ € {1:d}, we have

I Vx(Jk(voTk)))i = (Jx)ije im0k T (v o Ti)):
= (Jr) im0k (TR ) im (vm 0 Tre))
= (Tr)ijejm (0T )mi(vm © Tr) + (T )miOk (vm © T )) -
Let T; and To be the two terms on the right-hand side of the above equality. Since Ok (Jx)mi =

8kl(TK)m = 8lk(TK)m = 8Z(JK)mk, we infer that ¥, = (JK)ij%(Ejkl —I—Ejlk)ak(JK)ml(vmoTK) =0.
Moreover, since €51 (Jx)ij (i )nk (T i )mi = €inm det(J k), we infer that

To = (Tk)ijejrt Tr)mi((Onvm) o T ) Tk ) nik

= €kl (JK)ij (T )k (T ) mi ((Opvm) 0 Tk)
= Einm det(JK)((an’Um) @) TK) = det(JK)((VX’U) o TK)i- O

Remark 9.7 (Literature). See Marsden and Hughes [139, pp. 116-119], Ciarlet [75, p. 39], Monk
[145, §3.9], Rognes et al. [168, p. 4134]. O

Definition 9.8 (Piola transformations). Let v € C°(K) and v € C°(K). The Piola transfor-
mations are defined as follows:

Y5 (v) == v o Tk, (9.9a)
P (v) := Tk (v o Tk), (9.9b)
P (v) = det(J ) I ' (v o Tk), (9.9¢)
Y2 (v) :=det(J g ) (v o Tk) (9.9d)

Y% is called pullback by the geometric mapping, % is called covariant Piola transformation, and
¢ is called contravariant Piola transformation.

Corollary 9.9 (Commuting properties). The Piola transformations are such that for all v €
CHK) and all v € C'(K),

V(@ (v) = $i(Vv), V(@i (v) = $x(Vxv), V(@i (v)) = ¥ (Vo).
Proof. Apply Lemma 9.6. O

The superscript g (resp., ¢, d) refers to the fact that the map ¥% (resp., 9%, 9% ) is used when
integrability properties on the gradient (resp., curl, divergence) are required. The superscript b
for “broken” means that no integrability with respect to any differential operator is invoked.

9.2.2 Normal and tangent vectors

Another important property of the Piola transformations is that ¢ (resp., 1,b§() preserves the
moments of the tangential (resp., normal) components of fields at the edges (resp., the faces) of
the mesh cell K. Let us first motivate this claim by a simple example.
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Figure 9.1: Illustration of Example 9.10.

Example 9.10 (Piola transformation vs. pullback). Referring to Figure 9.1, let K be the
triangle with vertices (0,0), (1,0), and (0,1). Let K be the image of K by the geometric mapping
Ty defined as the rotation of center (0,0) and of angle 5. Let F (resp., 132) be the edge of K
corresponding to 2o = 0 (resp., 21 = 0), and let F; and Fy be the images of ﬁl and ﬁg by Tk,
respectively. Consider the constant field v(z) := (1,0)T. Note that 9% (v) = v since v is invariant
under the pullback by Tk (applied componentwise). Hence, v is tangent to F», whereas 9% (v) is
normal to Fy. Moreover, v is normal to F, whereas 1/)K( v) is tangent to Fy. But P (v) = (0,—1)T
is tangent to Fy, and P(v) = (0,—1)T is normal to Fi. O

Our first result identifies how the geometric mapping Tk : K — K transforms normal and
tangent vectors on 0K.

Lemma 9.11 (Normal and tangent). (i) Let ng be the outward unit normal to 0K and let ng
be the outward unit normal to OK. Let F be a face ofl? and let F' = TK(ﬁ) be the corresponding

face of K. Let & € int(F) so that nfﬂﬁ(A) is well defined, and let x := Tk (Z) € int(F). Then we

have
1 1-Th = '
'”'K|F(w) - ||(J_ AAIA)(A)HEQ( K K\F)( ) (9 10)

(ii) Let E be an edge of K and let E := Ty (E) be the corresponding edge of K. Let T € int(E),
let Tz be a unit tangent vector to E at T, and let x := Tx (x) € E. Then the vector

Ux7p)(Z) (9-11)

TE(x) = H

1
JxTp) (@)l
is a unit tangent vector to E at x.

Proof. (1) Let zz be the signed distance function to a , assumed to be negative inside K. Then
V(&) = fig p(@). Defining ¢ := ¢ o Tye" and using (9.8a), we have Vi) (z) = I (2)Vy(2) =
I @)ne | #(Z). Since v is constant (equal to zero) over int(F') and takes negative values inside
K, the vector Vi(x) is normal to F' and points toward the inside of K. This proves (9.10).

(2) Consider an edge E := F; N Fy of K and let # € E. Since

Jx' g 5) @) JxT3(®) = g5 (2)75(@) =0,

we infer from Step (1) that JKTE( ) is tangent to F; := Ty (F}) for all i € {1,2}. Hence, JrTg) ()
is tangent to F; N F; = £ = Tx(E). O

Our next step is to identify how surface and line measures are transformed by the geometric
mapping Tk. Observe that the unit of Jx is a length scale and that the unit of det(Jx) is a
volume. The identity (9.12a) is sometimes called Nanson’s formula in the continuum mechanics
literature; see [149, p. 184] and Truesdell and Toupin [192, p. 249, Eq. (20.8)].
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Lemma 9.12 (Surface and line measures). The surface measures on F at @ and on F :=
Tk (F) at x := Tk (Z) are such that

ds = det(T ) (@) (T 7 g 7) (@)l 05, (9.120)
48 = |det (T ) @) [|(Tere ) ) |2 s (9.12b)

The line measures on E at & and on E = Tk (E) at @ := Tk (Z) are such that

dl = |Jx7e) @) dl,  dl=|Jme)(@)]e dl. (9.13)

Proof. Let ¢ € C§°(F) and let v € C*(K) be s.t. v-ng|p = q and v-ngpr\r = 0 (this con-
struction is possible since ¢ is compactly supported in F' and so vanishes near JF where ng is
multivalued). Recall that 9% (v) = det(Jx)J ' (v o Tk) and that ex := % = +1. Using
(9.8¢) and (9.10), we infer that

Ja@as= [ @no@ds= [ (To@ae
. /K Vb (v)(2) d7 = exc / (W (v)ig) (@) ds

= /E)I?(J%l v)-(Ten)(Ti ()| T 72 ) (&) |2l det (T ) ()| d5
:/A(’U'nK)(TK(CE))H(J;}TﬁK)(CE)llp|d€t(JK)(53)|d§
0K
/F (Tx (@)1 T R g p) (@)l el det (T ) ()] d.
This yields (9.12a). To prove (9.12b), we use the following identity:

1Tknkip) @)l = T g 2) @)

which follows from (9.10) and the fact that nx and ng are unit vectors. We refer the reader to
Exercise 9.2 for the transformation of line measures. O

We can now state the main result of this section showing that the Piola transformations %
and 19 % are tailored to preserve the moments of the tangential components of fields over edges

and the moments of the normal components of fields over faces, respectively. Let F be a face of K
and let E be an edge of K. Let F := TK(F) and E = TK(E) be the corresponding face and edge
of K. Let ng be a unit vector normal to F and let 7 T5 be a unit vector tangent to E. Note that
N can point either toward the inside of K or the outside of IA(, i.e., we only have ng = :I:ﬁfqﬁ.

Recall that e := ‘gitg’; ;l = +1. Lemma 9.11 shows that the following unit vectors:
d = 1 —T~ ~
8 (fip)(@) = ex ————— (I 7p)(@). (9.14a)
[Tk np) (@)
~ 1 PN
D% (T5)(z) = Jx75) (@), (9.14b)

1(JxT5)(@)ll2

are, respectively, normal to F' and tangent to F at @ := Tk (Z). The definitions in (9.14) are
motivated by the following result.
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Lemma 9.13 (Preservation of moments of normal and tangential components). Let
v e CYUK) and g € CO(K). The following holds true:

/(v@%(ﬁﬁ))(w)q(w) dS:/A(%b%(v)'ﬁﬁ)(@)wi(q)(@) ds, (9.152)
F F
/(v@%(?@))(wM(m)dl:/A(%b%(v)'?g)@)wi(@@) dl. (9-15b)
E E

Proof. To prove (9.15a), we use the transformation of surface measures from Lemma 9.12 followed
by the definition (9.14a) of ®% (nz) and the definition of the maps 9% and 9% (see (9.9)) to
obtain

/ (0 &% (p)) (@)g(x) ds
F

= /ﬁ(v*I’%(ﬁﬁ))(TK(&?))w%(q)(ﬁ)ldet(ﬂx)@)l 1T 75 (@)l ds

= /J(v o Tk )- (T 1)) @)V (0) (@) det (I ) (Z) A5

F
- [ Wk ap@v @@
The proof of (9.15b) uses similar arguments and is left as an exercise. O
Remark 9.14 (Sign of det(Jx)). The factor ex = +1 in the definition (9.14a) is due to the fact
that the contravariant Piola transformation 1#?{ may transform an outward-pointing field into an

inward-pointing field. The definition (9.14a) is such that the sign of % (nk)(Z)-nz(Z) and the
sign of ng (x)-®% (nz)(x) are identical. Note that ex = 1 if det(Jx) > 0. O

Exercises

Exercise 9.1 (Canonical hybrid element). Consider an affine geometric mapping Ty and
the pullback by Tk for ¢x. Let (K, P,Y) be the canonical hybrid element of §7.6. Verify that
Proposition 9.2 generates the canonical hybrid element in K. Write the dofs.

Exercise 9.2 (Line measure). (i) Prove Lemma 9.12 for line measures. (Hint: the change
| T (@+RT) ~ T (Z)ll2 .) (ii) Assume that d = 2. Show that

A7l g2
|det(JK)|||J;(Tﬁ||p(Rz) = ||IJ&T||s2(m2) for any pair of unit vectors (n,7) that are orthogonal.

in line measure is ‘di—%(w) = limy_o

Exercise 9.3 (Surface measure). (i) Let Tr := KIF F— FandZ € F. Let Jp(z) €
R4*(4=1) be the Jacobian matrix representing the (Fréchet) derivative DTr(Z). Let gp(Z) =
Jr@)"Ip(@) € RE-DX(=1) he the surface metric tensor at Z. Prove that \/det(gr(Z)) =
|det(J )| [T 7l|g2- (Hint: use that ds = \/det(gr(z))ds.) (i) Let K = {(#1,%,73) e R3 |0 <
T1,T9,T3, T1 + T2 + T3 < 1} be the unit simplex in R3. Let Tk (%) := (T, 22,77 + 73 — 23) . Let
F be the face {Z3 =0} and F := TK(ﬁ). Compute Jr, Ji, gr and verify the identity proved in
Step (i).

Exercise 9.4 (Sobolev spaces). Prove that 1% is a bounded isomorphism from H'(K) to
HY(K), that %% is a bounded isomorphism from H(curl; K) to H(curl; K), and that 9% is a
bounded isomorphism from H (div; K) to H (div; K).
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Exercise 9.5 (Transformation of cross products). Let A be a 3x3 invertible matrix. Prove
that A~ T (xxy) = det(A) " (AzxAy) for any vectors z,y € R3.

Exercise 9.6 ((9.15b)). Prove (9.15Db).
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Chapter 10

Mesh orientation

Orienting the edges and the faces of a mesh is crucial when working with finite elements whose de-
grees of freedom invoke normal or tangential components of vector fields. This notion is important
also when working with high-order scalar-valued finite elements to enumerate consistently all the
degrees of freedom in each mesh cell sharing the edge or the face in question. In this chapter, we
focus on matching meshes (see Definition 8.11), and we assume that the meshes are affine. We first
explain how to orient meshes. Then we introduce the important notion of generation-compatible
orientation. Finally, we study whether simplicial, quadrangular, and hexahedral meshes can be
equipped with a generation-compatible orientation.

10.1 How to orient a mesh

Let us consider a three-dimensional matching mesh. The geometric entities to be oriented are the
mesh edges E € &, and the mesh faces F' € F, (one can also orient the vertices and the cells of
the mesh, but for simplicity, we will not introduce these notions here). The edges of the mesh are
oriented by specifying how to circulate along them. This is done by fixing one unit vector tangent
to each edge. The faces of the mesh are oriented by specifying how to cross them. This is done by
fixing one unit normal vector on each face. Orienting the mesh thus means that we fix once and
for all the following collections of unit vectors:

{Te}Ece, {nr}rer,. (10.1)

Since the mesh is affine, the mesh edges are straight and the mesh faces are planar. Hence, one
single tangent vector is enough to orient each edge and one normal vector is enough to orient each
face.

Let us now consider a two-dimensional mesh. Then the mesh edges and the mesh faces are
identical one-dimensional manifolds in R?, but they are oriented differently. The orientation of
the mesh edges is done as in the three-dimensional case by fixing once and for all a unit tangent
vector along the edge, whereas the mesh faces are oriented by rotating the unit tangent vectors
anti-clockwise, i.e., for every edge E oriented by the vector 75, we set

ng = Rz (7g), (10.2)

where the matrix of R% relative to the canonical basis of R? is ((1) *é).
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It is useful to define the following subsets: For every mesh edge F € &, and for every mesh
face F' € Fy,
T ={KeT,| FECK}, Tr={KeT,| FCK}, (10.3)

are the collection of the mesh cells sharing £ and F', respectively. The cardinality of the subset
Te cannot be ascertained a priori, whereas we have Tp = {Kj, K, } for every interface F :=
0K;NOK, € F; and Tp = {K;} for every boundary face F' := 0K;N0D € }',?; see Definition 8.10.

Remark 10.1 (Face orientation in 3D). The faces of cells in three-dimensional meshes have
connected boundaries. Hence, instead of assigning a normal vector to each face, one can also
orient the faces by specifying how to circulate along their boundary. The two ways of orienting
faces are equivalent once an orientation for the ambient space R3 has been fixed (by using the
right-hand convention for example). The boundary-based orientation is more intrinsic since it
does not require to embed the faces into R?. In this book, we adopt the normal-based orientation
introduced in (10.1) since it is more convenient to use with finite elements. O

Remark 10.2 (Incidence matrices). Consider a three-dimensional mesh where the vertices,
edges, faces, and cells have been enumerated from 1 to Ny, N,, Ng, and N¢, respectively. Assume
that the mesh has been oriented. Incidence matrices can then be defined as follows. The matrix
M € RNeXNv ig gt MY, = 11if z; is a vertex of ), and 7g,, points toward z;, MY, := —1
if 7, points in the opposite direction, and M¢Y, := 0 if 2z; is not a vertex of E,,. The matrix
Mle e RNexXNe jg gt M .= 1 if Fj is an edge of F},, and the orientation of E; prescribed by 7z,
and that induced by ng,, on E; C 0F,, using the right-hand convention are the same, M, := —1if
these orientation are opposite, and M, := 0 if Ej is not an edge of F},,. The matrix ./\/lCf € RNexNe
is s.t. ./\/lfil := 1 if F} is a face of K,, and ng points toward the outside of K,,, ./\/lfil = —1if
npg points toward the inside, and ./\/lfil := 0 if I} is not a face of K,,. The incidence matrices
M, Mfe and M®f can be viewed as discrete counterparts of the gradient, curl, and divergence
operators, respectively. In particular, we have MM = Opn;xn, and MEME = Opnexn.. We
refer the reader to Bossavit [37], Bochev and Hyman [27], Bonelle and Ern [32], Gerritsma [106]

and the references therein for further insight into this topic. O

10.2 Generation-compatible orientation

Let T, be an oriented mesh and let K € Ty, be a mesh cell. Recall that the cell K is generated using
a geometric mapping Tk : K — K. One of the key results from the previous chapter, Lemma 9.13,
deals with the preservation of the moments of the normal and tangential components of ﬁelds
defined on K. Let F be a face of K and let E be an edge of K. Let F := TK(F) and F =Tk (E)

be the corresponding face and edge of K. Let nz be a unit vector normal to F and let 7 75 be a

~

unit vector tangent to E. Recall from (9.14) that 2% (nz)(z) = ex|| (I 1p) (@) 2 T 7p) (@)

is a unit vector normal to F' and that ®%(75)(z) == ||[(Jx75)(@)|| 2" JxT5)(Z) is a unit vector
tangent to F, where Jg is the Jacobian matrix of Tk, e€x = % = +1, and x := Tk (Z).

With the Piola transformations 9%, ¥9, and 1/1?‘{ defined in Definition 9.8, Lemma 9.13 states
that the following holds true for all v € C°(K) and all ¢ € C°(K):

/F (0 &% (7p))(@)g(x) ds = / (W (v)7p) (@) () (@) d, (10.4a)
/ (085 (7)) (@)q() dl = ﬁ(%(v)-%)@)ﬁ@)@) i (10.4b)
E E
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Since we are going to define face and edge dofs for vector-valued finite elements by using the
right-hand sides in (10.4), we want to make sure that the results do not depend on the mapping
Ty : K — K. For instance, let F' € Fj, be an interface, i.e., F := 0K;NJK, so that Tp = { K, K, }.
The way to ascertain that the right-hand side of (10.4a) gives the same results on both sides of F'
consists of requiring that

np=®%(Az), VK €Tr, with F =T (F), (10.5)

that is, letting F := TI}ll (F) and F, := Tgrl(F), we would like that np = ®¢% (ng) = o5 (ng )
This idea is illustrated in Figure 10.1.

P ()

T

Figure 10.1: Orientation transfer for face normals.

Similarly, given a mesh edge FE € &, oriented by the fixed unit tangent vector 7, we want to
ascertain that for every mesh cell K of which F is an edge, i.e., for all K € Tg (see (10.3)), we

have g = ®%(7T5) where E = T (E). This leads to the following important notion.

Definition 10.3 (Generation-compatible orientation). Let Tj, be an oriented mesh specified
by the collections of unit tangent vectors {Tg}gce, and unit normal vectors {np}recr, asin (10.1).
We say that this orientation is generation-compatible if there is an orientation of the reference cell
K specified by the unit tangent vectors {‘l'@}@egi3 and the unit normal vectors {nﬁ}ﬁe}‘/k and a

collection of geometric mappings {Tk } keT;, such that for all E € &, and all F € Fp,

e = ®%(Tp), VK€ Tw E:=Tg'(E), (10.6a)
np=®%(mp), VKeTr F:=Tg (F). (10.6b)

The key consequence of the notion of generation-compatible mesh is the following result which
says that the moments of the normal and tangential components of vector fields are preserved by
the transformations %, 95, %%

Lemma 10.4 (Preservation of moments of normal and tangential components). Assume
that the orientation of Ty is generation-compatible and let Tg, np be defined in (10.6). The
following holds true for all v € C°(K) and all ¢ € C°(K):

/ (vnr)(@)g(x) ds = /Aw%(v)-ﬁﬁ)@wi(q)@) a3, (10.7a)
F F
/ (v-75) (@)g(x) dl = /Aw;((v)-?@)(@wi(q)@) di. (10.7b)
E E
Proof. Apply Lemma 9.13. O

Whether it is possible to orient a mesh in a generation-compatible way is not guaranteed for
general meshes. However, we will see in the following sections that this is indeed possible for
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simplicial meshes in any dimension, for quadrangular meshes, and for hexahedral meshes (possibly
up to an additional subdivision of the cells). The key idea to achieve this is the increasing vertex-
index enumeration technique introduced in the next section.

Remark 10.5 (Faces in 2D). Recall that the mesh edges and faces are identical one-dimensional
manifolds in R?, and that we have adopted the convention that once the edges are oriented, the faces
are oriented by rotating the unit tangent vectors anti-clockwise; see (10.2). It is proved in Exer-
cise 10.1 that Rz (®5(2)) = ®% (Rz(z)) for all z € R?. Hence, if (10.6a) holds true, then (10.6b)
holds true as well, because in this case np = Rz(tp) = Rz (®%(75)) = ®%(Rz (7)) =
®% (n ). In conclusion, one only needs to prove (10.6a) in dimension two. O

10.3 Increasing vertex-index enumeration

The increasing vertex-index enumeration technique described in this section is the key tool to
orient meshes in a generation-compatible way. The technique is illustrated for various types of
meshes in §10.4 and §10.5. R

Let us enumerate the edges and the faces of K from 1 to nee and from 1 to nct, respectively.
Orienting the reference cell K consists of prescribing the following unit vectors:

{?En}ne{lzncc}u {ﬁﬁn}ne{lzncf}'

Recalling the connectivity arrays j_ce and j_cf defined in (8.12), any mesh edge E; for all [ €
{1:N,} satisfies B, = Ty, (E,) with (m,n) € {1:N.} x {Line} s.t. jce(m,n) = [. Similarly,
any mesh face Fy for all | € {1:Ny} satisfies F; = Tk, (F,)) with (m,n) € {1:N.} x {Line} s.t.
jcf(m,n) =1.

Definition 10.6 (Increasing vertex-index enumeration). A mesh T, is said to be oriented
according to the increasing vertex-index convention if:

(i) Buvery edge E, with vertices z,, 24, p < q, is oriented by the vector Tg, = |ty.qll 2 tp.q with
tyq = 2q — 2p;
ii) Bwvery face F, in dimension two is oriented by the vector Rx= (Tr here F,, is viewed as an
y y = (TF,
us

edge, and Rz is the rotation of angle 3 in R? as in (10.2)), and every face F,, in dimension

three is oriented by the vector np, = ||ty o Xty | 2" (p.g¥tpr), where p < q <1 are the three
global indices of the vertices of F,,.

The increasing vertex-index enumeration is illustrated in Figure 10.2 for the unit simplex and
the unit cuboid in dimension two and dimension three.

2D triangle | 21 =(0,0), 2, = (1,0), z3 = (0,1)
3D tetrahedron | 2z = (0,0,0) zo = (1,0,0), 23 = (0,1,0), 24 = (0,0, 1)
2D square | 21 =1(0,0), 2, = (0,1), 23 = (1,0), 24 = (1, 1)

z1 = (0,0, O) z> = (1,0,0), 23 = (0,1,0), z4 = (0,0, 1)
3D cube 25— (1,1,0), 25 = (1,0, 1), r = (0,1,1), 25 = (1,1,1)

Table 10.1: Enumeration of the vertices in the reference simplex and in the reference cuboid in
dimensions two and three.
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Figure 10.2: Enumeration of the vertices and orientation of the edges and faces in the reference
simplex and the reference cuboid in dimensions two and three.

Unless specified otherwise, we enumerate the vertices of the reference element K by using
the convention described in Table 10.1. Moreover, K is oriented by using the convention of the
increasing vertex-index enumeration as in Figure 10.2.

10.4 Simplicial meshes

Recall that the reference simplex K is oriented by using the increasing vertex-index technique. Let
us show that it is possible to find a generation-compatible orientation for every three-dimensional
affine mesh 7, composed of simplices (the construction proposed thereafter is actually indepen-
dent of the space dimension). The key idea is to orient 7j, by using the increasing vertex-index
enumeration. More precisely, let {2, }necf1:n5,3 be the mesh vertices. For every edge F; with end
vertices zp, 24, where p < ¢, we orient E; by introducing t, , := 2, — 2, and by setting

TE, -= Htp7q||z_21tp7q- (10.8)

For every face Fj defined by its three vertices, say z,,zq,2, with p < ¢ < r, we orient F; by
introducing &, , := 24 — 2p, tpr = 2z — 2, and by setting

np, = [ty g xtprll (Epg Xtp.r). (10.9)

Let us now construct the geometric mapping Tk for all K € Ty. Let z,, 24, 2,, 25 be the four
vertices of K ordered by increasing vertex-inder, i.e., p < ¢ < r < s. We define Tk by setting

Tk (z1) = 2zp, Tk(Z2) =2y, Tk(Z3) =2, Tk(Z):=zs. (10.10)

Hence, the global index of the mesh vertex Tk (2,,) increases with n. Using the connectivity array
j_cv defined by (8.12), we have j_cv(m,1) = p, j_cv(m,2) = q, j_cv(m,3) = r, and j_cv(m,4) = s,
where m is the global enumeration index of the mesh cell K. Notice that (10.10) is sufficient to
define Tk entirely since we assumed that the mesh is affine. We emphasize that, in the present
construction, the mapping Tk is invertible, but its Jacobian determinant can be positive or nega-
tive.

Example 10.7 (Orienting a tetrahedron). Consider a tetrahedron whose vertices have global
indices 35, 42, 67, and 89 shown in Figure 10.3. The orientation of the (five visible) edges is mate-
rialized by dark arrows. The unit normal vector np defined by the increasing-vertex enumeration
points toward the outside of the tetrahedron for the face defined by the indices {35,42,67}, and it
points toward the inside of the tetrahedron for the face defined by the indices {42,67,89}, etc. O
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Figure 10.3: Tllustration of Example 10.7.

Theorem 10.8 (Simplicial mesh orientation). Let T, be a simplicial mesh. Let K be oriented
by using the increasing verter-index enumeration. For all K € Ty, let Tk be defined by the
increasing vertez-index convention (10.10). Then the orientation of Ty based on the increasing
vertex-index enumeration is generation-compatible.

Proof. (1) Let us prove (10.6a). Let E; be an edge with vertices z,, 24, p < ¢. Let (m,n) be
st. B = Tk, (E,), ic., jce(m,n) = I. Let Zi,zj with i < j be the vertices of the edge E,
of K. The increasing vertex-index convention (10.10) for the geometric mappings implies that
Tk, (2;) = zp, and Tk, (Z;) = z4. Moreover, the orientation for K implies that Tg, = ||tA”||Z21E7
with t; j == 2; — 2;, so that Q% (75 ) = HJKm"A'En||£_21JKm"A'En = HJKmtAi,jHZ;JKma,j. Since Tk, ,
is affine, we have

o~

Ik, tij =Tk, (2)) — Tk, (Zi) = 2g — zp =t 4,

~

and we conclude that % (75 ) = Itpqlla tp.q = TE,-

(2) Let us prove (10.6b) in dimension three. Let F; be a face with vertices z,, 24, 2, p < ¢ < 7.
Let (m,n) be s.t. F; = Tk, (F,), i.e., j_c£(m,n) = L. Let Zi, 25, 2k With 4 < j < k be the vertices
of the face F, of K. Reasoning as above, we have Ik, tij =tpq and Jg, tix = t,,. Using the
identity A~ T(xxy) = det(A) " (AzxAy) for every 3x3 invertible matrix A and all =,y € R? (see
Exercise 9.5), we have

J;(Tn (tAZJ Xak) = det(Jg,,) " (tp,g¥tp,r).

Moreover, since s and tA” xtAlk are collinear and point in the same direction, the definition
(9.14a) implies that

% (Mg ) =ex, 1T Eigxtin)l 2 el (i xtik).
Since HJ;(IL (ti; %t = |det(Tx,. )|~ tp.qXtp.rlle2, we conclude that

(I)?(m (ng,) = ex,n | det(Txc,, )| [Ep.g X tp,r 172" det(Tx,,) ™ (Ep.q X tp,r)
= |t xtprll o (bpg Xtp,r) = 1p,.

(3) Finally, by Remark 10.5, the argument in Step (1) implies that (10.6b) holds true in dimension
two. O

Remark 10.9 (Positive Jacobian determinant). If one insists on building geometric mappings
such that det(Jx) > 0, the above orientation of the edges and the faces of the mesh is still
generation-compatible if one uses two reference tetrahedra; see Ainsworth and Coyle [6]. O
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10.5 Quadrangular and hexahedral meshes

We state without proof a result by Agelek et al. [4] on quadrangular and hexahedral meshes.

Theorem 10.10 (Quad/Hex mesh orientation). Let the reference square or cube be oriented
using the increasing vertez-index enumeration technique. (1) Let Ty be a quadrangular mesh. It
is possible to orient the mesh to make it generation-compatible. (i) Let now Ty be a hexahedral
mesh and let ’T% be obtained from Ty, by cutting each hexahedron into eight smaller hexahedra. It
1s possible to orient 'T% to make it generation-compatible.

Let us provide some further insight into this result. Let us start with the faces since orientating
the faces is simple and independent of the space dimension. Consider the undirected graph whose
vertices are the mesh faces and the edges are the mesh cells. We say that two mesh faces Fy, Fb
are connected through K iff Fy, Iy are faces of K that are Tk-parallel (i.e., images by Tk of faces
of K that are parallel). Since each face is connected to either one (boundary face) or two cells
(interface), all the connected components of the graph thus constructed are either closed loops
or chains whose extremities are boundary faces. In either case, the connected components of the
graph realize a partition of the faces of 7. We then assign the same orientation to all the faces in
the same connected component of the graph.

Let us now orient the edges. For quadrangular meshes, the edges are oriented by rotating
clockwise the unit normal vector; see the second panel in Figure 10.2 and the left panel of Fig-
ure 10.4 where the dashed lines connect the edges/faces that are in the same equivalence class.
For hexahedral meshes, we further need to devise a specific orientation of the edges. Let &, be
the collection of the mesh edges. We say that two edges of a cell K are T -parallel if they are
images by Tk of edges in K that are parallel. We then define a binary relation R on &,. Let
E FE' € &, be two mesh edges. We say that ERE’ if either E and E’ belong to the same cell K
and are T-parallel or there is a collection of cells K,..., Ky, all different, and a collection of
edges E =: Fy,...,Er41 := E' such that E; and Ejyq are both edges of K;, [ € {1:L}, and E},
Ej+1 are T, -parallel. This defines an equivalence relation over the edges which in turn generates a
partition of £,. Unfortunately, it is not always possible to give the same orientation to all the edges
belonging to the same equivalence class, since in dimension three edges in the same equivalence
class may actually be sitting on a Mdbius strip. An example of nonorientable mesh (in the sense
defined above) composed of hexahedra is shown in the right panel of Figure 10.4. Theorem 10.10
then says that after subdivision, this mesh becomes orientable in a generation-compatible way, and
more generally, every mesh composed of hexahedra is orientable after one subdivision.

Assuming that the mesh edges have been oriented as discussed above, it is now possible to
build the geometric mappings Tk such that the above mesh orientation is generation-compatible.
The idea is that for each mesh cell K, there is only one vertex such that all the edges sharing it are
oriented away from it. This vertex is called origin of the cell. Tllen we choose Tk such that Tk
maps 27 to the origin of K (recall that z7 is the only vertex of K such that all the edges sharing
it are oriented away from it; see Figure 10.2). This choice implies that the image by Tk of zy (if
d = 2) and of zg (if d = 3) is the vertex of K opposite to the origin. Finally, the image by Tk
of the remaining two (if d = 2) or six (if d = 3) vertices can be chosen arbitrarily. One criterion
to limit the choices can be to fix a sign for det(Jx). In dimension two, one choice gives a positive
sign and the other gives a negative sign, whereas in dimension three, three choices give a positive
sign and three choices give a negative sign.



100 Chapter 10. Mesh orientation

Figure 10.4: Orientation of the edges in a mesh composed of quadrangles (left). Nonorientable
three-dimensional mesh composed of hexahedra (right).

Exercises

Exercise 10.1 (Faces in 2D). Let Rz be the rotation of angle 5 in R?. (i) Let A be an inversible
2x2 matrix. Prove that A*TR% = mR%A. (ii) Prove that @%(R% (2)) = Rz (®%(2)) for all
z € R%

Exercise 10.2 (Connectivity arrays j_cv,j_ce). Consider the mesh shown in Figure 10.5,
where the face enumeration is identified with large circles and the cell enumeration is identified
with squares. (i) Write the connectivity arrays j_cv and j_ce based on increasing vertex-index

Figure 10.5: Ilustration for Exercise 10.2.

enumeration. (i) Give the sign of the determinant of the Jacobian matrix of Tk for each triangle.

Exercise 10.3 (Connectivity array j_geo). Consider the mesh shown in Figure 10.6 and based
on the Py 5 geometric Lagrange element. (i) Write the connectivity array j_geo based on increasing
vertex-index enumeration. (ii) Give the sign of the determinant of the Jacobian matrix of Tk for
each triangle.

Exercise 10.4 (Orientation of quadrangular mesh). (i) Using the enumeration and the
orientation conventions proposed in this chapter, orient the mesh shown in Figure 10.7, where the
cell enumeration is identified with shaded rectangles. (ii) Give the connectivity array j_geo so that
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Figure 10.7: Tllustration for Exercise 10.4.

the mesh orientation is generation-compatible and the determinant of the Jacobian matrix of Tk
is positive for even quadrangles and negative for odd quadrangles.

Exercise 10.5 (Mesh extrusion). (i) Let K be a triangular prism. Denote by e3 the unit vector
in the vertical direction. Let zi, 2o, z3 be the three vertices of the bottom triangular face of K,
and let z4, 25, 26 be the three vertices of its top triangular face, so that the segments [z, Zp+3]
are parallel to e for every p € {1,2,3}. Propose a way to cut K into three tetrahedra. (ii) Let
Tr, be a two-dimensional oriented mesh composed of triangles. Let 7, be a copy of 75 obtained by
translating 7, in the third direction es, say 7, := T, + e3. Propose a way to cut all the prisms
thus formed to make a matching mesh composed of tetrahedra.
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Chapter 11

Local interpolation on affine
meshes

We have seen in the previous chapter how to build finite elements and local interpolation operators
in each cell K of a mesh 7p,. In this chapter, we analyze the local interpolation error for smooth
R9-valued functions, ¢ > 1. We restrict the material to affine meshes and to transformations ¥ g
s.t.

Vi (v) = Ak (vo Tk), (11.1)

where Ak is a matrix in R?7%9. Nonaffine meshes are treated in Chapter 13. We introduce the
notion of shape-regular families of affine meshes, we study the transformation of Sobolev norms
using (11.1), and we present important approximation results collectively known as the Bramble—
Hilbert lemmas. We finally prove the main result of this chapter, which is an upper bound on the
local interpolation error over each mesh cell for smooth functions.

11.1 Shape regularity for affine meshes

Let 73, be an affine mesh. Let K € Tj,. Since the geometric mapping T is affine, its Jacobian
matrix Jx € R?*? defined in (8.3) is such that

Tx(@) - Tk (§) = Ix(@—§), V&,gek. (11.2)

The matrix Jx is invertible since the mapping Tk is bijective. Moreover, the (Fréchet) derivative
of the geometric mapping is such that DTk (&)(h) = Ixh for all b € R? (sce Appendix B). We
denote the Euclidean norm in R? by ||-[|2(ga), or ||-[|¢z when the context is unambiguous. We abuse
the notation by using the same symbol for the induced matrix norm.

Lemma 11.1 (Bound on Jx). Let T, be an affine mesh and let K € Ty,. Let pi be the diameter of
the largest ball that can be inscribed in K and let hyc be the diameter of K, as shown in Figure 11.1.
Let pg and h be defined similarly. The following holds true:

|K| hK -1 hf(
det(J = —, J < — J < —. 11.3
|det(J )] 7 [Tk | 2 pye 105 ez o (11.3)
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Proof. The first equality results from the fact that

|K|:/ dxz/Jdet(JK”df:|det(JK)||fA<|.
K K

Regarding the bound on [|Jx||¢2, we observe that

JK?L 2 1 —~
Wkl = sup Wil _ L g
rzo bl PR JRlle=pp

Any h € R such that Hfl”p = pp can be written as h =&, — &, with Z;, %, € K. We infer that
Jxh = Tk (1) — T (Z2) = @1 — x2, which in turn proves that ||JK?E||¢2 < hg. This establishes
the bound on ||J||¢2. The bound on ||J'||s2 is obtained by exchanging the roles of K and K. O

z ‘9K,z
Figure 11.1: Triangular cell K with vertex z, angle 0 ., and largest inscribed ball.

Since the analysis of the interpolation error (implicitly) invokes sequences of successively refined
meshes, we henceforth denote by (77 )nex a sequence of meshes discretizing a domain D in R,
where the index h takes values in a countable set H having zero as the only accumulation point.

Definition 11.2 (Shape regularity). A sequence of affine meshes (Tr)newn s said to be shape-
regular if there is oy such that

h
oK ::p—K <oy, VKeT, Vhet (11.4)
K

Occasionally, when the context is unambiguous, we will say that (7}, )nen is regular instead of
shape-regular. Owing to Lemma 11.1, a shape-regular sequence of affine meshes satisfies

1Tkl | Tt ez < 040, VK €Th, Yh€ H. (11.5)

Example 11.3 (Dimension 1). Every sequence of one-dimensional meshes is shape-regular, since
hk = px when d = 1. O

Example 11.4 (Triangulations). A shape-regular sequence of affine triangulations can be ob-
tained from an initial triangulation by connecting all the edge midpoints and repeating this pro-
cedure as many times as needed. [l

Remark 11.5 (Angles). Let (7,)nen be a shape-regular sequence of affine simplicial meshes.
Assume that d = 2, let K be a triangle in 7, and let z be a vertex of K. Then the angle
Ok.» € (0,2m) formed by the two edges of K sharing z is uniformly bounded away from zero.
Indeed, the angular sector centered at z of angle 0x » and radius hx covers the ball of diameter
pr that is inscribed in K (see Figure 11.1). Hence, $h%.0x » > Lmp?., which in turn implies that
Ok > > %7701;2. Assume now that d = 3, let K be a tetrahedron, and let z be a vertex of K. Then
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the solid angle wx » € (0,4m) formed by the three faces of K sharing z is uniformly bounded away
from zero. Reasoning as above, with volumes instead of surfaces, leads to %h%w;{,z > Lmp3., so

that wg > > %wotﬁ. O

We close this section with a useful result on matching meshes. Recall from §8.2 the notion
of mesh faces, edges, and vertices in a matching mesh (assuming d = 3). For every mesh vertex
z €V, we denote

T. ={KecT,|ze K} (11.6)

the collection of the mesh cells sharing z. Similarly, recall from (10.3) that for every mesh edge
E € &, and every mesh face F € Fy,, Tg :={K € T, | EC K} and Tp :=={K € T), | F C K} are
the collection of the mesh cells sharing £ and F', respectively.

Proposition 11.6 (Neighboring cells). Let (Tp)nen be a shape-regular sequence of matching
affine meshes. Then the cardinality of the set T, is uniformly bounded for all z € Vy, and all h € H,
and the sizes of all the cells in T, are uniformly equivalent w.r.t. h € H. The same assertion holds
true for the sets Tp and Tp.

Proof. Tt suffices to prove the assertions for 7,. The bound on card(T,) follows from Remark 11.5.
Concerning the sizes of the cells in 7., we first observe that if K, K" € T,, K/ # K", share
a common face, say F' with diameter hp, then hg' < oyprr < ophp < oshgr, and similarly,
hgr < oghkr. This shows that the sizes of K’ and K" are uniformly equivalent. Now, for all K’
and K" in T,, there is a finite path of cells linking K’ to K" s.t. any two consecutive mesh cells in
the path share a common face. The number of cells composing the path cannot exceed card(7),
so that it is uniformly bounded. Hence, the sizes of K’/ and K" are uniformly equivalent. [l

11.2 Transformation of Sobolev seminorms

The question we investigate now is the following: given a function v € W™P(K;R?), how does
the seminorm of ¥ (v) in W™P(K;R?) compare to that of v in W™P(K;R?) with ¢k is defined
in (11.1)7

Lemma 11.7 (Norm scaling by ). Let T, be an affine mesh. Let s € [0,00) and p € [1, 0]
(with 2Er = 1, V2 > 0 if p = o0). There exists ¢, depending only on s and d, such that the

following bounds hold true for all v e W*P(K;RY), all K € Ty, and all h € H:
1 1
[Vr (V) lyenRira) < kA e lTx (17 [det(T )77 [vlwer kpa), (11.7a)

E— e 1
[olwenreme) < COR AR IR 17 1det@ )l (05 ()] (g mas (11.7b)

where yg = 6k =1 if s € N and vk = |[det(Jx)| [Tk || %, 6 = |det(Tx)| [T5"|& otherwise
(the real numbers v and 0 are uniformly bounded w.r.t. h € H on shape-regular mesh sequences).

Proof. We start by assuming s = m € N. The bounds are obvious for m = 0. For m > 1, let «
be a multi-index with length |a| = m, i.e., a := (ay,...,aq) € N with ay + ...+ ag = m. Let
Z € K. Owing to (B.6), we infer that

0% (Y (0)(®) = A D" (vo Tk )(ZT)(e1,...,€1,...,€d,...,€q),

a1 times ag times
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where D™ (vo Ty )(Z) is the m-th Fréchet derivative of voTk at & and {eq, ..., eq} is the canonical
Cartesian basis of R?. We now apply the chain rule (see Lemma B.4) to vo Tk. Since Tk is affine,
the Fréchet derivative of Ty is independent of Z and its higher-order Fréchet derivatives vanish.
Hence, we have

Dm(’U @] TK)(.’/B\)(hl, ceey hm) = Z %(Dmv)(TK(.’/B\))(DTK(hU(l)), ceey DTK(hU(m))),

geS, ’

for all hy, ..., h,, € R% where S,, is the set of the permutations of {1:m}. Since DTk (h) = Jxh
for all h € R? owing to (11.2), we infer that

0% (v o Tk )(@)] < [Tk [l72 | (D™ 0) (T (#)) || ;. R0 R R

: - Il AC o
with [|Al|l s, (Re,... RaRe) = SUD(y,, .y, )cRx...xRY ol vnls for every multilinear map A €

M, (R, ... R%R?). Owing to the multilinearity of D™ v and using again (B.6), we infer that (see
Exercise 11.1)

(D™ ) (T (&)l m,, (re ... pagey S ¢ Y [(0°0)(Tx (@) ]z
|B|=m

where ¢ only depends on m and d. As a result, we have

10°($r (@) @)= < cllArclelTxlE D 1(070)(Tk(@))lle,
|Bl=m

and (11.7a) follows by taking the LP (K )-norm on both sides of the inequality. The proof of (11.7b)
is similar. We refer to Exercise 11.7 when s ¢ N. O

Remark 11.8 (Seminorms). The upper bounds in (11.7a) and (11.7b) involve only seminorms
because the geometric mappings are affine. O

11.3 Bramble—Hilbert lemmas

This section contains an important result for the analysis of the approximation properties of finite
elements. We consider scalar-valued functions. The result extends to vector-valued functions by
reasoning componentwise.

Lemma 11.9 (P;-Bramble-Hilbert/Deny—Lions). Let S be a Lipschitz domain in RY. Let
p € [1,00]. Let k € N. There is ¢ (depending on k, p, S) s.t. for allv € WkTLr(§),

inf H’U_qHWk+1,p(S) S C|U|Wk+1,p(s). (118)
q€PL g

Proof. (1) Consider the bounded linear forms f, : WkT1P(S) — R s.t.

falv) = e‘;'*d/ vdr,  Va € Apa,
S
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where Ay 4 := {a = (a1,...,04) € N? | |a| < k} and £g := diam(S) (the factor E‘So"fd is intro-
duced for dimensional consistency). Let us set Ny 4 := card(Ag,q) = (kzd)
map @ 4 : WHHLP(S) — RNk g,

q)k,d(q) = (fa (q))ﬂteAk,dv

and let us prove that the restriction of this map to Py 4 is an isomorphism. To prove this, we
observe that dim(PPy q) = Ng.q, so that it is sufficient to prove that ® 4 is injective, which we do
by induction on k. For k = 0, if ¢ € Py satisfies ®gq(g) = 0, then [¢gdz = ¢|S| = 0 so that
g = 0. Let us assume now that £ > 1 and let ¢ € Py 4 be such that @ 4(q) = 0. Let us write
q(®) = > nen, , 0ax®. Whenever |a| = k, we obtain 0%¢(x) = aqai!...aq! so that fo(q) =0

. Let us consider the

implies that a, = 0. Since this property is satisfied for all « such that |a| = k, we infer that
q € Pr_1,4 and conclude from the induction assumption that ¢ = 0.
(2) Let us prove that there is ¢ > 0, depending on S, k, and p, such that

d
llollwrsns) < 5 olwirnngs) + 5 1Pka(®)llr v (11.9)

for all v € Wk+LP(S), with ||f||€1(RNkyd) = aen, , | fal- Reasoning by contradiction, let (v, )nen
be a sequence s.t.

H’Un||Wk+1,p(S) = 1, nli}ngo |vn|Wk+1,p(S) == 0, nhﬂngo fl)kyd(vn) =0. (1110)

Owing to the Rellich-Kondrachov theorem (Theorem 2.35), we infer that, up to a subsequence (not
renumbered for simplicity), the sequence (v, )nen converges strongly to a function v in W*?(S).
Moreover, (v, )nen is a Cauchy sequence in W*+12(S) since

l|vn — Um||Wk+1m(S) < |lvn — Um||wk,p(5) + €]§+1|Un - Um|wk+1m(5)7

and |vn, — V| wet10(s) — 0 by assumption. Hence, (v, )nen converges to v strongly in W17(S)
(that the limit is indeed v comes from the uniqueness of the limit in W*?(S)). Owing to (11.10),
we infer that |[v[lyrr1p(s) = 1, [v[wrt1p(g) = 0, and ®xq(v) = 0. Repeated applications of
Lemma 2.11 (stating that in an open connected set S, Vv = 0 implies that v is constant on S)
allow us to infer from |v|yx+1.5(g) = 0 that v € Py 4. Since we have established in Step (1) that the
restriction of @ 4 to Py 4 is an isomorphism, this yields v = 0, which contradicts [|v[[yx+1.5(g) = 1.
(3) Let v € WETLP(S) and define 7(v) € Py 4 such that @ 4(7w(v)) = ®r.q(v). This is possible
since the restriction of ® 4 to Py 4 is an isomorphism. Then

c inf |lv—gqllwrrris) < cllv—7(V)lwrtirs)

q€PL,q
<o = m(W)lwrrro(s) F [1Praw = 7))l @i a
= €§+1|U|W"+1’P(S)a
since 9%7(v) = 0 for all @ € N¢ such that |a| = k + 1. O

Remark 11.10 (Peetre—Tartar lemma). Step (2) in the above proof is similar to the Peetre—
Tartar lemma (Lemma A.20). Define X = WHFtLP(S) YV = [LP(D)|Ne+ra=NeaxRNea - 7 =
WkP(S), and the operator

A: X350 — ((0°)|a)=kt1, Pra(v)) €Y.

Since A is bounded and injective, and the embedding X < Z is compact, the property (11.9)
results from the Peetre-Tartar lemma. O
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Corollary 11.11 (Pz-Bramble—Hilbert for linear functionals). Under the hypotheses of
Lemma 11.9, there is ¢ s.t. the following holds true for all f € (WFHP(8)) := L(WFHLP(S); R)
vanishing on Py q,

[f(v)] <e¢ ||f||(Wk+1,P(S))/€§«+1|U|Wk+1,P(S), Yu € WkJrl’p(S). (11.11)
Proof. Left as an exercise. O

Remark 11.12 (Literature). The estimate (11.8) is proved in Bramble and Hilbert [40, Thm. 1]
and in Ciarlet and Raviart [79, Lem. 7]; see also Deny and Lions [90]. The estimate (11.11) is
proved in Bramble and Hilbert [40, Thm. 2] and in Ciarlet and Raviart [79, Lem. 6]. There is some
variability in the literature regarding the terminology for these results. For instance, Lemma 11.9
is called Bramble—Hilbert lemma in Brenner and Scott [47, Lem. 4.3.8] and Ciarlet and Raviart
[78, p. 219], whereas it is called Deny—Lions lemma in Ciarlet [77, p. 111], and it is not given any
name in Braess [39, p. 77]. Corollary 11.11 is called Bramble-Hilbert lemma in Ciarlet [77, p. 192]
and Braess [39, p. 78]. Incidentally, there are two additional results that are the counterparts of
Lemma 11.9 and Corollary 11.11 for Q4 polynomials; see Lemma 13.8 and Corollary 13.9. O

11.4 Local finite element interpolation

This section contains our main result on local finite element interpolation. Recall the construction
of §9.1 to generate a finite element and a local interpolation operator in each mesh cell K € Ty,.
Our goal is now to estimate the interpolation error v —Z (v) for every smooth function v. The key
point is that we want this bound to depend on K only through its size hx under the assumption
that the mesh sequence is shape-regular. The Bramble-Hilbert/Deny-Lions lemma cannot be used
directly on K since this would give a constant depending on the shape of K. The crucial idea is
then to use the fact that Zx = 1/1;(1 o1y ok owing to Proposition 9.3 and to apply Lemma 11.9

on the fixed reference cell K.

Theorem 11.13 (Local interpolation). Let P be finite-dimensional, Iy € LV(K):P), p €
[1,00], k,l € N, and assume that the following holds true:

(i) [Pral? € P C WHLP(R;RY).
(ii) [Pr,q]? is pointwise invariant under Tg.
(iii) WhP(K;RY) — V(K), i.e., 191l (&) < €0l (.pay for all ¥ € V(K).

Let (Tn)new be a shape-regular sequence of affine meshes, let the transformation v be defined
in (11.1) for all K € Ty, and assume that there is v s.t. for all K € Ty, and all h € H,

1Akl AR e < 1Tk llez 1T o (11.12)

Define the operator

Ik =Yg oIz ovk. (11.13)
There is ¢ s.t. the following local interpolation error estimates hold true:
(i) If | < k+ 1, then for every integers r € {l:k + 1} and m € {0:r}, all v € W"P(K;RY), all
K €Ty, and all h € H,

v — L (0) [wmor (riray < ¢l ™ [v[wes (5 R) (11.14)
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(ii) If I > k + 1, then for every integer m € {0:k + 1}, all v € W'P(K;R?), all K € Ty, and all
heHt,

|'U - IK(’U)|Wm,p(K;]Rq) S C Z h?{im|U|Wn,p(K;]Rq). (11.15)
ne{k+1:1}

Proof. We present a unified proof of (11.14) and (11.15). Let

7Fe{l:max(l,k+1)}), r=minT k+1), me{0:r}.

Ifl <k+1,then7 e {l:k+1}, r =7 = r, m € {0:r}, whereas if | > k4 1, then 7 = [,
r=Fk+1, me {0:k+ 1}. Thus, proving (11.14) and (11.15) is equivalent to prove that for all
v e WHP(K;RY),

|’U — IK(’U)lWTn,p(K;]Rq) <c Z hTIl(im|v|W"’p(K§Rq)'
ne{r:7}

Let ¢ denote a generic constant whose value can change at each occurrence as long as it is inde-
pendent of v, K, and h. We take { := 1.

1) For all o € WTP(K;R?), we set G(3) := 0 — I~ (7). Since all the norms are equivalent in P,
K
there is a constant c¢p such that

1Bl iy < cpllBly gy VP EP.

Using m < r < T, the above bound applied to p := Z3(v), Iy € L(V(K)), and Assumption (iii),
we infer that
||g(@)||Wm,p(1?;RQ) < ||@||Wm,p(ff;]RQ) + ||If<(@)||wm,p(1?;n§q)
< Bl + 51T @l 2
< Bl + 1Tl cviiy ||v||v
< ||@||W?,p(fgﬂ§q) +cplT ||£(v c||v||WlP(K Ra)*

Since | < T, this shows that G € L(W™P(K;RY); W™P(K;R7)).
(2) Let us prove that

|U_ ( )|Wm p(K;Re) = C(|§|W11P([?;]RQ)+"'+|6|W7wp([/€;RQ))' (1116)

The estimate is trivial if » = 0. Assume now that r > 1. Then 0 <r—1 <k, so that P,_1 4 C P} 4,
which implies that [P, ;4] is pointwise invariant under Z5. Hence, the operator G vanishes on
P._1,4. We then infer that

|U - I}?(Uﬂwm,p(}?;n@q) = |g(v)|wm,p(f(;Rq) = 5€[Ip}lrif1,d]q |g(U —p)|Wm,p(I?;Rq)
< ”g”L(W?,p(f(;Rq);Wm,p(f(;Rq)) ;BG[IF’mfl e || p”wr P (K;Ra)
<c ﬁe[IP’in,fl A ||i)\— ﬁ”W?P(}?;Rq <c (lvlwr p(K Ra) +...+ |5|W?,p(f(;]Rq))7
Slnce ||U - p”Z‘:V'r p(K;Rq) = || - p”Z‘:V'rp K]Rq + Zn€{£+1:F} |5}\|€V"’p(i€;Rq) fOI' £ < F? and OWlng

to the estimate (11.8) from the Bramble H1lbert/ Deny-Lions lemma applied componentwise to
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~ :
[0 pHWLP(}?;Rq)' This proves (11.16).

(3) Finally, let v € WTP(K;R?). We infer that

|v — Lk (0)lwmor (5 R

< cl|Ax e T3 [detT |7 19k (0 = Tic (W) |y (o)

< cl|Ag e [T 17 [det(Tr)|7 [$r (v) = T (ke () |y 2:me)

< AR e IR 1det @)l (19x (0o g + - + 1K)y o))

< e | IE (kW olwer (aray + -+ [ Txclle20lwrr (im0 )

where we used the bound (11.7b) in the first line, the linearity of ¥ i and Zx = 1/);(1 0Tz otk in
the second line, the bound (11.16) in the third line, and the bound (11.7a) together with (11.12)
in the fourth line. The expected error estimate follows by using (11.3) and the fact that o = Z—;‘
is uniformly bounded owing to the shape-regularity of the mesh sequence.

Definition 11.14 (Degree of a finite element). The largest integer k such that [Py q]? C Pc
WhHLP ([ RY) is called degree of the finite element.

Remark 11.15 (Assumptions). The assumption (i) in Theorem 11.13 is easy to satisfy for finite
elements since P is in general composed of polynomial functions. If Pand T 7 are generated from
a finite element construction, then the assumption (ii) follows from (i) since P is then pointwise
invariant under Z5. The assumption (iii) requires a bit more care since it amounts to finding an
integer [ s.t. Zp : W“’(IA{; R?) — Pis bounded, i.e., the assumption (iii) is a stability property of
the reference interpolation operator. O

Remark 11.16 (Fractional order). For simplicity, the interpolation error estimates from The-
orem 11.13 are derived for functions in Sobolev spaces of integer order. We refer the reader to
Chapter 22 for interpolation error estimates in Sobolev spaces of fractional order. O

11.5 Some examples

In this section, we present some examples of the application of Theorem 11.13 where ¥ is the
pullback by the geometric mapping. We refer the reader to Chapter 16 for applications of The-
orem 11.13 to vector-valued finite elements when v is one of the Piola transformations from
Definition 9.8.

11.5.1 Lagrange elements

Let (Tn)nen be a shape-regular sequence of affine meshes. For Lagrange elements, we have seen in
Example 9.4 that the transformation ¢ is the pullback by the geometric mapping, i.e., ¥ (v) :=
Y5 (v) = vo Tk (see (9.9a)). Hence, the choice (11.1) with Agx := 1 for 1k is legitimate,
and (11.12) trivially holds true (with ~ := 1). Proposition 9.3 shows that Tk = ¢5" o I}i( oYK,
where I;i( and T are, respectively, the Lagrange interpolation operator in the reference cell K
and in a generic mesh cell K € T,. Hence, (11.13) holds true. Furthermore, Assumption (i) in
Theorem 11.13 holds true with k being the degree of the Lagrange element. Assumption (ii) also
holds true since P is pointwise invariant under T. It remains to verify Assumption (iii). This
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assumption is satisfied if we take [ to be the smallest integer such that [ > % (orl >difp=1).

This indeed implies that W”’(IA{) — O (l?) owing to Theorem 2.35. Assuming that £+ 1 > g
(so that k41 > 1), the estimate (11.14) implies that there is ¢ s.t. for every integers r € {l:k + 1}
and m € {0:r}, all v € W™P(K), all K € Tj,, and all h € H,

v = Tk (0) [ (i) < hlie ™ olwrs (). (11.17)

IfTer+1< %, the more general estimate (11.15) has to be used. For instance, assume that k = 1,
d=3,and p € [1,%], so that k+1 =2 < %. In the range p € [1,%], we can take [ = 3 in
Assumption (iii) (since either 3 > % for p>1or3>3). For m =0, we get

o = Tk ()| oga) < W (olwen i) + b olwss (i) (11.18)

Remark 11.17 (Quadrangular meshes). When working on quadrangular (or hexahedral meshes),
the geometric mapping is affine if and only if all the cells are parallelograms (or parallelotopes). If
one wants to work with more general meshes, nonaffine geometric mappings need to be considered.
This case is treated in §13.5. O

11.5.2 Modal elements

Consider now a modal finite element of degree £ and let I% and T be the modal interpolation

operators in the reference cell K and in a generic mesh cell K € Ty, respectively. We have seen
in Example 9.5 that the choice ¢ (v) := 5 (v) := v o Tk is legitimate, that is, we take Ag =1
in (11.1) to define ¥k, so that (11.12) trivially holds true (with v := 1). Proposition 9.3 shows
that 72 = 1/);(1 oIZ ovk. Hence, (11.13) holds true. As for Lagrange elements, Assumptions (i)
and (ii) in Theorem 11.13 are easy to verify. Concerning Assumption (iii), it is legitimate to take
I =0 since V(K) = L*(K;R?). Hence, the estimate (11.14) can always be used, i.c., there is ¢ s.t.
for every integers r € {0:k + 1} and m € {0:r}, all v € W™P(K), all K € Tp, and all h € H,

|U—Ilr?(v)|W7n,p(K) S Ch%_m|v|WT,p(K). (1119)

11.5.3 L*-orthogonal projection

Let P be a finite-dimensional space such that Pyy C P C WH*1°°(K). The L?-orthogonal
projection onto P is the linear operator I% : LY(K) — P such that for all v € L*(K), I% (v) is the
unique element in P st.

/A(zlg(a) —0)gdz =0, VgeP. (11.20)
K

Since v — I}l( (v) and I}l( (¥) — q are L2-orthogonal for all § € P, the Pythagorean identity gives

This implies that
I%(ﬁ) = arg rlrslin lo— qAHLz(f(). (11.22)
IS

Hence, I%(ﬁ) is the element in P that is the closest to ¥ in the L2-norm, and P is pointwise

invariant under I% .
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Let (Th)nen be a shape-regular sequence of affine meshes. Let K € Tp,. Let 9% be the pullback
by the geometric mapping Tk, i.e., % (v) := voTk, and set Pg := (zﬁ%{)_l(ﬁ). The L2-orthogonal
projection onto P is the linear operator Z% : L*(K) — Py such that for all v € L(K), Z% (v) is
the unique element in Pk s.t.

/ (Zy(v) —v)gda = 0, Vq € Pk. (11.23)
K

As above, Z% (v) is the element in Pk that is the closest to v in the L?-norm, and P is pointwise
invariant under Z}..

Lemma 11.18 (L*-projection). Let p € [1,00]. There is ¢ s.t. for every integers r € {0:k + 1}
and m € {0:7}, allv e WP(K), all K € Ty, and all h € H,

|'U — I%(U)|Wm,p([() S Ch%_m|U|WT,p(K). (1124)
Proof. We apply Theorem 11.13. Recall from (9.9d) the Piola transformation 1% (v) := det(J k) (vo
Tk). Observe that (¢%)~1(P) = Pg. The map 9% is of the general form (11.1), i.e., Y% (v) =

Ak (voTk) where Ax := det(J k) is a 1 x1 matrix (i.e., a real number) that trivially satisfies (11.12)
(with v :=1). For all ¢ € Px with ¢ =¢go Tgl, we have

/K ()1 (T (W (v)))g de = /K det(Txe) " (T2 (¥ (v)) 0 T g da
_ /K ex T (1 ()73

- / el (0)7dE = / vqda,
K K

with exc := (§e), which proves that Tk = (%)~ o2 0w} since (¥})(P) = Py, i.., (11.13)
holds true with ¢ := 1%. It remains to verify the assumptions (i), (ii), and (iii). Assumption (i)
follows from our assumption on P. Assumption (ii) follows from P being pointwise invariant
under I%. Finally, Assumption (iii) holds true with { := 0. Since | < k 4 1, we can apply the

estimate (11.14), which is nothing but (11.24). O

Remark 11.19 (Beyond finite elements). The above example shows that Theorem 11.13
can be understood more generally as an approximation result for the operator Zx defined by
Tk = 1/);{1 oLz oy without directly invoking any finite element structure to build the operator Z.
Given the affine geometric mapping Tk : K — K and the transformation ¢ (v) := Ak (v o Tx),
the key requirements are that Zp : Wl’p(l? ;RY) — Pis bounded, Py, 4 is pointwise invariant under
I, and ¥y is such that [|Ax|e||Ax 2 < 7| Tklle2llT%" lez- In conclusion, the finite element
construction of §9.1 is sufficient to apply Theorem 11.13 but not necessary. O

Exercises

Exercise 11.1 (High-order derivative). Let two integers m,d > 2. Consider the map @ :
{1:d}™ > § — (21(3),...,®a(j)) € N, where ®;(j) := card{k € {1:m} | jp = i} for all i €
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{1:d}, so that |®(j)| = m by construction. Let Cy, 4 := maXyend, |o|=m card{j € {1:d}™ | () =
a}. Let v be a smooth (scalar-valued) function. (i) Show that

D™ ol e, e, sy < Cg [ 30 0%
a€eN? |a|=m
(ii) Show that Cy,,2 = maxo<i<m () = 2™. (iii) Evaluate Cp, 3 and m € {2,3}. (iv) Show that
2 aeNd ja]=m 107V < (T TID™ ]| p (.. rRY-
Exercise 11.2 (Flat triangle). Let K be a triangle with vertices (0,0), (1,0) and (—1,€) with

0 < € < 1. Consider the function v(z1,22) := 2. Evaluate the P; Lagrange interpolant Zk (v)
(sse (9.7)) and show that |v — Tk (v)|m1(x) = € *vlg2(x). (Hint: use a direct calculation of
Tk (v).)

Exercise 11.3 (Barycentric coordinate). Let K be a simplex with barycentric coordinates
{Nitico:ay- Prove that [y (k) < pi for all i € {0:d}.

Exercise 11.4 (Bramble—Hilbert). Prove Corollary 11.11. (Hint: use the Bramble-Hilbert/Deny—
Lions lemma.)

Exercise 11.5 (Taylor polynomial). Let K be a convex cell. Consider a Lagrange finite element
of degree k > 1 with nodes {a; };car and associated shape functions {6;};cr. Consider a sufficiently
smooth function v. For all &,y € K, consider the Taylor polynomial of order k and the exact
remainder defined as follows:

Ty (2, y) := v(@) + Do(z)(y — @) + .. +k,D’“ v(@)(y—z,....y — ),

k times

DkJrlU(Ww + (1 - W)y)(y —L,..., Y — .’B),
—_———

(k + 1) times

so that v(y) = Tk(z,y) + Ri(v)(z,y) for some n € [0,1]. (i) Prove that v(z) = I (v)(x) —
>ien Bi(v)(x, ai)0;(x), where Zf is the Lagrange interpolant defined in (9.7). (Hint: interpolate
with respect to y.) (ii) Prove that D™v(x) = D™(Zj (v))(x) — > ;cpr Ri(v)(2, a;) D™6;(x) for
all m < k. (Hint: proceed as in (i), take m derivatives with respect to y at @, and observe
that v(x) = Tk(@,x).) (iii) Deduce that [v — T (v)|[ym. (k) < co?h’;{+l_m|v|wk+1,m(;{) with
ci= ﬁc*h’f? D e |§Z—|Wm,oo(f(), where ¢, comes from (11.7b) with s =m and p = 0o

Exercise 11.6 (LP-stability of Lagrange interpolant). Let a € (0,1). Consider the Lagrange
P, shape functions 61 (z) := 1 — « and 6;(z) := x. Consider the sequence of continuous functions
{un}tnem (o3 defined over the interval K :=[0,1] as un(z) :=n® = 1if 0 < 2 < L and u,(z) :=
x~*—1 otherwise. (i) Prove that the sequence is uniformly bounded in LP(0,1) for all p such that
pa < 1. (ii) Compute Z% (uy,). Is the operator Zk stable in the LP-norm? (iii) Is the operator Z%
stable in any L"-norm with r € [1,00)?

Exercise 11.7 (Norm scaling, s ¢ N). Complete the proof of Lemma 11.7 for the case s ¢ N.
(Hint: use (2.6) with s=m+ o0, m:=[s],oc:=s—m € (0,1).)

Exercise 11.8 (Morrey’s polynomial). Let U be a nonempty open set in R?. Let k € Nand p €
[1,00]. Let u € W*P(U). Show that there is a unique polynomial ¢ € Py g s.t. [;; 0%(u—q)dz =0
for all a € N of length at most k. (Hint: see the proof of Lemma 11.9 and also Morrey [148,
Thm. 3.6.10].)
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Exercise 11.9 (Fractional Sobolev norm). Let r € (0,1). Let (7,)nen be an shape-regular
affine mesh sequence and let K be the reference element. Let K be an affine cell in Tr. Using the
notation ¥ := v o Tk, show that there is ¢ such that ||5HHT(1?) < ch;(_% |v] g (xy for all v € H"(K)
such that [, vdz =0, all K € Ty, and all h € H. (Hint: use Lemma 3.26.)



Chapter 12

Local inverse and functional
inequalities

Inverse inequalities rely on the fact that all the norms are equivalent in finite-dimensional normed
vector spaces, e.g., in the local (polynomial) space Pk generated from the reference finite element.
The term ‘inverse’ refers to the fact that high-order Sobolev (semi)norms are bounded by lower-
order (semi)norms, but the constants involved in these estimates either tend to zero or to infinity as
the meshsize goes to zero. Our purpose is then to study how the norm-equivalence constants depend
on the local meshsize and the polynomial degree of the reference finite element. We also derive
some local functional inequalities valid in infinite-dimensional spaces. All of these inequalities are
regularly invoked in this book. In the whole chapter, we consider the same setting as in Chapter 11,
ie., (K, P,X) is the reference finite element, (75 )nep is a shape-regular sequence of affine meshes,
Ty : K — K is the geometric mapping for every mesh cell K € Ty, and the local finite element
(K, Pg,Y k) is generated by using the transformation ¥k (v) := Ax (v o Tk ) with A € R7*? g.t.
[Ax|lezl|Agtllez < ¢ (which follows from (11.12) and the regularity of the mesh sequence).

12.1 Inverse inequalities in cells

Lemma 12.1 (Bound on Sobolev seminorm). Let [ € N be s.t. P C W5 (K;R?). There is
¢ s.t. for every integer m € {0:1}, all p,7 € [1,00], all v € Pk, all K € Ty, and all h € H, the
following holds true:

1_1
p T

m—1+d(

)
|U|leP(K;]Rq) <chy |U|Wmv7‘(K;]Rq)- (12.1)

Proof. (1) Since all the norms in the finite-dimensional space P are equivalent, there exists ¢, only
depending on K, [, and ¢, such that Hﬁ”wlm(f(;Rq) < ’c\||i;\||L1(f<;Rq) for all v € P, which in turn
means that for all p,r € [1, o],

”ﬁle,p(}?;Rq) < EHﬁ”Lr(f{;Rq)v Vv € P. (12-2)

(2) Let now v € Pk. Since P := 15 (P), 0 := ¢k (v) is in P. Let j € {0:1}. Using Lemma 11.7,
(12.2), the assumption ||Ax/||s2[|Ax |2 < ¢, and the regularity of the mesh sequence implies that
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(the value of ¢ changes at each occurrence)

— — j 1<
[l (reimay < ¢ IAK e 105 721det (T [llys.0 (7 20
— — j 1
< cllA% e 1T 1721t @) Z 10 1 7

— — i 1_1
< cllAxllelAK e 1T 172 |det @)~ oll e (acizay

(l

—j+d(5-1)
<chyg ! HUHLT(K;R‘I)-

Taking j = I proves (12.1) for m = 0.
(3) Let now m € {0:1}. Let o be a multi-index of length [, i.e., |a] = I. One can find two multi-
indices # and « such that & = 8+ v with |7y| = m and |f| = [ — m. It follows from Step (2)
that

||8QUHLP(K;R‘J) = Haﬁ(a’yv)HLP(K;Rq) < |8WU|WZ*7"’P(K;]R‘1)

mfler(%f%) mfler(%f%)
<chy Ha'YUHLr(K;Rq) <chy |’U|Wm,7‘(K;]Rq)7
which proves (12.1) for every integer m € {0:1}. O

Remark 12.2 (Scale invariance). Inverse inequalities are invariant when K is dilated by any
factor A > 0. Indeed, the left-hand side of (12.1) scales as A% and the right-hand side as

AT AG =\ "M = \~H 5 This fact is useful to verify the correctness of the exponent of hy

in (12.1). O
Example 12.3 (Bound on gradient). Lemma 12.1 with [ := 1, m := 0 yields

Vol Lo (s ray < R0 Lo ra),s
for all p € [1,00], all v € P, all K € Tp,, and all h € H. O
Example 12.4 (L? vs. L%-norms). Lemma 12.1 with m :=0, [ := 0 yields

d(5—+)

[ollLe(cimay < chye” " ollorxmay, (12.3)

for all p,r € [1,00], all v € Pk, all K € Tp,, and all h € H. O
Proposition 12.5 (dof-based norm). There is ¢ s.t.

1. _
clvlloiame) < 1K IAR e (max|owi@)]) < ¢ ol oz, (12.4)
forallp e [l,00], allv € Pk, all K € Ty, and all h € H.
Proof. See Exercise 12.3. O
Example 12.6 (dof-based norm). For any Lagrange finite element with nodes (axk;)ien,
lv]| Lp (i ;ray is uniformly equivalent to

d
hi max|[o(ar.q)ezra),

d
where |K |% has been replaced by hj, owing to regularity of the mesh sequence. For the Raviart—
Thomas RT 4 element (see Chapter 14), inspection of the dofs shows that ||v||Ls(x) is uniformly
equivalent to

1
T k—1
hy k{relaj’); Hv'nF”LP(F) + HHK ('U)”L”(K)’
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where np is the unit normal vector orienting the face F' of K, and H’;{l is the L?(K)-orthogonal
projection onto Pr_1,4 (k > 1). For the Nédélec Ny 4 element (see Chapter 15), |[v|Le(x) is
uniformly equivalent to

2 1
2 = k—1 k—2
hi max |v7pl o) + hic max [ (0)xnpllze@) + T @)z,

where T is the unit tangent vector orienting the edge F of K and H’;{_Q is the L?(K)-orthogonal
projection onto Py_o 4 (k > 2). O

Sharp estimates of the constant ¢ appearing in the above inverse inequalities can be important
in various contexts. For instance, the hp-finite element analysis requires to know how ¢ behaves
with respect to the polynomial degree; see, e.g., Schwab [177]. It turns out that estimating ¢ in
terms of the polynomial degree can be done in some particular cases. One of the earliest known
inverse inequalities with a sharp estimate on ¢ is the Markov inequality proved in the 1890s by
Andrey Markov and Vladimir Markov for univariate polynomials over the interval [—1,1].

Lemma 12.7 (Markov inequality). Let k,l € N withl < k and k > 1. The following holds true
for every univariate polynomial v € Py, 1 :

[0 oo —1,1) < Coomt |Vl Lo (—1,1s (12.5)

K (1) (K = (1-1))
13..(21=1) :

with Coo,k,l =

Setting [ := 1 in (12.5) gives [|[v/[|Lec(—1,1) < Coo,k||V]|Loe(=1,1) With Cso := k*. This type of
result can be extended to the multivariate case in any dimension. In particular, it is shown in
Wilhelmsen [200] that

4k?

vl VU EPra, 12.6
width(K)” (%) (12.6)

HVUHLoo(f{) <

for all compact convex sets K in R? with nonempty interior, where width(f( ) is the width of K ,
i.e., the minimal distance between two parallel supporting hyperplanes of K ; see also Kro6 and
Révész [129].

Results are also available for the L2-Markov inequality in the univariate and multivariate cases;
see Harari and Hughes [112], Schwab [177], Kro6 [128], Ozisik et al. [155]. For instance, it is shown
in [177, Thm. 4.76] that

HU/HL2(71,1) S C2,k||'UHL2(71,1)7 VU S PkJ, (12.7)

with Co = k((k + 1)(k + %))% Sharp estimates of the constant Cyj can be derived by com-

puting the largest eigenvalue of the stiffness matrix A of order (k + 1) with entries A, =
N - N 1

f_ll(Lm)'(t)(Ln)'(t) dt for all m,n € ~{O:k}, where Ly, := (2%1)% L,,, L,, being the Legendre

polynomial from Definition 6.1, i.e., { Ly }mego:} is an L2-orthonormal basis of P ;. For instance,

it is found in [155] that Cy 1 = 3, Ca 0 = 15, Ca 3 = 4541605 51605, and Cyy = % V803 ' The multi-

variate situation is slightly more complicated, but when K is the unit triangle or the unit square,
it is shown in [177] that

||V’U||L2(I?) <ck?lv Yo € Py, o, (12.8)

Iz2(),
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where ¢ is uniform with respect to k. By numerically evaluating the largest eigenvalue of the
stiffness matrix assembled from an L2-orthonormal basis of P 2 on the reference triangle K, it is
shown in [155] that

0K
IVelzzao < Canl Sl ol ke 1,2:3,) (12.9)

for every triangle K, with Ca,1 = v/6 ~ 2.449, Cyp = 3\@ ~ 4743, Ca3 ~ 7.542, and Cyq ~
10.946. Values of Cs j, for tetrahedra with k € {1:4} are also given in [155].

12.2 Inverse inequalities on faces

Let Fx be the collection of the faces of a mesh cell K € Tj,.

Lemma 12.8 (Discrete trace inequality). Assume that P C L*(K;R%). There is c s.t. the

following holds true:

+d(5—3)
7 ol Ry (12.10)

for all p,r € [1,00], allv € Px, all K € Ty, all F € Fk, and all h € H.

_1
vl Lo (rray < chg”

1
Proof. Let U := tx (v). Then |[v]|ro(rray < AR |2 (%)p ”@HLP(RRQ)' Using norm equivalence

in P, we infer that H@HLP(I;;RQ) < EHaan(f(;Rq)- Hence,

1
- |F| K]\ "
[ollo(rmay < ARl AR e | =i | 10lzema)-
( ) K |7 K| ( )
The regularity of the mesh sequence yields (12.10) if p = r. The result for r # p follows from (12.3).
O

Again, it can be important to have an accurate estimate of the constant ¢ appearing in the
discrete trace inequality (12.10). For instance, this constant is invoked to determine a minimal
threshold on the stability parameter that is used to enforce boundary conditions weakly in the
boundary penalty method and the discontinuous Galerkin method for elliptic PDEs; see Chap-
ters 37 and 38. It is indeed possible to estimate ¢ in the Hilbertian setting (with p = ¢ = 2), when
K is a simplex or a cuboid. We start with the case of the cuboid; see Canuto and Quarteroni
[57], Bernardi and Maday [22].

Lemma 12.9 (Discrete trace inequality in cuboid). Let K be a cuboid in RY and let F € Fi.
The following holds true for all v € Qg 4:

1 _1
[oll2my < (B + DIF[2[K[72 [[o] L2 () (12.11)

Proof. We first consider the reference hypercube K :=[—1,1]¢ and the face F := {Z5 = —1}. Re-

~ 1 ~
call the rescaled Legendre polynomials Ly, := (2%t1)2 L,,, i.e., {Lm }me{0: 4} is an L*-orthonormal

basis of Q1 = Pr1. An L?-orthonormal basis of Q,q is obtained by constructing the tensor prod-
uct of this one-dimensional basis. Let v € Qp, ¢4 and write

@)= > ... > Bl (@) ... Li,(Za).

i1€{0: k} ige{0:k}
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Let V € Re+D? be the coordinate vector of 3 in this tensor-product basis. Using orthonormality,
we infer that
/ 9(@)2ds=V"TV,
F
where the (k+1)%x (k+ 1) symmetric matrix 7 is block-diagonal with (k+ 1)~ diagonal blocks
all equal to the rank-one matrix ¢ := UU" where U = (Lg(—1),...,Lx(—1))T. As a result, the
largest eigenvalue of T is

2m+1  (k+1)?

Amax(T) = Amax(U) = [UlEerny = Y = 2

me{0:k}

Since VTV = ”6H22(f<) by orthonormality of the basis, we infer that

||6Hiz(ﬁ) S AmaX(T)”i)\Hiz(j%) = %(k =+ 1)2H6H22([/€)

Finally, we obtain (12.11) by mapping the above estimate back to the cuboid K and by observing
that |K| = 2|F]. O

Lemma 12.10 (Discrete trace inequality in simplices). Let K be a simpler in R? and let
F € Fi. The following holds true for all v € Py 4:

1
o]l p2(ry < ((k+1)(k +d)d™Y)? |F|2 | K| 2 ][v]| p2 k) (12.12)

Proof. See Warburton and Hesthaven [196]. O

12.3 Functional inequalities in meshes

This section presents two important functional inequalities: the Poincaré—Steklov inequality for
functions having zero mean-value over a mesh cell and the multiplicative trace inequality for
functions having a trace at the boundary of a mesh cell.
12.3.1 Poincaré-Steklov inequality in cells
Lemma 12.11 (Poincaré—Steklov). Let K € Ty, and assume that K is a convex set. Then for
allv € HY(K) with vy :== ﬁfK’de, we have

o = villL2x) < 7 hilola k) (12.13)
Proof. This is a paraphrase of Lemma 3.24. O
Lemma 12.12 (Fractional Poincaré—Steklov). Let p € [1,00), r € (0,1), and let K € Ty,.
Then for all v € W"P(K) with vy 1= \_Ilq Sy vda, we have

s hd P
o= wiellivey < b (Wﬁ) ol (12.14)

Proof. This is a paraphrase of Lemma 3.26. O
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Corollary 12.13 (Polynomial approximation). Assume that the mesh sequence (Tp)nen is
shape-reqular. Let k € N. There is ¢ s.t. for every real numbers r € [0,k + 1] and p € [1,00) if
r ¢ Nand p € [1,00] if r € N, every integer m € {0:|r]} (where |r| denotes the largest integer
neNst.n<r) allve WP(K), all K € Ty, and all h € H,

inf |v —qlwmrx) < chie "vlwre k), (12.15)
q€EPL.q

where the mesh cells are supposed to be convex sets if r > 1.

Proof. If m = r, there is nothing to prove, so let us assume that m < r. If r € (0,1), we have
m = 0, and (12.15) follows from the fractional Poincaré-Steklov (12.14) and the regularity of the
mesh sequence. If r = 1, we only need to consider the case m = 0 (since otherwise m = 1 = r),
and (12.15) follows from the Poincaré-Steklov inequality (12.13) and the convexity of K. If k = 0,
the proof is complete. Otherwise, & > 1 and let us assume now that » > 1. Let £ € N be s.t.
¢ := [r] — 1 (where [r] denotes the smallest integer n € N s.t. n > r). Notice that we have
m < {<kand 1 </ The key idea is to take ¢ := m;(v) € Py q C Py q since £ < k, where m;(v) is
defined by [} 0“(v —m(v)) dz = 0 for all @ € N of length at most ¢ (see Exercise 11.8), and then
to invoke the above Poincaré-Steklov inequalities in K. Since 0%(v — m¢(v)) has zero mean-value
on K for every multi-index a € N? of length m with 0 < m < £ — 1, repeated applications of the
Poincaré-Steklov inequality (12.13) (and the convexity of K) imply that

[0 = 7o (v)lwmn (i) < chig ™0 = me(0)lwes ().
Since 0%(v — m¢(v)) has zero mean-value on K for any multi-index o € N of length ¢ as well, we
can apply one more time either (12.13) or (12.14) to the right-hand side. If » € N, we invoke the
convexity of K and apply (12.13) to obtain (12.15). If » ¢ N, we apply (12.14) and invoke the
regularity of the mesh sequence to obtain (12.15). O

Remark 12.14 (Comparison). The estimate (12.15) is similar in spirit to the Bramble-Hilbert
lemma (Lemma 11.9), except that in Lemma 11.9 it is not known how the constant ¢ depends on K.
This difficulty was circumvented in Theorem 11.13 by using that all the mesh cells are generated
from a fixed reference cell. This assumption is not used in the proof of (12.15), which instead
assumes the mesh cells to be convex sets. The estimate (12.15) can be extended to (connected)
cells that can be partitioned into a uniformly finite number of convex subsets (e.g., simplices). The
key point to establish this result is that the Poincaré—Steklov inequality (12.13) can be generalized
to such sets; see Remark 22.11. O

12.3.2 Multiplicative trace inequality

Let K € T, and let F' € Fi be a face of K. Consider a function v € W1P(K). Then v has a
trace in LP(F) (see Theorem 3.10). The following result gives an estimate of |[v||z»(p) in terms of
powers of [|v]| (k) and [[Vv| Ls(x) (hence the name multiplicative).

Lemma 12.15 (Multiplicative trace inequality). Let (Tp)nen be a shape-regular sequence of

affine simplicial meshes in R%. There is ¢ s.t. for all p € [1,00], all v € WYP(K), all K € Ty, all
F e Fg, and all h € H,

1_1 1o 1
Iollzncey < <lolliey (i BollEney + 1900 oy ) (12.16)
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Proof. Let K € Ty, and v € WHP(K). Assume first that p € [1,00). Let F be a face of K and let zp

F
(@ = =)

(see §14.1). One can verify that the normal component of O is equal to 1 on F' and 0 on the other

be the vertex of K opposite to F. Consider the Raviart-Thomas function Op(x) :=

faces of K. Since V-0 = %, we infer using the divergence theorem that

oy = [ PO as = [ V(lopor) s
OK K

:/ (|v[PV-0p + po[v|P~?0p-Vv) da

p|F|

|K|H || p(K)+d|K| ’U|’U|p_2($—ZF)'v’Ud(E.

Using Hélder’s inequality and introducing the length ¢+ defined as the largest length of an edge of
K having zp as an endpoint, we infer that

| p|FIE
[0l 0y < |K|H ULo ) + 3 |K|F|| 175 () 1 V0 | 2o )

which implies the bound (12.16) using the regularity of the mesh sequence and the fact that

p% <er < % Finally, the bound for p = oo is obtained by passing to the limit p — oo in (12.16)
since ¢ is uniform w.r.t. p and since limy, o0 ||| r(x) = [l Lo (K)- O

Remark 12.16 (Literature). The idea of using a Raviart—Thomas function to prove (12.16) can
be traced to Monk and Siili [146, App. B] and Carstensen and Funken [62, Thm. 4.1]. See also
Ainsworth [5, Lem. 10] and Veeser and Verfiirth [193, Prop. 4.2]. O

Remark 12.17 (Application). Let Z : V(K) — Pg be an interpolation operator s.t. WP (K) <
V(K),p € [1,00], and [v—Zf (v)|wm.» (k) < chie " |vlwrre (k) forallr € {1:k+1}, k > 0, m € {0, 1},
all v e WhP(K), all K € Ty, and all h € H. The multiplicative trace inequality (12.16) can then
be used to estimate the approximation properties of Zx in LP(F'). Combining (12.16) with the
above estimate on [v — Zx (v)|wm.» (k) gives

p_1
o~ Tic (0) | oy < e [olwro i),

When Zx = I}} is the L2-orthogonal projection built using Py 4 (see §11.5.3), it is shown in
Chernov [67, Thm. 1.1] that ¢ decays like k~"+2 for p = 2. O

Remark 12.18 (Nonsimplicial cells). Lemma 12.15 can be extended to nonsimplicial cells s.t.
one can find a vector-valued function @r with normal component equal to 1 on F' and 0 on the
other faces, and satisfying hx ||V-0p| L~ x) + |0F| L~ (k) < ¢ uniformly w.r.t. F, K, and h. O

Remark 12.19 (Fractional trace inequality). The multiplicative trace inequality from Lemma
12.15 can be extended to functions in fractional Sobolev spaces. Let p € (1,00) and s € (1—17, 1) (we
exclude the case s = 1 since it is already covered by Lemma 12.15). Functions in W*P?(K) have
traces in LP(F) for every face F' of K (see Theorem 3.10). Then one can show (see Exercise 12.6
or Ciarlet [73, Prop. 3.1] and the work by the authors [97, Lem. 7.2]) that there is ¢ s.t. for all
veWP(K),all K € Ty, all F € Fg, and all h € H,

1 o1
loll o < c (h; ol ey + B p|v|ws,p<m) | (12.17)

The constant c¢ is uniform w.r.t. s and p as long as sp is bounded from below away from 1, but ¢
can grow unboundedly as sp | 1. O
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Exercises

Exercise 12.1 (¢? vs. {"). Let p,r be two nonnegative real numbers. Let {a;};,c; be a finite

sequence of nonnegative numbers. Set [lal[ppwry = (D s af)% and |[[algr@wry == Qier ar)r.
(i) Prove that [|alp@ry < [laller@ry for 7 < p. (Hint: set 0; = a§/||a||zr(RI).) (ii) Prove that

ﬂ
llallerrry < card(I) 7 [[al|¢rrry for r > p.

Exercise 12.2 (LP-norm of shape functions). Let 0 ;, i € N, be a local shape function. Let
p € [1,00]. Assume that (74)nen is shape-regular. Prove that |0 il/z»(x) is equivalent to h%p
uniformly w.r.t. K € T, and h € H.

Exercise 12.3 (dof norm). Prove Proposition 12.5. (Hint: use Lemma 11.7.)

Exercise 12.4 (Inverse inequality). (i) Let & > 1, p € [1,00], let K = {(Z1,...,74) €
(0,1)4 | Zie{l;d} z; < 1}, and set ¢ = SUPjep, ,
K be a simplex in R? and let px denote the diameter of its largest inscribed ball. Show that

IVollLr (k) < /C\k,pp_\/f”UHLP(K) for all v € Py, 4 o Tk, where Tk : K — K is the geometric mapping.

(Hint: use (9.8a) and Lemma 11.1.)

v||LP(?). Explain why ¢}, is finite. (ii) Let

Hﬁnu)(?)

Exercise 12.5 (Markov inequality). (i) Justify that the constant Cs j in the Markov inequal-
ity (12.7) can be determined as the largest eigenvalue of the stiffness matrix A. (ii) Compute
numerically the constant Cs j for k € {1,2,3}.

Exercise 12.6 (Fractional trace inequality). Prove (12.17). (Hint: use a trace inequality in

~

W=r(K).)

Exercise 12.7 (Mapped polynomial approximation). Let (l? ,ﬁ, 2‘) be a reference finite
element such P4 C P, k € N. Let 7, be a member of a shape-regular mesh sequence. Let
Tx(K) =K €Ty, and let (K, Pg, X ) be the finite element generated by the geometric mapping
Tk and the functional transformation ¢k (v) := Ag(v o Tk). Recall that Px = ¢'(P). Show
that there is ¢ s.t.
inf — m,p <ch' =™ oK) 12.18

qlel}DK v —qlw (K) > Cly [vlw (K) ( )
forall r € [0,k+1],all p € [1,00) if r € Nor all p € [1,00] if r € N, every integer m € {0:[r|}, all
veWrP(K), all K € Ty, and all h € H, where the mesh cells are supposed to be convex sets if
r > 1. (Hint: use Lemma 11.7 and Corollary 12.13.)

Exercise 12.8 (Trace inequality). Let U be a Lipschitz domain in R%. Prove that there are
1 1—1
e1(U) and 5 (U) such that [[ol|o(oury < e1 (U)ol Loy +e2(U) V0] 2y o 01125 for all p € [1,00)

and all v € WHP(U). (Hint: accept as a fact that there exists a smooth vector field N € C*(U)
and ¢o(U) > 0 such that (N-n)j5y > c¢o(U) and ||[N(x)||p2@ey = 1 for all x € U.)

Exercise 12.9 (Weighted inverse inequalities). Let k € N. (i) Prove that H(l—t2)%v'HLz(,171) <

L -
(k(k 4+ 1)) % |vll 2(=1,1) for all v € Pp1. (Hint: let Ly, := (%)1/2 Ly, Ly, being the Legendre

polynomial from Definition 6.1, and prove that f_ll(l —12) (L) () (L)' (t) At = Gpnm(m + 1) for

every integers m,n € {0:k}.) (ii) Prove that |lv[/z2(—11) < (kB4 2)[[(1 — tQ)%UHp(,Ll) for all
v € P 1. (Hint: consider a Gauss-Legendre quadrature with lg := k + 2 and use the fact that the
rightmost Gauss—Legendre node satisfies {, < cos(g75).) Note: see also Verfiirth [195].



Chapter 13

Local interpolation on nonaffine
meshes

In this chapter, we extend the results of Chapter 11 to nonaffine meshes. For simplicity, the
transformation vk is the pullback by the geometric mapping, but this mapping is now nonaffine.
The first difficulty consists of proving a counterpart of Lemma 11.7 to compare Sobolev norms.
This is not a trivial task since the chain rule involves higher-order derivatives of the geometric
mapping. The second difficulty is to define a notion of shape-regularity for mesh sequences built
using nonaffine geometric mappings. We show how to do this using a perturbation theory, and we
present various examples.

13.1 Introductory example on curved simplices

If one wants to approximate a problem posed in a domain D with a curved boundary 9D using
a finite element of degree k > 2, it is often necessary to use nonaffine cells since otherwise the
geometric error in the representation of the boundary can dominate the approximation error.
A relatively straightforward way to generate nonaffine cells is as follows: (i) Construct a mesh
(ﬁ)heH composed of affine cells with all the vertices lying on the curved boundary 9D. (ii) For
each affine cell K € ﬁ having a nonempty intersection with D, design a new geometric mapping
(of degree larger than 1) that approximates the boundary more accurately than K. Then replace
K by the new cell thus created.

Example 13.1 (Simple construction). An example relying on Py 2 or Q22 Lagrange elements

in R? to build the geometric mapping (see Figure 13.1) is as follows. (i) Let K be a triangle or
a quadrangle having an edge whose vertices lie on dD. Let {a;};en,., be the geometric nodes

zeo
of K with Ngeo = {1ingeo} (Ngeo := 6 for a triangle and nge, := 9 for a quadrangle). (ii) For
all i € ./\/gco, construct from a; a new node a; as follows: If a; is located at the middle of an
edge whose vertices lie on 0D, a; is defined as the intersection with 9D of the line normal to the
corresponding edge and passing through the node a;. Otherwise, set a; := a;. (iii) Replace K by

the curved triangle K by defining the mapping Tk : K — K such that Tx (Z) = Zze/\/geo %( Ja;
for all Z € K where {%}zeN

geo

are the reference Py 5 or Q2 2 Lagrange shape functions. O
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ag as ar ay

Figure 13.1: Construction of a curved triangle (left) and a curved quadrangle (right).

13.2 A perturbation theory

This section presents a perturbation theory introduced by Ciarlet and Raviart [78] to analyze the
finite element interpolation error on nonaffine cells.

13.2.1 Setting and notation

Let (IA( , ﬁgco, fgco) be a reference geometric Lagrange finite element with the nodes {a;}icn,., and

geo

the shape functions {wi}ie Nieo- Lt us now consider two sets of points in RY,
{ai}iENgeo7 {ai}ie./\/geo' (13.1)

Let T: K - R and T : K — R? be the mappings defined as follows:
Yo di@a,  T@):=T@+ Y 0i(@(ai—a). (13.2)

1€Ngeo 1€Ngeo
Notice that T,T € [Pgeo] Let us set K := T(K) and K := T(K). The subscripts K and K are
henceforth omitted for the geometric mappings T and T to simplify the notation.

The setting we consider is as follows. We assume that we have at hand a mesh sequence (771) heH
such that every cell K €T, is generated from the reference cell K using the geometric mapping
T which we assume to be a well-behaved diffeomorphism. By using the geometric mapping T
deﬁned in (13.2), one constructs a new mesh 7, composed of (possibly curved) cells K that are
perturbations of the cells K. Our goal is to estimate the finite element interpolation error when
working with the geometric mapping T'.

Assuming that T' : K — K is a reasonable diffeomorphism, our first step is to ascertain that
T : K — K is also a diffetomorphism with reasonable smoothness properties. This is done by
making sure that K is close to K, i.e., that max;en;,, [[@i — @i||¢2(gay is small enough. The small
parameter that comes into play is the nondimensional ratio h/¢p, where h is the diameter of the
mesh cell K or K and ¢ p is the diameter of the domain D.

Example 13.2 (1D). Let us consider the Py ; Lagrange element (nge := 3) with K = [0,1].
Consider the two cells K = K := [0, k] with the assumption h < lp. Consider the Lagrange
nodes a1 := 0, a3 := %h, as = h, and a1 := 0, a3 := 1h + ——, as := h. Then TV(E) = zh and
T(@) =2h+2Z(1 — ) 212. Notice that in this example T is affine (|DT|| = h, |D2*T| = 0) and
T is quadratic (||DT(Z)| = h(1 + ZD - 2$ED) | DT (7)|| = Qh%, and |D3*T(z)| = 0), and T

converges to T' as % — 0. O
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13.2.2 Bounds on the derivatives of T and T !

The (Fréchet) derivatives of T and T of order m > 1 at a point Z € K are denoted by D™T(Z) and
Dmf(ﬁ), respectively (the superscript is omitted if m = 1). Recall from Appendix B that D™T
and D™T are members of M, (R, ... R%:RY), ie., they are multilinear maps from R%x ... xR?
to R? (i.e., DT and DT are lincar maps in £(R%R?), D?T and D2T are bilinear maps in

My(R4 R4 RY), ete.). For every map A € Cm(l?;Rq), g>1,and all T € IA(, we set

D™ A®)(Ras- ., B || 2 ey

ID"AZ)p = ms _ il
hyi,... Ay ERY ||h1||£2(Rd) "'HhmHE?(Rd)

(13.3)

The notation for the subscript p is motivated by the fact that for all k > 0, |[D***A(Z)|p = 0 for
all Z € K if and only if A is [Py, 4]9-valued. Note that the right-hand side of (13.3) is the canonical
norm in M,,(R%, ..., R% R?). We use the shorthand notation ||D™A|| := || |DmA(:’B\)|p||Loo(f() for
all m > 1.

Let us first identify a condition ensuring that T is a C'-diffeomorphism with reasonable bounds
on DT, D(T~'), and det(DT).

Lemma 13.3 (Bound on DT, D(T')). Let T, T be defined in (13.2). Assume that T is a
Ct-diffeomorphism, Pyeo C C'(K;R), and there is ¢ € [0,1) s.t.

(OB S D3l — il < er (13.4)
ieNgeo

Then T is a C*-diffeomorphism and the following holds true for all T € K:

IDT| < (1+ e1)|| DT, (13.5)
DT < (1= e)) (DT) 7 (13.6)
(1—c1)?|det(DT(2))| < |det(DT(&))| < (1+¢1)"|det(DT())|. (13.7)

Proof. This is Theorem 3 in [78]. The definition of T in (13.2) implies that
DT(%) = DT(z) + E(&) = DT(Z)(I + (DT) ' (z)E (%)),

with E(Z)(§) = > cn Dy;(Z)(€)(a; — @;). Owing to the assumption (13.4), we infer that

~ geo ~
|(DT)"'E| < ¢1 < 1. This immediately implies that the mapping I + (DT)~1(z)E(Z) is invert-
ible, i.e., DT(Z) is invertible and

|DT|| = | DT(I + (DT)'E)|| < (1 + ¢1)|| DT,
I(DT)~Y| = ||(I + (DT)""E)~(DT)~"|| < (1 — 1)~ [(DT) 7.

Since det(DT) = det(DT)det(I + (DT) 'E) and |[I + (DT) 'E| < 1+ ¢, the upper bound
in (13.7) results from

|det(DT)| = |det(DT)| x |det(I + (DT) " E)| < |det(DT)|(1 4 ¢1)?,

where we used that |det(A)| < ||A||¢ for any endomorphism in R, The lower bound is shown
similarly. O
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Remark 13.4 (Regularity of ﬁgeo). In practice, the smoothness assumption ﬁgeo C Cl(f( ;R)
is satisfied since Pyeo is usually composed of smooth (polynomial) functions; see (8.1). O

We now bound the higher-order derivatives of T' and T~ '.

Lemma 13.5 (Higher-order derivatives). Assume (13.4). Assume that there is an integer k >
1 s.t. T is C*H1-diffeomorphism and that Pyeo C CH1(K;R). Then T is a C**'-diffeomorphism.
Moreover, assume that there are real numbers co, ..., cx11 S-t.

|ID™T|| < el DT,  Vm € {2:k+1}. (13.8)

Let k= || DT||||D(T~Y)|| and ¢1 be defined in (13.4). Then for every integer m € {2:k+1}, there
1S C—yy depending on K,C1, ..., Cp S.1L.

ID™(T )| < eI DTH™. (13.9)

Proof. This is Theorem 4 in [78]. The assumption ﬁgeo c CkHl (l? ;IR) implies that T is of class
Ck+1 and it has already been established in Lemma 13.3 that T is a diffeomorphism since (13.4)
holds true. Let us prove (13.9) for m = 2. Using the chain rule (see Lemma B.4) and the identity
T-YT(z)) = z, we infer that

D*(T™Y)(h1, ha) = =D(T~)(D*T((DT)~" (ha), (DT) " (ha))),
for all hy, hy € RY. Using that || D(T~1)|| = ||(DT)~!|), this implies that
ID*(@ )| < [ D@ HND*TII(DT)* = | D*T ||| DT~ HIP.

Owing to (13.6) and (13.8), we infer that [|D2(T)|| < c_ok||[D(T~)||2 with c_o = co(1 — )73,
The rest of the proof is left as an exercise. O

13.3 Interpolation error on nonaffine meshes

The goal of this section is to establish approximation properties of the finite element defined in
Proposition 9.2 using the transformation ¢ (v) := v o T, where the nonaffine geometric mapping
T is defined in (13.2) as a perturbation of the geometric mapping T. We adopt the same notation
and definitions as in §13.2. We proceed as in Chapter 11: we first study how the Sobolev norms
are transformed by T' and then we apply these results to bound the interpolation error.

13.3.1 Transformation of Sobolev norms

We first state a result on the comparison of Sobolev norms. The main difference with respect to
the affine case (see Lemma 11.7) is that now the full Sobolev norm, and not only the seminorm,
appears on the right-hand side. To be dimensionally consistent, we consider the Sobolev norm
1

[vllwerry = (Xmeqon ﬁgp|v|€vm,p(K))5 (recall that £p := diam(D)). Recall that the usual

1
seminorm in W P(K) involves all the derivatives, i.e., |[v|ymrx) = (Z|a\:m HBO‘UH’L’,)(K)) "
and that this seminorm is equivalent to || [D™v|p||1»(k), where |[D™v]p is defined in (13.3). When
analyzing geometric mappings based on Q4 Lagrange elements, it is useful to consider a different
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seminorm which does not include the mixed derivatives. For every map A € C™ (I? ;RY), g > 1,
we define the following seminorms:

|ID™A(Z)|g := _ max [|[D™A(Z)(e;...,e)|lrwa, (13.10)
ec{e,...,.eq}
where {ej,...,eq} is the canonical Cartesian basis of R?. The notation for the subscript is moti-

vated by the fact that for all k > 0, |[D*F1A(Z)|g = 0 for all Z € K if and only if A is [Qp,q]9-valued
(see Exercise 13.2). Notice that (13.10) defines only a seminorm and that | D™ A(Z)|g < |D™A(Z)|p

for all Z € K. We then introduce the associated seminorm over W™ (K;R?),
(Alysy = D™ A@)loll o e (13.11)

The seminorm |[A]|Wm,p( &) involves only the pure partial derivatives of A of order m, i.e., the
mixed derivatives are not involved.

Lemma 13.6 (Norm scaling by pullback). Let T, T be defined in (13.2). Let the integer k > 1
satisfy the assumptions of Lemma 13.5, i.e., T is a C*1. dzﬁeomorphzsm cho C C'kJrl(K R),

and (13.8) holds true. Assume that there are constants ¢y, ..., ¢y s.t.
cither ||D™T|| < ¢ L5 ™|DT||™, VYm € {2:k+1}, (13.12)
or [D™T) < ¢, 05™|DT|™,  VYm € {2:k+1}, (13.13)
recalling the shorthand notation ||D™T|| = || |DmT(:E)|pHLm(f() and defining similarly [D™T) :=
I |DmT(:ﬁ)|QHLw(f<). Then for every integer | > 0 and all p € [1,00], there is ¢, depending only
ON K, Cly...yChil, ChsevvsChpy, Py and IA(, s.t. the following holds true for all v € W'P(K) with
K :=T(K):
either ¢l v o Ty, Ry SC |det(DT)~ 1HLDO(K)HDT”lHU”Wl,p(K), (13.14)
or oo Ty, < clldet(DT) 7 o IDTN [ollwin s (13.15)
and
ooy < e[t (DFIE., 2 IDAE) o0 Ty (13.16)

Proof. Proof of (13.14). Assume first that I > 2. Using the chain rule (see Lemma B.4) together
with the assumption (13.12), we infer that

ID'woT)@)e<c Y (D) (T@)le Y ID"T@)p... D" T(@)e

me{l:1} |r|=tl
<l IDT|" Y LBID™0)(T(@))]e,
me{l:1}
for all Z € K, where |r| := ry +...4 1y, and ¢ is generic constant having the same dependencies as

in the assertion. Raising to the power p, integrating over K, changing variables on the right-hand
side so as to integrate over K, and since [v o Ty, z) < ¢ |D'(v o T)(&)|p|| r(x), we infer that

oo Ty
Wi (K)

<ct|pT" Y e / D™ v(x)|pldet (DT ()| da.

me{l:1}



128 Chapter 13. Local interpolation on nonaffine meshes

We conclude the proof of (13.14) for [ > 2 using the estimate (13.7) on the determinant. The proof
for [ = 0 is evident. The proof for [ = 1 can be done as above by using (13.5) instead of (13.12).
The proof of (13.15) is similar once one realizes that the chain rule preserves the pure derivatives
of T, i.e.,

ID'(woT)@)lg<c Y I(D™)(T@)le ) D" T@)g... D™ T(@)lo-
me{l:1} |r|=tl
The estimate (13.16) is derived similarly by using the bound (13.9). O
Remark 13.7 (Assumption (13.8)). Since | DT|| is proportional to the diameter of the cell
generated by the nodes {a1,...,ay,,.,}, it is reasonable to assume that (¢5'|DT|)™~* < 1 if the
diameter of K is small enough. In this case, the assumption (13.12) implies (13.8). In conclusion,

the bound (13.8) from Lemma 13.5 has to be included in the assumptions of Lemma 13.6 only
when invoking the assumption (13.13) (pure-derivatives case). O

13.3.2 Bramble—Hilbert lemmas in Qy 4

We now formulate the Bramble-Hilbert lemma for polynomials in Qf g (this is the counterpart of
Lemma 11.9 stated for polynomials in Py, 4). It is at this stage that the seminorm based on pure
derivatives enters the analysis.

Lemma 13.8 (Q,-Bramble—Hilbert). Let S be a Lipschitz domain in RY. Let p € [1,00]. Let
k >0 be an integer. There is ¢ such that

nt o+ alhwesnags) < ol (13.17)
Corollary 13.9 (Qi-Bramble—Hilbert for linear functionals). Under the hypotheses of Lemma
13.8, there is ¢ such that the following holds true for all g € W*+1P(S) vanishing on Q. q4:
9| < cllgllwrsrnsyy [Wlwrringsy, Yo € WHEE(S). (13.18)
Proof. The estimate (13.17) is proved in Bramble and Hilbert [41, Thm. 1]. The estimate (13.18)
is proved in [41, Thm. 2]. O
13.3.3 Interpolation error estimates

We are now in the position to present the main result of this section.

Theorem 13.10 (Local interpolation). Let T, T be defined in (13.2) and let K := T(K). Let
p € [1,00]. Let the integer k > 1 satisfy the assumptions of Lemma 13.5. Assume that

cither (13.12) holds and P4 C P Cc W*tHP(K) — V(K), (13.19)
or (13.13) holds and Qg C P C WHHP(K) — V(K). (13.20)
(Recall that (13.12)-(13.13) are the hypotheses of Lemma 13.6.) Let Tk be the interpolation oper-
ator defined in (9.6). Let 1 € {1:k + 1} be an integer s.t. W-P(K) — V(K). Let
A= [Aet(DT) | ) [4t(DT) gy 1= IDTIIDE ).

There is c, only depending on k, c1,...,Cry1, Coy. .-, Chy, P, and IA(, s.t. for allv e WhP(K) and
allm € {0:1},

l m p— T —m
v = Zic (@) lwmgae) < e A R™ G| DT [0l ). (13.21)
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Proof. (1) Let us prove the assertion assuming (13.19). Using (13.16) from Lemma 13.6 and the
commuting property Zx (w) o T = Zg(w o T') (see Proposition 9.3), we infer that

~ 1 ~
v = I (v)lwm ) < clldet(DT)| 7 & IDT ™[0~ I (D)

L (R) oo (&)

with ¥ := voT. Just like in the proof of Theorem 11.13, the assumptions (13.19) imply that there
is ¢s.t. ||[v— I}?@)me,p(f() <c |6|Wl,p(f<). This, together with (13.14), proves the claim since

~ 1 ~
[0 = T @lwons ) < € det DD . 2 IDE ™ By

~ ~ 1 ~ ~
< c|det(DT)]| ldet(DT) |17 & D@ I IDT 5 [[vllwrr(x)-

1

L>(K)
(2) The only change in the above argument when proving (13.21) assuming (13.20) is that |0 —
I}?@)me,p(k) < c|[@]|wl,p(f<) owing to the (13.17) from the Bramble-Hilbert lemma. We then

conclude using (13.15). O

Remark 13.11 (Key assumptions). The key assumptions to be verified for Theorem 13.10 to
hold are either (13.4) and (13.12) for P-based geometric mappings or (13.4), (13.8), and (13.13) for
Qg-based geometric mappings. Of course, the above theory makes sense only for meshes for which
the numbers A\, K, ¢1,...,Crq1, Ch, ... =C§c+1 are uniformly bounded with respect to K € T, and
h € H. To ensure that these numbers are uniformly bounded, it is necessary to make assumptions
on the geometric mappings T and on how far the geometric nodes a; lie from a;. Examples are
given in the forthcoming sections. Notice that the theory can be applied with T' = T as will be
demonstrated in §13.5 for Q;-quadrangles. In this case, (13.4) is trivial to verify. O

Remark 13.12 (Extensions). Generalizations of the above ideas can be found in Bernardi
[20], Brenner and Scott [47, §4.7], Ciarlet [76, §4.3-4.4], Ciarlet [76], Lenoir [132], and Zlamal
[203, 204]. O

13.4 Curved simplices

Let us now describe how the above technique can be applied with curved Pa-simplices, i.e., we set
k := 2. Let us assume for the time being that we have at hand a mesh 7;, composed of affine
simplices. Let K € 7j,. Lemma 11.1 implies that
. _ e
2E < Ip@ ) < £ (13.22)
_ P

_ . h~
PE <|pT| < 2K,
PR K K

hg K

Let us define px := pj and hx := hg. Assume that the simplicial mesh sequence (ﬁ)he% is
shape-regular (see Definition 11.2), i.e., there is oy s.t. oz = Z% < oy for all K e T,andall h e H.
K

Let us consider one element K € 7T, and let {ai}ien,., be its geometric nodes. Assume now that
by means of some algorithm (see, e.g., Example 13.1), we construct the points {a;}icn,,, from
the set {@;}ien,., and define the corresponding cell K using (13.2); see Figure 13.1 in dimension

d = 2 where ngeo := 6. Let {p := diam(D). Assume that this construction is done so that there is
a constant ¢, such that for all K € 7, and all h € H,

zénj\%)f Hal — ain(Rd) S Caéz)lh%{. (1323)

geo
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This assumption is reasonable if the midpoint on each edge is constructed as explained in Exam-
ple 13.1.

The key assumptions to be verified for Theorem 13.10 to hold true are (13.4) and (13.12).
Using |[D(TY)|| < hzpy' < aﬂhf(h}{l = oyhzhy', we observe that the left-hand side of (13.4)

can be bounded by the factor (cohg D, pr

geo

i.e., (13.4) holds true for ’t}—g small enough. Using that D*T = 0 and hx < aﬂhf(HDfH owing
to (13.22), we infer that

||D1Zi||)an}g—g which is less than 1 for ’Z—g small enough,

10T < ( 3 |D2wi||) max [la; — e
Ze./\/geo

1€Ngeo

< (et Y ID%00 )65 DT

1€Ngeo

Notice also that |[D3T|| = 0. Hence, (13.12) holds true for all k > 1. Moreover, since T is affine,
A=1and k < oﬁ]pl—f. In conclusion, assuming that the mesh sequence (7p,)rey is shape-regular,
K

there exists hg > 0 so that Theorem 13.10 implies that there is ¢ (depending on the shape-regularity
parameter oy) such that for all p € [1,00], all K € Ty, all h € HN(0, ho), every integer [ € {0:k+1}
s.t. WhP(K) — V(K) (i.e., WHP(K) is in the domain of Zy), all v € WHP(K), and every integer
m € {0:1},

v =Tk (0)lwmr (i) < CEBlhlI;m”UHWLP(K)' (13.24)

Remark 13.13 (Extensions). An algorithm that constructs Ps-simplices in dimension two is
described in Ciarlet and Raviart [78, p. 240], Ciarlet [77, §4.3], Ciarlet [76, p. 247]. An algorithm
that constructs curved simplices of any order in any dimension and that satisfies the assumptions
of the perturbation theory in §13.2 is described in Lenoir [132]. It is a recursive technique based on
the following principle: the construction of curved P, 11 simplices that approximate the boundary
with O(h™*2) accuracy relies on the existence of a construction technique of curved P, simplices
that approximate the boundary with O(h™*1) accuracy, m > 1. O

13.5 @Q;-quadrangles

Let us now consider a mesh where all the cells are nondegenerate convex quadrangles in R2. All the
cells can be generated from the unit square K := [0, 1] using geometric mappings T € [Q;(K)]?;
see Figure 13.2. T maps the edges of K to the edges of K, but unless K is a parallelogram, T is
not affine. We are going to apply the theory from §13.2 with K = K, T =T, and a; = a;, for all
i€ {1:4}.

Upon identifying the points a;c(1.4y with column vectors and DT with the Jacobian matrix,
a simple computation shows that

DT(.’/B\) = (112 —a] + fg(ag — a4 +a; — ag),a4 —a; + 57\1(013 — a4 +a; — ag))

= ((1 = 22)(az — a1) + 72(as — a4), (1 — 71)(as — a1) + 71(az — a2)),

for all Z := (#1,72) € K. It follows from the first equality that det(DT(Z)) is in Py, implying
that max;_p [det(DT(Z))| = max;e(1.4y [det(DT(a;))| since we assumed that K is convex. Let
P; be the parallelogram formed by a;_1, a;, a;+1 (with the convention ag := a4 and as := aq).
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=)

Figure 13.2: Nonaffine mapping from the unit square to a quadrangle.

It can be verified that det(DT'(a;)) = |P;|. As a result, letting Smin := min;e 1.4y |Pif, Smax =
max;e 1.4} |P;|, we infer that

_ 1
[det(DT)|| oo () < Smax; |det(D(T 1))||L°°(f<) < T
Let di(Z), d2(x) be the columns of DT'(Z) and 0(Z) be the angle formed by these two vectors.
The vector dq(Z) is a convex combination of the sides (a2 — a1) and (a3 — a4), whereas the vector
dy(T) is a convex combination of the sides (a4 — a1) and (a3 — az). The angle 0(Z) takes its
extreme values at the vertices of K, say 01,...,0s4. Let h = (h1, ha) € R? with ||h|;z = 1. Then,

(13.25)

IDT(2)(R)|[7: = hilldvl7 + h3lld2ll72 + 2hihady-de
> 0|z + h3lldal7 — 2[halholl|dallez |z 2 |cos(9)]
> 03|17 (1 — [cos(9)]) + (1 — hi)lda|7(1 — |cos(6)])
> min(|ldi |7, [|da]|7) (1 — |cos(6)]),

where dependencies of d1, d2, and 6 on  have been omitted. Denoting by Ay, the length of the
smallest side of K and «y := max;e(1.4} [cos(0;)|, we infer that [ DT (Z)(y)[s2 > hmin(1 — ) for all
y with ||y|,2 = 1 and all Z € K, implying that |[D(T~1)|| = [(DT)™|| < (hmin(1 — 7). By
proceeding similarly, we also obtain that || DT|| < 2hmax and [D™T] = 0 for m > 2, where hpax
is the length of the largest side of K. In conclusion, we have

l<— bt
hmin(l - ”Y)

The key assumptions to be verified for Theorem 13.10 to hold true are (13.4), (13.8), and

(13.13). Assumption (13.4) trivially holds since T = T. Assumption (13.8) trivially holds for

m > 2, and |D?*T|| < |la1 — az + a3 — a4llpz < 2hpax < ﬁ%”DTH Assumption (13.13)

holds since (13.26) implies that [D"T] =0 < ¢, ¢}, ™||DT||™ for all m > 2. Furthermore, owing
to (13.25) we have A < %, and owing to (13.26) we have k < % These bounds show
that a reasonable notion of shape-regularity for Q;-quadrangular meshes is to assume that there

is oy such that for all K € 7, and all h € H,

o [ Smax(£) 2hmax (K) i
. <Smin(K)’hmin(K)(1 —V(K))) < oy (13.27)

Then, if the Q;-quadrangular mesh sequence is shape-regular in the above sense, Theorem 13.10
implies that there is ¢ (depending on the shape-regularity parameter oy) such that for all p € [1, oo},
all K € Ty, all h € H, every integer [ € {0:k + 1} s.t. WHP(K) — V(K) (i.e., WHP(K) is in the
domain of Zx), all v € WHP(K), and every integer m € {0:1},

|D(T~1) |DT|| < 2hmax, [D'T] =0, VI > 2. (13.26)

v —Zk (v)|lwmrrx) < CgBlhlzgmH”HWm(K)- (13.28)
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Remark 13.14 (Pure derivatives). Here, the critical assumption (13.13) hinges on the property
[D*T] = 0. This assumption would not have been true if we had used the full seminorm (involving
the mixed derivative), since a simple computation shows that | D?T|| = (a3 — a4) + (a1 — a2)||s2,
yielding /2(1 + cos(61 + 04))h2;, + (hmax — hmin)? < ||D?*T|| < 2hmax, thereby showing that
|D?*T|| ~ || DT|| (unless K is a parallelogram). The term h'-™ in (13.28) would then be replaced
by h}{m, which would not give any convergence for m = 1. The reader is referred to Ciarlet and

Raviart [79, pp. 245-247] and Girault and Raviart [107, p. 104] for more details. O

13.6 Qs-curved quadrangles

We now describe how to construct meshes composed of Qs-curved quadrangles and how to bound
the interpolation error on such meshes. Assume that we have at hand a sequence of Q;-quadrangular
meshes (ﬂl)he’}—[ that is shape-regular in the sense of §13.5, i.e., (13. 27) holds true for all K € Ty,
and all h € H. Let K € Ty, let {@i,...,a4} be the vertices of K, and let {as,...,as} be the
midpoints of the four edges of K see Flgure 13.1. Assume that the curved cell K is constructed by
means of the technique explained in Example 13.1, i.e., we assume that the new points {a1,...,as}
are positioned so that the following criterion is satisfied for all K €7, and all h € H:

Zerl{lil)é ||a1 — aZHp(Rz) < CKD hmax (1329)
Let T be the mesh thus constructed for all h € H. Let us verify that the assumptions (13.4),
(13.8), and (13.13) hold true for all K € 7}, and h € H. Starting with (13.4), we observe that
[(DT)~Y| < (hmin(1 = 7))L < Fhihy owing to (13.27), so that

max

IDT)~ Y IIDGilllla: — @ille@e) < coglp! hamas, (13.30)
ie{1:8}

which is less than 1 provided the cells are small enough. Moreover, using the estimates ||D2f|| <
2hmax (see Remark 13.14) and |[DT|| > Amin(1 — 7), we infer that || D2T|| < || DT + ct5'h?

D max—

hpax < ¢ aﬂHDTH which proves (13.8) for m = 2. Moreover, |D™T|| < ¢35 h2, < ¢ hmax <

D '"max

caﬁ||DTH since D™T = 0 for all m > 3, and this proves (13.8) for all m > 3. Furthermore,
[D*T) < ctp'hi,, < céBloﬁQHDTHQ since [D?T] = 0, and [D™T] = 0 for all m > 3, and this

proves (13.13). Finally, we have already seen that the quantities x := | DT||||D(T~)|| and A :=
Hdet(DT)HL,,o(f{)Hdet(DT)_l||Lm(f() are bounded owing to the regularity of the mesh sequence.

In conclusion, if the Q;-quadrangular mesh sequence (ﬁ) nex is shape-regular, there exists hg > 0
so that Theorem 13.10 implies that there is ¢ (depending on the shape-regularity parameter o)
such that for all p € [1,00], all K € Tj, all h € H N (0,hg), every integer | € {0:k + 1} s.t.
WEP(K) — V(K) (i.e., WiP(K) is in the domain of Zx), all v € WHP(K), and every integer
m € {0:1},

[0 = I (0)lwm (i) < ¢lp B ™ [ollwir i) (13.31)

Exercises

Exercise 13.1 (Chain rule). Let f € C3(U;W;) and g € C3(Wy;Wa), where V, Wy, Wy are
Banach spaces and U is an open set in V. (i) Evaluate the pure derivatives D?(g o f)(z)(h, k) and
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D3(go f)(z)(h,h,h) for x € U and h € V. (ii) Rewrite these expressions when f and g map from
R to R.

Exercise 13.2 (Pure derivatives, Q 4-polynomials). Let {e;};c{1.4} be the canonical Carte-
sian basis of R?. Let k > 1. Verify that D**'q(e;,...,e;) = 0 for all i € {1:d} if and only if
q € Qi,q. (Hint: by induction on d.) What is instead the characterization of polynomials in P, 4
in terms of D*F*1¢?

Exercise 13.3 (Lemma 13.5). Complete the proof of Lemma 13.5 by proving (13.9) for all
m < k+ 1. (Hint: use induction on m and the chain rule formula (B.4) applied to T~Y(T(Z)).)

Exercise 13.4 (Tensor-product transformation). Assume the transformation T has the

tensor-product form T(Z) = 3,1, 41 tj(%;)e; for some univariate function ¢;, for all j € {1:d},

where {e;}je{1:ay is the canonical Cartesian basis of R%. (i) Show that (13.15) can be sharpened as
~ 1 ~

[woTlyimiy < c||det(DT)*1||zoo(f()||DTHZ|[w]|Wl,p(K). (Hint: recall that [w]yi, k) 1s a semi-

norm and there exists a uniform constant ¢ so that ¢}, [wlwin ey < cllwllwesx)-) (i) What is the

consequence of this new bound on the error estimate (13.21) under the assumption (13.20)?

Exercise 13.5 (Q;-quadrangles). Prove that det(DT(a;)) = | P;|, where P; is the parallelogram
formed by a;_1, a;, a;+1 (with ag := a4 and a5 := a1). (Hint: see §13.5.)

Exercise 13.6 (Butterfly subdivision algorithm). Consider a mesh composed of four tri-
angles with the connectivity array such that j_geo(1,1:3) := (3,4,5), j-geo(2,1:3) := (0,4,5),
j_geo(3,1:3) :=(1,3,5), jgeo(4,1:3) := (2,3,4). Let m be the midpoint of the edge (23, z4). Let
Zo := (0,0), z1 := (1,0), z2 := (0,1), 23 := (3, 3), 21 := (0,3), Z5 := (5,0). Consider now the
curved triangle given by the Py geometric mapping T' that transforms z; to z; for all ¢ € {0:5}.
Let {fo,...,fr} € R. Let p € P2 be the polynomial defined by p(2;) := f; for all i € {0:5}. (i)
Compute p(T~1(m)). (ii) Consider two additional points zs, z7 and two more triangles given by
j-geo(5,1:3) := (2,3,6), jgeo(6,1:3) := (2,4,7). Let T” be the Py geometric mapping that trans-
forms z; to z; for all ¢ € {2:7}. Let p’ € Py be defined by p'(2;) := f; for all i € {2:7}. Compute
$((T 1 (m)) +P'((T")~'(m))). Note: the name of the algorithm comes from the shape of the
generic configuration. The algorithm is used for three-dimensional computer graphics. It allows
the representation of smooth surfaces via the specification of coarser piecewise linear polygonal
meshes. Given an initial polygonal mesh, a smooth surface is obtained by recursively applying the
butterfly subdivision algorithm to the Cartesian coordinates of the vertices; see Dyn et al. [93].
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Chapter 14

H (div) finite elements

The goal of this chapter is to construct R?-valued finite elements (K, P,Y) with d > 2 such that (i)
P4 = [Pr.a]? C P for some k > 0 and (ii) the degrees of freedom (dofs) in ¥ fully determine the
normal components of the polynomials in P on all the faces of K. The first requirement is key
for proving convergence rates on the interpolation error. The second one is key for constructing
H (div)-conforming finite element spaces (see Chapter 19). The finite elements introduced in
this chapter are used, e.g., in Chapter 51 to approximate Darcy’s equations which constitute a
fundamental model for porous media flows. The focus here is on defining a reference element and
generating finite elements on the mesh cells. The estimation of the interpolation error is done in
Chapters 16 and 17. We detail the construction for the simplicial Raviart—Thomas finite elements.
Some alternative elements are outlined at the end of the chapter.

14.1 The lowest-order case

We start by considering the lowest-order Raviart—Thomas finite element. Let d > 2 be the space
dimension, and define the polynomial space

RTo,q :=Po,a ® x Po,q4. (14.1)

Since the above sum is indeed direct, RTy 4 is a vector space of dimension dim(RTy 4) =d+1. A
basis of RTy 5 is {( S ), ('f), (i; )} The space RTy 4 has several interesting properties. (a) One has
Py.q C RTy 4 in agreement with the first requirement stated above. (b) If v € RT 4 is divergence-
free, then v is constant. (c) If H is an affine hyperplane of R? with normal vector vy, then the
function v-vy is constant on H for all v € RTy 4. Writing v(xz) = a + bx with a € R% and b € R,
we indeed have (v(x1) — v(x2)) vy = b(x; — x2)-vy =0 for all 1,2 € H.

Let K be a simplex in R? and let Fx be the collection of the faces of K. Each face F € Fg
is oriented by a fixed unit normal vector ng, and we set vp := |F|ng. Let ¥ be the collection of
the following linear forms acting on RT 4:

1
ot (v) == W/F(vVF) ds, VF € Fk. (14.2)

Since v-vp is constant on F, ok (v) = 0 implies that vip-vp = 0 in agreement with the second
requirement stated above. Note that we could have written more simply o5 (v) := [ (v-nF)ds,
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but the expression (14.2) is introduced to be consistent with later notation. In any case, the unit
of o!.(v) is a surface times the dimension of v. A graphic representation of the dofs is shown in
Figure 14.1.

Figure 14.1: RT 4 finite element in dimensions two (left) and three (right). Only visible degrees of
freedom are shown in dimension three. (The arrows have been drawn outward under the assumption
that the vectors vp point outward. The orientation of the arrows must be changed if some vectors
v point inward.)

Proposition 14.1 (Finite element). (K,RT 4, %) is a finite element.

Proof. Since dim(RT 4) = card(X) = d+1, we just need to prove that the only function v € RT¢ 4
that annihilates the dofs in ¥ is zero. Since v|p-vF is constant and has zero mean-value on F, we
have vjp-vp = 0 for all F € Fg. Moreover, the divergence theorem implies that [, (V-v)dz =
Y rery Jp(vmp)ds = 0. Since Vv € Py 4, we infer that V-v is zero, so that v € P 4. Hence,
v-vp vanishes identically in K for all F € Fy. Since span{vp}rer, = R? (see Exercise 7.3(iv)),
we conclude that v = 0. O

Since the volume of a simplex is |K| = 1|F|hp for all F € Fx where hf is the height of K
measured from the vertex zp opposite to F, one readily verifies that the shape functions are

ol (z) == ;TI?I (x—2r), Vo eR? VF e Fg, (14.3)
where tp g =1 if vp points outward and tp g := —1 otherwise (i.e., tp x = np-ng where nk is

the outward unit normal to K). The normal component of 8%, is constant on each of the (d + 1)
faces of K (as expected), it is equal to 1 on F' and to 0 on the other faces. See Exercise 14.1 for
additional properties of the RT, 4 shape functions.

14.2 The polynomial space RT}, 4

We now generalize the construction of §14.1 to an arbitrary polynomial order k € N. Let d > 2
be the space dimension. Recall from §7.3 the multi-index set Ay 4 = {a € N¢ | |a| < k} where
la| == a1 + ... + aq. We additionally introduce the subset A}, := {& € Apq||a| = k}. For
instance, A; 2 = {(0,0), (1,0),(0,1)} and A}, = {(1,0),(0,1)}.

Definition 14.2 (Homogeneous polynomials). A polynomial p € Py, 4 is said to be homoge-
neous of degree k if p(x) = ZaeAEd aox® with real coefficients ao. The real vector space composed

of homogeneous polynomials is denoted by ]P)Ik{)d or P when the context is unambiguous.
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Lemma 14.3 (Properties of P} ;). We have -Vq = kq (Euler’s identity) and V-(xq) = (k+d)q
for all g € Pllid.

Proof. By linearity, it suffices to verify the assertion with ¢(x) := x® for all a € A}id. We have

z-Vq = Eie{l:d} a;xir]’ ...a:;.“_l Lxyt = (Zie{l:d} a;)q = kq. Moreover, the assertion for
V-(xq) follows from the observation that V-x = d and V-(xq) = ¢V-x + x-Vq. O

Definition 14.4 (RT 4). Let k € N and let d > 2. We define the following real vector space of
R?-valued polynomials:
RT g :=Pra @z P} ,. (14.4)

The above sum is direct since polynomials in wPIlid are members of ]PEJrLd, whereas the degree of
any polynomial in Py, 4 does not exceed k.

Example 14.5 (k =1, d = 2). dim(RT;2) = 8 and {((1)), (101), (%2), (?), (0 ), (0 )7 ( oy )7
(mlgz)} is a basis of RT . O

Lemma 14.6 (Dimension of RT}, ;). dim(RT}, 4) = (k+d-+1)(*"¢™"), in particular dim(RTy,2) =
(k+1)(k+3) and dim(RTx3) = 2(k+ 1)(k + 2)(k + 4).

Proof. Since dim(Py, 4) = (]H'd) dun(]P’H )= (k+d 1) and the sum in (14.4) is direct, dim(RTy, 4) =

d(k'};d) + (k+Z—1) (k—l—d—i—l)(k"_d 1) [

Lemma 14.7 (Trace space). Let H be an affine hyperplane in R? with normal vector ny, and
let Ty : RY™Y — H be an affine bijective mapping. Then vignyg € Pra ngl for allv € RTy, 4.

Proof. Let v € RT, g with v =p+xq, p € P4, and g € ]P’I,j)d. Let ¢ € H and set y := T}}l(:v).
Since the quantity x-ny is constant, say €-ny =: cg, we infer that (vjg-ng)(x) = (pjg-nu)(x) +
(w-nu)q(x) = (poTh)nu)(y)+cu(qoTu)(y). Hence, (vjgnu)oTy = (poTu)nu+cu(qoTh),
and both terms in the sum are in Py 41 by virtue of Lemma 7.10. O

Remark 14.8 (Ty). Consider a second affine bijective mapping Ty : R*' — H. Since S :

T, Lo TH is an affine bljectlve Inappmg from Rd L onto itself, we have P, d—108 =Pra-1. Hence
Pra—10Ty =Prag-108o0 T =Pia—10 T . This proves that the assertion of Lemma 14.7 is
1ndependent of the mapping TH [l

Lemma 14.9 (Divergence). V-v € Py 4 for all v € RTy 4, and if the function v is divergence-
free, then v € Py 4.

Proof. That V-v € Py 4 follows from v; € Pyi1,4 for all i € {1:d}. Let v € RTy 4 be divergence-
free. Since v € RT}, 4, there are p € P, 4 and q € Pﬁd such that v = p+xq. Owing to Lemma 14.3,

we infer that V-p+ (k + d)q = 0, which implies that ¢ = 0 since Pgd NPy_14={0}if K > 1. The
argument for k = 0 is trivial. Hence, v = p € Py, 4. (|

14.3 Simplicial Raviart—Thomas elements

Let k € N and let d > 2. Let K be a simplex in R%. Each face F' € Fx of K is oriented by the
normal vector vp = |F|ng (so that |vp|l;z = |F|). The simplex K itself is oriented by the d
vectors {Vr j = |Fj|nr; }jeq1.ap where {Fj}jeq1.q) are the d faces of K sharing the vertex with
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the lowest index. Note that {vk ;}jc(1.q4) is a basis of R? (see Exercise 7.3(iv)), and this basis
coincides with the canonical Cartesian basis of R when K is the unit simplex. The dofs of the
RT}, 4 finite element involve integrals over the faces of K or over K itself (for £ > 1). Since the
face dofs require to evaluate moments against (d — 1)-variate polynomials, we introduce an affine
bijective mapping TF : Sd-1 5 Fforall F € Fr, where S4-1 is the unit simplex of R?~!; see
Figure 14.2. For instance, after enumerating the d vertices of 591 and the (d+ 1) vertices of K,
we can define T such that the d vertices of S4-1 are mapped to the d vertices of F' with increasing

indices.
TR
Tr /\»
gL _— =
F F

Figure 14.2: Reference face S4-1 and mapping Tr for d = 2 (left, the face F is indicated in bold)
and d = 3 (right, the face F is highlighted in gray).

Definition 14.10 (dofs). We denote by X the collection of the following linear forms acting on
]RTkﬂd.'

Thn(®) = o [ 0vR)Guo TR s, F € Fie (14.5)

1
ot () == —/ (0w ) dz, vj € {1:d}, (14.5)
' K| Jk
where {Cm}me{l:nfh} is a basis of P g1 with nl}, = dim(Py4-1) = (dﬂz*l) and {PYmme{1:ne,}
is a basis of Pi_1 4 with n, = dim(Px_q 4) = (d;gf;l) if k> 1. We regroup the dofs as follows:

fo" = {U%,m}me{l:nih}v VF € FK, (146&)

2= {0] m m)e{1:ayx{1:n, }- (14.6b)

Remark 14.11 (dofs). The unit of all the dofs is a surface times the dimension of v. We could

also have written 0¥, (v) = Ot J5 (v-€;)ty, dz for the cell dofs, where /i is a length scale of K

and {€;}jc(1.4} is the canonical Cartesian basis of R?. We will see that the definition (14.5b) is
more natural when using the contravariant Piola transformation to generate other finite elements.
The dofs are defined here on RT}, 4. Their extension to some larger space V(K) is addressed in
Chapters 16 and 17. O
Lemma 14.12 (Invariance w.r.t. Tr). Assume that every affine bijective mapping S : Sa-1
S?=1 Jeqves the basis {Cntmeqiint,y globally invariant, i.e., {Gmtmeiint y = {Cm © Stmeqiint -
Then for all F € Fi, the set X, is independent of the affine bijective mapping T .

Proof. Let Tr, Tr be two affine bijective mappings from §9-1 to F. Then S := Tgl o T is an
affine bijective mapping from S?! to S4~1. Let m € {1:n£h}. The invariance assumption implies
that there exists (,, n € {1:n£h}, s.t. Gm 0 S = (. Hence, with obvious notation we have

|Flot, (v) = /F (0v) (G 0 T 1) ds

- / (1) ((moS)oT ) ds = / (0vp)(CuoTl) ds = [Flh,(v). O
F F
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Example 14.13 (Vertex permutation). For every affine bijective mapping S : Sd-1 §d_1,
there is a unique permutation o of the set {0:d—1} s.t. §(2;) := 2, for all i € {0:d—1}, where
{Zi}icfo:d—1) are the vertices of S4-1. Then the above invariance holds true holds true iff all
the vertices of S9! play symmetric roles when defining the basis functions {Cmtme {1:nf,y- For
instance, for d := 2, St = [0,1], and k := 1, the basis {1, s} of Py ; is not invariant w.r.t. vertex
permutation, but the basis {1 — s, s} is. O

A graphic representation of the dofs is shown in Figure 14.3. The number of arrows on a face
counts the number of moments of the normal component considered over the face. The number
of pairs of gray circles inside the triangle counts the number of moments inside the cell (one circle
for the component along vi 1 and one for the component along v 2).

————
———— -<—— @0
)
@ @

Figure 14.3: Degrees of freedom of RT}, 4 finite elements for d = 2 and k£ = 1 (left) or k = 2 (right)
(assuming that all the normals point outward).

Lemma 14.14 (Face unisolvence). For all v € RTy, 4 and all F € Fk,

[o(v) =0, Vo € 5] < [vpvr=0]. (14.7)
Proof. The condition o(v) = 0 for all o € Z% means that v)p-vp is orthogonal to Py 41 0 T},?l.
Since Lemma 14.7 implies that v|p-vp € Pg g1 0 T},Tl, we infer that v p-ve = 0. [l
Proposition 14.15 (Finite element). (K,RTy 4,%) is a finite element.
Proof. We have already established the assertion for £ = 0. Let us consider £ > 1. Observe first

that the cardinality of ¥ can be evaluated as follows:

A+ E—-1) L4+
(d-1D(k-1)! ( k

) = dim(RTy, ).

Hence, the statement will be proved once it is established that zero is the only function in RT}y 4
that annihilates the dofs in ¥. Let v € RTy 4 be such that o(v) = 0 for all 0 € ¥. Owing to
Lemma 14.14, we infer that v|p-vp = 0 for all ' € Fx. This in turn implies that fK v-(VV-v)de =
— fK(V-v)2 dz. Observing that VV-v is in Py_; 4 (recall that V-v € Py 4 from Lemma 14.9), the
assumption that o(v) = 0 for all 0 € £ (i.e., v is orthogonal to P;_1 4), together with the above
identity imply that V-v = 0. Using Lemma 14.9, we conclude that v € Py 4 and v|p-vp = 0 for
all '€ Fg. Let j € {1:d}. Since vk ; = v, = |Fj|np, for some face F; € Fg, we infer that
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v(x)vi,; = \j(x)rj(x) for all ® € K, where ); is the barycentric coordinate of K associated
with the vertex opposite to F}j (i.e., A; vanishes on F}) and r; € Py 4; see Exercise 7.4(iv). The
condition o(v) = 0 for all o € X¢ implies that [, (v-vg ;)r;de = 0, which in turn means that
0= [i(vvi )rjde = [, N\jr7 dz, thereby proving that r; = 0 since \; is positive in the interior of
K. Hence, v-vg ; vanishes identically for all j € {1:d}. This proves that v = 0 since {vk ;}je(1: 4}
is a basis of R%. O

The shape functions {6; };en associated with the dofs {o;}ienr defined in (14.5) can be con-
structed by choosing a basis {¢;}ien of the polynomial space RTy 4 and by inverting the cor-
responding generalized Vandermonde matrix V as explained in Proposition 5.5. Recall that this
matrix has entries V;; = 0;(¢;) and that the i-th line of V~! gives the components of the shape
function 6; in the basis {¢;}icnr. The basis {¢;}iear chosen in Bonazzoli and Rapetti [31] (built
by dividing the simplex into smaller sub-simplices following the ideas in Rapetti and Bossavit
[163], Christiansen and Rapetti [70]) is particularly interesting since the entries of V=1 are inte-
gers. One could also choose {¢;}ien to be the hierarchical basis of RTy 4 constructed in Fuentes
et al. [103, §7.3]. This basis can be organized into functions attached to the faces of K and to K
itself in such a way that the generalized Vandermonde matrix V is block-triangular (notice though
that this matrix is not block-diagonal).

Remark 14.16 (Dof independence). As in Remark 7.20, we infer from Exercise 5.2 that
the interpolation operator I}i( associated with the RTy 4 element is independent of the bases
{Cntmeqiing,y and {¥m}bmefiin, ) used to define the dofs in (14.5). This operator is also indepen-
dent of the mappings Tr and of the orientation vectors {vr}rer, and {Vk j}jcf1:d}- O

Remark 14.17 (Literature). The RTj 4 finite element has been introduced in Raviart and
Thomas [164, 165] for d = 2; see also Weil [198, p. 127], Whitney [199, Eq. (12), p. 139] for £ = 0.
The generalization to d > 3 is due to Nédélec [151]. The reading of [151] is highly recommended; see
also Boffi et al. [29, §2.3.1], Hiptmair [117], Monk [145, pp. 118-126]. The name Raviart-Thomas
seems to be an accepted practice in the literature. [l

14.4 Generation of Raviart—Thomas elements

Let K be the reference > simplex in RZ. Let 75, be an affine simplicial mesh. Let K = Tk (l? ) be a
mesh cell, where T : K — K is the geometric mapping, and let J i be the Jacobian matrix of Tk
Let F' € Fk be a face of K. We have F = T (F') for some face Fe Fz. Owing to Theorem 10.8,
it is possible (using the increasing vertex-index enumeration) to orient the faces F' and Fina way

that is compatible with the geometric mapping T . This means that the unit normal vectors ng
and Nz satisfy (10.6b), i.e., np = ®% (R ) with @4 defined in (9.14a). In other words, we have

1 .
oT fj} ngs, 14.8
K|F ||J_TnF||g2 K "°F ( )
where e = ‘gztgg‘ = #1. Recalling that vp = |Flnp, vp = |ﬁ|ﬁﬁ and that |F| =

|det(JK)|||J_T’;\lF”g2|F| owing to Lemma 9.12, we infer that

v o Ty p= =det(Jx)I D vg. (14.9)



Part III. FINITE ELEMENT INTERPOLATION 141

Due to the role played by the normal component of vector fields on the faces of K, we are going
to use in Proposition 9.2 the contravariant Piola transformation

1/;%(1;) = det(JK)Jl}l (voTk) (14.10)

to define Raviart- Thomas elements on K from a reference Raviart- Thomas element defined on K.
For scalar fields, we consider the pullback by the geometric mapping, i.e., ¥% (¢) := goTk. Finally,

we orient K and K with the d vectors {vk,; = |Fj|lng, }jeqay and {vg ;= |ﬁj|ﬁpj}j€{1:d}

associated with the d faces of K and K that share the vertex with the lowest index, i.e., we have
F; = Ty (F, ;) for all j € {1:d}. The above considerations show that vk ; o Tk = det(JK)JK Vi
for all j € {1:d}.

Lemma 14.18 (Transformation of dofs). Let v € C°(K) and let ¢ € C°(K). The following
holds true:

% / (vvr)gds = % ﬁ(«p%v)-%)zﬂi@) ds,  VF € Fx, (14.11a)

|K|/ vV j)gde = |/ (& (v 1/)K( )dz, Vi e {1:d}. (14.11b)

Proof. The identity (14.11a) is nothlng but (10.7a) from Lemma 10.4, which itself is a reformulation
of (9.15a) from Lemma 9.13 (the fact that T is affine is not used here). The proof of (14.11b) is
similar since

/ (v-vic 5)qd = [@ o Tie)-(vic 3 o T )W (q)|det (T )| dZ
K K

= [ Wik)og i @)lden )] .
and since Ty is affine, we have |K| = |det(Jx)| |K]. O

Proposition 14.19 (Generation). Let (K, P, %) be a simplicial RT}, 4 element with face and cell
dofs defined using the polynomial bases {Gm}meqiint,y and {Um}tmefiing} (if k= 1) of Pra—1 and
Pi_1 4, respectively, as in (14.5). Assume that the geometric mapping Tk is affine and that (14.9)
holds true. Then the finite element (K, Px,X ) generated using Proposition 9.2 with the con-
travariant Piola transformation (14.10) is a simplicial RTy, 4 finite element with dofs

1

O.;',m('v) = 7] /F(vq/p)(cm o TI;lF)ds, VE € Fk, (14.12a)
1 _ .

%) = i /K(U.UKJ.)(W 0TV de, Ve {1:d), (14.12D)

where Tk p = TK|13 o Ty is the affine bijective mapping from S4=1 to I that maps the d vertices
of S4=1 to the d vertices of F' with increasing indices.

Proof. See Exercise 14.4 for the proof that Px = RTj 4. Use Lemma 14.18 to prove (14.12a)-
(14.12b). O

Remark 14.20 (Unit). Given some length unit L, the shape functions scale as L'~¢ since the
unit of all the dofs is L4~1. O

Remark 14.21 (Nonaffine meshes). Proposition 9.2 together with the map 1% defined in (14.10)
can still be used to generate a finite element (K, Py, Xk ) if the geometric mapping Tk is nonaffine.
The function space Px and the dofs in ¥ i then differ from those of the RTj 4 element. O
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14.5 Other H(div) finite elements

14.5.1 Brezzi—-Douglas—Marini elements

Brezzi-Douglas-Marini (BDM) elements [49, 50] offer an interesting alternative to Raviart-Thomas
elements since in this case the polynomial space is P := Py g C RT}, 4, £ > 1. This space is optimal
from the approximation viewpoint. The price to pay for this simplification is that the divergence
operator V- is surjective from P, 4 onto P,_; 4 only. This is not a limitation if the functions one
wants to interpolate are divergence-free (or have a divergence that belongs to Pr_1 4).

Let K be a simplex in R?. The dofs of BDM elements are attached to the (d+1) faces of K and
to K itself (for k > 2). The face dofs are the same as for Raviart-Thomas elements, i.e., the linear
forms of, = defined in (14.5a) for all F € F and every m € {l:nf, } with nf, := dim(Pgq_1).
Note that the cell dofs for Raviart-Thomas elements are moments against a set of basis functions
of Py_1,4, whereas those for BDM elements are moments against a set of basis functions of the
Nédélec polynomial space Nji_5 4 introduced in the next chapter (see §15.2). At this stage, it is
sufficient to know that Py_24 € Nip_24 C Pr_; 4 and that dim(Ny_22) = (k — 1)(k + 1) and
dim(Nj_2,3) = $(k — 1)(k 4+ 1)(k + 2) (see Lemma 15.7). We define

5, (v) = / vpy,dr,  Ym e {1:75,}, (14.13)
K
where {@m}me{l,ﬁgh} is a basis of Ny_g ¢ and ng, := dim(Ng_2 ). Let us set

Y= {U%,m}FGJ:K,mG{lznih} U {&fn}me{l:ﬁgh}-
Proposition 14.22 (Finite element). (K,Py q,%) is a finite element.
Proof. See Boffi et al. [29, p. 88]. O

Hierarchical basis functions for the BDM element are constructed in Ainsworth and Coyle
[6], Schoberl and Zaglmayr [176].

Remark 14.23 (Generation). Generating BDM elements also involves the covariant Piola trans-
formation ¥ (w) := J - (woTk) defined in (9.9b), so that [ vty do = ex [E P (V) Y5 (P,) AT

. . det(Jx) _
with e := |dct(J§)‘ = +£1. O

14.5.2 Cartesian Raviart—Thomas elements

Let us briefly review the Cartesian Raviart-Thomas finite elements. We refer the reader to Exer-
cise 14.6 for the proofs. For a multi-index o € N, we define the (anisotropic) polynomial space
Qay.,...,ay composed of d-variate polynomials whose degree with respect to z; is at most a; for all
i€ {l:d}. Let k € N and define

RT;E,d = Qrat ke, e X o X Qe ko kg1 - (14.14)

Since dim(Qpt1.4,.. k) = ... = dim(Qk._xxt1) = (b +2)(k + 1)971, we have dim(RT%_’d) =
d(k + 2)(k + 1)?~1. Moreover, one can verify that

Vv € Q,a, Vg VH € Qr,a—10Tg ", (14.15)

for all v € ]RT%_’ 4 and every affine hyperplane H in R? with normal vector vy parallel to one of
the vectors of the canonical basis of R? and where Ty : R¥~! — H is any affine bijective mapping.
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Let K be a cuboid in R?. Each face F' € Fx of K is oriented by the normal vector vp with
|lvr|e2 = |F|. Let Tr be an affine bijective mapping from [0, 1]~! onto F. Let us orient K using
vk, = |Fjle; for all j € {1:d}, where {e;};c(1.q4) is the canonical basis of R? and |F}| is the
measure of any of the two faces of K supported in a hyperplane perpendicular to e;. Let ¥ be the
set composed of the following linear forms:

T (V) 1= % /F(v-uF)(gm oTy')ds, VF € Fg, (14.16a)

o (v) 1= i/ (v Vmde, Ve {1:d), (14.16b)
' K| Jx '

where {Cn}reqiint ) is @ basis of Qg,g—1 with nf = (k+1)1 and {¥j,mYme{1:ne,} 18 & basis of
Qk,... ke k—1,k,....k With ng, == k(k + 1)1 if k > 1, with the index (k — 1) at the j-th position for
all j € {1:d}.

Proposition 14.24 (Finite element). (K,RT} ;%) is a finite element.

Cartesian Raviart—Thomas elements can be generated for all the mesh cells of an affine mesh
composed of parallelotopes by using affine geometric mappings and the contravariant Piola trans-
formation (recall, however, that orienting such meshes and making the orientation generation-
compatible requires some care; see Theorem 10.10).

Example 14.25 (Shape functions and dofs for RTg ;). Let K := [0, 1]4. Let F; and Fyy; be
the faces defined by z; = 0 and z; = 1, respectively, for all ¢ € {1:d}. Using the basis function
¢1 =1 for Qg q—1, the 2d dofs are the mean-value of the normal component over each face of K,
and the shape functions are 8! (x) := (1 — 2;)np, and 6% () := z;np, for all i € {1:d}. The dofs
are illustrated in Figure 14.4. O

l

Figure 14.4: Degrees of freedom of the lowest-order Cartesian Raviart—Thomas element R’]I'E_’ 4 in
dimensions two (left) and three (right, only visible dofs are shown).

Remark 14.26 (Other elements). Alternative elements are the Cartesian Brezzi-Douglas—
Marini elements in dimension two, the Brezzi—Douglas—Durdan—Fortin elements in dimension three
(see [49, 50]), and their reduced versions by Brezzi-Douglas—Fortin-Marini [51]. O

Exercises

Exercise 14.1 (RT4). (i) Prove that [, 1y k0% dz = cp — ek, where 6% is defined in (14.3),
and cp, ck are the barycenters of F and K, respectively. (Hint: use (14.3) and [, ¢ ds = |F|cp.)
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Provide a second proof without using (14.3). (Hint: fix e € R?, define ¢(x) = (z — cr)-e, observe
that V¢ = e, and compute e- [} 0% dx.) (ii) Prove that Y pcr [F|0k(z) ® np = I4 for all
x € K. (Hint: use (7.1).) (iii) Prove that v(x) = (v)x + 3 (V-v)(x — ck) for all v € RT 4, where
(v)g = ﬁ [y vda is the mean value of v on K.

Exercise 14.2 (RT,, in 3D). Let d = 3. Let F;, ¢ € {0:3}, be a face of K with vertices

{ar,ap, a0} st. ((zg — z0)x(2p — ) g, > 0. (i) Prove that VA, xVA, = % and prove
similar formulas for VA;x VA, and VA, xVA,. (Hint: prove the formula in the reference simplex,
then use Exercise 9.5.) (i) Prove that 8f = —2(A\, VA XV, + A, VA x VA, + A VA, xV),). Find
the counterpart of this formula if d = 2.

Exercise 14.3 (Piola transformation). (i) Let v € C*(K) and ¢ € C°(K). Prove that
JxaVvde = [R5 (q)V-4k(v)dz. (i) Show that [, v-0dz = ek [z Y5 (v)-Y5(0)dT for all
0 € C'(K).

Exercise 14.4 (Generating RT}, 4). (i) Let ¢ € R%, g € P, and A € R™%. Show that there is
r € Pr_1 4 such that ¢(Ay + ¢) = ¢(Ay) + r(y). (ii) Defining s(y) := q(Ay), show that s € P} ;..
(iii) Prove that (¢%) ! (RTj.4) C RTy 4. (iv) Prove the converse inclusion.

Exercise 14.5 (BDM). Verify that card(X) = dim(Py q) for d € {2, 3}.

Exercise 14.6 (Cartesian Raviart-Thomas element). (i) Propose a basis for RTj, and for
RTG 5 in K :=[0,1]% (ii) Prove (14.15). (iii) Prove Proposition 14.24.



Chapter 15

H (curl) finite elements

The goal of this chapter is to construct R%-valued finite elements (K, P,Y) with d € {2, 3} such
that (i) Py q C P for some k > 0 and (ii) the degrees of freedom (dofs) in ¥ fully determine the
tangential components of the polynomials in P on all the faces of K. The first requirement is key
for proving convergence rates on the interpolation error. The second one is key for constructing
H (curl)-conforming finite element spaces (see Chapter 19). The finite elements introduced in this
chapter are used, e.g., in Chapter 43 to approximate (simplified forms of) Maxwell’s equations
which constitute a fundamental model in electromagnetism. The focus here is on defining a refer-
ence element and generating finite elements on the mesh cells. The interpolation error analysis is
done in Chapters 16 and 17. We detail the construction for the simplicial Nédélec finite elements
of the first kind. Some alternative elements are outlined at the end of the chapter.

15.1 The lowest-order case

Let us consider the lowest-order Nédélec finite element. Let d € {2,3} be the space dimension,
and define the polynomial space

No,a :=Po,qa ©S1 4, (15.1)

where Sy 4= {q € P | g(x)-x =0}, i.e.,

sl (), swmwel().(D(H) 0o
The sum in (15.1) is indeed direct, so that dim(Ng 4) = @ =:d (ie,d=3ifd=2and d'=6
if d = 3). Note that d’ is the number of edges of a simplex in R%. The space Ny 4 has several
interesting properties. (a) One has Py q C Ny 4 in agreement with the first requirement stated
above. (b) The gradient of v € Ny 4 is skew-symmetric. Indeed, only the component g € S; 4
contributes to the gradient, and the identity 0p,.,(q(x)-x) = 0, i # j, yields d;q; + 0;¢; = 0. (c)
If v € Ny 4 is curl-free, then v is constant. Indeed, v being curl-free means that Vo is symmetric,
which implies Vv = 0 owing to (b). (d) The tangential component of v € Ny 4 along an affine line
in R? is constant along that line. Let indeed x,4y be two distinct points on the line, say L, with
tangent vector t;. Then there is A € R such that t;, = A(x —y) and since v = r +q with r € Py 4
and q € Sy 4, we infer that v(x)-tr, — v(y)-tr = (q(x) — q(y))-tr = A\g(x —y)-(x —y) = 0.
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Let K be a simplex in R? and let £x collect the edges of K. Any edge E € £k is oriented by
fixing an edge vector tg s.t. ||[tgll;2 = |E|. Conventionally, we set tg := z, — z,, where z,, z, are
the two endpoints of F with p < ¢q. We denote by X the collection of the following linear forms
acting on Ny 4:

0% (v) 1= ﬁ/E(v-tE)dl, VE € Ex. (15.3)

Note that the unit of 0% (v) is a length times the dimension of v. A graphic representation of the
dofs is shown in Figure 15.1. Each arrow indicates the orientation of the corresponding edge.

4

2

Figure 15.1: Degrees of freedom of the Ny 4 finite element in dimensions two (left) and dimension
three (right).

Proposition 15.1 (Face (edge) unisolvence, d = 2). Let v € Ngo. Let E € E be an edge of
K. Then o (v) = 0 implies that vp-te = 0.

Proof. Since we have established above that v|g-tg is constant, the assertion follows readily. [J
Proposition 15.2 (Finite element, 2D). (K,Ny2,Y) is a finite element.

Proof. Since dim(Ng 2) = card(X) = 3, we just need to verify that the only function v € Ny that
annihilates the three dofs in X is zero. This follows from Proposition 15.1 since span{tg}pes, =
R2. O

The above results hold also true if d = 3, but the proofs are more intricate since the tangential
component on an affine hyperplane of a function in N 3 is not necessarily constant. Let F' € Fi
be a face of K and let us fix a unit vector np normal to F'. There are two ways to define the
tangential component of a function v on F: one can define it either as vxnp or as Ilp(v) =
v — (vnp)np. We will use both definitions. The first one is convenient when working with
the Vx operator. The second one is more geometric. The two definitions produce ¢2-orthogonal
vectors since (vxnp)-Ilp(v) = 0 as shown in Figure 15.2.

nr v
I
I
I
I

vXn
F F

Figure 15.2: Two possible definitions of the tangential component of a vector.
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Proposition 15.3 (Face unisolvence, 3D). Let v € Ng3. Let F € Fi be a face of K and let
Er be the collection of the three edges of K forming the boundary of F'. Then % (v) = 0 for all
E € Er implies that vjpxnp = 0.

Proof. Let 52 be the unit simplex in R2. Let Tp : 52 — F be defined by Tr(0,0) = z,,
Tr(1,0) := z4, Tr(0,1) := z,, where zp, 24, 2 are the three vertices of F' enumerated by increasing
vertex-index. Let Jr be the 3x2 Jacobian matrix of Tr. Note that for all ¥ € R? the vector Jpy
is parallel to F' and Tp(y) — 2, = Jpy. Let v = r + q with 7 € Py 3 and g € S1 3. Let us set
v = JL1lF(voTr) and let us show that ¥ € Ny . For all § € R?, we have

Setting € := JLIIp(r + q(2,)) € R? and using that g € S 3, we infer that §-v(y) = y-¢. Since
v € Py 5, we have ¥ = 7+ q where ¥ € Py 5 and g € P'y. Then -7 + y-q(y) = y-c for all § € R?.
This implies that the quadratic form y-q(y) is zero. Hence, v € Ny 2. Let now E be any of the
three edges of 52. Then E := TF(E) is one of the three edges of F. We obtain that

/A(ﬁtﬁ)dlA: /E(J}HF(UOTF)MEdT

E

~ |E ~
= / (voTp)tgdl = u/ vitpdl = |E|og(v) = 0.
E |E| /e

Since ¥ € Ny o annihilates the three edge dofs in §2, Proposition 15.2 implies that v = 0. After
observing that im(I1p) is orthogonal to ker(JL), we conclude that the tangential component of v
on F'is zero. O

Proposition 15.4 (Finite element, 3D). (K,Ng3,Y) is a finite element.

Proof. Since dim(Ng 3) = card(X) = 6, we just need to verify that the only function v € Ny 3
that annihilates the six dofs in ¥ is zero. Face unisolvence implies that vjpxnF = 0 for all
F € Fk. Let (e1, ez, e3) be the canonical basis of R®. Using (4.11), we infer that [,.(Vxwv)-e;dz =
—faK(van)-ei ds = 0, where ng is the outward unit normal to K. Since Vxwv is actually
constant on K, we have Vxv = 0, and we have seen that this implies that v € Py 3, i.e., v = Vp
for some p € P 3. Integrating Vp along the edges of K, we infer that p takes the same value at
all the vertices of K. Hence, p is constant, which in turn implies that v is zero. O

One can verify that the shape functions are such that
0% () = M (2) VA — N (2)V A, VE € &k, (15.4)

for all © € K, with tg := z, — z,,. For every E’ € £k, we have 0%t = dpr/. We refer the reader
to Exercise 15.3 for additional properties of the Ny 5 shape functions.

15.2 The polynomial space N; 4

Let k € N and let d € {2, 3} (the material of this section extends to any dimension d > 2). Let Pﬁd
be the space of the homogeneous polynomials of degree k (see Definition 14.2). Set ]P’I,i g = [PE Ak
and ]Pk,d = []P)k_’d]d.
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Definition 15.5 (N 4). We define the following real vector space of R?-valued polynomials:
Nyg:=Prqg®Skt1,4, with Spy1.4:={q€ ]P’I,jﬂ)d | g(x)-x =0}. (15.5)
Note that the above sum is direct since Py g NSgy1,0 C Pra ﬁ]P’I,;IJrLd = {0}.

Example 15.6 (Space Sy ). The set {(—22,z172)7, (v122, —22)T} is a basis of S5 2, and the set
{(_Igv Tr1x2, O)Ta (—$§7 O; I1x3)Ta ($1I2, _I%a O)Tv (Oa —xg, I2x3)T7 (le3; 07 _I%)Tv (07 T3, _I%)Ta
(w273, —2123,0)T, (0, 2173, —2172) T} is a basis of Sz 3. Note that dim(Sz2) = 2 and dim(Sa3) =
8. O

Lemma 15.7 (Dimension of Ny, 4). Let k € N and d > 2. We have

. (k+d+1)!
dlm(Nk,d) = m (15.6)

Hence, dim(Ny2) = (k + 1)(k + 3) and dim(Ng3) = 3(k + 1)(k + 3)(k + 4).

Proof. (1) Let us first prove that the map ¢ : Pgd Sp—=xpcE ]P’I,jﬂ)d is surjective. By linearity,
it suffices to prove that for each monomial ¢ € PEJrLd s.t. g(x) = x* with |a| := k + 1, there is
re ]Pﬂd such that g(x) = x-r(x). Let {e;}ic(1.4; be the canonical Cartesian basis of R?. Since
la| =k +1 > 1, there exists i € {1:d} s.t. o; > 1. Setting r(z) := 2" ...2% "' ... 25%e;, we have
r e P, and g(z) = z-r(x).

(2) Observing that ker(¢) = S 4, the rank nullity theorem implies that dim(Sk,q) + dim(im(¢)) =
dimP}, ie., dim(Spq) = ddimP, — dimPlL | , = d(*77") — (1) = () - )

T k+1 k+1
T+ DI(d—2)1

The sum in (15.5) being direct, we conclude that

dim(Nk)d) = ddim(Pk7d) + dim(Sk+17d)

 (k+a) k+d)!  (k+d+1)
BT AN (e T By R T R T H

Lemma 15.8 (Trace space). Let H be an affine hyperplane in R?, let ng be a unit normal
vector to H, and let Ty : R*™1 — H be an affine bijective mapping with Jacobian matric Jg. Let
Iy (v) := v — (vng)ng be the £>-orthogonal projection of v onto the tangent space to H (i.e.,
the linear hyperplane in R? parallel to H). Then JLHH(’U‘H) €Npg_10 Tgl for all v € Ny 4.

Proof. Identical to the proof of Proposition 15.3. O

Lemma 15.9 (d = 2). Ny = Rz (RTy ), where Ry is the rotation of angle § in R?, i.e.,
Rzx = (—x9,x1)" for all © = (21,22)" € R%.

Proof. See Exercise 15.4. O

Lemma 15.10 (Curl). Assume d € {2,3}. Then Vxv € Py 4 for all v € N 4, and if Vxv =0,
there is p € Pi1,q4 such that v = Vp (that is, v € Py 4).

Proof. That Vxv € Py 4 results from Ny 4 C Priq14. The condition Vxv = 0 together with
v € Ny g C Py g implies that there is p € Py 24 such that v = Vp. The definition of Ny 4
implies that v = Vp; + Vps with p; € Pry1 4 and Vps € Sgi1.4. We infer that pa(x) — p2(0) =
fol Vpa(tz)-(tz)t~1 dt = 0, which means that p, is constant. Hence, v = Vp; with p; € Pry14. O
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15.3 Simplicial Nédélec elements

Let k € N and let d € {2,3}. Let K be a simplex in R?. In this section, we define the dofs in
order to make the triple (K,Ny 4,%) a finite element. The construction can be generalized to any
dimension.

15.3.1 Two-dimensional case

Let us orient the three edges E € £k of K with the edge vectors tg. Let us orient K with the two
vectors {tx j},cq1,2) which are the edge vectors for the two edges of K sharing the vertex with the
lowest enumeration index. Note that {tx ;};eq1,2) is a basis of R?. Let Ty be an affine bijective

mapping from the unit simplex Sl = [0,1] in R onto E. We define the dofs of the two-dimensional
Nédélec element (K,Ny 2,3) as follows:

1
0pm(v) = H] /E(v-tE)(um oTzY)dl, VE €&, (15.7a)

1
o () == W/K(v-t;(,j)wm dz, vj e {1:2), (15.7h)

where {Mm}me{lzngh} is a basis of Py with ng, = dim(Py;) = £+ 1, and {wm}me{lzngh} is a
basis of Py_1,2 with ng, = dim(Px_12) = %k(/{ +1) if £ > 1. Since Ny o = Rz (RT 2) owing to
Lemma 15.9 and since the above dofs are those of the RT}, o finite element once the edges (faces)
are oriented by the vectors vp := Rz (tg) and K is oriented by the vectors v ; := Rz (tk ), it
follows from Proposition 14.15 that the triple (K,Nj 2,3) is a finite element for all & > 0. The
unit of all the above dofs is a length times the dimension of v.

Remark 15.11 (2D Piola transformations). Owing to the identity AT = det(A)R;A_lR%

for all A € R?*2, the two-dimensional contravariant and covariant Piola transformations satisfy

Rz (P5 (v)) = P5 (Rz (v)). 0

15.3.2 Three-dimensional case

Let K be a simplex (tetrahedron) in R3. Let £x be the collection of the six edges of K and let
Fk be the collection of the four faces of K. Each edge E € £k is oriented by the edge vector
tp = z4 — zp, where zp, z, are the two vertices of E with p < ¢ (note that ||tg||,2 = |E|). Each
face I € F is oriented by the two edge vectors {tr;};eq1,2y With tr1 = 2z, — 2p, tr2 = 2, — 2,
where 2z, 24, 2, are the three vertices of F' with p < ¢ < r. Note that the unit normal vector np
is then defined as tp1 xtp 2 /|/tF1 Xt 2| ¢2; see for instance (10.9). Note also that {tr;},cq1,2) is a
basis of the tangent space of the affine hyperplane supporting F'. Finally, the cell K is oriented by
the three edge vectors {tx ;}jcq1.3) With tx1 = 2z — 2p, tx2 = 2, — 2p, ti 3 '= 25 — 2y, Where
2p, 24, Zr, 25 are the four vertices of K with p < ¢ < r < s. Note that {tx ;};c(1:3) is a basis
of R3. In order to define dofs using moments on the edges and moments on the faces of K, we
introduce affine bijective mappings T : 5?2 — F and Ty : S' — E, where S? is the unit simplex
in @2 and S is the unit simplex in R; see Figure 15.3. For instance, after enumerating the vertices
of S, S2, these mappings can be constructed by using the increasing vertex-index enumeration
technique of §10.2.
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AN Vi

Figure 15.3: Reference edge S1 and reference face S? with the corresponding mappings.

Definition 15.12 (dofs). The set X is defined to be the collection of the following linear forms
acting on Ny 3:

0% (v) = 1 vitg)(m o Thl)dl, VE € &g 15.8a
FE
1 B .
Ol (V) = 7 /F(v-tF,‘,-)(gm oTy')ds, VF € Fk,Vje{l,2}, (15.8b)
1 .
0%, (v) = m/l((v-t;{,j)z/}mdx, vj e {1,2,3), (15.8¢)

where {fim}me(1:ne,} 5 @ basis of Py with ng, :=k+ 1, {Cn}tmeqiint 3 is @ basis of Pr_y12 with
nti=3(k+1kifk>1, and {¥mtme(iine, ) s a basis of Py_2 3 with ng, == (k4 1k(k —1) if
k > 2. We regroup the dofs as follows:

Y% = {0k mtmef1:ne,}s VE € &k, (15.9a)
Sr = {0k jmlGmelrayxtnt,} VF € FK, (15.9b)
= {05 m(myef1:31x{1:ng, }- (15.9¢)
Remark 15.13 (dofs). The unit of all the dofs is a length times the dimension of v. For the
cell dofs, we could also have written 0§, (v) := I [ (v-€;)iy, dx, where ( is a length scale

associated with K and {e;};e(1.q4} is the canonical Cartesian basis of R?. We will see that the
definition (15.8¢) is more natural when using the covariant Piola transformation to generate Nédélec
finite elements. The dofs are defined here on Ny, 4. Their extension to some larger space V(K) is
addressed in Chapters 16 and 17. [l

Lemma 15.14 (Invariance). Assume that every affine bijective mapping S : CL S (resp.,
S : 5% = S?) leaves the basis {tmtmeiingy (resp., {Cm}tmeqiint,y) globally invariant. Then for
all E € Ex and all F € Fr, the set X%, and X, are independent of the affine bijective mapping
Tr and Tk, respectively.

Proof. Similar to that of Lemma 14.12; see also Example 14.13 for the invariance w.r.t. vertex
permutation. [l

The following result is important in view of H (curl)-conformity.

Lemma 15.15 (Face unisolvence). Let v € Ny 3 and let F' € Fk be a face of K. Let Ep be the
collection of the (three) edges forming the boundary of F, let X% := Upce, X%, and let np be a
unit normal to F'. We have the following equivalence:

[o(v) =0, VYoeZLuxy] < [vpxnr=0] (15.10)

Moreover, both assertions in (15.10) imply that (Vxv)p-ng = 0.
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Proof. We only need to prove the implication in (15.10) since the converse is evident. The proof
is an extension of that of Proposition 15.3 accounting for the richer structure of the dofs. We
introduce ¥ := JLIIz(v o Tr). It can be shown that ¥ € Ny, o; see Exercise 15.6. The unit simplex
52 is oriented by the two edge vectors {fj}je{l)g} sit. Jpt; = tpj o T for all j € {1,2}. For the
face dofs, we have

1 o~ N 1 ) i
@ 52 (04)6m 45 = @ /§2((J}(U — (vnp)ng) o Tr)t;)(m ds
1 -~

— @ §2(((’U — (’U-'I’LF)'I’LF).tFJ) o TF)<m dS

1 ~
= g L@t o TG ds
1
=7 [t o T ds = o (0) =0

One proves similarly that the edge dofs vanish. This proves that ¥ = 0 because ¥ € Ny 5. Since
JT. has full rank, we infer that p(vjp) = 0, which implies that v|pxnr = lIp(vjp)xnF = 0.
Finally, (Vxv)|p-np = 0 immediately follows from vjpxnp = 0. O

Proposition 15.16 (Finite element). (K,Nj 3,%) is a finite element.

Proof. Observe first that the cardinality of ¥ can be evaluated as follows:

, k+1 k+1
card(X) = 3n%, + 2 x 4nly + 608, = ( ;r >+8( ;r >+6(k+1)

_ %(1@ +1)(k+3)(k + 4) = dim(Ny ).

Hence, the assertion will be proved once it is established that zero is the only function in Ny, 5 that
annihilates all the dofs in ¥. Let v € N 3 be such that o(v) = 0 for all ¢ in 3. We are going
to show that v = 0. Owing to Lemma 15.15, vjpxnp = 0 and (Vxv)p-nr = 0 for every face
Fe Fk.

(1) Let us prove that w := Vxv = 0. Since w € Py 3 C RT3, it suffices to prove that w
annihilates all the dofs of the RTy 3 element. Since wjpnr = 0, w annihilates all the dofs
associated with the faces of K. In addition, if £ > 1, we observe that fK w-qdz = fK Vxv-gdx =
fK v-Vxqgdz for all g € P;_ 3, since vxng = 0 on 0K, where nk is the outward unit normal
to K. This in turn implies that fK w-qdz = 0 since Vxq € P,_s 35 and o(v) =0 for all 0 € X° if
k > 2. The statement is obvious if £ = 1. In conclusion, Vxv = w = 0.

(2) Using Lemma 15.10, we infer that there is p € Pyiq,3 such that v = Vp. The condition
vxng = 0 on 0K implies that p is constant on 0K. Without loss of generality, we take this
constant equal to zero. This in turn implies that p = 0 if & < 2 (see Exercise 7.5(iii)), so
that it remains to consider the case k£ > 3. In this case, we infer that p = Ag...A3r where
i, i € {0:3}, are the barycentric coordinates in K and r € Pr_33. Writing this polynomial in
the form r(z) = >, <3 ax®, we consider the field q(x) = 3_, <43 ﬁaaxlwo‘el, where
e, is the first vector of the canonical Cartesian basis of R3. Since q € P;_2 3, the fact that
o(v) = 0 for all o € X¢ implies that va~q dx = 0. Integration by parts and the fact that
plox = 0yield 0 = [ v-gde = — [ pV-qdz = — [ A\g... A3r? dz. In conclusion, r = 0, so that
v=Vp=0. (I
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The shape functions {6;};en associated with the dofs {o;}ienr defined in (15.8) can be con-
structed by choosing a basis {¢; }ien of the polynomial space Ny, 3 and by inverting the correspond-
ing generalized Vandermonde matrix as explained in Proposition 5.5. Recall that this matrix has
entries V;; = 0;(¢;) and that the i-th line of V~! gives the components of the shape function 6; in
the basis {¢; }ienr. The basis {¢; }ienr chosen in Bonazzoli and Rapetti [31] (built by dividing the
simplex into smaller sub-simplices following the ideas in Rapetti and Bossavit [163], Christiansen
and Rapetti [70]) is particularly interesting since the entries of V=1 are integers. One could also
choose {¢;}icar to be the hierarchical basis of Ny 4 constructed in Fuentes et al. [103, §7.2]. This
basis can be organized into functions attached to the the edges of K, the faces of K, and to K
itself, in such a way that the generalized Vandermonde matrix V is block-triangular (notice though
that this matrix is not block-diagonal). For earlier work on shape functions and basis functions
for the Ny 5 element, see Webb [197], Gopalakrishnan et al. [109)].

Remark 15.17 (Dof independence). As in Remark 14.16, the results from Exercise 5.2 imply
that the interpolation operator 7§, associated with the Nj 3 element is independent of the bases
{tmmeqiing, 1y {Cmtmeqiint,y> and {¥m}bmefiing, ) that are used to define the dofs in (15.8). The
interpolation operator is also independent of the mappings T, Tr and of the orientation vectors
{tetpeew, {tritrerq jeqi2y and {tx ;}tjeq1,2,5)- g

Remark 15.18 (Literature). The Ny, 4 finite element has been introduced by Nédélec [151]; see
also Weil [198], Whitney [199] for & = 0. It is an accepted practice in the literature to call this
element edge element or Nédélec element. See also Bossavit [36, Chap. 3], Hiptmair [117], Monk
[145, Chap. 5]. O

15.4 Generation of Nédélec elements

Let K be the reference simplex in R3. Let Tj, be an affine simplicial mesh. Let K = TK(IA( ) be

a mesh cell where Tk : K — K is the geometric mapping, and let Jx be the Jacobian matrix of
Tx. Let F' € Fk be a face of K. We have I’ = Tk (F) where F' € F is a face of K. Similarly,

let £ € Ex be an edge of K. We have F = TK(E) where E € Ep is an edge of K. Using the
increasing vertex-index enumeration, Theorem 10.8 shows that it is possible to orient the edges
F and FE in a way that is compatible with the geometric mapping Tk . This means that the unit
tangent vectors T and Ty satisfy (10.6a), i.e., Te = ®%(T5) with ®% defined in (9.14b). In other
words, we have

1

50Ty p == JIxTp 15.11
KIP [Ticrgle 8 o
Since tg := |E|Tp, Tp = |E|tAE and since |F| = HJK?EHEQ|E| owing to Lemma 9.12, we infer that
tpoTy g = Ixts. (15.12)

We also orient the faces of K by using the two edge vectors originating from the vertex with the
lowest index in each face. We finally orient K by using the three edge vectors originating from the
vertex with the lowest index in K. Reasoning as above, we infer that

trjoTyp =Jtp o Vi €{1,2} ticjo0 Tk = Jicty ;, Vj € {1:3}, (15.13)
Recall the covariant Piola transformation introduced in (9.9b) such that

P (v) = Tk (v o Tk), (15.14)
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and the pullback by the geometric mapping such that ¢% (¢) := g o Tk.

Lemma 15.19 (Transformation of dofs). Let v € C°(K) and let ¢ € C°(K). The following
holds true:

1 o~
E/E(’U.tE)le |/ (P (v @ Y% () di, VE € &k,
1 o .
m/(v-tﬂj)qu = T|/A(¢§<(’U)-tﬁj)1/;§((q) ds, VF e Fg,je{1,2},
|K|/ (vtics)ade = |/ (¥ (v)- g )05 (a) dZ, Vj € {1:3},

Proof. The first identity is nothing but (10.7b) from Lemma 10.4, which itself is a reformulation
of (9.15b) from Lemma 9.13 (the fact that Tk is affine is not used here). The proof of the other

two identities is similar to (9.15b) using (15.13) and the fact that ds = :g} ds, dz = : L 47 since

Ty is affine. For instance, we have

1 / 1 |F|
— [ (vtp, )gds = —/(U'tF7')OT s(qoT, 7)—=ds
\Fl g [F| Jg o T TKIE KIED B

_ %/ﬁ((uﬂ}v).@}—{ltﬂj)) o Ty i (q) d5
B % /lnq(‘”%(”)'fﬁ,‘j)w%{(q> 5. .

Proposition 15.20 (Generation). Let (IA(, 13, f) be a simplicial Nédélec element with edge, face,
and cell dofs defined by using the polynomial bases {tim}me{1:ne,}s {Cmtmeprint,y (fk21), and
{wm}me{lcngh} (if k > 2) of Pr1, Py_12, and Py_a3, respectively, as in (15.8). Assume that
the geometric mapping Ty is affine and that (15.12)-(15.13) hold true. Then the finite element
(K, Px,X k) generated using Proposition 9.2 with the covariant Piola transformation (15.14) is a
simplicial Nédélec element with dofs

o5 () = ﬁ/}ﬂ(v-tE)(umnglE)dl, VE € Ex, (15.152)

T (V) = % /F(v-tF.,j)(Cmng,%)ds, VF € Fi, Vj € {1,2}, (15.15b)

Tim (V) = |_11(v|/K(U'tK.,j)(1/}mOTI;1)d:1:, Vi e {1,2,3}, (15.15¢)

where T g = TK‘E - S' 5 F and Tk r = TK‘F . S2 5 F are the affine bijective

mappings that map Uertzces with increasing indices.

Proof. Let us first prove that Px = Ni 3. We can write Tk (Z) := JxZ + bx with Jx € R3*3
and b € R®. Let v be a member of Pg. Then % (v) = p+ q with p € Py 3 and ¢ € Sgy1.3,
yielding v = J}Tﬁo Tgl + J;(T(fo Tgl. Since each component of @ is in ]P’I]irm, we infer that
GoTi'(xz) =gl e — I b)) = g ' T) + r(x), where r € Py 3; see Exercise 14.4. As a result,
v=(p+r)+q wherep=J poT" €Py3and q=J; goJg'. Note that p+r € Py 3 and
go J;(l is a member of ]PI,3+1)3, which implies that q is also in ]PI,3+1)3. Moreover, w~(J}TQ(J;{1m)) =
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(J;{lw)ﬁ(J;(lw) = 0 which in turn implies that g € Sy41 3. In conclusion, v € Ny 3, meaning that
Py C Nj 3. The converse statement follows from a dimension argument. Finally, the definition of
the dofs results from Lemma 15.19, and the properties of the mappings Tk g and Tk  from those
of TK, TE’ and Tﬁ. (I

Remark 15.21 (Unit). The shape functions scale like the reciprocal of a length unit. O

Remark 15.22 (Nonaffine meshes). Proposition 9.2 together with the map (15.14) can still
be used to generate a finite element (K, Pk, >) if the geometric mapping Tk is nonaffine. The
function space Pk and the dofs in Xk then differ from those of the Ny, 3 element. O

15.5 Other H (curl) finite elements

15.5.1 Nédélec elements of the second kind

Nédélec elements of the second kind [152] offer an interesting alternative to those investigated
in §15.3 (and often called Nédélec elements of the first kind) since in this case the polynomial
space is P := Py 4 C Ny 4, k > 1. This space is optimal from the approximation viewpoint.
The price to pay for this simplification is that the curl operator maps onto Py 4. This is not a
limitation if the functions to be interpolated are curl-free.

Let K be a simplex in R®. The dofs are attached to the edges of K, its faces (for k > 2),
and to K itself (for k£ > 3). The edge dofs are defined in (15.8a) as for the elements of the first
kind, whereas the face dofs are moments on each face of K of the tangential component against
a set of basis functions of RTj;_52 up to a contravariant Piola transformation (instead of basis
functions of P,_; o for the elements of the first kind), and the cell dofs are moments against a
set of basis functions of RTy_3 5 (instead of basis functions of Py_s 3 for the elements of the first
kind). Tt is shown in [152] that the triple (K, P,Y) is a finite element. Hierarchical basis functions
for the Nédélec element of the second kind are constructed in Ainsworth and Coyle [6], Schéberl
and Zaglmayr [176].

15.5.2 Cartesian Nédélec elements

The Cartesian version of Nédélec elements have been introduced in Nédélec [151, pp. 330-333]. Let
us briefly review these elements (see Exercise 15.8 for the proofs). We focus on the case d = 3,
since two-dimensional Cartesian Nédélec elements can be built by a rotation of the two-dimensional
Cartesian Raviart—-Thomas elements from §14.5.2. Let k € N and define

Ny 3 = Quer 141X Qi1 kot 1 XQrog 1,41,k (15.16)

where the anisotropic polynomial spaces Qa, 0,05 are defined in §14.5.2. Since the three anisotropic
spaces in (15.16) have dimension (k + 1)(k + 2)?, we have dim(N} ;) = 3(k + 1)(k + 2)*.

Let K := (0,1)3 be the unit cube in R3. Let Fx collect the six faces of K, and let Ex collect
the twelve edges of K. Let T, F € Fk (resp., Tg, E € Ex) be an affine geometric mapping from
[0,1)2 onto F (resp., [0,1] onto E). Let ¢° := 1 be the canonical basis of R. We orient E €
using tp = JE%, where Jg is the Jacobian matrix of Tk. Let {tg }j€{1,2} be the canonical basis
of R?. We orient F € Fg by using tp = in; for all j € {1,2}, where JF is the Jacobian matrix

of Tr. We orient K by using the canonical basis {tx ; ‘= e;}jeq1:3; of R%. Let ¥ be the set
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composed of the following linear forms:

1
Opm(v) = E/ (v-tg)(pm o Tp')dl, VE € &k, (15.17a)
E
1 _ .
T jm (V) = 0 /F(v-tF,j)(gW oTyt)ds, VF € Fi, Vj € {1,2}, (15.17b)
1 .
05 (V) = m /K(v-tKJ)wj,m dz, Vi e {1,2,3}, (15.17¢)

where {ftm}me(1:ne,} is @ basis of Py with ng, =k + 1, {(jmtmeqi:nr ) 18 @ basis of the space
Qpp—1 if j =1 and Qg1 if j = 2, with nl, := (k+ 1)k (if £ > 1), and {¥j,mtme(1:ne,} 18 a basis
of the space Qg p—1,4—1 if j =1, Qu1,k -1 if j =2, and Qp—1 k-1, if j = 3, with n&, = (k+ 1)k?
(if k> 1).

Proposition 15.23 (Finite element). (K,N;, %) is a finite element.

Cartesian Nédélec elements can be generated for all the mesh cells of an affine mesh composed of
parallelotopes by using affine geometric mappings and the covariant Piola transformation. Recall
however that orienting such meshes requires some care; see Theorem 10.10.

Exercises

Exercise 15.1 (S1 4). (i) Prove that for all g € Sy 4, there is a unique skew-symmetric matrix Q
s.t. g(x) = Qz. (ii) Propose a basis of S 4. (iii) Show that q € S; 3 if and only if there is b € R?
such that g(x) = bxx.

Exercise 15.2 (Cross product). (i) Prove that (Ab)x (Ac) = A(bxc) for every rotation matrix
A € R3*3 and all b,c € R®. (Hint: use Exercise 9.5.) (ii) Show that (axb)xc = (a-c)b — (b-c)a.
(Hint: (axb)i = eg;;a;b; with Levi-Civita tensor €;;;; see also the proof of Lemma 9.6.) (iii)
Prove that —(bxn)xn + (b-n)n = b if n is a unit vector.

Exercise 15.3 (Ng3). (i) Prove (15.4). (Hint: verify that tg-VA, = 1 and tg-V, = —1.) (ii)
Prove that v = (v)x + 5(Vxv)x(x — ck) for all v € Ny 3, where (v)f is the mean value of v on
K and ck is the barycenter of K. (Hint: Vx(bxx) = 2b for b € R3.) (iii) Let 6% be the shape
function associated with the edge £ € k. Let F' € Fx with unit normal ny | pointing outward
K. Prove that (0%) rxng|r = 0 if E is not an edge of F', and fF 0L xngpds =g r(ce — cr)
otherwise, where cg is the barycenter of £/, cp that of F', and g p = —1if ng | pXtg points outward
F, g r = 1 otherwise. (Hint: use Lemma 15.15 and Exercise 14.1(ii).) (iv) Let Fg collect the two
faces sharing E € £x. Prove that fK 0%, dx = % ZFG]_-E tp,plep—cg)x(cg—crp). (Hint: take the

inner product with an arbitrary vector e € R? and introduce the function ¢(z) := fex(z — ck).)

Exercise 15.4 (Rotated RT} 2). Prove Lemma 15.9. (Hint: observe that Rz (Py.2) = Py2 and
Sk+172 = R% (.’B)PI];IQ)

Exercise 15.5 (Hodge decomposition). Prove that for all £ € N,
Pii1a=Npa® VP, 4

(Hint: compute Ny 4N V]P’Ik{w)d, and use a dimension argument.)



156 Chapter 15. H(curl) finite elements

Exercise 15.6 (Face element). We use the notation from the proof of Lemma 15.15. Let
F e Fi. Let Tr : 52 — F be an affine bijective mapping. Let Jr be the Jacobian matrix of T.
Let v € Ny 3 and let ¥ := JL.(I3 — np@ng)(v o Tr). Show that © € Ny ». (Hint: compute y' 9 ()
and apply the result from Exercise 14.4.)

Exercise 15.7 (Geometric mapping T4). Let A be an affine subspace of R? of dimension
le{l:d—1},d > 2. Let a € A and let Ps(x) := a + II4(x — a) be the orthogonal projection
onto A, where T4 € R4, (i) Let n € R? be such that n-(x —y) = 0 for all z,y € A (we say
that m is normal to A). Show that IT4n = 0. Let ¢ € R? be such that @ +t € A (we say that ¢ is
tangent to A). Show that I14(¢) = ¢. (ii) Let ¢ € Py, and let G(x) := ¢(T 'oPs(x)). Compute
Vg. (iii) Show that there are t1,. .., tangent vectors and ¢z, . .., ¢ polynomials in Py ; such that
Vi(x) =3 sei qs(T; ' (x))ts for all ® € A. (iv) Let t be a tangent vector. Show that there is

w € Py such that ¢-Vi(z) = ,u(Tgl(w)).

Exercise 15.8 (Cartesian Nédélec element). (i) Propose a basis for Ny ;. (ii) Prove Proposi-
tion 15.23. (Hint: accept as a fact that any field v € Nfﬁg annihiliating all the edge and faces dofs
defined in (15.17) satisfies vjpxnp = 0 for all F' € F; then adapt the proof of Lemma 15.16 by
using the RT 5 finite element defined in §14.5.2.)



Chapter 16

Local interpolation in H(div) and
H (curl) (I)

In this chapter and the next one, we study the interpolation operators associated with the finite
elements introduced in Chapters 14 and 15. We consider a shape-regular sequence (75)nep of
affine simplicial meshes with a generation-compatible orientation (this is possible owing to Theo-
rem 10.8). In the present chapter, we show how the degrees of freedom (dofs) attached to the faces
and the edges can be extended by using the scale of the Sobolev spaces. On the way, we discover
fundamental commuting properties of the interpolation operators embodied in the de Rham com-
plex. In the next chapter, we study a different way of extending the dofs attached to the faces and
the edges by requiring some integrability of the divergence or the curl.

16.1 Local interpolation in H(div)

The goal of this section is to extend the dofs of the RT}, 4 finite element introduced in Chapter 14
and to study the properties of the resulting interpolation operator.

16.1.1 Extending the dofs

Let K € T;, be a simplex in R? with d > 2. We generate a RTy 4 finite element in K from the

RT}, 4 finite element in the reference cell K by using Proposition 14.19. Hence, the dofs in K
consist of the following face dofs and cell dofs (if k£ > 1): For all v € RTy, 4,

1
o%m(v) = 7 /F('v-up)({m OTI;,IF) ds, VF e Fg, (16.1a)
1 _ .
05 m(v) = W /K(’l)-VK,j)(wm OTKl)d:v, Vi e {1:d}, (16.1b)
where {Cm}me{l:ngh}v {U’m}me{l:n;h} are bases of P 41, Pr_1.4 (k > 1), respectively, vp is the
normal vector orienting F', {vk ; = |Fj|np,}jcq1.qy are the vectors orienting K, and Tk p :

Si-1 4 F , Tk e K — K are geometric mappings. The local dofs in K are collectively denoted by
{ok.itien
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We are going to extend the above dofs to the following functional space:
VYK):=W**P(K), sp>1,pe(l,o0)ors=1p=1, (16.2)

recalling that W*P(K) := W*P(K;R%). The idea behind (16.2) is to invoke a trace theorem
(Theorem 3.15) to give a meaning to the face dofs. Fixing the real number p in (16.2), one wants
to take s as small as possible to make the space V4(K) as large as possible. Thus, we can assume
without loss of generality that s < 1. We can also take p = co and s =1 in (16.2).

Proposition 16.1 (Extended dofs). Let VY(K) be defined in (16.2). Let VI(K) be defined
similarly. Then the contravariant Piola transformation ¥%% is in L(VY(K); V4(K)). Moreover,
the local dofs are in L(VI(K);R) and there is ¢ s.t. for allv € VY(K), all K € Ty, and all h € H,

d—1-2
max |ox,i(v)] < chg  * (vl e ry + hiclvlws o x))- (16.3)
Proof. (1) Let v € V4(K). Since the mesh is affine and 9% (v) := A% (v o Tk) with A}, =
det(JK)J]I_(l, we can apply Lemma 11.7 to obtain

_1 d—1-4
195 )| Lo () < cllA%NleldetTr)| 7 [ollLoy < ¢ e " llollLox),s

where the second bound follows from the regularity of the mesh sequence. Moreover, letting
i = |det(Jx)| "Ik ||% if s <1 and v := 1 if s =1, as in Lemma 11.7, we obtain

1 _1
W ()W) < CVRMAK e 1Tk lI72|det (T )| ™7 [0l wew (i)
d—1—245
<Ahg 7 vlwer k),

where the second bound follows from the regularity of the mesh sequence. The above bounds show
that ¥ € L(VY(K); VI(K)) with

s dil*% s
1 (Ol g ey + 18 (0) iy < R (0l ioiaey + B0l

where £ := 1 is a length scale associated with the reference cell K.
(2) Since the local dofs in K are s.t. ok ; := ;0 1/1?‘{ for all ¢ € N/, we need to bound the reference

dofs {G:}ien. Let © € VI(K). If ; is a cell dof, we have |5;(9)| < €]|17||Lp(f(), whereas if 0; is
a face dof, we have [5()| < (|9 s gy + €% 0lyen (i) OWing to Theorem 3.15 since sp > 1 if
p € (1,00) and s = 1 if p = 1. The above bound on 1/:% shows that the local dofs in K are in
L(VY(K);R) and that (16.3) holds true. O

16.1.2 Commuting and approximation properties

In this section, we study the properties of the local Raviart-Thomas interpolation operator
78 VYK) - RTy 4 (16.4)

with V4(K) defined in (16.2). Recall that for all v € VI(K), I (v) is defined as the unique
polynomial in RTy 4 s.t. the function (Z&(v) — v) annihilates all the RTy 4 dofs. Let us start
with an important commuting property. Let ZP : VP(K) := L1(K) — P} 4 be the L%-orthogonal
projection onto Py, 4, i.e., fK(I}’((gb) — ¢)qdx =0 for all ¢ € L'(K) and all q € Py, 4; see §11.5.3.
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Lemma 16.2 (Commuting with V-). The following diagram commutes:

VYK) VP (K)
Tk Iy
v.
RT} 4 Py.a

where VI(K) := {v € VYK) | V-w € VP(K)}. In other words, we have
V(I%(v) = I%(Vw), Vv e VI(K). (16.5)

Proof. Let v € Vd(K). Since the divergence operator maps RT}, 4 to Py 4 by Lemma 14.9, we
have V(I (v)) € Pr,a. Therefore, it suffices to show that [, (Zp(V-v) — V(I (v)))gdaz = 0 for
all ¢ € Py 4, and by definition of Z%, this amounts to fK(V~C)q dz = 0 for all ¢ € Py 4 where
¢ := v —I%(v). Note that by definition ¢ annihilates all the dofs of the RT 4 element in K.
Integrating by parts and decomposing the boundary integral over the faces in Fg, we infer that

/K (V-¢)qda = - /K CWHF;K /F ¢y ds,

where my is the outward unit normal to K. If & > 1, we use that {vk ;}jcqi1:qy is a basis of
R? and {7/)m}me{1:ngh} is a basis of Py_1,4 to infer that there are real numbers «;,, s.t. Vg =
djefi:ay Zme{l:ngh} . mVK, (Um0 Ti'). Recalling that ¢ annihilates all the cell dofs, we obtain

/ ¢-Vgdz = 0.
K

If £ = 0, this equality is trivial. Let us now consider the integrals over the faces of K. For all
F € Fk, we use that vp = |F|np and nr = £ngp, qr © TIEIF € Py q—1 owing to Lemma 7.10,
and that ¢ annihilates all the face dofs attached to F' to infer that

/ ¢ngrqrds=0.
F

This concludes the proof. O

Example 16.3 (Gradient interpolation). Let us set s = p :=11in (16.2). Let ¢ € W2HK).
Then V¢ € WH(K) = VI(K), and since V-(V¢) € L(K), we have V¢ € V4(K). Lemma 16.2
implies that V-Z& (Vo) = I (Ag). O

Theorem 16.4 (Approximation, r > 1). Let I be the RTy 4 interpolation operator in K.
There is ¢ s.t. for every integers r € {1:k + 1} and m € {0:r}, all p € [1,00], all v € W"P(K),
all K € Ty, and all h € H,

v = T (0)lwmr (i) < b ™ |0lwra (i) (16.6)

Moreover, for every integers r € {0:k+1} and m € {0:r}, all p € [1,00], all v € VY(K) such that
VweWrP(K), all K € Tp, and all h € H, we have

V(v — I3 (0) [wm (i) < chie ™ V0w (k). (16.7)
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Proof. Let us start with (16.6). We apply Theorem 11.13. The contravariant Piola transformation
W is of the form (11.1) with A% := det(Jx)J "', which satisfies the bound (11.12) with v := 1.
Moreover, we can take [ := 1 in Theorem 11.13 since Wl’p(l?) — Vd(l?). Since | < k + 1,
we can apply the estimate (11.14), which is nothing but (16.6). Finally, to prove (16.7), we use
Lemma 16.2 to infer that V(v — Z%(v)) = V-v — Z%(V-v), and we conclude using Lemma 11.18
(P = Py q since the mesh is affine). O

Remark 16.5 (Error on the divergence). It is remarkable that the bound on V(v — Z%(v))
only depends on the smoothness of V-v. This is a direct consequence of the commuting property
stated in Lemma 16.2. O

Theorem 16.6 (Approximation, r > 1—1)) The estimate (16.6) holds true for all r € (%,1),

m=20, allpe (1,00), alve W"P(K), all K € Ty, and all h € H, and ¢ can grow unboundedly
asr ] L.
P

Proof. We first prove the following stability property:
IZ5% (0) | Lo x0) < c(l[v]lzo () + P vlwrr ) (16.8)

for allv € WP (K), all K € Tp,, and all h € H (notice that v € VI(K) since rp > 1). The triangle
inequality, Proposition 12.5, and the regularity of the mesh sequence imply that

dy1-d
1T () lr i) < D loxi@) [10xillLr) < chle D loxi(w)].
1EN 1EN

Hence, (16.8) follows from the bound (16.3) on the local dofs in K. Since Py 4 C RT}, 4 is pointwise
invariant under Z%., we infer that

v =Tk ()llLrre) < inf (| = qllLe) + 1Tk (v — @)l e i)
q€Py 4
< c inf v — oK) + Wl v — o
=€ 4ePo s (|| qlz (K) x| qlw (K))
< dhllvlwrr k),

where we used (16.8), [v — q|wr»(x) = |v|wrr(k) since g is constant on K, and the fractional
Poincaré-Steklov inequality (12.14) in K. O

16.2 Local interpolation in H (curl)

The goal of this section is to extend the dofs of the Ny, 4 finite element introduced in Chapter 15
for d = 3 and to study the properties of the resulting interpolation operator.

16.2.1 Extending the dofs

Let K be a simplex in R? with d = 3. We generate a Nj; ¢ finite element in K from the Ny, 4 finite
element in the reference cell K by using Proposition 15.20. Hence, the dofs in K consist of the
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following edge dofs, face dofs (if k > 1), and cell dofs (if k£ > 2): For all v € Ny, 4,

0p m(V) = ﬁ /(v-tE)(um o lelE) dl, VE €&k, (16.9a)
E
1 N .
O jm (V) = T /F(v-tF,j)(gm oTylp)ds, VF € Fr, Vje{1,2}, (16.9b)
c 1 _ ,
05 m(v) == 1Al /K(v-tK,j)(wm oTih)dx, Vje€{1,2,3}, (16.9¢)

where {um}me{ltn:h}, {Cm}me{l:ngh}v and {wm}me{lzngh} are bases of Py 1, Py_12 (kK > 1), and
P23 (k > 2), respectively, tg is the tangent vector orienting FE, {tr;};e{1,2} the two tangent
vectors orienting F', and {tKJ}JG{l 2,3y the three vectors orienting K, and Tk g : St E,

Tk r: .52 & F, and Ty : K — K are geometric mappings. The local dofs in K are collectively
denoted by {UK,z}zEN
We are going to extend the above dofs to the following functional space:

VYK):=W?*P(K), sp>2,pe(l,o0)ors=2p=1, (16.10)

The idea behind (16.10) is again to use a trace theorem (Theorem 3.15) to give a meaning to the
edge (and face) dofs. Fixing the real number p in (16.10), we want to take s as small as possible
to make the space V¢(K) as large as possible. Thus, we can assume without loss of generality
that s <1if p € (2,00) and s < 2 if p € [1,2]. We can also take p = 0o and s =1 in (16.10). We
consider the norm ||-|ly=.»(x) defined as follows: If s € (0, 1] (i.e., if p € (2, 0]), we set
s:=0, vllwer k) = lvlle ) (16.11a)
whereas if s € (1,2] (i.e., if p € [1,2]), we set
=1,  |olwee) = 0llLe) + hiclvlwrs ) (16.11D)

Proposition 16.7 (Extended dofs). Let V¢(K) be defined in (16.10). Let VS(K) be defined
similarly. Then the covariant Piola transformation v is in L(V°(K); V¢(K)). Moreover, the
local dofs are in L(V°(K);R), and there is ¢ s.t. for allv € VS(K), all K € Ty, and all h € H,

1-4 s
max |0 (v)] < chy ” (lvllwse ) + hilvlwes ) (16.12)

Proof. (1) Let v € V¢(K). Since the mesh is affine and 9% (v) := A% (v o Tx) with Af =
J}, we can proceed as in the proof of Proposition 16.1 and invoke Lemma 11.7 to show that

-~ X s 1—4
Wi € LVE(K)VE(R)) with |95 0)lwanz) + Lol @lonzy < b (Iolwene +
Rc|v|wer(k)), where the norm H-ng,p(f() is defined similarly to |||y sr(x) using £z := 1.
o bound the local dofs, we invoke Theorem 3.15 and proceed again as in the proof of Propo-
2) To bound the local dof invoke Th 3.15 and d agai in th f of P
sition 16.1. O

16.2.2 Commuting and approximation properties
In this section, we study the properties of the local Nédélec interpolation operator
I;{ : VC(K) — Nk,d (1613)

with V°(K) defined in (16.10). Recall that for all v € V°(K), 5 (v) is defined as the unique
polynomial in Ny, 4 such that the function (Z§, (v) — v) annihilates all the Ny, 4 dofs.
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Lemma 16.8 (Commuting with Vx). The following diagram commutes:

V x

V(K) VY(K)
T Tk

V x
Ny q RT} 4

where VS(K) = {v € V(K) | Vxv € VY(K)}. In other words, we have
V(T4 (v) = I8 (Vxv),  VYv e V¢(K). (16.14)

Proof. Let us first observe that VxNy 4 C Py 4 C RTy 4 (see Lemma 15.10), which implies that
V x maps Ny, 4 to RT}, 4. Note also that Vx maps V¢(K) to V4(K) by definition of these spaces.
Let v € V¢(K). The proof of (16.14) consists of showing that & := Vx(Z%(v)) — I (Vxwv) €
RT}, ¢ annihilates all the dofs of the RT} 4 finite element in K. Let us set ¢ := v — I} (v) and
¢ := Vxv — I (Vxw), so that we have

d = VX(Z5 (v) — Vxv + Vxv — Ig (Vxv) = € — Vx(.

(1) Let us consider first the dofs attached to K for k > 1. Let e be a unit vector in R? and let
Y € Pr_1,q. We want to show that fK d-erpdz = 0. Since £ annihilates all the cell dofs of the RT}, 4
element, we have [, &-eyda =0, so that [, d-epdx = — [ (Vx()-elpdz. Using the integration
by parts formula (4.8a), we have

[ wxcrevde= [ ¢vxen) = ¥ [ ctnerern s

FeFk

If k£ > 2, we use that ¢ annihilates the cell dofs of the Ny, 4 element to infer that fK ¢-Vx(eyp)=0.
If £ = 1, this equality is obvious. Moreover, since ¢ also annihilates the face dofs of the Ny 4
element and since the vector (ng pxe) is tangent to F, we infer that fF ¢-(ngpxe)yds =0 for
all F € Fg. In conclusion, [, (Vx()-eipdz =0, so that [, §-espda = 0.

(2) Let us now consider the dofs attached to a face F' € Fx. We want to show that [, §-npids =0
for all ¢ € Py, q. This is a sufficient condition to annihilate the RT} 4 dofs attached to F', since
for all ¢ € Py 41, there exists ¢ € P4 such that ¢jp = qo TI;}F owing to Lemma 7.10. Since
¢ annihilates the face dofs of the RTy 4 element, we have [, d-npids = — [(Vx()npeds.
Moreover, since VX (¢¢) = Vipx¢ + ¢V x¢ and ¢ annihilates the face dofs of the Ny 4 element,
we infer that

/F(wc)-nm/)ds:/Fvac)-ans—/Fc.(anw)ds
— [ vxwernrds= [ @omrai= 3 [ ¢lrmpva

Ecér

where we used the Kelvin—Stokes formula (16.15) with 77 being the unit vector tangent to OF
whose orientation is compatible with that of np, and where we decomposed the integral over
OF into the integrals over the edges composing F. Since Tp g is tangent to the edge E and ¢
annihilates the edge dofs of the Nj 4 element, we obtain fF (Vx¢)npipds = 0. Hence, we have
Jr6-npipds =0, and this concludes the proof. O
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Lemma 16.9 (Kelvin—Stokes). Let K be a simplex in R3. Let F be a face of K with orientation
defined by ng and with boundary OF. Let Tr be the unit vector tangent to OF whose orientation

is compatible with that of np, i.e., for all * € OF, the vector Tr(x)xnp(x) points outside of F.
The following holds true for all w € V¢(K):

/(wa)-np ds = w-Tp dl. (16.15)
F oF

Theorem 16.10 (Approximation, » > 1 or r > 2). Let I, be the local Ny 4 interpolation
operator. There is ¢ s.t. the following holds true:
(i) If p € (2, 00], then we have

|'U — I%('U”Wm,p([() S Ch”l‘{_m|'v|W7‘,p(K), (1616)
for every integers r € {1:k + 1} and m € {0:r}, allv € W™P(K), all K € Ty, and all h € H.

(ii) If p € [1,2], the estimate (16.16) holds true if k > 1 for every integers r € {2:k + 1} and
m € {0:r}, allve WTP(K), all K € Ty, and all h € H, whereas if k =0, we have

|lv — I;(('U)lwm,p([() <c (h}gm|’l)|W1,p(K) + h?{m|’v|wz,p(1<)), (16.17)

for all m € {0,1}, allv € W?*P(K), all K € T, and all h € H.
(iil) Finally, we have

[Vx(v— I%(’v)ﬂwm,p(}{) < Ch;(im|v><’v|wr,p(K), (16.18)

for every integers r € {1:k + 1} and m € {0:r}, all p € [1,00], all v € V(K such that Vxv €
WP(K), all K € Tp, and all h € H.

Proof. Let us start with (16.16) and (16.17). We apply Theorem 11.13. The covariant Piola
transformation ¢ is of the form (11.1) with A%, := JL, which satisfies the bound (11.12) with
v := 1. Moreover, we can take [ := 2 if p € [1,2] and [ := 1 if p € (2, 0] since in both cases we
have W' (K) < V¢(K). If p € (2,00] orif p € [1,2] and k > 1, we have [ < k+ 1, so that we can
apply the estimate (11.14), which is nothing but (16.16). In the case where p € [1,2] and k = 0,
we apply (11.15), which is nothing but (16.17). Finally, to prove (16.18), we use Lemma 16.8 to
infer that Vx (v — Z% (v)) = Vxv — Z&(V xw), and we conclude using Theorem 16.4. O

Remark 16.11 (Error on the curl). It is remarkable that the bound on Vx (v — Z% (v)) only
depends on the smoothness of Vxwv. This is a direct consequence of the commuting property
stated in Lemma 16.8. (|

Theorem 16.12 (Approximation, r > %) There is ¢, unbounded as r | %, such that:
(1) If p € (2,00), the estimate (16.16) holds true for all r € (%, 1), m =0, all v e W"P(K), all
K €Ty, and all h € H.
(ii) If p € (1,2], the estimate (16.16) holds true if k > 1 for all r € (%,2), all m € {0,1}, all
ve W™ (K), all K € Ty, and all h € H, whereas if k = 0, we have

[0 =I5 (0)lwms i) < ¢ (b ™ [olwrs i) + By " 0lwrs i) (16.19)
for allr € (%,2), allm € {0,1}, allv e W™P(K), all K € Ty, and all h € H.
Proof. Let us set [ :=2if p e (1,2 and [ :=1if p € (2,00). Let r € (%,l), so that WP (K) —

V¢(K). Combining the bound from Proposition 12.5, the regularity of the mesh sequence, and the
estimate (16.12) on the local dofs, we infer the stability estimate

IZ5% (W)l Lo (x) < el i) + Wi lolwrr (k)
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with 7:=01if r € (0,1] and ¥ := 1 if r € (1,2).
(i) Assume that p € (2,00). Then r < 1 so that ||v||wr»x) = |[v||Lr(x)- Since Po g C Ny g, we
infer that

v = Tk (v) Loy < ¢ inf ([[v = qllLex) + [T5 (v — @)lLr(x))
q€Py 4

<c( inf v —gqllLe) + hilvlwes ),

q€Po g

where we used that [v — qlwrrx) = |v|lwrr(x). The estimate (16.16) with m = 0 follows from
the fractional Poincaré-Steklov inequality (see Lemma 12.12).

(ii) Assume that p € (1,2). Then r € (1,2) so that [|[v|lwr»rx) = [[vl|Lex) + hr|v|wie k). Let
n :=min(1, k). Since n < k and n <1 < r, proceeding as above, we infer that

lv =Tk (v)l|rx) < ¢ (qeii}’f ) ¢r(v—q)+ h%|v|wr’p(K))7

with ¢x (v—q) := |[v—=q||Lr(x)+h K [v—q|lw1.» (k) Using the inverse inequality |5 (v—q)|w1.» (k) <
chi'||Z5 (v — @) || Lo(x) (see Lemma 12.1) and proceeding again as above, we infer that

v — Ik (v)lwirr) < ¢ (qei}r}f ) hi' 0x (v — @) + By Jolwoa() )
If k > 1, we have n = 1, and the estimate (16.16) follows from Corollary 12.13 for all m € {0, 1},

whereas if k¥ = 0, we have n = 0, and the estimate (16.19) for all m € {0,1} follows from the
fractional Poincaré—Steklov inequality. O

16.3 The de Rham complex

In this section, we introduce the notion of de Rham complex, and we reinterpret the previous
commuting properties from Lemma 16.2 and Lemma 16.8 in this context. We assume that d = 3;
see Remark 16.17 below to adapt the material when d = 2.

Definition 16.13 (Exact cochain complex). Let I > 2 be an integer. A cochain complex is
composed of a sequence of Banach spaces (Vi)icqo. 1y and a sequence of linear operators (di)icq1: 1y
between these spaces

Vo Vi Vil v By v g, (16.20)
such that for all i € {1:1}, im(d;) is closed in V; and if i < I, im(d;) C ker(d;i+1) (this means that
diy10d; =0). The cochain complex is said to be exact if im(d;) = ker(d;+1) for all i € {1:1—-1}.

The exactness of a cochain complex is useful since it gives a simple way of knowing whether
an element v; € V; is in im(d;) by checking whether d;1(v;) = 0. In this book, we focus on
one fundamental example of cochain complex, namely the de Rham complex which involves the
gradient, curl, and divergence operators.

Proposition 16.14 (de Rham complex). Let D be a Lipschitz domain in R3. Assume that
D is simply connected and that 0D is connected. The following cochain complex, called de Rham
complex, is exact:

R -4 HY(D) -5 H(cwrl; D) 25 H(div; D) 5 L2(D) -2 {0}, (16.21)

where © maps a real number to a constant function and o is the zero map.
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Proof. That ker(V) = R, ker(Vx) = im(V), and ker(V-) = im(Vx) are well-known facts from
calculus since D is, respectively, connected, simply connected, and has a connected boundary.
Finally, that im(V-) = L?(D) is proved in Lemma 51.2. O

Proposition 16.15 (Discrete de Rham complex). Let k € N. The following cochain complex,
called discrete de Rham complex, is exact:

R-—5Pri1s —Nps —5RT,5 5 P -2 {0} (16.22)

Proof. ker(V) = im(7) is obvious, and ker(Vx) = im(V) follows from Lemma 15.10. For ker(V-) =
im(Vx), ker(o) = im(V-); see Exercise 16.6. O

We now connect the above two de Rham complexes by means of interpolation operators. Let
K be a simplex in RY, d = 3. Let p € [1,00) and let s be such that sp > 3 if p > 1 or s = 3 if
p = 1. Recall the following functional spaces where V" (K) := L'(K):

VE(K) = {f € WP(K) | Vf € W* 5 P(K)}, (16.23a)
Ve(K) :={ge W sP(K) | Vxg € W P(K)}, (16.23b)
VIK) :={ge W sP(K)|V.g e V(K)} (16.23¢)

Lemma 16.16 (Commuting diagrams). Let k € N. Let K be a simplex in R%, d = 3. Let

I§+1,K be the interpolation operator associated with the canonical hybrid element of degree (k+ 1)

defined in 8§7.6. Let I - be the N, 3 interpolation operator, let IS_’K be the RT,, 4 interpolation
operator, and let IE)K be the L?-orthogonal projection onto P, 4. The following diagrams commute:

. . v . V-
VE(K) V() e VA(K) — e VP (E)
If%-i—l,K 1, i IS,K IE,K
\Y V x V-
PnJrl,d Nn,d RTn,d Pn,d

Proof. Recalling Lemma 16.2 and Lemma 16.8, it only remains to prove that the leftmost diagram
commutes. This is done in Exercise 16.3. O

Remark 16.17 (2D). There are two possible versions of Lemma 16.16 if d = 2, using either
the operator Vx f := 01 fo — Oa f1 or the operator V4 f := (=0f,0:f)7. One can show that the
following two diagrams commute:

vt \Y \Y Vx

VE(K) — VI(K) —» VP(K) VE(K) — V¢(K) —> VP(K)
O P P R P 7
. \Y% V x
]P)RJrl,d —_— ]RTK,d ]P)K,d ]P)RJrl,d Nn,d ]P)K,d

with V&(K) defined in (16.23a) with sp > 2 if p € (1,00) or s = 2 if p = 1, V¥(K) := {g €
W* P (K) | Vxg € LY(K)}, and VA(K) := Ry (VS(K)) = {g € W 3 7(K) | V.g € VP(K)},
where Rz is the rotation matrix of angle 5 in R?, O
Remark 16.18 (Cuboids). The commuting diagrams from Lemma 16.16 can be adapted when
K is a cuboid by using the Cartesian Raviart-Thomas and Nédélec spaces from §14.5.2 and §15.5.2.

O
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Remark 16.19 (Literature). The construction and analysis of finite elements leading to discrete
de Rham complexes has witnessed significant progresses since the early 2000s and has lead to the
notion of finite element exterior calculus; see Arnold et al. [11, 12]. Regularity estimates in Sobolev
(and other) norms for right inverse operators of the gradient, curl, and divergence can be found
in Costabel and McIntosh [83]. O

Exercises

Exercise 16.1 (V4(K)). Show that VI(K) defined in (16.2) can be used in the commuting
diagram of Lemma 16.2 after replacing L!(K) by W*~1P(K). (Hint: use Theorem 3.19.)

Exercise 16.2 (Z}). Prove that the estimate (16.6) holds true for all r € [1,k + 1], » € N,
every integer m € {0:|r]}, and all p € [1,00). Prove that (16.7) holds true for all » € [0, k + 1],
r ¢ N, every integer m € {0:|r]}, and all p € [1,00). (Hint: combine W™P-stability with
Corollary 12.13.)

Exercise 16.3 (de Rham). Prove that the leftmost diagram in Lemma 16.16 commutes. (Hint:
verify that VZ¥ (v) — Z§.(Vv) annihilates all dofs in Ny 4.)

Exercise 16.4 (Poincaré operators). Assume that K is star-shaped with respect to a point
a € K. Let f and g be smooth functions on K. Define P8(g)(x) := (x —a)- fol gla+t(x—a))dt,
Pe(g)(x) := —(xz —a)x fol gla+t(x —a))dt (if d = 3), and PY(f)(z) := (x — a) fol fla+t(x—
a))t?~ldt. Verify that (i) VP8(g) = g if 0;g; = 0;g; for all 4,7 € {1:d}; (ii) VxP°(g) = g if
V-g = 0; (iii) V-P4(f) = f.

Exercise 16.5 (Koszul operator). (i) Let v € Pﬁd with d = 3. Prove that V(z-v)—xx(Vxv) =
(k4 1)v and —Vx(xxv) + x(V-v) = (k+ 2)v. (Hint: use Euler’s identity from Lemma 14.3.)
(ii) Prove that Py g = VPiy1.a ® (€ XPr_1.4) = VXPri1.a ® (€Pr_1.4). (Hint: establish first these
identities for homogeneous polynomials.) Note: defining the Koszul operators x8(v) := x-v and
Kk°(v) := —xxwv for vector fields and k% (v) := xv for scalar fields, one has x8(Vq) = kq (Euler’s
identity) and V-(k%(¢)) = (k 4 d)q for all ¢ € P}, and V(k8(q)) + k°(Vxq) = (k + 1)g and
Vx(k(q)) + k4 (V-q) = (k+2)q for all ¢ € P} ;; see [11, Sec. 3.2].

Exercise 16.6 (V-RT,, and VxNy3). (i) Prove that V-RTy 4 = Prg4. (Hint: prove that
V- : &Py q — Pi g is injective using Lemma 14.3.) (ii) Let us set RT%%ZO ={veRTyq|Vwv=
0}. Determine dim(RT‘gf;’l:O) for d € {2,3}. (iii) Show that RT‘gfg:O = VxPyy13. (Hint: use
Lemma 14.9.) (iv) Prove that RT‘gfg:O = VxNy 3. (Hint: use the rank nullity theorem.)

Exercise 16.7 (VPy114 and VxPyiq3). Let £ € N. (i) Set Pj ; == VPji1,4. Show that
dim(Py, ;) = (k+g+l) — 1. (ii) Assume d = 3. Set ]l:"‘,i3 = VXPjy13. Show that dim(]P’%ﬁ) =
3(k§4) - (ngS) +1= 3(“3'3) - (k-g2) (with the convention that (g) = 0). (Hint: use the exact
cochain complex ]P)()yd —l) Pk+2,d L ]PkJrLd K ]Pk,d L ]P)kflyd L) {0})



Chapter 17

Local interpolation in H(div) and
H (curl) (IT)

In this chapter, we continue our investigation of the interpolation operators associated with H (div)
and H (curl) finite elements. As before, we consider a shape-regular sequence (73 )nen of affine
simplicial meshes with a generation-compatible orientation. The key idea here is to extend the
degrees of freedom (dofs) on the faces and the edges by requiring some integrability of the divergence
or the curl of the function to be interpolated. This approach is useful when such integrability
properties can be extracted from a PDE solved by the function in question, as it is often the
case in applications (see, e.g., Chapter 51 for Darcy’s equations and Chapters 43-44 for Maxwell’s
equations). The crucial advantage of the present approach over that from the previous chapter
based only on the scale of Sobolev spaces is that interpolation error estimates with lower smoothness
requirements can be obtained. On the way, we also devise a face-to-cell lifting operator that will
be useful in the analysis of nonconforming approximations of elliptic problems in Chapters 40-41.

17.1 Face-to-cell lifting operator

Let us first motivate our approach informally. Let K € T, be a mesh cell and let F' € Fg be a face
of K. Let v be a vector field defined on K. We are looking for (mild) smoothness requirements on
the field v to give a meaning to the quantity fF(v-nK)gb ds, where ¢ is a given smooth function on
F (e.g., a polynomial function) and ng is the outward unit normal vector on K. We have seen
in §4.3 that it is possible to give a weak meaning in H~2(8K) to the normal trace of v on 0K
by means of an integration by parts formula if v € H(div; K) := {v € L*(K) | Vv € L*(K)}. In
this situation, one can define the normal trace 74, (v) € H™ 2 (0K) by setting

(o) ¥hor = [

K

(’U-VU)(’L/J) + (V-v)w(z/z)) dz, (17.1)

for all ¢ € H?(JK), where w(y) € H'(K) is a lifting of ¢, i.c., 75, (w(y)) = ¥, where 75 :
HY(K) — Hz(dK) is the trace map. Then one has Y9k (V) = vjgx nKx whenever v is smooth,
e.g., if v € H(div; K) N C%(K). However, the above meaning is too weak for our purpose because
we need to localize the action of the normal trace to functions v only defined on a face F, i.e., ¥
may not be defined on the whole boundary K. The key to achieve this is to extend v by zero
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from F' to OK. This obliges us to change the functional setting since the extended function is
no longer in H %(81( ). In what follows, we are going to use the fact that the zero-extension of
a smooth function defined on a face F of K is in W'~ +*(dK) if t < 2. Let us now present a
rigorous construction.

Let p, g be two real numbers such that

2d
2 = 17.2
p>2, 9> 577 (17.2)

Notice that ¢ > 1 since d > 2. Let v be a vector ﬁeld on K s.t. v € LP(K) and V-v 6 Lq(K) Let
D € (2,p] be such that ¢ > pd
increasing over R;. We are gomg to construct a lifting operator (see Lemma 17.1 below)

+d is

LE . ws P (F) — WP (K), (17.3)

with conjugate number P’ s.t. % + 1% =1, so that for all ¢ € wr? (F), LK(¢) is a lifting of the
zero-extension of ¢ to K, i.e.,

Vi (LE (0))jorc\r = 0, Vo i (LE(0)1F = 0. (17.4)

Notice that the domain of L¥ is Wl_%’t(F) with ¢ := p’ < 2, which is consistent with the above
observation regarding the zero-extension to 0K of functions defined on F'. We also observe that

LE(¢) e W' (K) N LY (K), (17.5)

with conjugate numbers p’, ¢’ s.t. % + % =1, % + % = 1. Indeed, LE(¢) € W' (K) just follows
from p' < ' (i.e., p < p), whereas LK (¢) € LY (K) follows from W' (K) «— L (K) owing to the
Sobolev embedding theorem (Theorem 2.31) (since ¢ ’1 ‘;7, as can be verified from d > 2 > p/
and%—ézl—(%—i—é)gl—%:—becauseq> +d) .

With the lifting operator L in hand and fixing ¢ € W7 (F), we define the linear form &4
on V{(K):={ve LP(K)|V-w € LYK)} s.t.

5 () = /K (0 VLE@) + (Vo)LE(9)) de. (17.6)

The right-hand side of (17.6) is well defined owing to Holder’s inequality, and whenever the field
v is smooth, we have

Gow) = [ (wnicnfe(LE@)ds = [ (oniods ar7)
oK F
where the second equality follows from (17.4). Thus, the linear form v — 74(v) is an extension
of the linear form v — [ (v-nk)¢ds, which is meaningful for smooth fields v € C’O( ) This
extension is bounded for all v € V4(K), i.e., v € LP(K), V-v € LY(K) with p > 2, ¢ >
that the function ¢ is fixed here).
Let us now turn our attention to the construction of the operator LK .

N = 2L (recall

Lemma 17.1 (Face-to-cell lifting). Letp > 2 and q > 2+d Let p € (2,p] be such that ¢ > L%
Let K 6 771 be a mesh cell and let F' € Fi be a face of K. There exists a lifting opemtor

LE: WP (F) — WP (K) satisfying (17.4), and there exists ¢ s.t. the following holds true:

d _144 _; d
W ILE @l ey +hie - ILE @)l i) < chi” 7 [19] WA gy (17.8)
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7 =

for all g € WP (F), all K € Tp, all F € Fx, and all h € H, with the norm 160,37

1
19115 ey + 16, 37 -

Proof. (1) The face-to-cell lifting operator L¥ is constructed from a lifting operator LA on the

reierence cell Let K be the reference cell and let F be one of its faces. Let us define the operator
L%{ WP (F (F) — WY (K). For every function ¢ € WP (F (F), let ¢ denote the zero-extension

of ¥ to oK. Owing to Theorem 3.19, 1/) is in W (8K) since %/ = 571 <1 (ie., p > 2), and
1
_ . P
(ﬁ) = H‘/’”L@“’(F) +£I?|1/)|W%,ﬁ’(ﬁ)
and £ := 1 is a length scale assomated with K. Then we use the surjectivity of the trace map
7E WP (K) — W7 (9K) (see Theorem 3.10) to define L () € W17 (K) s.t. 4% (LE (1)) =4

we have ||7,/)H ¥ 0R) = 1H1/)|| R with the norm ||1/)H

and 1LE Dy iy < T 30 e 100 EE @y < EVIL o s with € 5= G162
By construction, we have 7 (LK(z/J))Iﬁ = 1) and Waf((Lg (w))\ak\ﬁ =0.
(2) We define the lifting operator L : W (F) — W¥ (K) by setting
_ B e
Lis (¢)(x) = LE(d 0 Ty p) (T (), Vo € K, Yo e WrP (F), (17.9)

where TK K — K is the geometric mapping and F = Tgl(F). By definition, if € F, then
z =Ty (z )EFandTK‘F( Z) = x, so that

Vi (LE@) (@) =15 (LE (60 Ty ) (@) = (T (&) = 6(a),

whereas if £ € 9K \ F, then Z € 9K \ F, so that *yg (L Fg(qﬁ Ty 7))(@) = 0. The above argument
shows that (17.4) holds true.

(3) It remains to prove (17.8). Let us first bound |L§(¢)|W1,p/(m. Notice that Athe definition of
LE is equivalent to LE (¢) o Tk (Z) := LK(¢o Ty ) (@), that is, Vi (LE(9)) = LE (V5 ()), where
Y% is the pullback by Tk, and 9% is the pullback by TK| 7+ We infer that

RN

ILE (D)l (K) = c|lT% ez |det (T ) |7 |L§(¢%(¢))|W1,p'(;?)
< I e ldet Tl | LE @50 i )

< 5 e ldet(Te)| 7 [0 () wh (5

where the first inequality follows from (11.7b) in Lemma 11.7 (transformation of Sobolev seminorms
by a pullback), the second is a consequence of o’ > p’ (since p < p), and the third follows from the

stability of the reference lifting operator Lg . Using now the estimate (11.7a) in Lemma 11.7 and

the regularity of the mesh sequence, we infer that ||¢%(¢)||W%j, A < c|det(JF)|_T’ ||¢H
P

)

(P
where Jp is the Jacobian of the mapping TK‘ 71 " = F. Combining these bounds, we obtaln

ILE (@)l 1) < TR ez ldet (T<) [ |det(Te)| ™ 6] wh ()
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where the second bound follows from the regularity of the mesh sequence. This proves the bound
on |L§(¢)|W1,p/(K) in (17.8). The proof of the bound on HL?((;S)HLQ/(K) uses similar arguments

together with leﬁ,(ff) — Lq,(IA() owing to the Sobolev embedding theorem and ¢’ < dﬁ_/‘%, (as

already shown above). O

17.2 Local interpolation in H(div) using liftings

Let K € T, be a mesh cell. Our goal is to show that one can extend the local dofs {ox ;}ien of
the RT}, 4 element to the functional space

VYK):={veL’(K)|VwveLI(K)}, p>2qg>32L. (17.10)

Notice that ¢ = 2 is always legitimate in (17.10). (Generally, one wants to take p and ¢ as small
as possible in order to make the space VI(K) as large as possible.) We are going to proceed
as follows: we first show that the reference dofs {7;};en of the RTy 4 element can be extended

to L(VI(K);R) (we use the same notation for the extended dofs for simplicity), where V4(K)
is defined as in (17.10). Then we establish that the contravariant Piola transformation ¢ is in

LVYK); V4 (I?)) Owing to Proposition 9.2, we are then going to conclude that the local dofs
{ok,i = 0i 0oL bien are in L(VI(K);R). Recall that the reference dofs are defined as follows:
For all v € RTkﬁd,

. 1 PN 1y~ un
G5 (D) = ﬁ/ﬁ(”' #)(Cn o T51)d3, VF € Fp, (17.11a)
e 1 e ~ .
5 (V) 1= @ /f((v' 7 ) m dz, Vj e {1:d}, (17.11b)

where {Gm}meqiint 1> {Umbme(iine,} are bases of Pra—1, Peo14 (k > 1), respectively, {vp :=
|ﬁ|ﬁﬁ}ﬁ€]‘}? and {Vg ; = |ﬁj|npj }jeq1:qy are the normal vectors orienting the faces of K and K
itself, respectively, and T’ : S4=1 — Fis an affine geometric mapping.
Let v € Vd(IA(). For the reference face dofs, inspired by §17.1, we set
ot (B) = ef(ﬁ/f( (awg(cm o T=") + (V) LE (G o T;)) 4z, (17.12)
where €z 5 = ﬁﬁ'ﬁlﬂﬁ = =£1, N is the outward unit normal to IA(, and L;:( is the face-to-cell
lifting operator on the reference element K. For the reference cell dofs, we still use (17.11b).

Lemma 17.2 (Extended reference dofs). (i) The definitions (17.11a) and (17.12) coincide on
RT; 4. (ii) The extended reference dofs are s.t. {G;}ienr C L(VY(K);R).

Proof. (i) For all v € RTy, 4, the divergence formula and (17.4) imply that

oL (@) =erp /al?(ﬁ-ﬁK)L?(CmoTl%l)dg—/ﬁ(ﬁ'ﬁﬁ@morﬂ%l)dgv

showing that (17.11a) and (17.12) coincide on RT} 4.
(ii) Since ¢ © Tlgl is a smooth function on F, L%{(Cm o T};l) e Wh'(K)n LY (K), where p/, ¢
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are the conjugate numbers of p, q. Hence, Holder’s inequality implies that

f
0%

~ d—1 ) R 1-4
('U)| SCE% 1@1? ||'U||Lp(f<) +éf( HV'UHLq(E))a (17'13)

where ( := 1 is a reference length for K. This shows that the extended reference face dofs are in
ﬁ(Vd(IA( );R). For the extended reference cell dofs, we simply have

d

—1—
K

Tl

55,,(8)] < &t

J,m

10l £ (72> (17.14)

~ ~y— = ~ d—4. .
\_Il(\HVI?JHEQ < cff(l, {Wmtmefiine,y C L(K), and H”HLl(f{) <l T’Hv||Lp(f() owing to

Holder’s inequality. O

since

Proposition 17.3 (Extended local dofs). Let K € T}, be a mesh cell. Let VY(K) be defined
in (17.10). Let VY(K) be defined similarly. (i) The contravariant Piola transformation ¥%% is in
LVYK); VYK)). (ii) The estended local dofs

okii=0i0% VIK) =R,  VieN, (17.15)
are in L(VI(K);R), and there is ¢ s.t.

4
q

- -4 1—
max | (v)] < ehf (A [oller) + by *IV-llzo) ) (17.16)

for allv € VYK), all K € Ty, and all h € H.

Proof. (1) Let v € VI(K). Since the mesh is affine and % (v) = A% (v o Tx) with A} =
det(JK)J;(l, we infer, as in the proof of Proposition 16.1, that

_4d
P

1 d—1
195 ()l Lo (g < A%l ldet T % [0llzogry < € hye ™ P 0llzeiry-

Moreover, since V3% (v) = det(Jx)(V-v) o Tx owing to (9.8¢c), we infer that
—1 d(1-3)
IV ()l oy = 1det @) V-0l Lagrey < chie V0]l Lagicy,s

where we used the mesh regularity. The above bounds show that ¥¢ € L(V4(K); V4 (K)) with

_d 1—4 _ _d 1—4
éf(p ||1/’?<(U)|‘Lp(f() +£§ ! HV"#?(('U)”U(}?) < Ch?{ 1(th ||'U||LP(K) + hye HV'UHLQ(K))-

(2) The assertion on the extended local dofs follows from the above bound on %% and the
bounds (17.13)-(17.14) on the extended reference dofs. O

Remark 17.4 (Extended local dofs). The reader is invited to verify (see Exercise 17.2) that
for all v € VY(K), all F € Fg, and every integer m € {1:nf, },

Ot (V) = EK.,F/

(0-VLE G o Tic) + (V) LE (Gu o Tic) ) da, (17.17)
K

with TK,F = TK|ﬁ o Tﬁ, EKF ‘= NpNg = +1, and L? defined in (179) For all v € RTkyd,
and more generally, for all v € W*P(K) N V4(K) with sp > 1, p € (1,00) or s = 1, p = 1,
we recover that U%M(v) = ﬁ Jp(0vE) (G o TglF) ds, where vp = |F|np is the normal vector
orienting F'. Concerning the extended local cell dofs, it follows from Lemma 14.18 that of,, (v) =
\_Ilq S (v ) (Ym0 Ty')dx for every integers m € {1:n%} and j € {1:d}, where {vkjtjeqi:ay
are the d normal vectors orienting K. O
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Using the extended dofs to define Z¢ : V4(K) — RT} 4, we can now derive an estimate on
v — T (v)|| 2 (s for all v € H"(K) with r € (0,1]. This result complements Theorem 16.6 which
is valid only for r € (3, 1].

Theorem 17.5 (Approximation, r € (0,1]). For all r € (0,1] and all ¢ > 22+_dd7 there is c,
unbounded as either v [ 0 or q | ﬁ—dd, such that
d T 17d(%7%)
v = Zk (v)llz2x) < C(hK|'U|HT(K) +hy HV'UHLQ(K))a (17.18)

for allv e H"(K) with V-v € LY(K), all K € Tp, and all h € H.

Proof. Let v € H"(K) be s.t. Vov € LUK). If 2r > d (ie, if r = 1 and d = 2), let p be

any real number larger than 2. If 2r < d, let p := di—‘ér (note that p > 2 since r > 0). Owing

to the Sobolev embedding theorem (Theorem 2.31), we have H"(K) < LP(K) which implies
that v € V4(K), so that Z%(v) is well defined. Moreover, since H"(K) < LP(K), we have
10l ozy < Pl g2y + [Olge () for all v € H"(K). Taking v := v o Tk and using the
regularity of the mesh sequence, this gives
_a _d
hi" [vllpoc) < chg? (IvllLec) + Rl i) (17.19)

Using again the regularity of the mesh sequence, Proposition 12.5, and the bound (17.16) on the
local dofs, we infer that

_d _
B 1T ) o) < el U ma s (o)
—d 1—4d
<& (hi [0l o) + by * IVl pagre))- (17.20)

Combining (17.19) with (17.20) leads to

1 1
— (57§

. 1-d(1-1)
IZ% (v) | L2(x) < € (Hva(K) + W lvlar k) + by ||V"U||Lq(K))-

Since Py ¢ C RTy, 4 is pointwise invariant under I?(, we infer that

v = T (v)ll2x) = inf ||v— g+ T (v — q)llL2x)
q€Py a
< chilolgro)+ inf [|1Z% (v — @)llL2x),
q€Py g4
where we used the fractional Poincaré-Steklov inequality (12.14) in K (and r < 1). Moreover, the

above bound on Z§ together with |v — q|lar (k) = |v|Hr (k) and V-q = 0 for all ¢ € Py 4 implies
that

” 1—d(:-1)
IZ% (v = @)l L2 (x) < C(||U —qllL2x) + higlvlar )+ hye 07 ||V'U||Lq(K))-
Taking the infimum over g € Py 4 and invoking again the fractional Poincaré-Steklov inequal-
ity (12.14) leads to the bound (17.18). O

Remark 17.6 (Quasi-interpolation). We construct in Chapter 22 a quasi-interpolation oper-
ator Z,"™ s.t. ||v —Ig’av(v)Hp(K) < chi|v|ar(py) for all v € H'(Dg), r € (0,1], where Dk
is a local neighborhood of K (see Theorem 22.6). Thus, contrary to the canonical interpolation
operator I,‘j, the quasi-interpolation operator I,(j’av gives an optimal error estimate for all r > 0
without making any assumption on the divergence of the vector field that is approximated. We
are going to invoke Iﬁ’av instead of Z most of the time in the rest of the book. O



Part III. FINITE ELEMENT INTERPOLATION 173

17.3 Local interpolation in H (curl) using liftings

In this section, we assume that d = 3. Let K € Tj, be a mesh cell with outward unit normal
nk. Our goal is to show that one can extend the local dofs {0k ;}ienr of the Ny 4 element to the
functional space

VYK):={ve LP(K)|Vxv e LP(K), vxng € LP(0K)}, (17.21)

where p > 2. We proceed as in §17.2: the idea is to use face-to-cell lifting operators to give a
(weak) meaning to the face dofs, together with additional edge-to-face lifting operators to give a
(weak) meaning to the edge dofs.

Let us start with the reference dofs {7; };ienr of the Nj 4 element and let us show that these dofs
can be extended to £(V¢(K);R) (we use the same notation for the extended dofs for simplicity),
where VC(IA( ) is defined similarly to (17.21). Recall that the reference dofs are defined as follows:
For all v € Ny 4:

5% (9): |E|/ (5t5) (umoT; ") dl,  VE € &, (17.22a)
T m(®) |F|/ (@tp,)(¢moTs ") d5, VF € Fz,Vj € {1,2}, (17.22b)
55 (8) == |K|/ (825 ,)0m 02, j € {1:3), (17.22¢)

where {fm}mefiine, 1) {Cntmeqiing, } and {¥mbmefiing, ) are bases of Py, Pr_12 (k = 1), and
Py_2.3 (k > 2), respectively, the tangent vectors {EE}E€€?7 {i\ﬁ,j}ﬁe]‘}?,jE{l,?}’ and {?I’E’j}je{lyzg}
orient the edges of K, the faces of K, and K itself, respectively, and T : S E and T : S2 5 F
are affine geometric mappings.

Let v € VC(IA( ). Ome does not need to change the definition of the cell and face dofs, i.e., we
still use (17.22b)-(17.22¢). The difficulty consists of extending the edge dofs defined in (17 22a)

Let E € &g be an edge of K and assume that E is an edge of a face F' € Fg. By proceeding as in
p(d—1)
pd—1

to-face lifting operator Lg WP (E) — W' (F). Then Lg = L OLF WP (E) — W' (K)

is a bounded edge-to-cell lifting operator since Wl’p/(ﬁ) < WP (ﬁ) We extend the reference
edge dofs as follows:

§17.1 (we takep=p > 2and ¢ = p, noticing that ¢ > > A —and ¢ > 2

), we can define an edge-

5e  (0)= I?ﬁ§</l?(Vxﬁ)~VLg(umoTﬁl)df—l—/ﬁ(’T;xﬁgﬁ)-VLg(umngl)dg),
(17.23)

with €z 7 5= -T'f(ﬁ'ﬁ?ﬁ, where 77 7 is the unit vector tangent to OF with the (unique) orienta-
tion that is compatible with ﬁfqﬁ, ie., -T'f(ﬁ X ﬁfqﬁ points outward F' a.e. on OF, nz being the

outward unit normal to K.

Lemma 17.7 (Extended reference dofs). (i) The definitions (17.22a) and (17.23) coincide on
N 4. (ii) The extended reference dofs are s.t. {0;}ien C L(V(K);R).
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RFEOp (V)= /I?(VX’TJ)'VL%{(M@M) dz + /A(ﬁxﬁmﬁ)'VL%(uam) ds

)

:/ (Vx®)L g(uEw))-ﬁKd?jL/ﬁ(ﬁxﬁmﬁ)-VLg(uEm)ﬁ

= | V x ({;Lg(uﬁ,m))'ﬁﬁ\ﬁ ds

F
:Aﬁ(aLg(”E,m))'Aﬁﬁd =€RFE /A(T’-A@)u@,mdlv

where we used the definition (17.23) in the first line, the divergence theorem in K and V(Vx)=0
in the second line, the definition of Lg and the fact that Lg vanishes outside F' in the third line,
an algebraic identity on the curl operator in the fourth line, and the Kelvin—Stokes formula (16.15)

together with the fact that Lg vanishes outside E and the definition of €~ RFE in the last line.
This proves the first assertion.
(ii) Owing to Holder’s inequality, we bound the reference edge dofs as follows:

o

€ -~ - 1= P
|Uﬁ7m(v)| < Cff{( HVXUHLT’ R) +€A Hvan”Lr’ OK))

with the reference length scale £ := 1. Similarly, for the reference face dofs and the reference cell
dofs, we obtain

2 _3
T m O SCURETIOXTL | poorys  [05.m B SR Bl 1oy,
since |1A)tA il = HvanlFng, Vi € {1,2}, and |v 4l < I?llez, Vi € {1:3}. This proves that

{oitien C ﬁ(VC( K);R). O]
Remark 17.8 (Edge dofs). The proof of Step (i) shows that 6 () is independent of the face

)

Fer 7 containing E if ¥ is smooth enough. [l

Proposition 17.9 (Extended local dofs). Let K € T, be a mesh cell. Let V(K) be defined
n (17.21). Let V¢(K) be defined similarly. (i) The covariant Piola transformation v, is in
L(VE(K); V¢(K)). (ii) The extended local dofs

ok =G0  VI(K) SR, VieN, (17.24)
are in L(VC(K);R), and there is ¢ s.t., for allv € VS(K), all K € Ty, and all h € H,
_3 1-3 _z
I}é?\)f( |0K7i(v)| <chg (th H’UHLp(K) + hK P ||V><'UHLP(K) + th HvanHLp(@K)). (1725)
Proof. (i) Corollary 9.9 gives Vx5 (v) = 9% (Vxv). Owing to Lemma 11.7, we infer that

1
195 (0) Lo 7y < ldet@x)|~# 1Tk ez |v]| oo,
1 —
IV x5 (0)ll Loy = 195 (VX0 Loy < 1det(@r)" ™7 [T eIV %0l Lo ).
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Invoking the regularity of the mesh sequence, we obtain

3 c 1—3 c
6%”1/’1{(7’)”1,;7(1?) "’éf( ! HVXl/’K(v)HLp(f() <

_3 1-3
chK(th||v||Lp(K) + Iy PHVXUHLP(K)). (17.26)

Moreover, since (9.10) implies that 7z = | Jk (nx o Tk)||.' Ik (nk o Tk) ae. on OK (that is, for
all Z € OK s.t. Z lies in the interior of a face of K), we have

W) Ag |, o, = [ I0kweTi)xag |l a5
- /6 T o T 0w o T x Wk o T 05

Using the result from Exercise 9.5, we infer that
%% (W) xRRllL, o) = /Bf(IIJ}(nKoTK)H;ﬂdet(J})|” 3% (vxm)oTx )|l ds.

The transformation of the surface measure gives ds = |det(Jx)|~! [Tk nx|/s2 ds (see Lemma 9.12),
so that we obtain

=~ 1— 17— p
e (@)xAgIL o) = /a el et (@) [ (xras) [ ds
1— _ _
< / 1T Nz P10 172 | det (@) [P~ o x| ds.
oK
Using the regularity of the mesh sequence, we conclude that

-2 N 1-2
£z 7 HQ/’K(”)X”’}?”Lr’(af{) < chy "llvxngllLeok)- (17.27)

(ii) We have shown in the proof of Lemma 17.7 that

R R _3 1_3 R -z
?ée}\)/dai(vﬂ < cél?(éff 10l oy + € PIIVXOll Loy + €27 Hvxnf(HLp(af()).

Then the assertion on the extended local dofs follows from the above bound together with (17.26)-
(17.27). O

Remark 17.10 (Extended local dofs). Let F € £k be an edge of K oriented by the unit
tangent vector 7 and let F' € Fi be a face of K s.t. E C OF. Let ex p g = TK,F|E'TE; where
Tr,r is the unit vector tangent to JF with the (unique) orientation that is compatible with nx |
(i.e., Tk, F Xngp points outward F'). The reader is invited to verify (see Exercise 17.4) that for
all v € V¢(K) and every integer m € {1:n%, },

0pm(v) = 6K,F,E(/ (Vxv)-VLE (tim oTI;lE) dx—l—/(vxnmp)-VLg(um oTI;lE) ds),
K F
(17.28)

~ B 1,
where LE(9)(y) = LE(¢ o Ty p) (T [p(y)) for all ¢ € WP (E) and y € F, Li(¢)(z) =
Lg(qﬁ o TK‘E)(TI;l(w)) for all z € K, and Tk g := Ty o T. If v € Ny 4, and more generally,
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if v € WHP(K) N V¢K) with sp > 2, p € (1,00) or s = 2, p = 1, we recover that o}, (v) =
‘—;;‘ Sz (Wte)(tm o TglE) dl, where tg := |E|7Tg is the tangent vector orienting . Concerning the
extended local face and cell dofs, it follows from Lemma 15.19 that U%yj_’m(v) = ‘—}7' Jp(tr;)(Cmo
TglF) ds for all F € Fg and every integers j € {1,2} and m € {1:nf}, where {tF;};c(1 2} are the
two tangent vectors orienting F' and Tk p := Ty o T, and that of (v) = \_Ilq S (0t ) (Um0

Ty ') dx for every integers j € {1:3} and m € {1:n%,}, where {tx j}jeq1:3) are the three tangent
vectors orienting K. O

Using the extended dofs to define Z§, : V°(K) — Ny 4, we can now derive an estimate of
v — I (v) | 2 () for v € H"(K) with 7 € (3,1]. This result complements Theorem 16.12 which
is valid for r > 1.

Theorem 17.11 (Approximation, r € (3,1]). Let r € (3,1] and let p € (2, 5%=]. There is c,
unbounded as v | % (i.e., p 1 2), such that
c r 1+3(%_%)
lo = T )l 20y < (B lolers sy + g IV Xl ). (17.29)
for allv e H"(K) with Vxv € LP(K), all K € Tp, and all h € H.
Proof. See Exercise 17.3. O

Remark 17.12 (Literature). The space V¢(K) defined in (17.21) has been introduced in Am-
rouche et al. [9, Lem. 4.7], and Theorem 17.11 is established in Boffi and Gastaldi [28]. One can
also extend the dofs of the Ny 4 finite element to {v € H"(K) | Vxv € H*(K)} with suitable
smoothness indices r,s. See, e.g., Monk [144, Lem. 2.3] for r = s = 1, Alonso and Valli [8, §5]
and Ciarlet and Zou [74, §3] for r = s € (3,1], and Bermudez et al. [19, Lem. 5.1] for r € (3, 1],
s € (0,1]. O

Remark 17.13 (Quasi-interpolation). We construct in Chapter 22 a quasi-interpolation op-
erator Z,;)™ s.t. [[v — Z,"™ (v)||p2(k) < ch|[v|mr(py) for all v € H"(Dk), r € (0,1], where Dg
is a local neighborhood of K (see Theorem 22.6). Thus, contrary to the canonical interpolation
operator Zf, the quasi-interpolation operator Z;"*" gives an optimal error estimate for all r > 0
without making any assumption on the curl of the vector field that is approximated. We are going
to invoke Z,"* instead of Z; most of the time in the rest of the book. O

Exercises

Exercise 17.1 (Lifting). Let D := (0,1)2. Let « := (21, 22)" and consider the function ¢(z) :=

X1

T (i) Compute limy, o ¢(x) and limg, 0 ¢(x). (i) Without invoking a trace argument,
1 2

prove directly that ¢ ¢ H'(D). (iii) Construct a function ¢ € C*°(D;[0,1]) s.t. lim,, ;o ¥ (x) = 0,
limg,11 9 (x) = 0, limg, 11 ¢ (x) = 0, and limg,, o ¢ (x) = 1.

Exercise 17.2 (Extended face dofs for RT} 4). (i) Let ex r = nrpng|r, €g 5 = nENR F
and ef := det(Jx)/|det(Jx)|. Prove that ex r = €z pex. (ii) Prove (17.17). (Hint: show that
LE(Gm 0 Tiche) = LE (G 0 T1) 0 Ti" and use (9.8a).)
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Exercise 17.3 (Z). (i) Let r > 1 and p € (2, 3%5-]. Prove the stability estimate ||Z§ (v)|| p2(x) <

? 3—2r
11
¢ ([l 2y + P lvlmrx) + h1<+3(2 p)HVX’U”LP(K)) for all v € V¢(K). (Hint: use the trace

theorem (Theorem 3.10), the Sobolev embedding theorem (Theorem 2.31), and reason as in the
proof of Theorem 17.5.) (ii) Prove Theorem 17.11. (Hint: proceed as in the proof of Theorem 17.5.)

Exercise 17.4 (Extended edge dofs for Ny ;). Use the notation from Remark 17.10. (i) Let
w € C*(K) be a smooth function. Prove that ex rp = €x€g p.p where ex = det(Jk)/|det(J k)]
(Hint: apply the Kelvin-Stokes formula (16.15) to the shape function of the lowest-order Nédélec el-
ement associated with E). (ii) Prove (17.28). (Hint: proceed as in Exercise 17.2(ii) and use (9.8b).)
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Chapter 18

From broken to conforming spaces

In Parts IT and III, we have introduced many examples of finite elements and devised techniques to
generate finite elements in each cell of a mesh. In Part IV, composed of Chapters 18 to 23, we show
how these methods can be used to build finite-dimensional spaces composed of piecewise smooth
functions whose gradient, curl, or divergence is integrable. We also devise quasi-interpolation
operators enjoying fundamental stability, approximation, and commutation properties. These
spaces and operators will be used repeatedly in Volumes IT and III to approximate various PDEs
and estimate the approximation error. In the present chapter, we introduce broken Sobolev spaces
and broken finite element spaces based on a mesh from a family of meshes (7, )nep covering exactly
a domain D C R?. Then we identify jump conditions across the mesh interfaces that are necessary
and sufficient for every function in some broken Sobolev space to have an integrable gradient, curl,
or divergence. These conditions lead to the notion of conforming finite element spaces. Finally, we
show how to construct L!-stable (local) interpolation operators in the broken finite element space
with optimal local approximation properties.

18.1 Broken spaces and jumps

In this section, we are only concerned with broken Sobolev spaces and with broken finite element
spaces. Membership to broken spaces is defined by requiring that some property be satisfied in
each mesh cell without requiring any continuity across the mesh interfaces.

18.1.1 Broken Sobolev spaces and jumps

The notions introduced hereafter will be used repeatedly in this book. We consider R9-valued
functions for some integer ¢ > 1.

Definition 18.1 (Broken Sobolev space). Let p € [1,00] and s > 0 be a positive real number.
The space defined by

WP (Ti;RY) := {v € LP(D;RY) | vx € W*P(K;RY), VK € T}, (18.1)

is called broken Sobolev space. This space is equipped with the norm

||UH%/S’F(TMRQ) = Z ”M‘%/Sm(}{;]}&ﬂv (182)
KeTy,
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if p € [1,00) and ||v||ws.co(7,;re) = MaxgeT, [|[V||wsoo(kira) if p = 00. We write W*P(Ty,) 1=
WeP(T; R) when ¢ = 1.

An important notion in broken Sobolev spaces is the jump of functions across mesh interfaces
(see Figure 18.1). Recall from the Definition 8.10 that the collection of the mesh interfaces is
denoted by F; and that for all F' € Fp, there are two distinct mesh cells K;, K, € T such that

F = 0K;NOK,. The interface F is oriented by means of the unit normal vector np pointing from
K; to K,.

Definition 18.2 (Jump). Let F := 0K; N 0K, € Fy be a mesh interface. Let v € W*P(Ty;RY)
with s > % if p € (1,00) or s >1if p=1 (notice that (vik,)|r € L'(F) and (vk, )¢ € L*(F)).
The jump of v across F is defined as follows a.e. in F:

[v]F = vk, — vk, (18.3)

The subscript F' is dropped when the context is unambiguous.

Figure 18.1: Jump of a piecewise smooth function across the interface F' := 0K; N OK,..

Remark 18.3 (Alternative definition). Another definition of the jump where Kj, K, play
symmetric roles consists of setting [v]} := vk, ® N, |p + VK, @ Nk, |F, Where g, p, i € {I,7}, is
the unit normal to F' pointing away from K, i.e., [v]r @ ng = [v]5. The advantage of (18.3) over
this definition is that the jump [v]F is R9-valued instead of being R9*%-valued. Both definitions
are commonly used in the literature. O

Remark 18.4 (Zero-jumps in W*P). Let p € (1,00) and s > %, orp=1and s> %. Owing
to Theorem 2.21, smooth functions are dense in W%?(D). Let v € W*P(D) and let (v,,)nen be
a sequence in C*°(D) N W*P(D) converging to v in W%?(D). Let F € F; be a mesh interface.
Then 0 = [v,]F — [v]F as n — oo since the trace map is bounded on W*?(D). Hence, 0 = [v]r
for all F' € Fy. This shows that functions in W*?(D) have a single-valued trace in L'(F') for all
FeFp. O

18.1.2 Broken finite element spaces

Let (IA( , ﬁ, 2’) be the reference finite element of degree k > 0, where Pis composed of R?-valued
functions for some integer ¢ > 1. We assume that P C L*°(K;R?) (this is a mild assumption since
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in general Pis composed of polynomial functions). Consider a 7j,-based family of finite elements
{(K, Px,YK)}keT, constructed as in Proposition 9.2 by using the geometric mappings T : K —
K and the transformations vx : V(K) — V(K) for all K € T,. We assume henceforth that
Vi € L(L®(K;R?), L>(K;RY)). Recall that we denote by {0k ,i}ien the local shape functions in
K and by {0k i} ien the local degrees of freedom (dofs).

Definition 18.5 (Broken finite element space). The broken finite element space is defined as
follows: N
PP (T;RY) == {v), € L(D;RY) | ¢k (v i) € P, VK € Tp}. (18.4)

We simply write PP(Ty) whenever ¢ = 1.

Recalling that Pk := 1" (P) (see (9.4a)), we have v), € P2 (Th;R7) iff vy € P for all
K € Tp,. The above assumptions on P and Y imply that Px C L°°(K;R?), which in turn means
that PP(T5,;R?) is indeed a subspace of L>(D;R%). Moreover, since functions in PP(7y,;R?) can
be defined independently in each mesh cell, we have

dim(PP(T,; R?)) = card(N) x card(Ts) =: ngnx Ne, (18.5)

where ngp, is the number of dofs in b (i.e., the cardinality of the set N), and N, is the number of
mesh cells in 7;,. Then the set {9K7i}(;{_’i)€7—th, where 6 ; is the zero-extension of O ; to D, is

a basis of PP(75,;R?). The functions fx ; are called global shape functions in PP(Th;RY).

Example 18.6 (Piecewise polynomials). On affine meshes the choice P= Py.a (resp., P =
Qk,a) together with ¥ (v) := v o Tk and ¢ := 1 (i.e., scalar-valued functions) leads to PP(7) =
{vn € L®(D) | vpx € Pra, VK € T} (vesp., {vn € L™(D) |vpx € Qra, VK € Tp}) since
Uh|K S ]Pk,d iff v, 0Tk € Pk,d (resp., Qk,d)- O

Remark 18.7 (Connectivity array). In practice, the global shape functions are enumerated,
say from 1 to I. For the broken finite element space, we have PP(T,;R?) = span{e1,..., ¢} with
I = ngyN.. The connection between the local and the global shape functions is materialized by
a connectivity array j-dof : {1: N} xN — {1:1} defined such that ©;_got(m,n)|x,, = Ox,,.: for all
m € {1:N.} and all n € N'. The most common approach to define j_dof consists of enumerating
first the dofs in the first cell, then in the second cell, and so on, leading to j_dof(m,n) := (m —
Dngn + n.

18.2 Conforming finite element subspaces

Given a piecewise smooth function on the mesh 7, either scalar- or vector-valued, depending on
the context, we want to find necessary and sufficient conditions for this function to be in H'(D),
H (curl; D), or H(div; D). It turns out that the answer to this question hinges on the continuity
properties of the function, its normal component, or its tangential component across the mesh
interfaces.

18.2.1 Membership in H!

The global integrability of the gradient of a piecewise smooth function is characterized by the
following result.
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Theorem 18.8 (Integrability of V). Let v € WHP(T,; R?) with p € [1,00]. Then Vv € LP(D)
iff [v]r =0 a.e. on all F € Fy.

Proof. We prove the assertion for ¢ = 1. The general case is treated by working componentwise.
Let v € WP(Ty,) and let C§°(D) be the set of the smooth functions compactly supported in D.
For all ® € C§° (D), we have

V- ®dr = /v V-®dx
A X o

KeTn

== > /KV(U|K)-<I>dx+ >

/ vgng-Pds
KeTh KeT; K

—- % [ Veeas ¥ [ pleneeas,

KeTh FeFy

where ny is the outward unit normal to K and npg is the unit vector defining the orientation of
F.
(i) If [v]r = 0 a.e. on all F' € Fy, we infer from the above identity that

/DUV-<I>d:v:— > A@-V(U‘K)dx,

KeTy,

which shows that v has a weak gradient in LP(D) s.t. (Vv)x = V(v|k) for all K € T;,. Hence,
v e WhP(D).

(ii) Conversely let v € W?(D). We can conclude by invoking Remark 18.4. Let us give a more
direct proof. Owing to Lemma 18.9 below, we infer that (Vv)|x = V(v|x) for all K € Tj. Hence,
the above identity implies that ZFGI}? Jplv]lrmp-®ds = 0 for all ® € C5°(D). Let F € Fj, be
an arbitrary interface. After localizing the support of ® in such a way that it intersects F' and no
other interface in 77, it follows from the vanishing integral theorem (Theorem 1.32) that [v]r = 0,

since ® p-np can be arbitrarily chosen, and [v]r € L'(F) because the trace map is bounded on
Whe(D). O

Lemma 18.9 (Local weak derivative). Let p € [1,00] and let v € W'P(D). Then V(v|x) =
(Vv)|k a.e. in K for all K € Tp.

Proof. Let K € Tp, and let ¢ € C{°(K). Let ¢ e C§°(D) be the zero-extension of ¢ to D. For all
v € WHP(D), we infer that

/V(’U|K)-¢)d$=—/ v gV-¢dr
K K

:—/DUV-qux:/DVU'CBdZCZ/K(VU)\K'QZ’dU&

The assertion follows from Theorem 1.32 since ¢ is arbitrary in C5°(K). O

Figure 18.2 illustrates Theorem 18.8 in dimension one.

18.2.2 Membership in H(curl) and H (div)

Let us now consider the integrability of the curl or the divergence of vector-valued piecewise
smooth functions. Let v € WYP(Ty,) := WLP(T,:RY), p € [1,00). We also use the notation
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A

Figure 18.2: One-dimensional example with two piecewise quadratic functions. The one on the
left is not in H!, the one on the right is.

WeP(Ty) := WP(Ty;RY), s > 0. The jump of the tangential component of v (if d = 3) and the
jump of its normal component across a mesh interface F' € F;, with F':= 0K; N 0K, are defined
as follows a.e. in F":

[vxn]r = (vjg, xnFr) — (v, xnr) = [V]Fxnp, (18.6a)
[vn]r = (’U|Kz'nF) - ('UIKT'nF) = [v]rnp, (18.6b)

where [v]F is the componentwise jump of v across F' from Definition 18.2. The subscript F is
dropped when the context is unambiguous.

Theorem 18.10 (Integrability of Vx and V-). Let v € WYP(T},) with p € [1,00]. (i) If d = 3,
Vxv € LP(D) if and only if [vxn]r = 0 a.e. on all F € F;. (ii) V-v € LP(D) if and only if
[vn]r =0 ae onal F e Fy.

Proof. Proceed as in the proof of Theorem 18.8. See Exercise 18.1. O

Remark 18.11 (Extension). The statement of Theorem 18.10 can be extended to functions
v € W*P(T,) with s > % if pe (1,00) or s > 1if p=1. The following holds true: (i) If d = 3
and Vx (v ) € LP(K) for all K € Ty, then Vxwv € LP(D) iff [vxn]r = 0 for all F € Fy. (ii) If
V-(vk) € LP(K) for all K € T}, then V-v € LP(D) iff [u-n]r = 0 for all F € Fy. O

18.2.3 Unified notation for conforming subspaces

To allow for a unified treatment of H'-, H (curl)-, and H (div)-conformity, we use the superscript
x € {g,c,d} (referring to the gradient, curl, and divergence operators), and we consider R?-valued
functions with ¢ :=1ifx=g,¢g=d=3ifx=c,and ¢ =d if x =d. Let p € [1,00) and let s > %
ifp>1lors>1if p=1. Let K € T}, be a mesh cell and let F' € Fx be a face of K. We define
the local trace operators v p : W*P(K;R?) — L'(F;R') s.t.

Vi r () == vp (g=t=1), (18.7a)
Vi,r(v) ==vpxnp (¢=t=d=23), (18.7b)
’Y?{,F(”) =vEng (g=d, t=1). (18.7¢)

This leads to the following notion of y-jump: For all v € W*P(T;,; RY),
[0l (@) = 75, p (0 ) (@) = VK, p (VK ) (@) ae on F. (18.8)

Let (I? , ﬁg, Y:8) be one of the Lagrange elements or the canonical hybrid element introduced in
Chapters 6 and 7. Let £ > 1 be the degree of the finite element. The corresponding broken finite
element space is R

PEP(Th) i= {vn € L®(D) | ¥ (v i) € P5, VK € Th}, (18.9)
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where 1% (v) := v o T is the pullback by the geometric mapping Tx. The H L_conforming finite
element subspace is defined as follows:

PE(Th) == PE(Ty) N H'(D). (18.10)

Similarly, let (IA( ,ﬁC,EC) be one of the Nédélec elements introduced in Chapter 15, and let
(K, P4,%4) be one of the Raviart-Thomas elements introduced in Chapter 14. Let k > 0 be
the degree of the finite element. The corresponding broken finite element spaces are
PSP (Th) o= {vn € L=(D) | %% (v i) € PC, VK € Tp}, (18.11a)
PM(Ty) o= {vn € L¥(D) | & (v k) € P4 VK € Th}, (18.11b)
where 15, (v) 1= J ], (voTk) is the covariant Piola transformation and ¥ (v) := det(J ¢ )J " (voTk)

is the contravariant Piola transformation. The corresponding H (curl)- and H (div)-conforming
finite element subspaces are defined as follows:

P{(Tr) = PYP(Th) N H (curl; D), (18.12a)
P(Ty) := P{""(T,) N H(div; D). (18.12b)

The zero-jump conditions from Theorem 18.8 and Theorem 18.10 imply that

PE(Th) = {on € PE*(T) | [oal§ = 0, VF € Fi}, (18.13a)
PE(Th) = {von, € PY°(Th) | [wals =0, VF € Fi}, (18.13b)
PX(Th) = {vn € PM°(Th) | [on]d =0, VF € Fo). (18.13c¢)

In the next chapters, we study the construction and the interpolation properties of the above
conforming finite element subspaces. To stay general, we employ the following unified notation
with x € {g,c,d}:

PX(Tn; RY) == {vy, € PEP(Ti; RY) | [on]s = 0, VF € FY, (18.14)

where P ’b(ﬁ; RY) is one of the broken finite element spaces defined above.

Remark 18.12 (2D discrete Sobolev inequality). We have P£(7,) C L>(D) N HY(D) by
construction, but as shown in Example 2.33, if d > 2, there exist functions in H!(D) that are
unbounded. It turns out that in dimension two, it is possible to derive a bound on the ||| p<-norm
of functions in Pg(7y) that blows up very mildly w.r.t. the meshsize. This bound involves a global
length scale associated with D, say dp. More precisely, since D is Lipschitz, one can show that
there exist a length scale 6p > 0 and an angle w € (0,27) such that any point & € D is the
vertex of a cone €(x) C D, where €(x) is the image by a translation and rotation of the cone
¢:={(r,0) | r € (0,0p), 0 € (0,w)} defined in polar coordinates; see Lemma 3.4. Then assuming
d := 2, one can show (see Exercise 18.2 and Bramble et al. [42]) the following inverse inequality,
called discrete Sobolev inequality: There is ¢ > 0 s.t.

1
_1 _ 5 2
¢85 vnllpery < 6p lvnllz2(p) + In <—hi> IVonzz(py, (18.15)

for all v, € PE(Tr), all K € Ty, such that hx < %5[), and all h € H. O
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18.3 L'-stable local interpolation

In this section, we devise a local interpolation operator that is L!-stable and maps L'(D) onto the
broken finite element space PP(7p,;RY) defined in (18.4). The construction is local in each mesh
cell. The key idea is to extend the dofs of the reference finite element so as to be able to interpolate
boundedly all the functions that are in L!(D).

We assume that the geometric mappings Ty are affine for all K € T, and that all the trans-
formations 1 are of the form ¢ (v) := Ag(voTk) (see (11.1)) where Ax € RI*9 satisfies
(see (11.12))

1Ak lellAR e < e Txlle 1% ez, (18.16)

with ¢ uniform w.r.t. K € 7, and h € H, where Jx is the Jacobian matrix of Tk. Let us define
the adjoint transformation ¢x (w) := By (w o Tk ) where By := |det(Jx)|Ax" . The terminology is
motivated by the following identity:

(w,v)r2(5 re) = (DK (W), VK (V) p2(R.pays (18.17)

for all v € LP(K;R%), all w € L?' (K;RY), and all p € [1, 00] with L+ & = 1. Indeed, we have

(010 91 (0)) gy = [ et (AT (w0 T, A (00 Th) e 7
:/ (’LU o '_FK7 v o TK)gz(Rq) de = (’LU, 'U)Lz(K;Rq)-
K

Moreover, we have ||Bg||o2|| B [z = [|Axk]e2||Ax" e since |AL ||z =A||AK||42.
We first extend the dofs of the reference finite element. Let p; € P for all i € A/ be such that
1 . . . o~
ﬁ(pi’p)L%f(;RQ) =0:(p), Vp e P. (18.18)

The function p; is well defined owing to the Riesz—Fréchet theorem (see either Exercise 5.9 or

Theorem A.16 applied here in the finite-dimensional space P equipped with the L2-inner product
weighted by |K|~1). This leads us to define the extended dofs as follows:

I -
HORES ﬁ(pi,v)m(mq), o e LY(R;RY). (18.19)

We then define the interpolation operator s.t. for all & € I?,

T2 (0)(@) =) 5 (0)6;(z), Vo e LY(K;RY). (18.20)
ieN
We can take V(I?) = Ll(I?;Rq) for the domain of I%. One can show that Ig? is actually the
L?-orthogonal projection onto ﬁ; see Exercise 18.3.
Lemma 18.13 (Invariance and stability). Let Iﬁ? be defined in (18.20). (i) P is pointwise

invariant under I%. (ii) Ig? is LP-stable for all p € [1,00], i.e., there is C s.t.

HI%(@\)HLP(I?;RQ) S/C\Ha”LP(f(;]RQ)? Vv € LP(K;RQ)' (1821)
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Proof. (i) Since 3§ (P)

p) = ,(p) for all p € P and all i € N, we obtain Iﬁ?(ﬁ) = ZieNﬁi(ﬁ)@- =D.
(ii) Since P C L (K;RY), we have p; € L*°(K;R?). Holder’s inequality implies that
PR SmL ~
|U§(U)| < |K[7? ”pi”Loo(f(;]Rq)”U”Lp(f(;]Rq)v
~ = N Sl -~
for all v € LP(K;R?). Hence, (18.21) holds true with ¢:= >,/ |[K| > HPiHLoo(f(;Rq)HeiHLp(f(;R%

Consider now a mesh cell K € 7, from a shape-regular mesh sequence (73)necy and let
(K, Pk,Yk) be the finite element generated in K using the transformation 1k (see Proposi-
tion 9.2). The assumption 1 (v) = A (v o Tx) implies that " (LY(K;R%)) = LY(K;R?). We
extend the dofs in Xk to L'(K;R?) by setting agw(v) = Eg (YK (v)), i.e., owing to (18.17),

1 . |
ohci(v) = @(ﬂiﬂbk(v))m(k;m) = @@KI(M)’U)L%K;R% (18.22)

and we define the local interpolation operator in K s.t. for all x € K,
T (v)(@) =Y oh ,()0ki(x), Vv V(K):=L'(K;R?), (18.23)
ieN

recalling that the local shape functions are given by 0 ; := 1/)1}1(51-) for all i € A/. The linearity of
P implies that

Ui (Zhv)) = vic (Z OO @)) =3 G W) = Th (9 (v)).

ieN ieN
In other words, the following key relation holds true:

Tj = ' o Th o .. (18.24)

One can show that I§< is the oblique projection onto Py = 1/1;(1 (ﬁ) parallel to Q% with Qg =
<I>I_<1 (P). Note that I§< is L2-orthogonal whenever the matrix Ay is unitary; see Exercise 18.3.

Theorem 18.14 (Local approximation). Let Ig( be defined by (18.23). Let k be the degree of
the finite element, i.e., [Py q]? C P C WL (K RY). (i) P is pointwise invariant under I§<. (ii)
Assuming that the mesh sequence is shape-reqular, there is ¢ s.t. for allr € [0,k+1], all p € [1,00)
if r ¢ N orallp € [1,00] if r € N, every integer m € {0:[r]|}, all v € WHP(K;R?), all K € Tp,
and all h € H,

v — I&((””W’"’P(K;Rq) < chliy " vlwre (5 ra).- (18.25)
Proof. The property (i) follows from (18.24). The property (ii) for » € N follows from Theo-
rem 11.13 with [ := 0 since Ig? is stable in L? owing to Lemma 18.13. Taking m := r in (18.25)

implies the W™ P-stability of I§< for every integer m € {0:k + 1}, i.e.,

|8 (W) [wms (5cmay < Clwlwmp(pey, — Yw € W™P(K;RY). (18.26)
Since I§< (9) = g for all g € Pg, (18.26) and the triangle inequality yield

v — I&(“”WW?(K;RQ) = qiergK lv—g— I§<(U - g)|Wm~P(K;]Rq)

<c inf |v—glwms(kra-
<c inf |v—glwms iz
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Invoking the bound (12.18) on infye py [v — glwm.»(kra), We infer that the property (ii) holds true
for all » € N as well. O

Corollary 18.15 (Approximation on faces). (i) Let p € [1,00) and r € (%,k +1] ifp>1 or
rell,k+1]if p=1. There is c s.t.

p1
[[v _I§<(v)||LP(F;Rq) < chy " olwrs (ira), (18.27)

for all v e WHP(K;R?), all K € Ty, all F € Fk, and all h € H, where the constant ¢ grows
unboundedly as rp | 1 if p > 1. (ii) Assume k > 1. Let p € [1,00) and r € (%,k] ifp>1or
re[l,k] if p=1. There is ¢ s.t.

"
IV (0 = Zh ) | o (rimay < chie " [olwisrs (o), (18.28)
for all v € WHTP(K;RY), all K € Ty, and all h € H, where the constant ¢ grows unboundedly as
rpl1lifp>1.

Proof. For simplicity, we assume that ¢ = 1. The general case is treated by reasoning componen-
twise. Let us prove (18.27). Assume first that r € [1,k + 1]. Owing to the multiplicative trace
inequality (12.16), we infer that, with n :=v — I§< (v),

1 -1 1
ey < ¢ (i Wi+ il | 9o )

Invoking (18.25) with m € {0,1} (note that m < |r]) shows that (18.27) holds true in this case.
Let us now assume that r € (%, 1) with p > 1. Let ¢o € 1/);(1 (Po,q) = Po.q be arbitrary. We have

1 1 1
Wil e ey < hillv — qoll oy + b Zh () — qoll Lo
< ¢ (llv = qollr(x) + hiclolwrr (k) + | Z5 (v) — 0l e (x))
<c (HU = qollzr(xy + P |vlwrr () + v — Ig((v)”LP(K))a

where we used the triangle inequality in the first line, the fractional trace inequality (12.17), the
discrete trace inequality (12.10) and g € Pg 4 in the second line, and the triangle inequality in the
third line. Invoking the best-approximation estimate (12.15) from Corollary 12.13 (observe that
qo is arbitrary in Py 4) and (18.25) with m = 0 leads again to (18.27). Finally, the proof of (18.28)
is similar and is left as an exercise. (|

We define IfL : LY(D;RY) — PP(T;RY) s.t. for all v € LY (D;RY),
I} () ik = Th(vk), VK €T (18.29)

The approximation properties of IfL readily follow from Theorem 18.14.

18.4 Broken L*-orthogonal projection

Let K € Tj, be a mesh cell. The L2-orthogonal projection Zp. : L' (K;RY) — Pk is defined s.t. for
all v € LY(K;RY),
(TR (v) = v, @) L2 (k5rey = O, Vq € Pk, (18.30)
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where Pg := 1/1121(16) and Y (v) := Ak (voTk). Since (18.30) implies that

v = allZe (ke = 10 = TR (0) 122 (s ey + I1ZR (0) = @l 72 (i m0): (18.31)
we have the optimality property

Iy (v) = arg min ||v — gl z2(x ra)- (18.32)
q€ P

The stability and approximation properties of I}% can be analyzed by using the L!'-stable
interpolation operator Ig( introduced in the previous section.

Theorem 18.16 (Stability and local approximation). Let Z% be defined by (18.30). Let k be
the degree of the finite element, i.e., [Py 49 C P c WEHLP(K;RY). Assume that the mesh sequence
is shape-reqular. (i) Py is pointwise invariant under I%.. (ii) Z% is LP-stable for all p € [1,00],
i.e., there is ¢ s.t. | Z%(0)||pr(rciray < cl|v]le(rira) for all v € LP(K;RY), all K € Ty, and all
h € H. (iii) There is ¢ s.t.

lv— I})((UNW’"’P(K;RQ) < chliy ™ vlwre (icra), (18.33)

forallr € [0,k+1], all p € [1,00) if r €N or all p € [1,00] if r € N, every integer m € {0:[r]|},
allve WHP(K;R?), all K € Ty, and all h € H.

Proof. (i) The pointwise invariance of Py under Z% follows from (18.30).
(ii) Stability. Let v € LP(K;R?). We observe that

d(2-1)

d(2-1)
IZR )2y < che” IR )Z2(kmay = chye” (0, TR (V) L2 (5;29)
d(2-1)
< chg? HUHLP(K;R‘?)”I}a((U)HLP/(K;Rq)
d(2-14+5 1)
< hy” " Nllpexra IZR (W) | Lo (xre)

= ¢ vl ez 1ZR (V)| 2o (16 R0,

where we used the inverse inequality (12.3) (between L? and L?), (18.30) with q := Z% (v), Hélder’s
inequality (with % + ﬁ = 1), and again the inverse inequality (12.3) (between LP" and LP). This
proves the LP-stability of ZP..

(iii) Local approximation. Since I§< (v) € Pr and Py is left pointwise invariant by Z%, we have

v = T3 () [ (s ) < [0 = Lhe (0) [ (i) + 1T (0 = Lo (V) [wrmon (0 )
< [o = i ()l wmon sy + ch™ [ ZR (v = i (0)) | o (1 )
< o = T (0)lwmor (scmay + Ch™ [0 = Th (V)| o 100
< "W " olwr (iR

where we used the triangle inequality, the inverse inequality from Lemma 12.1, the LP-stability of
I}’O and the approximation property (18.25) of I§<. O

We define Zp : LY(D;R?) — P2(Tp;R?) s.t. for all v € LY(D;R?), Zp (v)|x = Zp(vjx) for
all K € Tp,. One readily verifies that Z} is the L2-orthogonal projection onto PP(7,;R%). The
stability and approximation properties of I}f follow from Theorem 18.16.
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Remark 18.17 (Approximation on faces). A result similar to Corollary 18.15 holds true for
T on the mesh faces. O

Remark 18.18 (Pullback). One cannot 1nvest1gate the approximation properties of Ib by intro-
ducing the L?- orthogonal projection onto p (i.e., the operator 7% ) and using Theorem 11.13, since
we have seen that ¢! K © Iﬁ( oY is actually the oblique projection Ig( and not the L?-orthogonal

projection I};. The two projections I§< and IE( coincide when the matrix Ay is unitary (see
Exercise 18.3). This happens when ¢k is the pullback by the geometric mapping Tk, i.e., when
A is the identity as is the case for scalar-valued elements. In this situation, Theorem 18.16 has
already been established in Lemma 11.18 (at least for » € {0:k + 1}). O

Remark 18.19 (Algebraic realization). To evaluate the L?-orthogonal projection Z% (v) of
a function v, one has to solve the linear system MxgX = Y, where the local mass matrix has
entries Mg pp 1= fK (0K m: 9K7n)[2(Rq) dx for all m,n € N, and the right-hand side vector Y has
components Y;, 1= fK(v, 0K ,n)e2(ray dz. Then we have 2 (v) = Y onen Xnbk n; see §5.4.2. |

Exercises

Exercise 18.1 (H (div), H(curl)). Prove Theorem 18.10. (Hint: use (4.8).)

Exercise 18.2 (Discrete Sobolev inequality). (i) Assume d > 3. Prove that |vp| pe k) <

Ch};%HVUh”Lz(K) for all v, € Pkg’b(ﬁ), all K € Tp, and all h € H. (Hint: use Theorem 2.31.)
(ii) Assume d = 2. Prove (18.15). (Hint: let K € T, with hg < 22, let x € K and let y
have polar coordinates (r,6) with respect to & with r > ‘STD and 0 € (0,w), use that v,(x) =

vn(y) — [, Opvn(p,8)dp, decompose the integral as [ -dp = fth dp + thK -dp, and bound the
two addends.)

Exercise 18.3 (Orthogonal and oblique projections). (i) Show that Iﬁ? is the L2-orthogonal
projection onto P. (Hint: observe that (pl,ﬁ )LQ(K Re) = |IA(|5Z-J- for all i, € N.) (ii) Prove that
I§< is the oblique projection onto Px = 1/)K (P ) parallel to Q% with Qg = @;(1 (ﬁ) (Hint:
use (18.17).) (iii) Show that Px = Qx if the matrix Ax is unitary, i.e., ALAx = AgAl =1,.

Exercise 18.4 (Approximation on faces). Prove (18.28).
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Chapter 19

Main properties of the conforming
subspaces

In this chapter, we continue the study of the interpolation properties of the conforming finite
element subspaces introduced in the previous chapter. Recall that

PY(Th:RY) = {o, € PY°(Th; RY) | [un]s = 0, VF € Fp},

where P ’b(ﬁ; RY) is a broken finite element space, with ¢ € {1, d} depending on the superscript
x € {g,c,d}, and the jump operator [-J% is defined in (18.7). Recall that the H!-conforming
subspace P¢(Tr) (¢ = 1) is built using a Lagrange element or a canonical hybrid element of degree
k > 1, the H(curl)-conforming subspace Pg(7s) (¢ = d = 3) is built using a Nédélec element
of degree k > 0, and the H (div)-conforming subspace Pd(T,) (¢ = d) is built using a Raviart—
Thomas element of degree k > 0. The cornerstone of the construction, which is presented in a
unified way for x € {g,c,d}, is a connectivity array with ad hoc clustering properties of the local
degrees of freedom (dofs). In the present chapter, we postulate the existence of the connectivity
array and show how it allows us to build global shape functions and a global interpolation operator
in PZ(Ty). The actual construction of this mapping is undertaken in Chapters 20 and 21. In this
book, we shall implicitly assume that the mesh 7}, is matching (see Definition 8.11) when the
conforming space P)(7r;RY) is invoked.

19.1 Global shape functions and dofs

For all K € Ty, the local dofs are {0k ;}icnr, and the local shape functions are {0k ;}icar. Recall
that {0k ;}ien is a basis of Px and that {ox ;}ienr is a basis of L(Pg;R). We start by organizing
all the dofs and shape functions

{oK,i}(K0)eTxn {0k} (k0)eT x N>

by grouping them into clusters, which we are going to call connectivity classes. We assume that
we have at hand a nonzero natural number I and a connectivity array

jdof : TpxN — Aj, :={1:1}. (19.1)
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Without loss of generality we assume that the mapping j_dof is surjective, i.e., for every connectiv-
ity class a € Ay, there exists (K,i) € TpxN s.t. jdof(K,i) = a. This hypothesis is nonessential
and can always be satisfied by rearranging the codomain of j_dof.

Definition 19.1 (Connectivity class). Two pairs (K,i),(K',i') € T, XN are said to be in the
same connectivity class if jdof(K,i) = jdof(K',i).

We require that the mapping j_dof satisfies two key properties.
(1) The first one is that for all v, € P""(7),

For all (K,i),(K’,4") in the same
[vn, € PY(Th)] <= | connectivity class, we have . (19.2)

0k,i(Vh k) = 0K (VnK)

Thus, (19.2) means that for every function v;, in the broken finite element space P} ’b(ﬁ), a
necessary and sufficient condition for v;, to be a member of the conforming subspace P(7) is
that for all a € Ay, the quantity o i(vy k) is independent of the choice of the pair (/) in the
preimage j_dof!(a) := {(K’,i’) € ThxN | j_dof(K',i') = a}.

(2) The second key property is that

VK €Ty, jdof(K,-): N — A, is injective, (19.3)

ie., if (K,i) and (K,4') are in the same connectivity class, then i = ¢’.

We now construct global dofs and shape functions in P}¥(73). Since for all a« € A and all
vp € P(Tn), (19.2) implies that the value of ok ;(vs k) is independent of the choice of the pair
(K,i) in the connectivity class a, it is legitimate to introduce the following definition: For all
a € Ay, we define the linear form o, : P¥(7;) — R s.t. for all v, € P¥(T),

oa(vn) = oki(vn k), V(K,i) € j_dot*(a), (19.4)

ie., 04(vn) = ok i(vy k) for every pair (K,i) in the connectivity class a. Observe that o, €
L(P¥(Tr); R). We now define the function ¢, : D — R? for all a € Aj, by

(19.5)

Ok, if there exists i € N s.t. (K,i) € j_dof~'(a),
Pa|K = .
0 otherwise.

This definition makes sense since if (K,i)€ j_dof ~!(a) and (K,i')€ j_dof ~*(a), then i = i’ owing
to (19.3).

Definition 19.2 (Global shape functions and dofs). The functions @, are called global shape
functions, and the linear forms o, are called global degrees of freedom (dofs).

For all a € Ay, let us introduce the following collection of cells:

To:={Ke€Ty| €N, (K,i) € jdof '(a)}, (19.6)
ie., To ={K €Tp|aé€ jdof(K,N)}. A direct consequence of the definition (19.5) is that
supp(ga) = U K. (19.7)
KeTa

Lemma 19.3 (Conformity). For all a in Ay, ¢, € PE(Tn) and
O'a(‘pa’) = baa’, Va' € Ap. (198)
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Proof. Let a € Ay, and let us prove that ¢, € P(7p). Since ¢, € P,f"b('ﬁl), we prove the assertion
by checking that the property on the right-hand side of (19.2) holds true. Let o’ be arbitrary in
Ap. We need to show that the quantity o, (94| ) is independent of the pair (K,4) € j_dof!(a’).
(1) Assume first that a’ = a. Let (K, i) be an arbitrary pair in j_dof~'(a’). Then j_dof(K,i) =
a’ = a, and the definition of ¢, implies that , x = 0k ;. Hence, ok (v x) = 0k,i(0x:) = 1 for
all (K,i) € j_dof~!(a’).

(2) Assume now that a’ # a. Let (K, i) be an arbitrary pair in j_dof~!(a’). If there exists j € N
s.t. jdof (K, j) = a, then ¢, x = 0K ;. Notice that j # i owing to (19.3), since j_dof (K, j) = a #
a’ = jdof(K,i). We infer in this case that ok ;(¢.x) = 0Kk,i(0Kk ;) = 0 since j # 4. If there is no
Jj €N s.t. judof(K, j) = a, then @, x = 0 and again o ;(¢. k) = 0. To sum up, ok i(pax) = 0
for all (K,i) € jdof~'(a’).

(3) In conclusion, the above argument shows that o,(¢.) = 1 and o4 (p,) = 0 if o’ # a, ie.,
i 0k,i(¢ax) is independent of the pair (K,i) € jdof~'(a’) for all a’ € Ay, and (19.8) holds
true. O

Proposition 19.4 (Basis). {¢a}aca, s a basis of PY(Tr), and {04 }aca, is a basis of L(PF(Tr); R).

Proof. Assume that ) A, Aata vanishes identically on D for some real numbers {\, }ac.4,. Using
the linearity of o, and (19.8) yields

0= 00 0) =0 3 M) = 3 daowla) = Ao

a€Ay, a€ Ay

Hence, Ay = 0 for all @’ € Ay, i.e., {¢a}taca, is linearly independent. To show that {¢g}taca, is
a spanning set of P (Ty), let vy, € PY(7y) and let us set op, = vp, — Ea/eAh oa (Vn)ar. We are
going to prove that 6, x = 0 for all K € Tj, and since ;| € Pr, we do so by showing that dj
annihilates all the local dofs in K, i.e., o ;(dyx) = 0 for all i € N. Let K be an arbitrary cell in
Th, let i be an arbitrary index in A/, and let a := j_dof(K,). Then

0K,i(Onk) = 0a(0n) = oalvn) — 0a(vn) =0,

where the first equality follows from the fact that d;, € P}(75) and the second one from (19.8).
We have thus proved that dj,x = 0 for all K € 7y, and hence that J;, vanishes identically because
K is arbitrary. In conclusion, {¢q}ac .4, is a basis of P¥(73). Since {¢q}ac.a, is a basis of P¥(Ty),
the identity (19.8) implies that {0 }aeca, is a basis of L(Py(Ty); R). O

To sum up, we have shown that provided we have at hand a connectivity array j_dof : T, x N —
Ap, satisfying the properties (19.2) and (19.3), we can build in a simple manner the global basis
functions and the global dofs in the conforming finite element subspace P}(75;R?). The actual
construction of the mapping j_dof will be undertaken in the following two chapters.

Remark 19.5 (Connectivity class). Another way to formalize the grouping of the dofs consists
of introducing the equivalence relation R in 7, xN defined by (K,7) R (K',i') iff j_dof(K,i) =
j—dof(K’,i"). One can then redefine Aj, to be the set of the equivalence classes for R. The elements
of Ay, are then sets and are called connectivity classes. In this case, we write (K, i) € a instead of
j_dof(K,i) = a. We are going to adopt this equivalent viewpoint from Chapter 20 onward. O

19.2 Examples

In this section, we illustrate the concepts developed in §19.1 for the spaces Pg(7), Pg(Tn), and
P(Ty).
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19.2.1 H'-conforming subspace P£(7;)

Let (IA{, ﬁg, f'g) be one of the scalar-valued Lagrange elements of degree k > 1 introduced in §6.4
or §7.4, or one of the canonical hybrid finite elements of degree £k > 1 introduced in §7.6. The
broken finite element space is

PE(Ty) = {v), € L®(D) | % (vn) € P2, VK € Ty}, (19.9)

where 1% (v) := v o Tk is the pullback by the geometric mapping, and the corresponding H L
conforming subspace is

PE(T;) = {vn € PE°(T3) | [vn]r = 0, VF € F}}. (19.10)
We have Pg(T,) C Z8F(D) := W'P(D) = {v € LP(D) | Vv € LP(D)} for all p € [1,00] (note

that Z&2(D) := H'(D)). We show in Figure 19.1 the connectivity classes generated by j_dof on
a mesh composed of four triangles with P, » Lagrange elements.

Figure 19.1: Py, Lagrange nodes in the same connectivity class for a mesh composed of four
triangles (drawn slightly apart).

The Lagrange and the canonical hybrid finite elements of the same degree generate the same
space P¢(Ty), but the shape functions and dofs differ for k& > 2. Some global shape functions in
P$(75) and P5(7,) in dimension 2 are shown in Figure 19.2 for Lagrange elements. The function
shown in the left panel is continuous and piecewise affine, and it takes the value 1 at one mesh
vertex and the value 0 at all the other mesh vertices. Because its graph is reminiscent of a hat,
this function is often called hat basis function (and sometimes also Courant basis functions [84]).
The functions shown in the central and right panels are continuous and piecewise quadratic. The
function on the central panel takes the value 1 at one mesh vertex and the value 0 at all the other
mesh vertices, and it takes the value 0 at all the edge midpoints. The function in the right panel
takes the value 0 at all the mesh vertices, and it takes the value 1 at one edge midpoint and the
value 0 at the midpoint of all the other edges.

Let Ny, Ne, Ni, N. be the number of vertices, edges, faces, and cells in the mesh 7, (recall
that 7y, is assumed to be a matching mesh). For a simplicial Lagrange element, the number of

Lagrange nodes per edge that are not located at the extremities of the edge is (kzl) (if & > 2),

the number of Lagrange nodes per face that are not located at the boundary of the face is (kgl)

(if k£ > 3), and the number of Lagrange nodes per cell that not located at the boundary of the cell
is (kgl) (if £ > 4). These numbers are the same for the canonical hybrid finite element. We will
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Figure 19.2: Global shape functions in dimension 2: Py o (left) and Py o (center and right) Lagrange
finite elements.

establish in Chapter 21 that
dim(PE(Tn)) = Ny + ("7 Ne + (5 Ne + (751 Ne if d =3, (19.11a)

dim(PE(Tn)) = Ny + ("7 Ne + ("5 ") Ne if d =2, (19.11b)

with the convention that for natural numbers n,m, (77:1) = 0 if n < m. In the lowest-order

case (k = 1), we have dim(Pg (7)) = Ny, and the connectivity array j_dof coincides with the
double-entry array j_cv defined in §8.3.

19.2.2 H/(curl)-conforming subspace P¢(7;)

Let (I? , P, i’c) be one of the Nédélec finite elements of degree k > 0 described in Chapter 15.
The broken finite element space is

PY(Th) = {vn € L=(D) | i (v x) € P, VK € Ty}, (19.12)

with the covariant Piola transformation 9% (v) := Jk (v o Txk), and the corresponding H (curl)-
conforming subspace is

PS(Ty) i= {vn € PO°(Th) | [on]pxnr =0, YF € F3}. (19.13)

We have PZ(7p) C Z°P(D) = {v € LP(D)|Vxv € LP(D)} for all p € [1,00] (note that
Z%2(D) := H(curl; D)). A global shape function attached to an edge is shown in the left panel of
Figure 19.3 for the Ny 2 element. Notice that the tangential component is continuous across the
interface, but the normal component is not.

Let N, Nt, N. be the number of edges, faces, and cells in 7;,. We will show in Chapter 21 that

dim(Pg (7)) = (") Ne + 2(* 51 Ne+ 3(ME) Ve, if d =3,
dim(Pg(Tn)) = (") Ne +2("11) N, if d =2,
with the convention that () := 0 if n < m. In the lowest-order case (k = 0), we have

dim(P§(7p)) = Ne, and the connectivity array j-dof coincides with the double-entry array j_ce
defined in §8.3.
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Figure 19.3: Global shape functions for the lowest-order Nédélec (left) and Raviart—Thomas (right)
elements in dimension 2.

19.2.3 H/(div)-conforming subspace PZ(Ty,)

Let (IA( , P4, f‘d) be one of the Raviart-Thomas finite elements of degree k > 0 introduced in
Chapter 14. The broken finite element space is

P (Th) = {vn € L}(D) | ¢k (vni) € P4, VK € Tl (19.15)

with the contravariant Piola transformation 9% (v) := det(Jx)J ' (voTk). The corresponding
H (div)-conforming subspace is

PX(Ty) == {vn € P°(Th) | [on]pmr =0, VF € Fi}. (19.16)

We have PX(T,) C Z4P(D) := {v € LP(D)|V-w € LP(D)} for all p € [1,00] (note that
Z%42(D) := H(div; D)). A global shape function attached to a face is shown in the right panel of
Figure 19.3 for the RTy 2 element (the normal component is continuous across the interface, but
the tangential component is not). We will establish in Chapter 21 that

dim(P(Tr)) = ("1?) Ve + 3(*E?) N, if d =3, (19.17a)
dim(P(T5)) = (") Nt + 2(M2) N, if d =2, (19.17b)
with the convention that (") := 0 if n < m. Notice that the spaces P¢(T,) and PZ(7},) have the

same dimension when d = 2. In the lowest-order case (k = 0), we have dim(P§ (7)) = N, and
the connectivity array j_dof coincides with the double-entry array j_cf defined in §8.3.

19.3 Global interpolation operators

The goal of this section is to study the commuting and approximation properties of the global
interpolation operators in the conforming finite element subspaces Py (75;RY) with x € {g,c,d}.
Recall that g =1 if x =g and g =d if x € {¢,d} (and d = 3 if x = ¢). We start by introducing the
global spaces

V(D) = {v e L"(D;RY) | vjx € V¥(K), VK € Tn}, (19.18a)
V(D) = {v e V(D) | [v]: =0, VF € F}}, (19.18b)
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where V*(K) is the domain of the local interpolation operator 73 (see Definition 5.7). For instance,
owing to Theorem 18.8 and Theorem 18.10 and letting p € [1,00), admissible choices for these
spaces are as follows:

VE(D) = W*P(D), withs>2ifp>lors=difp=1, (19.19a)
V(D) :=W*P(D), withs>2ifp>Tlors=2ifp=1, (19.19b)
V4(D) == W*P(D), withs>Lifp>lors=1ifp=1 (19.19¢)

Recall that since Chapter 5 we have abused the notation regarding the definition of the dofs.
In particular, we have used the same symbols to denote the dofs in £(Pk;R) and the extended
dofs in L(V (K);R). We are going to be a little bit more careful in this chapter and in Chapters 20
and 21. More precisely, we are going to use the symbol o ; to denote dofs acting on functions
in P and the symbol 6k ; to denote the extension of ok ; acting on functions in V*(K). This
means that the local interpolation operator Zy : V¥(K) — Pk is s.t.

Ik () (@) ==Y oxi(v)0ki(®), VoK. (19.20)
ieN
We assume that the extension of the dofs is done in such a way that the following property holds
true (compare with (19.2)): For all v € V*P(D),
For all (K,4),(K’,i") in the same
[ve V¥(D)] = | connectivity class, we have . (19.21)
0K,i(VK) = 0K i (V")
In other words, for every function v in V*P(D), a necessary condition for v to be a member of
the subspace V*(D) is that, for all a € Ap, the quantity o ;(v|x) is independent of the choice of
the pair (K,i) in j_dof~!(a). (This condition is not sufficient since the knowledge of the values

of {oxki(vk)}ien does not uniquely determine the function vjg.) We then define the global
interpolation operator Zy : V(D) — P¥(Ty) s.t.

Ti(w)(x) = Y Ga(v)pa(®), VoD, (19.22)
a€Ap

where 74 (v) is defined by setting ,(v) := 0k i(v|x) for all (K, i) in the connectivity class a, i.e.,

j_dof(K,i) = a, which makes sense owing to (19.21). The definitions of &, and ¢, imply that
I,’;(’U)u( = Z&K)i(’l)u{)eK)i ZI}(((’U‘K), VK € Ty. (19.23)

ieN
The above construction leads to the global interpolation operators:

Ty : VE(D) = PE(Tw),  Tp, : VE(D) — P(Th), (19.24a)
Ch VD) = PUTL), I, : V(D) = PATL). (19.24D)
for Lagrange, canonical hybrid, Nédélec, and Raviart—Thomas elements, respectively. We indicate
explicitly the degree of the underlying finite element in the notation to avoid ambiguities. (Recall

that & > 1 in (19.24a) and k > 0 in (19.24b).) Let us consider for k > 0 the L?-orthogonal
projection

IE ), VP (D) — P2(Th) = {v, € Lo(D) | % (vnx) € P°, VK € Th}, (19.25)
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where VP(D) := LY(D), ¢% (v) := det(J ) (voTk ), and pb = Pi.a if K is a simplex and PP := Qk.a
is K is a cuboid. Note that since the mesh is affine, the factor det(Jx) is irrelevant in the definition
of PP(Th).

Lemma 19.6 (de Rham complex). Let us set

VE(D):={f € Ve&D)|VfeVD)}, (19.26a)
Ve(D):={ge VD) |VxgecVYD)}, (19.26b)
VYD) :={geVYD)|V-gec VD). (19.26¢)

Let k € N. The following diagrams commute:

. . v - V-
VE(D) Ve(D) —>—~ V(D V(D)
|2 |z |z z, 1927
V x V.
B (Tn) PS(Th) PY(Th) P (Th)
Proof. Combine Lemma 16.16 (and Remark 16.18) with (19.23). O

Remark 19.7 (Interpolation with extended domain). The commuting diagram (19.27) shows
that we can extend the domain of Z ;, to V(D) := V(D) + VV#(D), that of Is)h to V4(D) :=
V4(D)+VxVe(D), and that of IE)h to VP(D) := V(D)4 V-VP(D). Keeping the same notation
for the differential operators, this leads to the following commuting diagrams:

V(D) VD) — e V(D) 7o(D)
lI:gchl,h lfi,h lIfih VAN (19.28)
\V4 .
P\ (Th) PS(Th) ——— PY(Th) P2(Th)

For instance, for all v = w 4+ V¢ € V(D) with w € V(D) and ¢ € V&(D), we set I (v) =
Z¢ p(w) + VIE, , (¥). To verify that Z¢ , (v) is well defined, we observe that if v = w; 4+ Vi)
w39 —|—ng, then 2/11 —2/12 S Vg(D) so that V(I’%+17h(¢1 —2/12)) == Izh(V(l/Jl —’lﬂg)) = I,Ci_’h(’lUQ — w1
Thus, we have Z¢ , (w1) + VIE, |, (¢1) =I5, (we) + VIE | (¥2).

~—

O

Let us now turn to the approximation properties of the global interpolation operators defined
in (19.24). Henceforth, the subscript k is omitted when the context is unambiguous. The following
results follow from the localization property (19.23) combined with the corresponding local inter-
polation results, and from Lemma 19.6 for the approximation properties on the divergence and the
curl.

Corollary 19.8 (H'!-conforming interpolation). Let (7;,)nen be a shape-reqular sequence of
d

affine matching meshes. Let p € [1,00]. Let | be the smallest integer such that | > > ifp>1
orl:=d if p=1. The following estimates hold true, uniformly w.r.t. p, with either I, = I :
Ve&(D) — PE(Ty) or I, =IF : V&(D) — PE(Th), k > 1:

(i) If I < k41, then for every integers r € {l:k + 1} and m € {0:r}, all v € W™P(D), and all
heH,

1
v —Ih(’l))|Wm,p(7-h) <c ( E h:;( )|U|€VT,P(K)> , (19.29)
KeTy,
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for p < 0o, and [v — Ly (v)|ywm.e (1) < cmaxger, M " |vlwre (k) -
(ii) If i > k + 1, then for every integer m € {0:k + 1} allv e Wl P(D), and all h € H,

|0 = Zn(0) |wma () < C< Z Z hp(n m)| |WnP(K)> , (19.30)

KeTn ne{k+1:1}

for p < 00, and [v — Ly (v)|wm.e(7,) < cMAXKeT) ne{bt1:0} Mg V|wn.oe (k)

Corollary 19.9 (H (curl)-conforming interpolation). Let (Ty)nen be a shape-reqular sequence
of affine matching meshes. Let p € [1,00] and let l :=1ifp > 2 and ] := 2 if p € [1,2]. The
following holds true, uniformly w.r.t. p, with Z;, : V(D) — P(Tp), k > 0:

(i) If p > 2 orif p € [1,2] and k > 1, then for every integers r € {l:k + 1} and m € {0:r}, all
veW"P(D), and all h € H,

=

=Tl <o (2 1 0lyn) 193)
KeTh
for p < oo, and |v — If (v) [wm.(1,) < cmaxgeT;, M "[V|wree (k)

(i) If p € [1,2] and k = 0, then for every integer m E {O 1}, allv € W2P(D), and all h € H,

v — T () wmrrs) < © (Z S R oy ) (19.32)

KeTh ne{1,2}

=

for p < o0, and [v — I (v)|wm.(75,) < cMaAXg T, nef1,2} M " [0|wn. (k).
(iii) For every integers r € {1:k + 1} and m € {0:r}, all v € V(D) with Vxv € W™P(D), and
al h € H,

C p(r—m) %
(VX (v — 5 (0)) [wmo(T) < c( DR S LA L )) , (19.33)
KeTh
for p < oo, and |Vx(v — I} (v))|[wm.e(7;,) < cmaxger, hie ™[V xv|wroo (k).

Corollary 19.10 (H (div)-conforming interpolation). Let (Ty)nen be a shape-regular sequence
of affine matching meshes. Let p € [1,00]. The following holds true, uniformly w.r.t. p, with
¢ v4D) = PY(Th), k > 0:

(i) For every integers r € {1:k+ 1} and m € {0:r}, allv € W"P(D), and all h € H,

1
v =T (v)[wmr (1) < ( S T ol ) (19.34)
KeTh
for p < oo, and [v — I} (v) |wm.(7,) < cmaxger, My " v|wre(k)-

(ii) For every integers r € {0:k + 1} and m € {0: T} all v € VYD) with V-v € W™P(D), and all
heH,

1
V-0 = By ¢ X T ) (19.35)
KeTy,

for p < oo, and |V-(v — I} (v)) |wm.eo(17,) < cmaxger, Mg ™| V-vlwee.n (1)
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19.4 Subspaces with zero boundary trace

In this section, we briefly review the main changes to be applied when one wishes to enforce

homogeneous boundary conditions to the functions in PY(7;). Let p € [1,00) and let s > % if

p>1land s =dif p=1. We consider the trace operator v* : WP (T,; R?) — L'(dD;R?) defined
by

7E(v) :==vjap (g=t=1), (19.36a)
Y(v) :=wvpxn (¢=t=d=3), (19.36b)
() :==vpm  (¢=d,t=1), (19.36c)

where m is the outward unit normal to D. Notice that v*(v)|r = 7%, p(v|k,) for all F € F2 with
F = 0K;N9D and v, p is the operator defined in (18.7) for the mesh cell K;. We are interested
in the following subspace of Py (75):

Po(Th) = {on € PX(Ta) | 7*(v) = 0}, (19.37)
Definition 19.11 (Boundary & internal classes). We say that a connectivity class a € Ay,
is a boundary connectivity class if and only if o,(v) = 0 for all v € P}((Tn). The collection of
boundary connectivity classes is denoted by Ag. The classes in A, == Ay, \ A2 are called internal

connectivity classes.

We assume that the following properties hold true:

Yo, € PX(Th),  [v¥(vn) =0] <= [oa(vn) =0, Va € A?], (19.38a)
Yo € V¥(D), [7*(v) = 0] = [Ga(v) =0, Va € AY]. (19.38b)

We are going to show in Chapters 20 and 21 that these properties are indeed satisfied by most of
the finite elements considered in this book.

Example 19.12 (Aﬁ). For Lagrange elements, a € AZ iff o, is an evaluation at a node located
on 0D. For canonical hybrid elements, a € A‘Z iff 0, is an evaluation at a vertex located on 0D,
or g, is an integral over an edge or a face located on 9D. For Nédélec elements, a € Ag iff o, is
an integral over an edge or a face located on 9D, and for Raviart—Thomas elements, a € Ag iff o,
is an integral over a face located on 9D. O

Proposition 19.13 (Basis). {@a}acay is a basis of P)o(Tn), and {04 }ac s is a basis of the dual

space L(Po(Th); R).

Proof. See Exercise 19.3. O
Let V*(D) be defined in (19.19). Since functions in V*(D) have a y*-trace on 9D, it is

legitimate to set
V§(D) :={v e V¥(D) | v*(v) = 0}. (19.39)

The interpolation operator with prescribed boundary conditions Zj, : V(D) — P{o(7Th) acts as
follows:

Tio(0)(x) == Y Ga(v)ga(®),  Vax €D, (19.40)
acAj
and (19.38b) implies that
Ti(0) = Tiw), Yo e V(D). (19.41)

Hence, the approximation properties of Z}, are identical to those of the restriction of Zj to V(D).
Moreover, we have the following commuting properties.
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Lemma 19.14 (de Rham complex with boundary prescription). Let VE(D) = {v €
V(D) | v*(v) = 0} with V(D) defined in (19.26), and

V(D) :={v e VP(D):=L"(D) | (v,1)r2(py = 0}, (19.42a)
P2 o(Th) :={vn € PY(Th) | (vn,1)12(p) = 0}. (19.42b)

Let k € N. The following diagrams commute:

L . \V4 . V-
£(D) Ve(D) —=» V(D) V(D)
[T [T |70 |7 (19.43
\Y \Y \V&
P o(Th) —— PEo(Th) ——— P3(Th) P2y (Th)

Proof. Observe that the tangential boundary trace of V f is zero if v8(f) = 0 and that the normal
trace of Vg is zero if 7°(g) = 0. O

Remark 19.15 (Extensions). The above argumentation can be adapted to enforce a zero trace
on a part of the boundary that corresponds to a strict subset of the boundary faces in ]-",? . The
details are left to the reader. Furthermore, the commuting diagram (19.43) can be rewritten by
using the spaces Vi (D), V(D) + VV3 (D), Vg{(D) + VxVE(D), and VP (D) + V-V (D) instead
of V§(D), V(D). Vi(D), V(D). O

Exercises

Exercise 19.1 (Connectivity classes). Consider the mesh shown in Figure 19.4 and let P§(7y)
be the associated finite element space composed of continuous Lagrange Ps finite elements. Assume
that the enumeration of the Lagrange nodes has been done with the increasing vertex-index tech-
nique (see (10.10)). (i) What is the domain and the codomain of j_dof? (ii) Identify j_dof~!(8)
and j_dof~1(13). (iii) Identify 75 and Tio.

Figure 19.4: Illustration for Exercise 19.1.

Exercise 19.2 (Stiffness, mass, incidence matrices). Let {\,},c(1.n,} be the global shape
functions in P{(7Tx). Let {0y} 1. n.} be the global shape functions in Pg(75). (i) Recall the in-
cidence matrix M € RMe*Nv defined in Remark 10.2. Prove that V), = > ome{1: Ny Mimnbm for
alln € {1:Ny}. (Hint: compute oy, (VA,,) where {0}, }meq1: v,} is the dual basis of {0, }req1: N0y
i.e., the associated dofs.) (i) Let A € RM>*Nv he the Courant stiffness matrix with entries
Ann = [, VAV Ay dz for all n,n’ € {1: N}, and let ' € RN<*Ne be the Nédélec mass matrix
with entries Ny := [}, 00 da for all m,m’ € {1:N.}. Prove that A = (M) TN MeY.
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Exercise 19.3 (Zero trace). (i) Show that ¢, € Pyy(Ts) for all a € Aj. (ii) Prove Proposi-
tion 19.13.

Exercise 19.4 (Approximability in L?). Let p € [1,00). Prove that limp o inf,, ¢ ps(7;,) [lv —
Upl|lLe(py = 0 for all v € LP(D). (Hint: by density.)

Exercise 19.5 (Hermite). Let T := {[xi, 2i11]}ic 0. 1} be a mesh of the interval D := (a,b). Re-
call the Hermite finite element from Exercise 5.4. Specify global shape functions {¢; 0, ¢i1 }icfo: 141}
in Hy, := {vy, € C*(D) | Vi € {0:1}, vp(z;,0,,,] € P3}. (Hint: consider values of the function or
of its derivative at the mesh nodes.) Can the bicubic Hermite rectangular finite element from
Exercise 6.8 be used to enforce C'-continuity for d = 27



Chapter 20
Face gluing

The goal of this chapter and the following one is to construct the connectivity array j_dof intro-
duced in the previous chapter so that the two structural properties (19.2) and (19.3) hold true.
In the present chapter, we focus on (19.2), and more specifically we are going to see how we can
enforce the zero-jump condition [v]% = 0 by means of the degrees of freedom (dofs) on the two
mesh cells sharing the interface F' € Fj for vj, in the broken finite element space P ’b(ﬁ). In
particular, we identify two key structural assumptions on the dofs of the finite element making this
construction possible. The first assumption is called face unisolvence (see Assumption 20.1), and
the second one is called face matching (see Assumption 20.3). We first introduce these ideas with
Lagrange elements to make the argumentation easier to understand. Then we generalize the con-
cepts to the Nédélec and the Raviart—Thomas finite elements in a unified setting that encompasses
all the finite elements considered in the book. The two main results of this chapter are Lemma 20.4
for Lagrange elements and Lemma 20.15 for the general situation. In the entire chapter, D is a
polyhedron in R? and 7j is an oriented matching mesh covering D exactly (see Chapter 10 on
mesh orientation).

20.1 The two gluing assumptions (Lagrange)
For Lagrange elements our aim is to construct the H!-conforming subspace
PE(Th) == {vn € PE(T1) | [vn]% = 0, VF € F¢}, (20.1)

where Pkg’b(’ﬁl) is a broken finite element space and [-]% := [-]r is the jump operator across the
mesh interfaces introduced in Definition 8.10. Recall that we have PE(T;,) = PE"(7,) N H'(D).

The Lagrange nodes of the reference cell K are denoted by {a;}ien so that the dofs 5=
{G:}ien are s.t. ,(p) := p(a;) for all i € N and all p € P. The Lagrange nodes of K € Tj, are
denoted by {ak,; := Tk (@;)}ien, where Tk : K — K is the geometric mapping. The dofs in K are
s.t. ox.i(p) = plax,) for all i € N and all p € Pg with Pg := (%)~ (P), where ¢% (v) := vo Tk
is the pullback by the geometric mapping. We do not assume in this section that the geometric
mapping T is affine.

We now formalize the structure of the reference element that will allow us to enforce the zero-
jump condition in (20.1). We make two assumptions which we will show hold true in the next
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section for the simplicial and the tensor-product Lagrange elements. Our first key assumption is
the following.

Assumption 20.1 (Face unisolvence). Let Fbea face of I?, i.e., Fe Frg and let N 5 CN
be the collection of the indices of the Lagrange nodes in K located on F. We assume that

vpe P, [6i(d) =0,Vie Nz z] < [Pz =0]. (20.2)

__ Let K be a mesh cell and let F' be a face of K., i.e., F' € Fk. Let F be the face of K s.t.
F = Tgl(F). Let Nk, r C N be the collection of the indices of the Lagrange nodes in K located
on F. The above definitions imply that

lieNkr] <= laki € F] <= (@ € F] < [i€N; 7], (20.3)

that is, we have
NKxF:NI?,f«“:NI?,TI;l(F)v VK € Tp, VF € Fk. (20.4)

We define the trace space P r = span{0x ;|r }ieny > 50 that Pk p = *y%F(PK), where we recall
that the trace map 7%1; is defined by setting 7%(,}?(“) = v|p for all v € Pg. We define the set
of the dofs associated with the Lagrange nodes located on F', X i p := {UK,F,i}ieNK,Fa by setting
ok ri(q) == qlak;) for all i € Nk p and all ¢ € Pk p. Notice that ok g; acts on functions in
Pk (i-e., functions defined on F'), whereas ok ; acts on functions in Pk (i.e., functions defined
on K).

Let us state an important consequence of Assumption 20.1.

Lemma 20.2 (Face element). Let K € T;, and F € Fi. Under Assumption 20.1, the triple
(F, Px.r, XK r) is a finite element.

Proof. We use Remark 5.3 to prove unisolvence. Since we have
ok.ri(0k,ir) = Oxqrlak;) = Ok.ilax ;) = dij,

for all 4, j € Nk r, we infer that the family {0 ;|p}icns » is linearly independent, which implies
that dim(Pg r) = card(Xk r). Let now ¢ € Pk g be s.t. ok ri(q) = 0 for all i € Nk p. By
definition of Pk p and Pk, there is p € Pst. g= (po Tgl)‘F. Hence, for all i € /\/}?ﬁ = Nk.r,
we have ak; € F' and

~

5:(p) = p@:) = (o TN aki) = (Po Ti ) rlak.:) = qlak) = ok ri(q) = 0.
Assumption 20.1 (face unisolvence) implies that ]3| 7 =0, so that ¢ = 0. O

Recall that since the mesh is matching, any interface F' := 0K, N 0K, € F} is a face of K; and
a face of K, i.e., F € Fg, N Fk,. Our second key assumption is formulated as follows.

Assumption 20.3 (Face matching). For all F := 0K; N 0K, € F;, we have (i) Pk, r =
Py, . p=: Pp and (i) Xk, r = Xk, r =: Zp, i.e., there is a bijective map xir : N, 7 = Nk,
s.t.ag, i = @k, y,. ;) for alli € Nk, r.

We are now in a position to state the main result of this section.

Lemma 20.4 (Zero-jump). Let v, € Pkg’b(ﬂL) and F' € Fp. Under Assumptions 20.1 and 20.3,
the following equivalence holds true:

[[vr]lr = 0] <= [vnk,(ax, i) = vnk, (@K, x.5) Vi € Nk, 7] (20.5)
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Proof. Let v, € P}f’b(ﬁ) and F' € F;. Let v; be the restriction of vk, to F, and let v, be the
restriction of vy g, to F. Since vy, € P}f’b(ﬁ), we have vy € Pk, r and v, € Pk, . Owing to
Assumption 20.3, we also have v, € Pk, r, i.e., [us]Fr = vi — v, € Pk, p. Since (F, Pk, p, Xk, F)
is a finite element owing to Lemma 20.2 (which follows from Assumption 20.1), we infer that
[['Uh]]F =y —wv, = 0iff (vl — Ur)(aKl,i) = 0 for all 7 € NK;,F- But vl(aKl_,i) = vh|Kl(aKl7i)
and, owing to Assumption 20.3, we also have v,(ax, ;) = vnk, (@K, i) = Vnk, (@K, y,.(i)). This
proves (20.5). O

20.2 Verification of the assumptions (Lagrange)

In this section, we verify Assumptions 20.1 and 20.3 for Lagrange Py 4 elements when K is a

simplex and for Lagrange Qy, 4 elements when K is a cuboid. Since these two assumptions trivially
hold true WhenAd = 1, we assume in this section that d > 2. We do not assume that the geometric
mapping Tk : K — K is affine.

20.2.1 Face unisolvence

Assumption 20.1 has been proved in Lemma 6.15 for Lagrange Q4 elements and in Lemma 7.13
for Lagrange P, 4 elements. Note that the face unisolvence assumption is not met for the Crouzeix—
Raviart element.

20.2.2 The space Py p

Let us now identify the space Pg p for all K € T, and all F' € Fg. Let us set F = Tgl(F).

Then F € Fg, ie, F is a face of the reference cell K. Let F4=! be the unit simplex in R4~ if

K is the unit simplex of R? or let F4=1 be the unit cuboid of R~ if K is the unit cuboid of RY.
Since both F'4~! and F are either (d — 1)-dimensional simplices or cuboids, it is always possible

to construct an affine bijective mapping T from F4=1 to F. Let us denote
Tp: PV 5 F,  Txp=TgpoTs: F"' 5 F (20.6)

Lemma 20.5 (Characterization of P r). Let K be either a simplex or a cuboid. Then Py p =
Pg_l ) TglF where Pg_l =Pr 41 if K is a simplex and Pg_l = Qp,a—1 if K is a cuboid.

Proof. Let q € Pk p. By definition of Pk p, there is p € Pst.
¢= 0T )ir =P oTxir= BpoTs) o Ty oTr) ' = BpoTs) o Ty p-

Since ﬁ‘ﬁOTﬁ € ﬁg_l (see Lemma 6.13 or Lemma 7.10 depending on the nature of 13), we conclude

that g € ﬁg_l o TglF This shows that Pg g C ﬁg_l o TI}IF The converse inclusion is proved by
similar arguments. O

20.2.3 Face matching

We now establish that PKL,F = PKT-,F and EKL.,F = EKT,F-
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Lemma 20.6 (Face matching, (i)). Assume that K is either a simplex or a cuboid. Let F :=
0K, NOK, € ]:}CL) Then PKL,F = PKT,F-

Proof. Let us set E = Tgll (F) and F, = TI;Tl (F). Since the mesh is matching, F and F, are
faces of K. By construction, the mapping
T-! o : ﬁT — 13;

K||F ° 1K, |F,

is bijective, and turns out to be affine even when the mappings Tk, and Tk, are nonaffine as shown
in Exercise 20.1. Then the mapping S,; : F¢=! — Fi=1 s t.

1 _ -1 -1
Srl = TKL,F o TK,\,F = Tﬁz oT o TK

K||F oTp

| Fy

: : -1 -1
is affine (because the mappings Tﬁz , TKL‘ r° Ty 5>

ure 20.1. Since ﬁg_l =Py q-1 or ]3,?_1 = Q,qg—1 depending on the nature of IA(, we infer that

and TE are affine) and bijective; see Fig-

ﬁg_l is invariant under S, i.e., ﬁg_l 0S8, = ﬁg_l. Using this property together with the identity
Pxp=Pi o iy proved in Lemma 20.5, we infer that

_ pd—1 —1 _ pd-1 —1  _ pd-1 -1 _
Pr,r =P, OTKL.,F—Pk O,S'HOTKT_’]‘,;—PIC OTKT,F—PKMF- O

Figure 20.1: Two-dimensional example (d = 2): geometric mappings associated with an interface
F, the reference faces F; and F,, and the unit segment F% 1.

To establish that Xk, p = Xk, r for a general set of Lagrange nodes in K , we formulate a
symmetry assumption on the Lagrange nodes located on the faces of K. This assumption turns
out to be sufficient in order to establish that Xk, r = Xk, p. Combined with the result from
Lemma 20.6, this allows us to conclude that Assumption 20.3 (face matching) is indeed satisfied.

Assumption 20.7 (Invariance byAvertex permutation). We assume that there is a set
{§m}m€/\/ﬁd71 of Lagrange nodes in F4', with Nga_y = {1:nf} for some integer nt > 1, s.t.
the following holds true: (i) The set {Sim}menp, , is invariant under any vertex permutation of
Fa=1_ (i) For every face F of K, {T5(8m) tmenpq 1 are the Lagrange nodes on F.

Assumption 20.7(i) means that for every affine bijective mapping S : F4~! — Fd=1 there is
a permutation xs of Np,_, such that S(8,,) = 8y 5(m) for all m € Np,_,. Assumption 20.7(ii)
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Figure 20.2: Face (segment) F9=1 with nf := 3 Lagrange nodes 81, 85, 83 mapped by T to the three
Lagrange nodes on F'. The enumeration of the Lagrange nodes of K implies that N & p=11,3,5}
and that j3¢(1) =3, j3£(2) =5, j%(3) = L.

means that card(Ng 7) = n' is independent of the face F of K and that, for every Fer 72, there
is a bijective map j%c : Nga—» = Ny z such that (see Figure 20.2)

Tﬁ(/S\m) = a-fc(m), Vm S Nﬁd—l- (207)

IF

Example 20.8 (Qy 4 Lagrange elements). After inspection of Proposition 6.14 on the reference
cuboid K = [0,1]¢, we realize that Assumption 20.7 holds true for tensor-product Lagrange
elements provided that for every i € {1:d}, the set of points {a;,}ico:} is such that a;; = oy for
every [ € {0:k}, where the points 0 = ag < ... < ag, = 1 are all distinct in the interval [0,1] and
satisfy the symmetry property oy = 1 —«y—; for all [ € {0: L%J }. The Gauss—Lobatto nodes satisfy
these assumptions (up to rescaling from [—1,1] to [0, 1]); see §6.2. O

Example 20.9 (P 4 Lagrange elements). The simplicial Lagrange element described in Propo-
sition 7.12 also satisfies the assumption on invariance by vertex permutation. In dimension two,
for instance, the edge nodes are invariant under symmetry about the midpoint as shown in the
left panel of Figure 20.3 (for k = 2). Note that it is possible to use a set of Lagrange nodes that
is different from the one introduced in Proposition 7.12 provided the vertex permutation assump-
tion holds true (in addition to the face unisolvence). For instance, one can use the Fekete points
mentioned in Remark 7.14. (|

AV VA VAN

Figure 20.3: Py 5 Lagrange element: two-dimensional example (left) and counterexample (center)
for Assumption 20.3 (the triangles K; and K, are drawn slightly apart). In the rightmost panel,
Assumption 20.3 is satisfied but not Assumption 20.7. This illustrates the fact that Assump-
tion 20.7 is not needed to establish Assumption 20.3 if one enforces extra constraints on the way
adjacent mesh cells come into contact.

Lemma 20.10 (Face matching, (ii)). Assume that K is either a simplez or a cuboid. Let
F = 0K, N 0K, € Fy. Let Assumption 20.7 on invariance by vertex permutation be fulfilled.
Then EKZ,F = EK,‘,F~

Proof. Let i € Nk, p = ./\/'f( 7 and let ag, ; be the corresponding Lagrange node of K, located

on F'. Then TI;Tl (ak, i) = a; is a Lagrange node on F.. Let m € Nga-1 be such that i = j%f‘ (m),
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that is, @; = Tp (8,,). Since we have established above that the mapping S,; := Tﬁjl o lell‘F o
s 1

TKT |F,

for all m € Ng, ;. Then the identity Syi(8;) = 8yg (m) means that (T 7, © T: )(8m) =

(T

have

0Ty is affine, there is a permutation xs,, : Nga—1 = Npa_ such that S.(5,,) = gXSTz (m)

B © TE)(SXSTZ (m)), Which can also be rewritten as Or,5 (m) = aKhjfﬁ::L( Hence, we

xs,, (m))

Tk Fyie (m) (@) = 4@k, 5z (m)) = 1(ax 5 (s, (m))) = TR P (xs,, (m) (2)

for all ¢ € Pp and all m € Nz,_,. This proves that X, r = Xk, r since j%cl °Xs,, © (jﬁ)*1 is

bijective. O

Remark 20.11 (Serendipity and prismatic elements). The reader is invited to verify that
the face unisolvence assumption 20.1 holds true also for the serendipity elements described in §6.4.3
and for the prismatic elements described in Remark 7.16. The face matching assumption 20.3 holds
true for the serendipity elements since the face dofs are the same as those of the corresponding
Qg element. The assumption 20.3 can also be shown to hold true for the prismatic elements
provided the Lagrange nodes on the triangular faces and the Lagrange nodes on the quadrangular
faces each satisfy the vertex permutation assumption. O

20.3 Generalization of the two gluing assumptions

In this section, we generalize the theory developed in §20.1 to enforce the jump condition [vp, ][5 = 0
across all the mesh interfaces F' € Fy for x € {g,c,d} and v), € P,f’b(ﬂl;Rq). We are going to
rephrase §20.1 in a slightly more abstract language. Recall from (18.8) that [vs]% := i, p(vnk,)—
Y, F(Unk,) With I := 0K; N 0K, and the trace operator 7j  defined in (18.7) for every mesh
cell K € T, and every face F' € Fi of K. We drop the superscript x whenever the context is
unambiguous.

We start by identifying two structural properties of the finite element which we will call face
unisolvence and face matching assumptions. We proceed in two steps. First, given a mesh cell
K € Ty, we use the local finite element (K, Px, Y ) with local shape functions {0k ;}ien and
local dofs {0k i}ien, and invoke the face unisolvence assumption to construct a finite element
attached to each face F' € Fx. Then for every mesh interface F' := 0K; N 0K, € F;, we invoke
the face matching assumption to make sure that the two face elements built on F' from K; and
from K, are identical (note that F € Fg, N Fk, since the mesh is matching). The theory is
illustrated with various examples in §20.4. In this section (and the next one), we restrict the maps
{ok,i}tien and vk p to Pg, so that the kernels of these maps are to be understood as subspaces
of Pk (for simplicity, we keep the same notation for the restrictions). Our first key assumption is
the following.

Assumption 20.12 (Face unisolvence). For all K € Tj, and all F € Fg, there is a nonempty
subset N p C N s.t. ker(vi p) = mieNK - ker(ok ), i.e., for all p € Pk,

[oki(p) =0,Vi e Ngr]| <= [vx,r(p) =0]. (20.8)
Equivalently, we have ker(vx r) = span{fx i tigns p -

Let Nk, rp C N be defined according to Assumption 20.12. Let us define the corresponding
trace space Pk p by setting

Pr r = vk r(Pr) = span{yk r (0K i) ieNw - (20.9)
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Notice that i p(0k,;) # 0 for all i € Nk g by construction. The inclusion ker(yk r) C ker(ok,;)
for all i € Nk g (which follows from Assumption 20.12) implies that there is a unique linear map
ok, Fi: Prp— Rst ok =0k riovkr (see Exercise 20.2). Finally, let us set

Yk r = {0k FitieNgr- (20.10)
We can now state an important consequence of Assumption 20.12.

Lemma 20.13 (Face element). Let K € T, and F € Fg. Under Assumption 20.12, the triple
(F, Pg.p, XKk ) 1S a finite element.

Proof. We use Remark 5.3 to prove unisolvence. Since Assumption 20.12 means that ker(vx ) =
span{fk i }ign r, we infer that dim(ker(vx r)) = card(N)—card(Ng ). The rank nullity theorem
implies that

dim(PKyp) = dlm(PK) — dim(ker(”yKﬁp)) = card(./\/Kﬁp) = card(EK,F).

Let now g € Pk r be s.t. ok pi(q) =0 for all i € N p. The definition of Pk g implies that there
is p € Pk s.t. ¢ = yk,r(p). Hence, ok i(p) = ok ri(q) = 0 for all i € N p. In other words,
P € Nieny » ker(oxk,i). Hence, p € ker(vx, 7). We conclude that ¢ = v, r(p) = 0. O

Let (I? , ﬁ, b5 ) be the reference element and let 1) be the functional transformation that has
been used to generate (K, Pi,X k). Let F' € Fi and consider the face F := lel(F) of K. We are
going to assume that for all p € Pk, vr,r(p) = 0 iff v #(p) = 0 with p:= ¢k (p), i.e., we assume
that

ker(vi,r) = ker(vz g © VK- (20.11)

This assumption holds true if i is the pullback by the geometric mapping Tk or one of the

Piola transformations. Then Assumption 20.12 can be formulated on the reference element,

and this assumption amounts to requiring that there exists a nonempty subset A #p C N s.t.
nieNgﬁ ker(c;) = ker(yz 7). Then we have

NKF:NI?,ﬁ:NI?,TI;I(F)’ VK €Ty, VF € Fk. (20.12)

Our second key assumption is the following.

Assumption 20.14 (Face matching). For all F := 0K, N 0K, € Fy, we have (i) P, r =
Py . p=: Pp and (i) Xk, r = Xk, r =: Zp, i.e., there is a bijective map xir : N, v = Nk,
s.t. 0K, Fi = Ok, Fix. (i) for all i € Nk, F.

We are now in a position to state the main result of this section.

Lemma 20.15 (Zero y-jump). Let vy, € PP(Ti;R?) and F € F;. Under Assumptions 20.12
and 20.14, the following equivalence holds true:

[[[Uh]]p = 0] <~ [UKL,i(Uh\KL) = UKszT(i)(UMKr)’ Vi e NK;,F]- (20.13)

Proof. Since vy, € PP(Tp;R?), we have vn i, € Pk, and vk, € Pg,. Set v := vk, r(vpx,) and
v = VK, F(Un Kk, ), 80 that [vp,]F = v —v,. Note that v; € vk, r(Pk,) = Pr, . Similarly, v, €
Py, r, and Assumption 20.14 implies that v, € Pk, p, i.e., vj—v, € Pk, p. Since (F, Pk, r, YKk, F)
is a finite element owing to Lemma 20.13 (which follows from Assumption 20.12), we infer that
lonlrp = v — v, = 0 iff o, pi(vy —v,) = 0 for all i € Nk, r. To conclude the proof, we
need to show that ok, ri(vi — vr) = 0K,i(VhK,) — OK, xi.())(Vn|Kk, ). On the one hand we have
o, Fi(v) = 0k, Fi(v,F (U k) = 0K,,i(Un K, ), and on the other hand Assumption 20.14 implies
that ok, ri(vr) = 0k, F. () (V) = Ok, P, () (VP (VR K,)) = 0K, () (Vn K, )- O
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20.4 \Verification of the two gluing assumptions

We now present examples of finite elements satisfying the two structural assumptions of §20.3.
These assumptions have already been shown in §20.2 to hold true for Lagrange elements. In the
present section, we focus on affine simplicial matching meshes and assume that the mesh is oriented
in a generation-compatible way (see §10.2). We invite the reader to verify that these examples can
be adapted to affine Cartesian meshes.

20.4.1 Raviart—-Thomas elements

Let £ > 0 and let us show that the RTj ; Raviart-Thomas elements introduced in §14.3 can
be used to build discrete functions with integrable divergence. Let K € Tj, and F € Fx. We
consider the yd-trace defined by (18.7c), i.e., ”y‘;()F(v) = v|p-np where np is the unit normal

vector orienting F'. Following §14.4, consider the face dofs U%ym('v) = |—},‘ Jr(vve)(Gmo lelF) ds,
where vp = [Fnp, Tk p =Ty poTp : 541 & F, Ty : 541 — F is an affine bijective mapping,
{Cntmeqiing,y is a fixed basis of Py q—1, and ni, == dim(Py,q—1) (see (14.12a)).

Lemma 20.16 (Face unisolvence). Assumption 20.12 holds true with
Nip:={i € N'| 3m(i) € {1:nf},}, 0k = 0} (20.14)
i.e., Nk g collects all the indices of the dofs involving an integral over F.

Proof. We first observe that the subset Nk g is nonempty. Since 7?(7 r(v) = 0 implies that

vip-np = 0 and since np and vp are collinear, we infer that o ;(v) = 0 for all i € NK,F
and all v € ker(v§ p), ie., ker(v§ p) C MNienr, , Ker(ok,i). The converse inclusion results from
Lemma 14.14. Hence, Assumption 20.12 holds true. [l

Lemma 20.17 (P ). We have Pt ; := v p(RTyq) = P g1 0 Ty

Proof. We have PI‘; p CPra_10 lelF owing to Lemma 14.7, and the equality follows by observing
that dim(PId(’F) =nf, = dim(Pk4-1). O

Let us set Ng,, = {l:nf,} and for all F e Fg, let us introduce the bijective map j%f :
Nga—+ = N p defined by setting 3% (m) := i for all m € Ng, ., where i is s.t. 5; = o . Then

Lemma 20.16 applied on the reference element means that N 7 = j%(Ngs1). Owing to (20.12),
we infer that we have for all K € T, and all F' € Fk,

Nir =Ng g1y = j;%l(F) (Nga-1)- (20.15)

Lemma 20.18 (Face matching). (i) (F, Pid(,sz(}{,F) is a modal scalar-valued finite element
with 0?{71;71-(@5) = [p(Gm o lelF)gbds, 1= j;"fgl(F)(m)’ for all ¢ € PI%F and all m € Nga_,.
(ii) For all F := 0K, N 0K, € F;, we have PI%hF = PI%T)F =: Pd. (iii) E‘}(hF = E?{,‘,F =: ¢
if the basis {Qm}me/\/gdfl of Pi.a—1 is invariant under any vertex permutation of §d_1, i.e., for

every affine bijective mapping S : Sd-1 §d71, there exists a permutation xs of Nga—, such that
Cm ©8 = Cyg(m) for allm € Ngg_,.
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Proof. (i) The first claim is a consequence of Lemma 20.17 and of the definition of the face dofs of
the RT}, 4 element.

(ii) Let F := 0K; N 0K, € Fy, and set F = Tgll (F) and F, = TI;TI (F). Recalling that the
mapping S,; = lezl,F o Tk, r is affine, as shown in Figure 20.1, we observe that

d —1 -1 -1 d
Py, p =Pra-10Ty p= (Pk,d—10Sp) o Kok =Prd-10Ty p=Pg p

as in the proof of Lemma 20.6.
(iii) Letting xs,, be the index permutation associated with the mapping S,;, the following holds
true for all m € Ng,_,

Thomsg @ = [ o Tlp)ods = [ (GnoSiuo Tl ppods

N /F(CXSN (m © Toe £)0ds = 0%, 3ot (s, () (@):

i.e., any dof 0’?([ g in E‘}Q r is also in Z(Iiﬂ r» and conversely. O

Remark 20.19 (Basis). Let us give two examples of a permutation-invariant basis of Py 4—_1.
Let {So,...,84_1} be the vertices of S%~1. Let Aj4-1 := {a € N¢71 | |a| < k} and consider the
Lagrange nodes {@a}aca, . defined by @o := 80 + > ,c(1.4-1y % (8i — S0). Then the Lagrange
polynomials associated with {@a}aca, ,_, form a permutation-invariant basis of Py q—1. Likewise
the modal basis {:\\g" )\’gd 15 Bo+ ...+ Ba—1 = k}, where (:\\0, . ,:\\d,l) are the barycentric

coordinates in S?71, is also a permutation-invariant basis of Py 4—1 (see Exercise 7.4(v)). O

20.4.2 Nédélec elements

Let £ > 0 and let us show that the Ny 4 Nédélec elements introduced in §15.3 can be used to build
discrete functions with integrable curl. We assume that d = 3 (the construction is analogous but
simpler for d = 2). Let K € Tj, and F € Fg. We consider the v°-trace defined in (18.7b), i.e

7%7F(v) = v|pXnp where nr is the unit normal vector orienting F. Proceeding as in §15.4, we

consider the edge dofs 0, (v) == ﬁ [ tE)(m o Tx'y) dl, where Tk := Ty zoTs: S E,
T : S! - E is an affine bijective mapping, tg is the edge vector orienting F, {Nm}me{lzngh} is
a fixed basis of Py1, and ng, := dim(Px,1). If k > 1, we also consider the face dofs 0%, (v) :=
%IF(v.tpyj)(Cm o Ty 'p)ds, where Tk p = TypoTp : S* = F, Tp : 5% — F is an affine
bijective mapping, {tr;};je(1,2; are the two edge vectors orienting F', {Gm}neqiinf y 18 a fixed

basis of Pj,_1 2, and ngh = dim(Py—_12). For all F' € Fk, let £ be the collection of the three edges
composing the boundary of F. Let

kr = {i € NI 3(E(),m(i) € Epx{ling}, oxi = 050y mei }
be the collection of the indices of the edge dofs associated with F' and
Nicp = {1 € N'|3((0),m(0) € {1, 2} x{1:nfy}, 0K = 0 j(iymin }

be the collection of the indices of the face dofs associated with F (k > 1). We adopt the convention
that N p =0 if k = 0.

Lemma 20.20 (Face unisolvence). Assumption 20.12 holds true with the subset Nk r := N pU
Nie.r
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Proof. We first observe that the subset N r is nonempty. Let v € Pj; be such that 7§ (v) = 0,
ie., vypxnp =0. Then o ;(v) = 0 for all i € Nk, so that ker(yx, r) C mieNK - ker(ok ;). The
converse inclusion results from Lemma 15.15. ’ [l

Lemma 20.21 (P§; ). P§ p =75 p(Npa) = I (N2 0 Tt ) xnp.

Proof. The inclusion Py p C J;{TF(N;C,Q o T[;)IF)X’I’LF is shown as in the proof of Lemma 15.8.
Equality follows by invoking a dimension argument, i.e., dim(J I_(TF (N 20 TglF) xnp) = dim(Ny o)
and card(Ng r) = 2dim(Pg_1,2) + 3dim(Py,1) = (k+1)(k+3) = dim(Nj2) owing to Lemma 15.7.

O

Lemma 20.22 (Face matching). (i) The triple (F, Pg p, X% ) is a two-dimensional Raviart-
Thomas finite element with dofs

c 1 1L -1 . e

c 1 _ )
Tiral®) = T /F (St Gty © Tich) ds, Vi € N i, (20.16b)

for all ¢ € P p and all i € Nk p, with té(i) == tguxnr and tlﬁj(i) = tp i) xnr. (i) For all
F = 0K, NOK, € F, we have Py, p = P p=: Pp. (iii) We have X% p = X% r=: X% if the
chosen bases {Gm}tme1int,y and {tm}me{1:ng,y are invariant under any vertex permutation of 52

and §1, respectively.

Proof. The expressions in (20.16) follow from the definition of the edge and the face dofs of the
Ny 4 element and from the fact that (npx(hxnpg))-t = h-t for all h € R? and every vector ¢ that
is tangent to F. The rest of the proof is similar to that of Lemma 20.18. O

Remark 20.23 (Choice of basis). Examples of permutation-invariant bases of Py_; o and Py, ;

are the nodal and the modal bases built by using either the Lagrange nodes in 52 and S or the
barycentric coordinates in S? and S! as in Remark 20.19. O

20.4.3 Canonical hybrid elements

Let £ > 1 and let us show that the canonical hybrid finite element introduced in §7.6 can be used
to build discrete functions with integrable gradient. Assume d = 3 (the case d = 2 is similar).
As for the Lagrange elements, we consider the y8-trace defined in (18.7a), i.e., 7%(,1?(“) = F
for all F € Fg. Recall that the dofs of the canonical hybrid element are defined in (7.11). Let
Nk r be the collection of the dof indices of the following types: integrals over F' of products with
functions from the fixed basis {Cm}me{lzngh} of Pr_32 (if & > 3); integrals over the edges of F'
of products with functions from the fixed basis {Mm}me{lzngh} of Py_o1 (if & > 2); evaluation
at the vertices of F. Note that card(Nk r) = 3 + 3nS, + nl, if & > 3. Assume that the basis
{ /Lm}me{l:ngh } is invariant under every permutation of the vertices of the unit simplex S 1 and the

basis {(m }meq1:ns y 0 invariant under every permutation of the vertices of the unit simplices 52,
Then one can prove that the canonical hybrid element satisfies the Assumptions 20.12 and 20.14;
see Exercise 20.6.
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Exercises

Exercise 20.1 (Afﬁne mapping between faces). Let F' := 0K; N 0K, € F; and set 1?) =
Tgll( ) and F, = T_l(F). Prove that the mapping T}, = _1 Ty, 5, is affine. (Hint: let

(K cho, Egco) be the geometric reference Lagrange finite element Observe that the two face

finite elements (E, cho I Egco ;) and (F Pgeo . Egeo ) can be constructed from the same reference
Lagrange finite element (F4! Pgdeol, Egeol).)

Exercise 20.2 (Linear maps). Let E, F, G be finite-dimensional vector spaces, let A € L(E; F)
and let T € L(F;G). Assume that ker(T) C ker(A). Set G' := T(E). (i) Prove that there is
Ae L(G;F)st. A= AoT. (Hint: build a right inverse of T using a direct sum E = E; @ Ey
with E :=ker(T).) (ii) Show that A is uniquely defined, i.e., does not depend on Es.

Exercise 20.3 (yx,r and Nk ). (i) Prove that Px = ) .- ker(vk ) (nondirect sum of
vector spaces) if and only if there is F € Fg s.t. i € Nk p for all i € N. (ii) Let the face
unisolvence assumption hold true. Let F(K,i) := {F € Fk | ker(yx,r) C ker(ok)}. Prove the
following statements: (ii.a) F € F(K,q) iff i € Ng p; (ii.b) F € F(K,i) iff yx 7(0k,i) # 0 where
Ok i is the local shape function associated with the dof i.

Exercise 20.4 (Reference face element). Let F be any face of K. Let P* := Vi ﬁ(ﬁ) and let
N% 7 be the subset of N s.t. mie]\/ ker(UA ;) = ker(yz 7). Recall that this means that there

exists 6% PA 72> Rst. o = Uﬁz‘ o 7A p foralli € Ng p- Assume that N 5 is nonempty,

)

that the triple {F P*, 5%} with £% := {UA }ze/\/g - is a finite element, and that there is a linear

bijective map ¢r : P p — P st 1/)F ) *yA 5= =Yk F© 1/);(1. Prove that Assumption 20.12 holds
true and Ng p = /\/f(ﬁ. (Hint: show that the finite element {F, P ., >% p} is generated from
{F, P*, X¥*} using the map ¢p.)

Exercise 20.5 (Permutation invariance). Let S! := [0,1] and consider the bases B; :=
{p1(s) = 1 — s, p2(s) = s} and By = {p1(s) = 1, u2(s) = s}. Are these bases invariant under
permutation of the vertices of S*?

Exercise 20.6 (Canonical hybrid element, d = 3). Consider the assumptions made in §20.4.3.
(i) Prove the face unisolvence assumption 20.12. (ii) Let F € Fg. Let T : S — F be an affine
bijective mapping, and let Tk r := TK\FOT 182 5 F. Verify that PK r=Pra OTK 7 and that
{F, P§ p, Y% p} is a two-dimensional canonical hybrid element. (iii) Prove that Pg , = Pg p =
PE and X% o =X% o =:%%.

Exercise 20.7 (P, r). Let K be the unit simplex in R? and let {ﬁi}ie{og} be the faces of K.

Recall that for Py q scalar-valued elements, we have Pp 5 = ng? B (Pk,q). (i) Compute a basis of
Py g for all i € {0:2} assuming that (K,P,X) is the Pl Lagrange element. Is (F}, PK FoIRE)
a ﬁnlte element? (ii) Compute a basis of Pz 7 for all ¢ € {0:2} assuming that (K, P, %) is the P

Crouzeix-Raviart element. Is (F}, Pg 535, F) a finite element?
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Chapter 21

Construction of the connectivity
classes

In this chapter, we finish the construction of the connectivity classes which we characterize by
means of an equivalence relation on the pairs in 7, x A. We show that the resulting equivalence
classes verify the two key assumptions (19.2) and (19.3) introduced in Chapter 19. Our starting
point is to assume that the finite element at hand satisfies the two fundamental assumptions intro-
duced in Chapter 20: the face unisolvence assumption (Assumption 20.12) and the face matching
assumption (Assumption 20.14). These two assumptions turn out to be sufficient to fully char-
acterize the connectivity classes of Raviart—Thomas elements. For the other elements (Lagrange,
canonical hybrid, and Nédélec) for which there are degrees of freedom (dofs) attached to geometric
entities of smaller dimension, we have to consider two additional abstract assumptions, the M-
unisolvence assumption (Assumption 21.9) and the M-matching assumption (Assumption 21.10),
which we show hold true for these elements. At the end of the chapter we propose enumeration
techniques that facilitate the practical construction of the map y;,- introduced in Assumption 20.14.
This map is a key tool for the construction of the connectivity array j_dof. We assume in the
entire chapter that the reference cell is either a simplex or a cuboid, we assume that d = 3, and
we continue to use the notation introduced in Chapters 19 and 20.

21.1 Connectivity classes

In this section, we describe a way to build the connectivity classes that makes the two key assump-
tions from Chapter 19 hold true. This is done by constructing an equivalence relation on the set

T xN.

21.1.1 Geometric entities and macroelements

We start by introducing the geometric objects to which we will attach the dofs. Let 75 be a
matching mesh and let V},, &, and Fj, be the sets collecting, respectively, the vertices, edges, and
faces in the mesh 7 as defined in §8.2.

Definition 21.1 (Geometric entity). Let T, be a matching mesh. We call M geometric entity
if M is a vertex z € Vy, an edge E € &, a face F' € Fy, or a cell K € Ty,.
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Definition 21.2 (Macroelement). Let M be a geometric entity. We associate with M the
following subsets of T, and D:

T ={KeT,|McCK}CT, (21.1a)
Dy :=int({x € D|3K € Ty,z € K}) C D. (21.1b)

The set Dy is called macroelement associated with the geometric entity M.

Notice that the notion of macroelement is trivial for a mesh cell since in this case Tx := {K}
and Dy := int(K). This notion is also very simple for a mesh face, since if F € Fy, then
Tr = {K;, K, } where F := 0K;N0K, (so that card(Tr) = 2), whereas if F € F?, then Tp := {K;}
where F' := JK; N 9D (so that card(Tp) = 1). For a vertex z € Vj, or an edge E € &, there are
in general more than two cells in T, and 7z, and card(7;) and card(7g) are not known a priori.
Figure 21.1 illustrates these concepts for a triangular mesh. Notice that if the geometric entity M
is s.t. card(Tas) > 2, then M is a face, an edge, or a vertex. Hence, Tj; can also be characterized
as follows when card(Ty) > 2:

Tu={KeT,|MCOK}CTh. (21.2)

KeT, KeTr

Figure 21.1: Left: mesh vertex z € V},, macroelement 7T, composed of six mesh cells with one cell
K € T, highlighted in gray. Right: mesh face F' € Fj,, macroelement 7p composed of two mesh
cells with one cell K € Tr highlighted in gray. Note that the subsets D, and Dp are connected.

Definition 21.3 (M-path). Let M be a geometric entity. A collection of cells (Ko, ..., Kyr) in Tar
is called M-path if either L = 0 or the following holds true for alll € {1:L}: F, := 0K;_1NOK; €
Fy. We say that L is the length of the M-path and that the M -path connects Ko with Kr .

Lemma 21.4 (M-path). Let M be a geometric entity. Assume card(Tyr) > 2. Then for every
pair (K, K') of distinct cells in Ty, there exists an M -path of length L > 1 connecting K with K’,
and we have M C (N;c(y. 1y Fi-

Proof. The subset Dj; is connected since D is a Lipschitz domain. This implies the existence
of the M-path. Finally, since card(7Tas) > 2, (21.2) holds true, and since K;_1, K; € Ty for all
le{1:L}, we have M C O0K;_1 and M C 0K;. Hence, M C F; for alll € {1:L}. O

It will be useful to describe geometric entities as an intersection of faces.

Lemma 21.5 (Geometric entity as intersection of faces). Let K € T;, be a mesh cell. The
following holds true: (i) Let G C Fr be a nonempty collection of faces of K. Then M = (\pcg I
is always a geometric entity when M # (. (ii) Let M be a geometric entity that is not a cell. Then
there is a unique subset G v C Fi s.t. M = ﬂFegK,M F.
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Proof. (1) N reg I 1s always a geometric entity when it is nonempty because K is a polyhedron.

(ii) Whether K is a simplex or a cuboid, if M := (s F is nonempty, then M is a vertex, an edge,
or a face of K, and there cannot be any other possibility. If M is a vertex, there can only be exactly
d faces s.t. M = (\pcg F. If M is an edge, there can only be exactly 2 faces s.t. M = (\pcg F. If
M is a face, G contains only one face. O

Remark 21.6 (Prisms). The proof of Lemma 21.5 shows that for the statement (ii) to hold true
when d = 3, every vertex has to be shared by exactly d faces. In addition to the tetrahedron and
the hexahedron, another polyhedron having this property is the prism with triangular basis. [

21.1.2 The two key assumptions

Let us briefly motivate what we want to do. Our goal is to partition the set A/ according to the
nature of the dofs and to use the same partition on every mesh cell. Let K € T,. We say that 4
is an internal dof if there is no face F' € Fk s.t. i € Nk p, and we write i € N°. We say that
i is a boundary dof if there is at least one face F' € Fk s.t. i € Nk g, and we write ¢ € NP A
first natural partition of the dofs is thus N' = N° UN?. If all the subsets N r are mutually
disjoint, as it happens for the Raviart—Thomas elements, the collection of boundary dofs is further
partitioned as N = Urerx Nk . The situation is more intricate when the subsets N p are
not mutually disjoint since in this case we need to consider the intersections (g Nk r for the
nonempty subsets G C Fg, and we are only interested in the subsets G C Fgi s.t. the above
intersection is nonempty. The following lemma shows that for the finite elements considered in
this book, the set ﬂFeg F' is nonempty if the set ﬂFeg Nk p is nonempty.

Lemma 21.7 (Intersection of boundary dofs). Let K € Tj, be a simplex or a cuboid. If K is
a simplex, assume that there is no local shape function that has a nonzero y-trace on all the faces
of K. If K is a cuboid, assume that there is no local shape function that has a nonzero ~y-trace on
two opposite faces of K. Then for every nonempty set G C Fi, if (\peg Nk r is nonempty, then
Npeg I is nonempty as well.

Proof. Let us reason by contradiction and assume that [ reg b = (. If K is a simplex, this
implies that G = Fg, whereas if K is a cuboid, this implies that G contains two opposite faces.
Recalling that i € Nk p iff vk p(0x:) # 0, we infer from our assumption on the shape functions
that (peg Nk F is empty. This concludes the proof. O

All the simplicial finite elements considered in this book satisfy the assumption of Lemma 21.7
since the 7-trace of every shape function vanishes on at least one face. All the cuboidal finite
elements considered in this book also satisfy the assumption of Lemma 21.7 since there is no shape
function that has a nonzero ~y-trace on two opposite faces.

Lemma 21.7 combined with Lemma 21.5 allows us to identify the geometric entities that are
different from K with those nonempty subsets G C Fx such that Feg Nk r is nonempty. This
leads to the following definition.

Definition 21.8 (My,). We denote by M, the collection of all the geometric entities M s.t. for
all K € Ty, the unique nonempty subset Gy C Fi satisfying M = mFegK B s st

Niari= () Ner#0. (21.3)
FeGr m

We say that the finite element has face dofs if F;, C My, edge dofs if &, C My, and vertex dofs
if Vi, C My,
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Since Nk p is nonempty for all K € T, and all F € Fk (see Assumption 20.12 on face
unisolvence), all the mesh faces are in My, i.e., Fj, C My. This means that all the finite elements
considered in this book have face dofs. We will see in the next section that M, = V, U &, U F},
for the Lagrange elements and the canonical hybrid element, M; = &, U Fj, for Nédélec elements,
and M, = Fj, for Raviart-Thomas elements.

We can now state the two key assumptions regarding the structure of the dofs that will help
us identify the connectivity classes.

Assumption 21.9 (M-unisolvence). For every geometric entity M € My, and every cell K €
T (ice., M C OK), the following holds true: (i) There is a linear map Yi a S.l. for every
face F € Gk i, we have ker(yx p) C ker(yi ar). (i) For all i € Nk, there is a linear form
Ok.Mi St Oxi = 0r i ©vim- (i) The triple (M, Px ar, Xrar) 95 a finite element where
P i= i, (Pr) and X v = {0k M fieNw -

Assumption 21.10 (M-matching). The following holds true for every interface F := 0K; N
0K, € Fy and every geometric entity M € My s.t. M C F (so that K;,K, € Ty and F €
Gr,.m NGx. . ): (1) Px, v = Pr, a. (i) The map xir introduced in Assumption 20.14 is such
that xir(Nk,.m) = Nk, ar, and the map xir s 2 N, — N,y defined by xir g = XF| Nk, a1 18
s.t.

OK,Myiy = OK. .M, x1r (1) Vi € NKL;M= (21'4)
i.e., X, = Yk, and X : N, — Nk, a is bijective.

The definition of y;a in Assumption 21.10 is meaningful because Nk, v C Nk, r and
Nk,..m C Nk, p owing to (21.3). When the geometric entity M is a face, Assumption 21.9
and Assumption 21.10 are identical to Assumption 20.12 (face unisolvence) and Assumption 20.14
(face matching).

Given an M-path (see Definition 21.3) of length L > 1, we define the map x§, for all [ € {1:L}
by setting x%, := xr, if np, points from K;—y to K; and x§, = X}_rll otherwise, where np, is the
unit normal vector orienting Fj.

Lemma 21.11 (Path independence). Let M € Mj,. Let K, K’ be two cells in Tpr (possibly
identical) connected by an M -path of length L > 1, say (K =: Ky,...,Kr :== K'). Then for all
i € Nk, u, the index Xf, ©---0Xg (i) with Fy == 0K;—1 N 0Ky, VI € {1:L}, is independent of the
M -path.

Proof. Let M € M,;, be a geometric entity and let K, K’ be two cells in Tp;. Let (K =:
Kgo...,Kpgr, = K'), V3 € {1,2}, be two M-paths in Ty connecting K to K', with Fg; :=
O0Kpy-1 NOKg, for all | € {1:Lg}. Let i} = X% L, ©---oXf,, (i) and iy = XF, L, OO

XEF‘2,1(7;)' Assumption 21.10 implies that ox ar; = TRy 1, MXe, () = -+ = OK/ M. and ok A =
TRy MG, () = -+ = OK/,M,i}- Hence, o/ a1,y = 0k i, But, by Assumption 21.9, the triple
(M, P a1, X ) is a finite element. Hence, o g ariy = 0wy iff i) = 45, O

21.1.3 Connectivity classes as equivalence classes

For all (K,i) € TnxN, we introduce the smallest geometric entity associated with the dof OK,i-
This object is the last brick we need to define the equivalence relation mentioned at the beginning
of the chapter.

Lemma 21.12 (Mg ;). Let K € Ty, and i be a boundary dof. Then the following set is nonempty
and is a member of My,:

MKi —

= , (21.5)
’ {MEMh |Z€./\/K,M}
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Proof. The subset G ; := {F € Fk |i € Nk, r} is nonempty since i is a boundary dof. Then

the set MK,i = mFegK,i F' is nonempty owing to Lemma 21.7 since ¢ € mFegK,iNKR and
it_is a geometric entity owing to Lemma 21.5. The rest of the proof consists of showing that
Mg = Mg . Since Gi; C {M € My, |i € Nk}, we have Mg ; C Mg ;. To prove the
converse inclusion, let us consider M in the set {M € M, |i € Nk a}. By Lemma 21.5, there
is ) # Gxm C Fi st. M = ﬂFegK,M F, and the definition (21.3) of Nk a implies that ¢ €
mFegK,M Nk p. Hence, for all F' € Gk ar, we have i € N p, which means that G v C Gk i,

and this in turn yields ./K/viyl- = mFegK FC mFegK u =M. Since the geometric entity M is
arbitrary in {M € My, | i € Nk m}, we conclude that ﬂKi C Mkg.;. O

We now partition the product set 7, x N into equivalence classes.

Definition 21.13 (Binary relation R). We say that (K,i) R (K’,i') if and only if either (K,i) =
(K',1), or K # K', Mg, = Mg/ := M, and given an M-path connecting K to K’ in Ty, say
(K = Ko, ...,Kr = K'), with I} := 0K;_1 N 0K}, VI € {1: L}, we have i’ = X%, o...0 X% (i).
This definition makes sense when K # K’ since in this case M cannot be equal to either K or
K', and since M C K N K’, the cells K and K’ are in T;. Owing to Lemma 21.4, K and K’ can

be connected by an M-path, and owing to Lemma 21.11, the index X%, o...0x{, (i) is independent
of the M-path that is chosen to connect K to K’.

Lemma 21.14 (Equivalence relation). Let Assumptions 21.9 and 21.10 hold true. Then the
binary relation R is an equivalence relation.

Proof. R is by definition reflexive. By enumerating the cells in the M-path in reverse order, we
infer that R is symmetric. Finally, let us prove that R is transitive. Let (K,7)R (K’,i') and
(K',i"YR(K",i"). Then Mg, = Mgy = Mgrv,v := M. It (K,i) = (K',i") or (K',i') =
(K",i"), there is nothing to prove. Otherwise, we have K # K’ and K’ # K”. Let (K =:
Kio....,K1, =K'), (K'=:Ksyg...,Kop, :=K") be two M-paths, respectively, connecting K
to K’ and K’ to K. Let us set Fp; := 0K ;_1N0Kpg,; foralll € {1:Lg} and all 8 € {1,2}. Then
(K =: Kl,O .. '7K17L1 = Kgyo [P ,K21L2 = K”) is an M—path and i’ = Xi—‘z,Lz o...0 XEF‘2,1(Z'/) =
X p, @O Xy, ©Xfy,, ©--- 0 Xy, (1) If K # K", this argument proves that (K,7)R(K",4").
If K = K", Assumption 21.10 implies that ok a; = 0k a0 = Ok w7, which is possible only if
i = 14" owing to Assumption 21.9. Hence, we have again (K,i)R(K",i"). O

Let Aj, be the set of the equivalence classes induced by R over T, xA . Let us now consider
any map j_dof : T, xN — A, such that

[j_dof (K, i) = j_dof(K’,i')] <= [(K,i)R(K',)]. (21.6)

Letting I be the cardinality of Ay, there are I! ways to define j_.dof. Whichever choice that
is made to define j_dof, let us now prove that the two assumptions (19.2) and (19.3) made in
Chapter 19 hold true. Recall that these are the two structural conditions that we required from
j—dof in Chapter 19 to construct the conforming subspace P} (7x;R?).

Lemma 21.15 (Equivalence relation at interfaces). Let F' € Fy with F := 0K; N 0K, and
let xir be the map introduced in Assumption 20.14. The following holds true for all iy € Nk, r:
() Mo = M,y ()i (1) J-dof (Ky, i) = j-dof (Ko, xir (i)

Proof. Since xi-(Nk, m) = Nk, owing to the M-matching assumption, we have

{M e My | xir(it) € N, i} = {M € My, | xir(it) € xir N, i)}
= {M S Mh | 7;l GNKLM}
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Owing to the identity (21.5), we infer that Mg, s, = M, y,.(i,)- The second claim follows readily
because Mg, ;, = MKr,sz(il) and the two distinct cells K; and K, can be connected by an M-
path of length 1 crossing F in such a way that (trivially) x;-(i;) = xir(i7). This proves that
(Kl, il)R(Kthr(il)); i.e., we have j_dof(Kl,il) = j—dOf(Kthr(il)) owing to (216) O

Let a € Aj, with representative (K, 4). Let us set M := Mg ; and xx x,m(7) :=i. Forall K €
Tar such that K # K', let us set xx k' m (i) = X%, ©...0 X5 (1), where (K =: Ko,... K, := K')
is any M-path connecting K to K'. Lemma 21.11 together with Item (i) from Lemma 21.15 gives
the following characterization of the connectivity class a:

a= U (K xxmam@)} (21.7)

K'€Tm
We conclude by stating the main result of this section.

Theorem 21.16 (Verification of the assumptions from Chapter 19). Let Assumptions 21.9
and 21.10 hold true. Let j-dof be defined in (21.6). Then Assumptions (19.2) and (19.3) hold
true.

Proof. Let us start with (19.3) which is easier to verify. By definition, we have (K,i)R(K,i’) iff
i =1, that is, j_dof(K,i) = j_dof(K,i') implies that ¢ = ¢’. Let us now prove (19.2) for all v, €
P,f’b(ﬁ; RY). Let us start with the implication = in (19.2), i.e., we assume that v, € P¥(Tp;R?).
Let (K1), (K’,i') be two pairs in the same connectivity class and let M = Mg ; = Mg i». We
want to show that o ;i (vy k) = 0k, (Vp k). Since this claim is obvious if K = K, we assume that
K # K’ and we consider an M-path connecting K to K’ in Ty, say (K =: Ky..., Ky := K') and
F,:=0K,-1 NOK,;, VI € {1:L}. Repeated applications of the implication => from Lemma 20.15
show that since [v,]}, = 0 for all [ € {1:L}, we have o i(vpy k) = TR X, 00X, (@) (Vnkr) =
orir(Up k), which is the desired result. Let us now prove the other implication <= in (19.2).

Let us consider v, € P;’b(’ﬁl;Rq) and let F' := 0K; N 0K, € F; be a mesh interface. For all
i1 € Nk, r, we have j_dof(K,i;) = j-dof (K., xi(i1)) owing to Lemma 21.15. By assumption, we
also have o, i, (Vh|Kk,) = Ok, xi, (i) Unik,.) for all ij € Nk, . Owing to the implication <= from
Lemma 20.15, we infer that [v,]} = 0. Since this result holds true for all F' € F}, we conclude
that vy, € P¥(Tp;R9). O

21.2 Verification of the assumptions

The goal of this section is to verify that Assumptions 21.9 and 21.10 are indeed satisfied by the
Lagrange, canonical hybrid, Nédélec, and Raviart—Thomas elements. We assume that d = 3.

21.2.1 Lagrange and canonical hybrid elements

For the Lagrange elements there are four types of geometric entities: cells, faces, edges, and vertices.
We have to verify Assumptions 21.9 and 21.10 for the vertices and the edges.

Assume first that M is a vertex, say M := {z}. For all K € T, let ax,; be the unique
vertex in K such that ax,; = z and let us set vi (p) := plak,) for all p € Pg. Clearly
ker(yk,r) C ker(yk ) for all F € Fg. Then Pk . := vk .(Px) = R because p(arx,:) = p(z;)
spans R when p spans Pr. Furthermore, setting ok . ;(x) := « for all € R, we have o ;(p) =
plak:) =0k zi(plak:)) = (0K 207K 2)(p). We observe that Pk, and Xk » := {0k 2.} do not
depend on K and that (z, Pk 2, YK, 2) is a finite element.
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Assume now that M := E is an edge of K, and let us set Ei= Tgl(E). We define v g(p) :=

pg for all p € Px. Hence, ker(yk, r) C ker(vk, g) for all F' € Fi. Moreover, vk, g(p) = po T1;|1E =

poTgo TEfl o T}E\lﬁ’ where T : Sl Eis any bijective affine mapping between the unit segment

in R and the reference edge E. By proceeding as in the proof of Lemma 7.10, we conclude that
Prx g = vxk,5(Px) = Pr10 TglE with Tk g = TK|E o T. By proceeding as in the proof of
Lemma 20.6, we conclude that Pk, r = Pk, g for all K;, K, € Tg with a common interface. For
every Lagrange node ax ; located on E, we define ok g,i(p) := plak ;) for all p € Pk g, and we
denote by Xk a the collection of these dofs. All the Lagrange finite elements considered in this
book are such that (E, Pk g, Xk ) is a finite element.

In conclusion, we have verified that Assumption 21.9 and Item (i) of Assumption 21.10 hold
true, whether M is a vertex or an edge. It remains to verify that one can construct a map
Xir : Nk, r = Nk, p s.b. Ttem (ii) of Assumption 21.10 also holds true. This construction is done
in §21.3.

Similar arguments as above can be invoked for the canonical hybrid element. We invite the
reader to verify that Assumption 21.9 and Item (i) of Assumption 21.10 hold true for the canonical
hybrid element, whether M is a vertex or an edge.

21.2.2 Nédélec elements

We invite the reader to verify that Assumption 21.9 and Item (i) of Assumption 21.10 hold true for
the edge dofs of the Ni 4. It remains to verify that one can construct a map ;- : N, r — Nk, r
s.t. Ttem(ii) of Assumption 21.10 also holds true. This construction is done in §21.3.

21.2.3 Raviart—-Thomas elements

There is nothing to prove for these elements since Assumption 21.9 is identical to Assumption 20.12
and Assumption 21.10 is identical to Assumption 20.14, and we have already verified in §20.4.1
that Assumption 20.12 and Assumption 20.14 are met by the Raviart—Thomas elements.

21.3 Practical construction

In this section, we investigate systematic ways to construct the maps y;- and j_dof. The con-
struction of x;, is done in such a way that Item (ii) of Assumption 21.10 holds true. As before,
the reference cell K can be either a simplex or a cuboid in R, d € {2, 3}.

~

21.3.1 Enumeration of the geometric entities in K

The construction of x;, is greatly simplified by adopting reasonable enumeration conventions on
the reference cell K and by using the orientation of the mesh. We start by enumerating the
geometric entities in K. We first enumerate the nc, vertices, say from 1 to n.y, as in Table 10.1
in §10.2. We start with the origin of K, say z; := 0, then we enumerate d vertices in such a way
that the orientation of the basis (Zo — 21,...,24+1 — 21) is the same as that of the ambient space
R? (assumed to be based on the right-hand rule). There is no other vertex to enumerate if K is
the unit simplex. If K is the unit square, the last vertex is assigned number 4, and if K is the
unit cube, the last vertex of the face containing {z7, 2o, 25} is assigned number 5, then we set
Zg = 2o+ e,, 27 := 23+ €., and 23 := 25 + e,; see Figure 21.2 and Figure 10.2.
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Figure 21.2: Orientation of the edges and faces and enumeration of the vertices, edges, and faces
of the reference cell in dimensions two and three. In dimension two, edges and faces coincide as
geometric entities but they are oriented differently: an edge is oriented by a tangent vector and a
face by a normal vector.

We now enumerate the edges of K from 1 to nee and the faces of K from 1 to nee. The way the
enumeration is done does not really matter for our purpose, but to be complete, we now propose
one possible enumeration technique in Figure 21.2 and Table 21.1. The convention adopted in
Table 21.1 is that E = (Z,,2,), p < g, means that E passes through the two vertices 2, Z,, and
the edge is oriented by setting Tg := (24 — 2,,)/|1Z4 — Zp|lez- The point 2z, is called origin of the
oriented edge E. The notation F = (Zp, Zq, 2r), p < g < 7, means that F passes though the three
vertices 2, 2y, Z,, and that the unit normal nz orienting F is such that (2, — 2,, 2, — Zp, M)
is a right-hand basis, i.e., Nz = (24 — 2p) x(2r — 2))/ (24 — Zp) % (Zr — Zp)l¢2 (see (10.9)). The
vertex Z, is called origin of the oriented face F. Note that for both the reference simplex and
the reference cuboid, the orientation of the geometric entities is done by using the increasing
vertex-index enumeration technique explained in §10.4.

Let now K be a cell in a mesh T,. Let z, E, F' be a vertex, an edge, and a face of K,
respectively. We are going to say in the rest of this section that the local index of z, E, I'in K
is, respectively, p, ¢, r if there is a vertex z,, p € {liney}, an edge Ey, ¢ € {1:nee}, and a face F),

~ ~

r € {1ine}, such that z =Tk (2,), E = Tk (E,), and F = Tk (F}).

21.3.2 Example of a construction of y;. and jdof

We now present an example of practical construction of the maps x; and j_dof. One important
advantage of the proposed enumeration is that it can be implemented in parallel since for each cell
K of index m € {1: N.}, the proposed enumeration technique only requires to have access to local
information like j_cv(m, l:ney), j_ce(m, 1:nge), j_cf(m, lin.t), which is usually provided by mesh
generators. Recall that j_cf(m, 1) is the global index of the i-th vertex of the m-th cell, j_ce(m,¢)
is the global index of the e-th edge of the m-th cell, and j_cf(m, f) is the global index of the f-th
face of the m-th cell.
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2D simplex v % =(0.0), % — (1,0), 25 = (9’ 1)
E | By = (%2,%3), By = (31, 23), Bs = (31, %)
V |z = (0,0,0), 2o = (1,0,0), 23 = (0,1,0), Zy = (0,0,1)
E | By =(%1,%), E2 = (21,%3), B3 = (21, %)
3D simplex E4 = (%2, 23), E5 = (22, %1), Eg = (23, %4)
F = (22, 23,24), ﬁg = (21, 23, 24)
= (21, 22, 24), 1/7\4 = (21, 22, 23)
9D square V] 2 =(0,0),%=(1,0),2=01 2= (11
E | B = (21, %), Ey = (21, 23), B3 = (%3,24), B4 = (22, Z4)
V | 2, =(0,0,0), 2> = (1,0,0), 23 = (0,1,0), 2, = (0,0,1)
25 = (1,1 O) 26 = (1,0, 1), P (0,1,1), Z5 = (1,1,1)
E | By = (31,%), Bx = (21,23), B3 = (21, 24), By = (%2, %5)
3D cube Es = (%2,%6), B = (23,25), Br = (23,%7), Es = (24, %)
By = (24,%1), B0 = (%5,%5), Bu1 = (%6, %s), E1z = (21, %s)
F | Fy = (21,22, 33), Fy = (31,23, 24), Fs = (21, %2, %)
Fy = (24,%6,%1), F5 = (82,25, %), Fo = (23,25, %1)

Table 21.1: Enumeration and orientation of the vertices, edges, and faces in simplices and cuboids
in dimensions two and three.

Enumeration of the vertex dofs. Let us assume that there are nY, dofs per vertex. For
scalar-valued Lagrange elements or the scalar-valued canonical hybrid element, we have n}}, = 1.
We adopt the convention nY}, := 0 for H(curl) and H(div) elements. Given a mesh cell K, we
enumerate the local dofs in K as follows. Letting n € {1:n}, }, v € {1:n¢,}, the n-th dof attached
to the v-th vertex is assigned the index i := (v — 1)nY, + n.

Let us now define j_dof and, given an interface F' := 0K; N 0K, let us define x;-. Let z be
vertex of the face F. Let v;,v, € {l:ne,} be the local index of z in Kj, K., respectively, and
let my, m, be the indices of K;, K, in Tj, respectively. Hence, j_cv(my,v;) = j_cv(m,,v,.). Let
Q10 = (v —1)nY, and iy := (v, —1)nY,. Then upon setting x;r (410 +14) := iro+1i for all i € {1:nY, },
we observe that y;. maps a vertex dof of K; to a vertex dof of K, and by construction the vertex
associated with 7;9 4+ ¢ (with index j_cv(my,v;)) is the same as that associated with i, 4+ ¢ (with
index j_cv(m,,v,)). Finally, j_dof is obtained by setting

i:=(v—1)nY +n, (21.8a)
jdof(m,i) := (jcv(m,v) — 1)nY}, + n, (21.8b)

for all n € {1:nY, } and all v € {l:nc,}. This defines nY, Ny equivalence classes enumerated from
1 to ny, Ny.

Enumeration of the edge dofs. Let ng, be the number of dofs per edge. For Ppiq 4 and
Qp+1,q scalar-valued elements (Lagrange or canonical hybrid) and for Nj 4 Nédélec elements, we
have ng, = dim(Py,1) with & > 0. Let us now adopt a strategy to enumerate the edge dofs in K
that allows us to generate x; with information associated with the edges only. Let E := (zp, 24)
be an oriented edge of K with origin z,, p,¢ € {1:N,}. Let e € {1:n.} be the local index of
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Figure 21.3: Enumeration of geometric entities and dofs for triangles (top) and squares (bottom).
Orientation of edges and faces, enumeration of vertices and faces (leftmost panels), enumeration of
vertex dofs (center left panels), enumeration of edge dofs for Py 2 and Q32 elements (center right
panels), enumeration of volume dofs (rightmost panels).

E in K. Setting ig := neyny, + (e — 1)ng,, we enumerate the dofs associated with E from i + 1
to ig + ng, by moving along F from z, to z,. Since the orientation of the mesh is generation-
compatible (see Definition 10.3), the orientation of the edge is unchanged by the geometric mapping
Tk for all K € Tg. This implies that no matter which edge E of K is mapped to E, the edge
dofs {0k E,i}icf1:n.} are always listed in the same order as those in {UK,E,i}ze{lzncc} because
the edge dofs are invariant under any vertex permutation (see Assumption 20.7 and Item (iii) in
Lemma 20.22). The proposed enumeration is illustrated in the two panels in the third column of
Figure 21.3 for the P42 and Q3> Lagrange elements, in the left panel of Figure 21.4 for the Nj 3
Nédélec element, in Figure 21.5 for the P33 Lagrange element, and in Figure 21.6 for the Qs 3
Lagrange element.

/9/@/ 12 Edgc 6

Edoc 2 Face 2
QS Edge 4

1 2 10 Edge 5 Face 3 18

20
Edge 3 Edge 1 % @;
9 17

Face 4

Figure 21.4: Enumeration of dofs for the Nj 5 element. Left: edge dofs. Right: face dofs.

Let us now define j_dof and, given an interface F' := 0K; N 0K, let us define x;.. Let E be
an edge of the face F. Let e, e, € {l:ne} be the local index of F in Kj, K,, respectively, and
let m;, m, be the index of K;, K, in T, respectively. Hence, j_ce(m;,e;) = j_ce(m,,e,). Let
Q10 1= nevnd, + (e — 1)ng, and iro 1= neynd, + (e, — 1)ng,. Then setting x;,- (410 + 1) := ir0 +1 for all
i € {1:ng,}, we observe that x;, maps an edge dof of K; to an edge dof of K, and by construction
the edge associated with 40 + ¢ (with index j_ce(my,e;)) is the same as that associated with
iro + 4 (with index j_ce(m,,e,)). Concerning j_dof, since all the vertex dofs have already been
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enumerated using (21.8), we continue with the edge dofs by setting

i:=neeny, + (e — 1)ng, + n, (21.9a)
j_dof(m,i) := nY Ny + (j_ce(m,e) — 1)ng, + n, (21.9b)

for all n € {1:ng } and all e € {1:nc.}. This defines nS, N, equivalence classes enumerated from
nGy, Ny + 1 to ny, Ny + ng, Ne.

Enumeration of the face dofs. Let us proceed with the enumeration of the face dofs in di-
mension 3. Let F' be a face of K. Let 2z, be the origin of F'. Let 7, 7 be the two unit vectors
orienting the edges starting from z, (recall that np has been defined s.t. (71, 72, np) has the same
orientation as the right-hand basis in R? (see (10.9)). Let f € {1:n.} be the local index of F in K.
The face dofs on F are enumerated from i+ 1 to ig +nly, where ig := neyn), +neens, + (f — 1)nk,.
When the dofs in F' are attached to nodes located in F', as for Lagrange elements, one possible
enumeration technique is to look at F' with the vector 7 horizontal, the origin of F' on the left,
Ty pointing upward, and np pointing towards us. Then one enumerates the dofs on F' by moving
across F' from left to right and bottom to top. The proposed enumeration is illustrated in Fig-
ure 21.5 for the P3 3 Lagrange element (where there is 1 face dof) and in Figure 21.6 for the Q3 3
Lagrange element (where there are 4 face dofs). For the Nédélec and Raviart-Thomas elements,
the enumeration of the face dofs can be performed by enumerating the modal basis associated
with these dofs just like above. For the Nédélec elements, one has two dofs for each modal basis
function, say one associated with 71 and one associated with 7». One first enumerates the dof
associated with 7, then the dof associated with 75. An example is shown in the right panel of
Figure 21.4.

Figure 21.5: Enumeration of dofs in dimension three for the P53 element.

Assume now that F' := 0K; N OK,. Let fi, fr € {1l:ne} be the index of F in K, K., and let
my, m, be the indices of K, K, in Ty, i.e., jct(my, fi) = j_ct(m,, fr). Let ;9 := neyny, +neens, +
(fi — 1)n£h and i, 1= NeyNY, + Neend, + (fr — l)nih. Then we set ;- (10 + @) := ip0 + 7 for all
1€ {1:n£h}. Concerning j_dof, since all the vertex and edge dofs have already been enumerated
using (21.8) and (21.9), we continue with the face dofs by setting

i = Ny, 4 neeny, + (f — D)nky, +n, (21.10a)
j_dof(m,i) :=nY, Ny + nS Ne + (j_cf(m, f) — 1)nk, +n, (21.10b)
for all n € {1:nfy} and all f € {1:nce}. This defines nf, Ny equivalence classes enumerated from
n, Ny +nS Ne +1 to n Ny +nd Ne + n;th. An example using the proposed enumeration for the

P5 3 element is shown in Figure 21.5. An example of enumeration for the Q3 3 element is shown in
Figure 21.6.
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Figure 21.6: Enumeration of Q3 5 dofs in a cube. The enumeration of the edges and faces is shown
in the top panels. The enumeration of the dofs is shown in the bottom panels for the 6 faces of
the cube. The vertex dofs are shown in black, the edge dofs are shown in white, and the face dofs
are shown in gray. The remaining 8 volume dofs are hidden.

Enumeration of the volume dofs. The way the enumeration of the volume dofs is done does
not matter, but to be consistent with the above definitions, one can proceed as follows. For
Lagrange elements, one starts with the dof that is the closest to the origin of K and traverse the
volume dofs by using the orientation of K. In dimension two, for instance, one can proceed as
above since K can be viewed as a two-dimensional face, as illustrated in the rightmost panels in
Figure 21.3 for the P45 and Q3> Lagrange elements. In dimension three, one can traverse all
the volume dofs by moving first along the direction 7, then along the direction 7, and finally
along the direction 73. For Nédélec and Raviart-Thomas elements, one uses the enumeration of
the modal basis functions defining the volume dofs. For these elements one has 3 dofs for each
modal basis function (in dimension 3), say one associated with each direction 71, 72, 73. For each
modal function one first enumerates the dof associated with 7, then the dof associated with 1,
and one finishes with the dof associated with 73, then one moves to the next modal function. The
connectivity array can now be completed by setting

0= Ny, 4 Neeny, + nepnly, +n, (21.11a)

j-dof(m, i) :=n¥ Ny + n& Ne + nly Nt + (m — 1)nY, +n, (21.11b)

for all n € {1:ng,} and all m € {1: N.}.

Exercises

Exercise 21.1 (Mesh orientation, Nk g, xir). Consider the mesh 7, shown in Exercise 19.1.
(i) Orient the mesh by using the increasing vertex-index enumeration technique. (ii) Consider the
corresponding space P§(7). Use the enumeration convention adopted in this chapter for the dofs.
Find the two cells K, K, for the second face of the cell 5 and for the first face of the cell 3. (iii)
Let F be the second face of the cell 5. Identify N5 g, j-dof(5,N5 r), and the map xi.. (iv) Let
F’ be the first face of the cell 3. Identify N3 g/, j-dof(3, N5 /), and the map xi.

Exercise 21.2 (M-dofs). Let K € Ty, let F € Fg, and let M € M}, be a geometric entity s.t.
M C F. Prove that Nk v C Nk F.

Exercise 21.3 (Q 3 dofs). Determine nY, ,ng,, nl, ,nS, for scalar-valued Qj 3 Lagrange elements.



Chapter 22

Quasi-interpolation and best
approximation

Let v be any function in WP (D;RY) with real numbers r > 0 and p € [1, 00]. One of the objectives
of this chapter is to estimate the decay rate of the best-approximation errors

inf — plwmepma,  ¥m € {0:]7]}, 22.1
el P sz, Y & (0:1r)) 221)

where P (Th;R?) is one of the conforming finite element spaces built in the previous chapters with
x € {g,c¢,d} and |r| denotes the largest integer n € N s.t. n < r. Recall that £k > 1 if x = g
and k£ > 0 otherwise. Whenever the context is unambiguous, we drop the superscript x. The
interpolation operators constructed so far do not give a satisfactory answer to the above question
when the function v has a low smoothness index r. In this chapter, we introduce the important
notion of quasi-interpolation, i.e., we build linear operators

. LY(D;RY) — Py(Tp; RY) (22.2)

that are Ll-stable, are projections onto Py(7x;R?), and have optimal local approximation proper-
ties. We do this by composing one of the L!-stable operators L'(D;RY) — PP(T;RY) introduced
in §18.3 with a simple averaging operator J2¥ : PP(Tn; R?) — Py (Tn; R?). We also adapt the con-
struction to enforce zero -traces at the boundary, and we study the approximation properties of
the L2-orthogonal projection onto the conforming space Py (Tx;R?). The material of this chapter
is useful to investigate the approximation of solutions to PDEs with low regularity.

22.1 Discrete setting

Let (Th)newn be a shape-regular family of affine meshes s.t. the geometric mappings Tk are affine
for all K € Tp,. As before, when dealing with the conforming spaces Py (7;R?), we assume that
the meshes are matching. All the functions vy, in the broken finite element space PP(7,;RY) are
such that vy g € Px = 1/11}1(?) for all K € Ty, where (l?, ﬁ, 2‘) is the reference finite element.
Let k > 0 be the degree of the reference finite element, i.e., [Py q]? € P € W*LP(K;R?) for some
p € [1,00]; see Definition 11.14. We assume that the transformations ¢k are of the form (11.1),
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ie, Y (v) := Ag(voTk) for some matrix Ax € R?*? and there are ¢, ¢ s.t. for all K € Tj, and
all h € H,
Akl A% e < clIxlle T e < ¢, (22.3)

where J is the Jacobian matrix of Tk (the second bound follows from the regularity of the mesh
sequence). The main examples are A := 1 (¢ = 1) for Lagrange and canonical hybrid elements,
AS =Tk (¢ = d = 3) for Nédélec elements, and A%, := det(Jx)J 5" (¢ = d) for Raviart-Thomas
clements. We additionally assume that P ¢ W1*°(K;RY), so that Px C WL (K;R?) for all
K € Ty, owing to Lemma 11.7.

Let j_dof : T, x N' — Aj be the connectivity array introduced in Chapter 19 and let a €
Ap, be a connectivity class. Recall that we write either j_dof(K,i) = a or (K,i) € a. The
connectivity classes are used to enumerate the global shape functions and dofs in the conforming
space Py (Tp;R?). The subset T, := {K' € Tp, | ' € N, (K',7’) € a} is the collection of the mesh
cells of which a is a dof (see (19.6)). For all K € T, we introduce the notation

TK = U 73_dof(K,i)7 DK == int ( UK'GTK K/)v (224)
ieN

i.e., Tk is the collection of the cells sharing some dof(s) with K, and Dk is the set of the points
composing the cells from the set Tx. For instance, if the finite element has vertex dofs, any mesh
cell K’ touching K is in T since in this case K’ shares at least a vertex with K. Notice that
card(Tx) is uniformly bounded owing to the regularity of the mesh sequence. We have

T ={K' € To | 3' € N', Mr i C K}, (22.5)

where Mg ;+ is the geometric entity associated with a pair (K',i’) (see (21.5)).

Let K € Tj, and let F € Fgi be a face of K. We consider the trace operator i g :
WsP(K;RY) — LY(F;RY) defined in (18.7), with sp > 1if p > 1 or s > 1if p = 1, i.e., we
have v (v) == vyp (¢ =t = 1), ¥ p(v) == vpxnp (¢ =t = d = 3), and 7 p(v) = vjp-np
(¢ = d, t = 1). Using the notation of §20.3, there is a linear map o r; : Pr := vk, r(Px) = R
and a subset N p C N s.t. 0k = 0k piovk r for all i € Nk p. (Since Px € WHo°(K;R?), the
v-trace is well defined on Pgx and Pp C L>®°(F;R?).)

It turns out that the analysis of the quasi-interpolation operators devised in this chapter is
based on just one unified assumption on the face dofs of the finite element.

Assumption 22.1 (Boundedness of face dofs). There is ¢ s.1.

max |og,ri(q)] < cl|Axllellal e rre, (22.6)
lENK,F

forallq € Pp, all K € Ty, oll F € Fi, and all h € H.

Assumption 22.1 is supposed to hold true in the entire chapter. One can verify that this is
indeed the case for all the finite elements considered in this book, i.e., Lagrange, canonical hybrid,
Nédélec, and Raviart—Thomas elements.

Let us now derive an important consequence of Assumption 22.1 allowing us to control the
jump of the dofs across the mesh interfaces. Recall that for all F' € F}, there are two distinct
mesh cells Kj, K, € Ty, s.t. F:= 0K; N JK,.. Let us define for all a € Ay the following collection
of interfaces:

Foi=A{F e F | Jiy,ir e N, (K, 11), (Ky,iy) € a}. (22.7)
Notice that the set Fo is empty if card(a) = 1, i.e., if a is the class of a cell dof. The characterization

of classes of face, edge, and vertex dofs shows that the set F? is always nonempty if card(a) > 2.
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Lemma 22.2 (Bound on dofs jump). Let a € A, be such that F? is nonempty. There is ¢ s.t.

lok, i (Vnik,) — 0k, (Vi) | < € min(| Ak lle, [ Ax, o) [ [on] 21l oo (e, (22.8)

for all vy, € PP(Ty;RY), all F € F2

a’

all (Ki,1), (Kr,ir) € a, and all h € H.

Proof. Let vy, € P,E(’Y}I;Rq). Since we have i, = x;,(4;) and ok, ri, = 0k, Fi, owing to Assump-
tion 20.14, letting doy.(va) = 0k,i, (Vn|K,) — OK,.i, (Vn K, ), We infer that

601 () = ok, ki (V1P (0 K,) — Vi, P (Unik,)) = 0k, pi ([on] ),

recalling that [['Uh]]F = FYKL-,F(’U}L‘KL) — FYK’IWF(/UhIKT)' Since Pp = FYKL-,F(PKZ) e 'YKT,F(PKT) owing
to Assumption 20.14, we have [up]p € Prp. Owing to Assumption 22.1, we infer that |doy,-(vp)| <
cl[Ak, ez ||[vn] £ || Loe (yrey. Finally, (22.8) follows by exchanging the roles of Kj, K. O

22.2 Averaging operator

We define the averaging operator J : PP(Tn; RY) — Py(Tn; R?) by setting

T (vn) = Z <$i(a) Z UK,i(Uh|K)><Pa- (22.9)

a€Ap (K,i)ea

Since o i(vpx) = 0a(vn) for all (K,i) € a and all v, € Py(Tn;R?), we have J(vn) =
ZaeAh 04(vn)pa = vp. Therefore, Py(7Tp;R?) is pointwise invariant under the action of J2V.
Let now K € T, and let us set

Fio = Fyaot(rsy = {F € F | 3 € N, Mg C F}, (22.10)
ieN
i.e., F5 is the collection of all the mesh interfaces sharing some dof(s) with K. For instance, if
the finite element has vertex dofs, any interface F' touching K is in .73% since in this case FF'N K
contains at least a vertex of K. Note that card(]}f{) is uniformly bounded owing to the regularity
of the mesh sequence.

Lemma 22.3 (Approximation by averaging). There exists ¢ s.t. the following holds true:
, a(-p i,
|Uh — jﬁw(vhﬂwm,p(}(;ﬂ{q) S ChK(p T) r Z ||[|:’Uh]]FHLT(F;Rt), (22.11)
FeFy,
for every integer m € {0:k + 1}, all p,r € [1,00], all vy, € PP(Tp;RY), all K € Ty, and all h € H.

Proof. We only prove the bound for m = 0 and p = r = oo, the other cases follow by invoking
the inverse inequalities from Lemma 12.1 (with d replaced by (d — 1) when working on F'). Let
v, € PP(Th; RY), set e), := v, — T2 (vs) and observe that e, € PP(Ty;RY). Let K € T. Using
Proposition 12.5 with p = oo, we infer that

lenll L (xa) < e |8 e Y lowilenx)l-
iEN
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Owing to the definition (22.9) of J2V, we have for all i € N,

1
oKi(enx) = card(a) Z (0ri(vnii) = oxrir (Vi) 5
(K',i")€a
where a := j_dof(K,i). Notice that o i(enx) = 0 if card(a) = 1. Let us now assume that

card(a) > 2. For all (K',i) € a, there is an M-path of mesh cells in 7, connecting K with K’
s.t. any two consecutive mesh cells in the path share a common face F' € F? (see Lemma 21.4). It
is possible to assume that each face crossed by the M-path is crossed only once. Since for every
consecutive pairs (K, 4;), (K,,4,) in the M-path, we have 0K; N 0K, =: F € F2, Lemma 22.2
implies that

lok,i(Vnix,) — 0kin (Vi i, )| < ¢ min(||A g, [|e2, |Ax, [e2) ][ [vr] Pl Lo (7t

Since card(7,) is uniformly bounded, we obtain (recall that a = j_dof(K,i))

lenllze (rmay < g e ldxle D Y Ionlelle@mey.
1EN FEF?

The estimate (22.11) follows from (22.3) and the definition of F§. O
Corollary 22.4 (LP-stability). There is ¢ s.t. for allvy, € PP(Tp;RY), all K € Ty, and all h € H,
TR (0r)ll o (rciray < cllvnllLe(Dicira)- (22.12)

1
Proof. Use the inverse inequality ||[vn ]|z (rirt) < €D ke i VRl Lr (5 ra) Where Tr := { K}, K.}
for all F:= 0K; N 0K, € F;, and the bound (22.11). See Exercise 22.2 for a direct proof. O

Remark 22.5 (Literature). Early work on averaging operators in the scalar-valued case (H'-
setting) includes Oswald [153, Eq. (25)-(26)] and Brenner [44, p. 13]. These operators were used to
analyze nonconforming finite elements in Brenner [45], Hoppe and Wohlmuth [119], discontinuous
Galerkin (dG) methods in Brenner [46], Karakashian and Pascal [122], Ern and Vohralik [98], Gudi
[111], Schober]l and Lehrenfeld [175], stabilized finite elements in Burman and Ern [52, 53], and
multiscale methods in Kornhuber et al. [127]. The dependence of the constant in (22.11) on the
polynomial degree k is studied in Burman and Ern [52], Houston et al. [120]. In the vector-valued
case, averaging operators were considered for dG methods in Cockburn et al. [81] (H (div)-setting)
and Campos Pinto and Sonnendriicker [56] (H (curl)-setting). O

22.3 Quasi-interpolation operator

We consider one of the Ll-stable operators L'(D;R?) — PP(T,;R?) introduced in §18.3. To
fix the ideas, we work with Iﬁ, but the L2-orthogonal projection could be considered as well
(these two operators coincide in the scalar-valued case). Letting J¥ : PP(T5;RY) — Py(Th; RY)

be the averaging operator defined in §22.2, we now define a global quasi-interpolation operator
v o LY(D;RY) — Py(Th; R?) by setting

Y = T o Th. (22.13)
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By construction, Pj(7x;RY) is pointwise invariant under ZpV, i.e., Z3V is a projection. Let now
us study the local approximation properties of Z;}V in integer-order and fractional-order Sobolev
spaces, the latter being equipped with the Sobolev—Slobodeckij norm (based on the double integral,
as defined in §2.2.2). Recall the Definition 18.1 of broken Sobolev spaces.

Theorem 22.6 (Local approximation). Letr € [0,k+1]. Letp € [1,00) if r € N, orp € [1, x]
if r € N.

(i) Assume rp > 1 andp > 1, orr>1 and p = 1. There is ¢ s.t. for every integer m € {0:|r]},
allv e WP (Dg;RY), all K € Ty, and all h € H,

|’U — IZV(U”WWP(K;RL;) < Ch?}ﬂ(im|U|W7‘vP(TK;Rq)' (22.14)

The constant c is uniform w.r.t. v and p as long as rp is bounded from below away from 1, but c
can grow unboundedly as rp L 1 if p > 1.

(ii) Assume rp <1 andp > 1, orr <1 and p=1. There is ¢, uniform w.r.t. v and p, s.t. for all
v € W™P(Dg;R?), all K € Tp, and all h € H,

v =Z5 ()l e (rerey < chi|vlwre(Dgra)- (22.15)

Proof. Let K € Ty, h € H, and v € W"P(Dg; R9).

(1) Assume that rp > 1 and p > 1 or that » > 1 and p = 1. Then v has zero 7-jumps across the
interfaces (see Remark 18.4). Let us set v, 1= Ig(v) € PP(Th;RY), so that T2V (v) = T2V (vp). The
triangle inequality gives

[v — I3 (0) [wm.p (i sray < [0 = Vnlwm(xira) + [vn — T (Vn) lwm.s (i;Ra) -

Let 1 and %5 be the two terms on the right-hand side. ¥; is estimated by using Theorem 18.14,
which leads to |T1| < chle ™ |v]wrp(x;ray. T2 is estimated by using the approximation properties
of J¥ established in Lemma 22.3 as follows:

1 1
W|Tal < chl > lonlellorrey =chl D v —valellome
FeFy, FeFy,
1
<chf Y Yl —va)ixlloermay < chie D plwrr g,
K'€Tx FCOK'NFY K'€Tk

where we used the triangle inequality to bound the jump by the values over the two adjacent mesh
cells, the multiplicative trace inequality (12.17), the approximation result of Theorem 18.14, and
the regularity of the mesh sequence. Combining the bounds on ¥; and T5 gives (22.14).

(2) Assume now that rp < 1 and p > 1 or that r < 1 and p = 1. In both cases we have r < 1.
Combining the LP-stability of 72V (Corollary 22.4) with that of IfL (see (18.26) with m := 0), we
infer that

IZ2 ()| Lo (e sma) = [T (ZE (0)) || o (60
< || ZE )l Lo (Dresray < € 0]l Lo(Dyesr)- (22.16)

This proves (22.15) if r = 0. Let us now consider the case r € (0,1). Since [Py 4]? is pointwise
invariant under Z;V, the LP-stability estimate (22.16), and the triangle inequality imply that

o= T ) loremny S ¢ inf (o= gllos(rep, (22.17)
q€[Po,ald

0,d

and we conclude by invoking the fractional Poincaré-Steklov inequality in Dy from Lemma 3.26
where we use that /p, < c1|DK|5 < cohg owing to the regularity of the mesh sequence. O
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Remark 22.7 (Seminorm). We use the broken seminorm [v[y ., (7 ga) in (22.14) and the semi-

norm [v|yr.p(pyerey in (22.15). It is possible to break the seminorm over Tk in (22.14) because
rp > 1, but this is not possible when rp < 1. Indeed, there is only one constant at our disposal
in (22.17) to minimize the LP-norm of (v — q) over Dg. O

Corollary 22.8 (W™ P-stability). There exists ¢ s.t. for all p € [1,00], every integer m €
{0:k+ 1}, allv e W™P(Dg;R?), all K € Ty, and all h € H,

1T (0)lwmr (5 Ra) < € |0|wman (D ra).- (22.18)

Proof. For m = 0, the stability follows from (22.16). For m > 1, the stability follows from (22.14)
with r := m and the triangle inequality. O

Corollary 22.9 (Best approximation in LP). There exists ¢ s.t. for all r € [0,k + 1], all
pel,o0) ifr €N orallpe[l,oo] if r €N, allv e WHP(D;RY), and all h € H,

3 K

whe]—"lﬁg’h;Rq) ||’U whHLp(D;]Rq) S Ch |’U|W’r,p(D;Rq). (2219)
Remark 22.10 (Literature). Quasi-interpolation operators have been developed in the specific
case x = g in Clément [80], Scott and Zhang [178], Bernardi and Girault [21], Carstensen [59],
Carstensen and Verfiirth [63] by performing averages of functions on macroelements attached to
vertices. The present construction, introduced in [97], is different since it projects functions onto the
broken finite element space before averaging the resulting dofs. Moreover, the present construction
handles in a unified way H'-, H(curl)-, and H (div)-conforming finite elements. O

Remark 22.11 (Poincaré—Steklov in D). One can show that there is ¢ s.t. for all p € [1, o0,
all v € WHP(Dg), all K € Ty, and all h € H,

[v—vp,llLr(pi) < chi|vlwre (), (22.20)

where vy denotes the mean-value of v on Dg. See Veeser and Verfiirth [194, §2.3], the work by
the authors [97, Lem. 5.7], and Exercise 22.3. (We do not invoke the inequality (3.8) with U := Dy
since we want to assert uniformity of the constant ¢ w.r.t. K, which is nontrivial if the set Dy is
not convex.) O

22.4 Quasi-interpolation with zero trace

In this section, we revisit the above construction so that the quasi-interpolation operator boundedly
maps L'(D;RY) onto the subspace Py o(7n;RY) composed by those functions in Py(75;R?) with
zero y-trace at the boundary of D (see §19.4).

22.4.1 Averaging operator revisited

Recall Definition 19.11 for the internal and boundary connectivity classes A7 and A‘Z. The operator
T P2(Ths RY) — Pro(Th; RY) is defined as

T )= 3 % S orionx) | ee (22.21)

a€AS (K, i)€a
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for all v, € PP(Tp; RY). The difference between J2" (vs) and Ji2 (vp,) is that now o, (J3 (v)) = 0
for all a € Aﬁ, i.e., all the dofs associated with boundary classes are set to zero. By construction,
P o(Th; R?) is pointwise invariant under J;3. The approximation properties of J% now depend
not only on ~-jumps across interfaces, but also on 7-traces at boundary faces. We abuse the
notation by writing [vn]r = vk, r(vp) for all v, € P]E(’E;]Rq) and all F := 9K; NdD € ]-",?
(K; € Ty, is uniquely defined). For all a € A?, we define

Fo={FeF? |3 eN, (K,i)€a}, (22.22)
and we set F2 := () if a € A5. We infer from (22.6) that (compare with (22.8))

ok (vn)l < cllAk ez I[onl Pl Lo (rimey. (22.23)
for all F € F?

9 all pairs (Kj,i;) € a, and all v, € PP(Ty;R?). For all K € Ty, let Fx 1= {F €
Frn|3i € N, Mg, C F} be the collection of the mesh faces (interfaces and boundary faces)
sharing some dof(s) with K.

Lemma 22.12 (Approximation by averaging). There is ¢ s.t.

av d(%ié)Jr%im
[vn — Tio (V) [wmw (reiray < chye > Monlellorrwey. (22.24)
FeFxk
for every integer m € {0:k + 1}, all p,r € [1,00], all vy, € PP(Th;RY), all K € Tp,, and all h € H
Proof. Adapt the proof of Lemma 22.3 using (22.23) and the fact that o ;(vy — T (vn)) =
ox,i(vn) if (K,4) € Af. O

Corollary 22.13 (LP-stability). There is ¢ s.t. for all vy, € PP(Tn;RY), all K € Ty, and all
heH,
1756 ()l o (rciray < €llvnllLe(Dicira)- (22.25)

Proof. The proof is similar to that of Corollary 22.4. O

22.4.2 Quasi-interpolation operator revisited
We define the operator Zi% : L*(D;R?) — Py o(Tn; R?) by setting
= T o I (22.26)

By construction, Py o(7r;R?) is pointwise invariant under Z;y, i.e., Zp¥ is a projection.

We now study the approximation properties of Zp% in W™P(D;R?) with real numbers r €
[0,k+ 1] and p € [1,00] (p € [1,00) if r ¢ N). If rp > 1, functions in W"™P(D;R?) have traces on
0D, and it makes sense to define

Wy 2(D;RY) == {v € W"P(D;R?) | y(v) = 0}. (22.27)

We quote the following results from [97, Thm. 6.4 & Cor. 6.5] where we use the following notation:

Ty ={K €Ty |VieN, jdof(K,i) € A}, (22.28a)
T2 =T \TS ={K €T, |J €N, jdof(K,i) € AV}, (22.28b)

o ._
D? :=int (UKGT}? K) (22.28c¢)
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that is, 7’ is the collection of the cells whose global dofs are all internal connectivity classes, 7;?
is the collection of the cells having at least one global dof that is a boundary connectivity class,
and D? is the interior of the set of points composing the cells in 7,.

Theorem 22.14 (Approximation). Let r € [0,k + 1]. Let p € [1,00) if r € N, or p € [1,00] if
r e N.
(i) Assume rp > 1 andp > 1, orr >1 and p = 1. There is ¢ s.t. for every integer m € {0:|r]},

allv € WP(Dg;R?) and K € Ty, or allv € WyP(D;R?) and K € T,2, and all h € H,

lv — ;al\é(v”www(K;Rq) < Ch%_m|v|wr,p(7’K;Rq)- (22.29)

The constant c is uniform w.r.t. v and p as long as rp is bounded from below away from 1, but c
can grow unboundedly when rp | 1 if p > 1.

(ii) Assumerp <1 andp >1 orr <1 and p = 1. There is ¢, uniform w.r.t. v and p, s.t. for all
v e W™P(Dg;RY), all K € T2, and all h € H,

o = Zig ()| Lo (rciray < hic|vlwrr (Dycire)- (22.30)
Moreover, there is ¢ s.t. for allv € W™P(D;R?) and all h € H,
o = Zig ()l e (poray < €L [vllwrp(Dira), (22.31)
but ¢ can grow unboundedly as rp T 1.

Proof. See [97, Thm. 6.4]. O

Corollary 22.15 (W™ P-stability). There ezists ¢ s.t. for all p € [1, 0], every integer m € {0:k-+
1}, all K € Tp, all h € H, and allv € WiBP(D;RY) if m > 1, or allv € WOP(D;R?) = LP(D;R?)
if m=0,

|Z75 () [wmor (siray < clolwmp(Dycimra)- (22.32)

Proof. Similar to the proof of Corollary 22.8. O

Corollary 22.16 (Best approximation in L?). Letr € [0,k + 1]. Let p € [1,00) if r ¢ N or
p € [L,00] if r € N. (i) Assume rp > 1. There is c s.t. for allv € Wy (D;R?) and all h € H,

inf v—v Rra) < ch"|v|lwre(DiRa)- 22.33
v € Pr,o(Th;R2) || hHLp(D,Rq) o | |W P(DiRa) ( )
The constant c is uniform w.r.t. v and p as long as rp is bounded from below away from 1, but c

can grow unboundedly as rp L 1 if p > 1.
(ii) Assume rp < 1. There is ¢ s.t. for allv € W™P(D;R?) and all h € H,

inf v—0 ray < ¢S || v]lwre(DiRa)- 22.34

V€ Py o(Th;RY) || hHLp(Dqu) — D H ||W P(D;RY) ( )

The constant c is uniform w.r.t. v and p as long as rp is bounded from above away from 1, but c
can grow unboundedly as rp T 1 if p > 1.

Remark 22.17 (rp). An estimate similar to (22.29) for the Scott-Zhang interpolation operator
with 7p > 1 and x = g and can be found in Ciarlet [73]. The estimate (22.31) for rp < 1 essentially
says that the difference v —Z;¥(v) does not blow up too fast close to the boundary. A better result
cannot be expected since Z(v) is forced to be zero at 0D, whereas v can blow up like p~*w with
w € LP(D;R?) and p is the distance function to the boundary. O
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Remark 22.18 (rp = 1). Let » € (0,1). Using the notation from the real interpolation theory
(see §A.5), one has W"P(D) = [LP(D), WYP(D)],, since D is Lipschitz; see Tartar [189, Lem. 36.1].
Let us define

Wi, (D;RY) = [LP(D;RY), Wy P (D; RY)],. .

Using Theorem 22.14 with [ € {0,1} and m = 0, the real interpolation theory implies that
v = Z5 ()l Lo (pjray < ch"™0p" [vllwigr. (Dyray for all p € [1,00) and all v € Woil, (D;R?). This
1

estimate holds true in particular for r = L but it is not fully satisfactory. Using the notation from

Definition 3.17, it is known for x = g and p = 2 that [L2(D;RY), H}(D;RY)],.o = H"(D;RY) (sce
Lions and Magenes [135, Thm. 11.7], Tartar [189, p. 160], Chandler-Wilde et al. [65, Cor. 4.10]),
but to the best of our knowledge, a full characterization of W”, (D;R?) in terms of zero extensions
is not yet available in the literature for x = ¢ and x = d. [l

22.5 Conforming L*-orthogonal projections

As an application of independent interest, we study here how the above quasi-interpolation oper-
ators can be used to analyze the conforming L*-orthogonal projection operator Py : L'(D;R?) —
PX(Tn;RY) s.t.

/ (’P;;(’U) — U,wh)gz(Rq) dz =0, Ywy, € P;(E;Rq). (22.35)
D

Pi(v) is well defined for all v € L'(D;RY) since P¥(Tp;R?) € L°°(D;R?). The Pythagorean
identity
HUHQL?(D;RQ) = ||7)})1((U)||2L2(D;Rq) + v = ,P});(U)H%?(D;Rq)
implies the L2-stability property ||Px(v)|lr2(pire) < ||v]l2(pira)y for all v € L?*(D;R?), and the
optimality property
Pi(v) = argmin ||v —w| p2(p;Ra)- (22.36)
wh €PX(ThiR9)

The conforming L?-orthogonal projection Py : L*(D;RY) — P¥(Tp;R?), should not be confused
with the broken L2-orthogonal projection from §18.4 which maps L?(D;R?) to the broken finite
clement space P,°(T,; RY).

Proposition 22.19 (Approximation in L?). Letr € (3,k+ 1]. There is ¢ s.t.

1
2
o= PO < (3 Mol ) - (22.37)
KeTy,

for all v € H"(D;RY9) and all h € H, with ¢ growing unboundedly as r | % The bound (22.37)
remains valid for all r € (0, %] with [v|gr(xray replaced by V] pr(pyeira) and ¢ uniform w.r.t. r.

Proof. Combine (22.36) with Theorem 22.6 (with p := 2, m := 0) and use the regularity of the
mesh sequence when r > % O

The stability and convergence analysis in H!(D;R?) of the L2-orthogonal projection in the
specific case x = g is delicate owing to the global nature of this operator, which precludes the pos-
sibility of using local estimates. The situation can be simplified on quasi-uniform mesh sequences.
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Definition 22.20 (Quasi-uniformity). A mesh sequence (Tp)nen 18 said to be quasi-uniform if
it is shape-reqular and if there is ¢ s.t.

hi > ch, VK € Ty, Vh € H. (22.38)

The main motivation for Definition 22.20 is to use global inverse inequalities. If the mesh
sequence (Tp)newn is quasi-uniform, summing over the mesh cells the inverse inequality (12.1)
(with [ :==1, m:=0, p :=r :=2), we infer that

|'Uh|H1(D) < Ch_l”'vh”L?(D)a Yoy, € Pkg(ﬁ) (22.39)

Notice that we would only have the bound |vy|g1(py < chy vl p2(py With hy := minge7;, by if
the mesh sequence is shape-regular.

Proposition 22.21 (Stability and approximation in H'). Assume that the mesh sequence
(Th)hen is quasi-uniform. There is ¢ s.t.

|P§(U)|H1(D;Rq) < clva(pirays (22.40)

for all v € HY(D;R?) and all h € H Moreover, the following holds true:
1

2(r—1 :
lv— P}%(”NHI(D;RQ) =c ( Z hK( )|v|%{T(K;Rq)) 3 (22.41)
KeTh

forallr € [1,k+1], allv e H (D;R?), and all h € H.
Proof. We assume ¢ = 1 for simplicity. The bound (22.40) results from

PR ()| (D) < PR (v) = I (V)| g (o) + 1Z5™ (V)| 11 (D)
= |Pp(v = I (v) a1 0y + 127 (v) |51 (D)
< eh7HPi(v = Z™ ()l 22 (py + 125 ™ () a1 ()
<ch ™Mo =™ )2y + 1Z5™ ()| a1 0y < € [ola oy,
where we used the triangle inequality, that Py (Z3™ (v)) = Zp™ (v), the global inverse inequal-

ity (22.39), the L2-stability of Py, and the H'-stability and approximation properties of Zy™*"
from Theorem 22.6. To prove (22.41), we use (22.40) and similar arguments to infer that

lv =Py () g (py < [v = L™ (0)|l g oy + [PE(v — 3 (v)) | 5 (p)
< (A +c)lv = I (v)| a1 (D)

and we conclude by invoking again Theorem 22.6. [l

Remark 22.22 (Zero trace). The above results can be adapted to the L2-orthogonal projection
Py L'(D;R?) — P o(Th; RY). O

Remark 22.23 (H'-stability). The H'-stability of P;; without the quasi-uniformity assumption
has been extensively studied in the literature; see Crouzeix and Thomée [87], Eriksson and Johnson
[95], Bramble et al. [43], Carstensen [60, 61], Boman [30], Bank and Yserentant [15], Gaspoz
et al. [105]. Under a relatively mild grading condition on the mesh (assumed to be composed of
simplices), it is shown in [15] that the following inequality holds true uniformly with respect to
h € H for polynomials up to order twelve if d = 2 and up to order seven if d = 3:

15 PR 2oy < i vllzapy, Yo € L*(D), (22.42)
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where 71 is the piecewise constant function such that g = hx for all K € Tj,. The H L_stability
of P} follows from (22.42); see Exercise 22.6. The grading condition on the mesh states that there
is an integer-valued level function over T, say ¢ : T, — N\{0}, s.t. hx is uniformly equivalent
to 27K) and [((K) — ¢(K")] < 1if K and K’ share a vertex. An optimal grading estimate is
obtained in [105] for adaptive triangulations (d = 2) generated by the Newest Vertex Bisection
strategy (see Morin et al. [147], Stevenson [186, 187]). O

Exercises

Exercise 22.1 (F3.). Identify the set F for the canonical hybrid, Nédélec, and Raviart-Thomas
elements.

Exercise 22.2 (LP-stability). Prove directly, i.e., without using Lemma 22.3, the LP-stability of
JX. (Hint: use Proposition 12.5.)

Exercise 22.3 (Poincaré—Steklov in D). The goal is to prove (22.20). Let p € [1, 0], K € Ty,
and v € WHP(Dyg) (i) Let K;, K, € T sharing an interface F := dK; N 9K,. Show that

1
|K|p|QKL _QKT| < ChK|U|W1’P(KluKT)-

(Hint: observe that |F|_%|QKZ —vg. | <lvk, — v, lee(r) + vk, — vk, |lLr(F), then use the trace
inequality (12.16).) (ii) Prove (22.20). (Hint: use that vp, — Vg = > pnci, I‘g—;ll(yK,, — vy ) for

all K" € Tk.)

Exercise 22.4 (Polynomial approximation in Dg). Prove that there is ¢ s.t. for all r €
[0,k+ 1], all p € [1l,00) if r ¢ Nor all p € [1,00] if 7 € N, every integer m € {0:|r]}, all
veW"P(Dg), all K € Ty, and all h € H:

inf |v—glwmr(pg) < chie ™Ulwrr (D) (22.43)
g€PL 4

(Hint: use Morrey’s polynomial as in the proof of Corollary 12.13.)

Exercise 22.5 (Approximation on faces). (i) Prove that

1
v —Z3" ()|l Le(r) < chpe " [0lwrn (i)

for all p € [1,00), all r € (%,k—l— ifp>lorre[l,k+1]ifp =1, all v € W"P(Dg), all
K € Tp, all F € Fk, and all h € H (¢ can grow unboundedly as rp | 1 if p > 1). (Hint: use the

multiplicative trace inequality (12.16) or its fractional version (12.17).) (ii) Assume k& > 1. Prove
that

ol
IV —=Z3" () lLery < chg ” |U|W1+7~,p(7‘K)a

forallr € (L k]ifp>Tlorre[lklifp=1,allv e WH"P(Dg), all K € Ty, and all h € H.

1
p,
Exercise 22.6 (L?-projection). (i) Prove that (22.42) implies the H'-stability of Py. (Hint:
(va)LQ(D;Rq)

D;Ra) lwllzr (psra) for all y e

adapt the proof of Proposition 22.21.) (ii) Set [|y[l«,» := sup,ecpr(
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L?(D;RY) (this is not the standard norm of the dual space H~"(D;RY) := (Hj(D;RY))’). Prove
that there is ¢ s.t. for every integer r € {1:k + 1}, all v € L*(D;R?), and all h € H,
[0 =Pr(0)ll«r < ch"[lv = Pn(v)llL2(Dire),
[0 = Pho(v)ll -+ (Dre) < ¢h”[[v = Pho(v) 2 (Diro)-
(Hint: use IV (v).)

Exercise 22.7 (Discrete commutator). Let (7,)newn be a shape-regular mesh sequence. The
goal is to prove that there is ¢ s.t. for every integers [ € {0:1} and m € {0:1}, all p € [1, 0], all
v, € PE(Ty), all K € Ty, all h € H, and all ¢ in W1Hheo(D),

[vn — ™ (dvn)lwmw () < ¢ b ™ [onllwiw (i) |@lwistoo (D) -
This property provides a useful tool to analyze nonlinear problems; see Bertoluzza [23] and Johnson
and Szepessy [121]. (i) Fix K € Tp,. Let vp, denote the mean value of v, in Dg. Prove that
,av l—m
l¢vp, =™ (bup,lwmee) < chid ™ [onll o) |9l witioe (D)

(Hint: use Theorem 22.6 and verify that [[vp, |zr(px) < Vnllzr(Dgy-) (ii) Set mp == vn —vp, .
Prove that
l¢nn = Z™ (&) llwmon(x) < chid ™™ [onllwio o) lollwr = (D).

(Hint: observe that ¢(x i )nn = L™ (¢(xk )nn) where xk is some point in K, e.g., the barycenter
of K, then use (22.20) to bound n,.) Conclude.



Chapter 23

Commuting quasi-interpolation

The quasi-interpolation operators Z;¥ and 7} introduced in Chapter 22 are L'-stable, are pro-
jections and have optimal (local) approximation properties. However, they do not commute with
the usual differential operators V, Vx, and V-, which makes them difficult to use to approximate
simultaneously a vector-valued function and its curl or its divergence. Since these commuting
properties are important in some applications, we introduce in this chapter quasi-interpolation
operators that are L!-stable, are projections, have optimal (global) approximation properties, and
have the expected commuting properties. The key idea is to compose the canonical interpola-
tion operators defined in §19.3 with mollification operators, i.e., smoothing operators based on
convolution with a smooth kernel.

23.1 Smoothing by mollification

Smoothing by mollification (i.e., by convolution with a smooth kernel) is an important tool for
the analysis and approximation of PDEs that has been introduced by Leray [133, p. 206], Sobolev
[179, p. 487], and Friedrichs [102, pp. 136-139]. The goal of this section is to define mollification
operators that commute with the usual differential operators, and that converge optimally when the
function to be smoothed is defined on a Lipschitz domain D in R%. We use a shrinking technique
of D (see Bonito et al. [33] and [96]) to avoid the need to extend the function to be smoothed
outside D. The starting point is that, since D is a Lipschitz domain, Proposition 2.3 in Hofmann
et al. [118] implies the existence of a vector field j € C*°(R?) that is globally transversal on 9D
(i.e., there is a real number v > 0 such that n(x)-j(x) > v at a.e. point & on 9D where n is the
unit normal vector pointing outward D) and ||j(z)||,2 = 1 for all & € ID.

Lemma 23.1 (Shrinking mapping). For all § € [0,1], define the mapping
ws :R¥>x+— = — §j(x) e R (23.1)
Then w5 € C(R?) for all § € [0,1], and for every integer k € N, there is ¢ such that

meag)(HDkgo(;(cc) — DFx||p < clp)s, V6 € [0,1],
x

with {p := diam(D). Moreover, there is r > 0 such that

@s(D) + B(0,6r) C D, Y5 el0,1]. (23.2)
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Proof. The smoothness properties are consequences of j being of class C'°>° and D being bounded,
whereas (23.2) follows from Proposition 4.15 in [118] and the uniform cone property (see [118,
pp. 599-600]). O

Let us consider the following kernel:

_ 1

T .
ne 1=llyl7e if HyHEQ < 17 (233)
0 if 1yl > 1,

where 7) is chosen s.t. [, p(y) dy = fB(O 1y P(y)dy =1. Let 6 € [0,1] and let f € LY(D;RY). Given
some smooth field Ky : D — R7%% we define a mollification operator as follows:

(Ks(F)) () = /B o) POV (5(@) + 01y, v < D. (23.4)

Note that the definition (23.4) makes sense owing to (23.2). The examples we have in mind for
the field K; (inspired by Schéberl [172, 174]) are

K¥(z) =1 (¢ = 1), KS(x) == I () (¢ = d = 3), (23.52)

K§ () = det(Js(2)J5 " (x) (¢ = d), Ki(z):=det(Js(x)) (¢=1), (23.5b)
where J; is the Jacobian matrix of ¢s at @ € D. The mollification operator built using the field
K3 is denoted by IC¥ with x € {g,c,d, b}.

Let us just state the main properties of the mollification operator 5. We refer the reader to
[96] for the proofs.

Lemma 23.2 (Smoothness). For all f € L'(D;R?) and all § € (0,1], Ks(f) € C(D;R?), i.e.,
Ks(f) € C°(D;R?) and Ks(f) as well as all its derivatives admit a continuous extension to D.

Let p € [1,00]. Assuming d = 3, let us set (see (4.9))

7Z8P(D) = Wh'P(D) = {f € LP(D) | Vf € L*(D)}, (23.6a)
Z“?(D) :={g € LP(D) | Vxg € L*(D)}, (23.6b)
Z4P(D):={ge L*(D) | V-g € L*(D)}. (23.6¢)

Lemma 23.3 (Commuting). The following holds true:
() VKE(f) = K§(Vf) for all f € 757(D),
(i) VxKS(g) = K$(Vxg) for all g € Z%P(D),
(i) V-K(g) = K3(V-g) for all g € Z%2(D),
i.e., letting Z®P(D) := LP(D), the following diagrams commute:

V x V-

Z8P(D) ZP(D) Z4P(D) ZbP(D)
K s g |kt
C>=(D) c>(D) c>(D) — (D)
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Theorem 23.4 (Convergence). There are ¢ and oy > 0 s.t.

IKs(F)llr(Diray < cllfllLe(Diray, V6 € [0, o). (23.7)
Moreover, we have

(%1_I)I(13 ||K§(f) - f”LP(D;Rq) =0, Vf S LP(D;RQ), Vp € [1, OO) (23.8)

Finally, for all s € (0,1], there is ¢ s.t. for all f € W5P(D;R?), all § € [0,00], and all p € [1,0)
(pel,o0] if s=1),
IKs(f) = fllze(Diray < ¢8°U5°| fllwer(Dira)- (23.9)

Corollary 23.5 (Convergence of derivatives). The following convergence results hold true for
all p € [1,00):

(i) limso [V(KS(f) = Fllepy =0, Vf € Z287(D).
(ii) Tims 0 [|[VX(K5(g) = g)llr(p) = 0, Vg € ZP(D).

(iii) lims—o [[V-(K§(g) — 9)llLr(p) =0, Vg € Z4P(D).

Moreover, for all s € (0,1] and all p € [1,00), there is ¢ s.t. for all § € [0,dp], the following holds
true under the same smoothness assumptions on f and g (¢ does not depend onp € [1,00] if s = 1):

() IfVf e W*2(D), |VKS(f) = Hllr o) < OB IV fllwar(p)-
(ii) If Vxg € W=P(D), [Vx(K§(g) — 9)llLr(p) < ¢ 557 [V Xgllwer(D)-
(iii) If V-g € WP(D), [[V-(K§(g) — 9)llLr(p) < ¢35V gllwer(p).-

Proof. Combine Lemma 23.3 with Theorem 23.4. O

Remark 23.6 (Convergence in D). Corollary 23.5(i) strengthens the original result by Friedrichs
where strong convergence of the gradient only occurs in compact subsets of D (see, e.g., [48,
Thm. 9.2]). Note though that Corollary 23.5(i) is valid on Lipschitz domains, whereas the original
result by Friedrichs is valid on every open set. O

Remark 23.7 (Literature). Another possibility to mollify scalar-valued functions over bounded
sets without invoking extensions is the convolution-translation technique by Blouza and Le Dret
[25] and Girault and Scott [108]. However, it is not clear how to extend this technique to vector-
valued functions and at the same time achieve the commuting properties of Lemma 23.3. O

Remark 23.8 (Density). Lemma 23.2, Lemma 23.3, and (23.8) implies that C°°(D;RY) is dense
in Z%P(D) for all x € {g,c,d}. O

Remark 23.9 (Norm vs. seminorm). The estimate (23.9) for K§ can be sharpened to || (f)—
fllr(prey < €0°|flwer(pira) since constants are invariant under K§. This is not the case for
Ky with x € {c,d}. This is the reason why the error estimates (i), (ii), (iii) in Corollary 23.5
involve norms instead of seminorms on the right-hand side. We refer the reader to Exercise 23.5
where the mollifiers are modified to preserve constants while still commuting with the differential
operators. O
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23.2 Mesh-dependent mollification

Our ultimate goal is to compose the canonical interpolation operators defined in §19.3 with the
mollification operators from §23.1. To achieve optimal convergence properties, we need to relate
the shrinking parameter § to the meshsize. The difficulty we face is that the parameter ¢ is so far
defined globally over D, whereas the meshsize can change locally. Requiring the parameter § to
be of the order of the meshsize would limit the applications of the method to quasi-uniform mesh
sequences. To handle shape-regular mesh sequences, we redefine the mollification operators with
a space-dependent shrinking parameter é(x), « € D.

Let (Tp)nen be a shape-regular sequence of affine meshes so that each mesh covers D exactly. It
is possible to define a meshsize function h € C%!(D;R) so that there are three constants ¢, ¢/, ¢’ > 0
s.t. for all K € T, and all h € H,

||hHW1,oo(D;R) <eg, C/hK < f)(cc) < C//hK, Vo € K. (2310)

One possibility to construct h consists of applying the averaging operator J*" of degree k = 1

from §22.2 to the piecewise constant function that is equal to h in each mesh cell K. We introduce
e € (0,1) and define

d(x) == eh(x), Vo € D. (23.11)

The actual value of e will be fixed later; see (23.17). Then we define @5 by setting ¢s(x) =
x —§(x)j(x) (compare with (23.1)), and we define generic mollifying operators K5 as in (23.4) by
setting (we use the same notation for simplicity)

(Ks(f) () = /B o, PO (o3(@) + 0@ (23.12)

for all x € D and all f € L'(D;R?), where Ks(z,y) is related to the Jacobian matrix Js of
the mapping @ — @s(x) + é(x)y at @ € D as above (notice the additional dependence on y).
Lemma 23.1 holds true for k € {0,1} only, and the smoothness statement in Lemma 23.2 must
be replaced by the weaker statement Ks(f) € C'(D;RY) for all f € L'(D;R?), since § is only
Lipschitz. All the other statements in §23.1 remain unchanged. That KCs(f) is well defined will
follow from (23.15b) below.

Recall the discrete setting outlined in §22.1. In particular, we consider affine geometric map-
pings Tk : K — K and transformations ¢ of the form ¢y (v) := Ag (v o Tk) for some matrix
Ak € R?Y satisfying |Ax ||| Ax' ez < ¢ uniformly wart. K € T; and h € H. Let K € T;, and
recall the sets Tk and Dy defined in (22.4). We now sharpen the assumption (22.6) on the dofs
by assuming that there is a partition N' = Ny UN” s.t. for all K € Ty, the dofs ok ; is either an
evaluation at a point ax ; in K if i € N, or an integral over a (closed) geometric entity Mg ; that
can be an edge of K, a face of K, or K itself (with the obvious extension to higher dimension)
if i € N7. This assumption is formalized by assuming that there is ¢ s.t. for all v € V¥(K), all
K €Ty, and all h € H,

[lv(ax,q)ez if i € Ny,

- e (23.13)
(M il 1H’U||L1(MK,»L§R‘7) ifie N,

lok,i(v)| < cl|Akllezx {

where V&(K) := WP(K), V°(K) := WS_%”’(K), VYK) = Ws_%’p(K) with sp > d and p > 1

or s =dand p =1 (see §19.3). Notice that (23.13) sharpens Assumption 22.1 on the face dofs.
For all i € Ny, since ax; = Tk(a;) for some reference point a@; in K and since card(N) is

finite, there exists a distance ZO > 0 (only depending on the reference element) such that only one
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of the following four situations occurs: (1) @; is a vertex of K; (2) @, is in the interior of an edge
of K and is at least at distance {y from any vertex; (3) @, is in the interior of a face of K and is
at least at distance ZO from any edge; (4) a; is in the interior of K and is at least at distance ZO
from any face. The regularity of the mesh sequence implies that there is a constant ¢, (depending
on ZO but uniform with respect to i, K, and h) s.t. the open ball B(ak i, c,hk) has the following
property: For all K’ € Ty, such that K’ N B(ak,, c,hik) # 0 and all ® € K/ N B(ak,i,c¢,hi), the
entire segment [x, ak ;| is in K’. One can always take ¢, small enough so that the only cells with
a nonempty intersection with B(ak ;, c,hk) belong to the set Tx. The above observations imply
that B(aKﬁi,q,hK) C Dk and that

[v(z) — v(aki)lle < ||z — ar;llel| Vol Lok ra), (23.14)
for all x € K’ N B(ak i, c,hk) and all v € Pg/. We define €ax > 0 such that the following holds

true, uniformly w.r.t. K € Ty, h € H, and every function 6 := eh) with € € (0, emax], as illustrated
in Figure 23.1:

QO(;(CLK’Z')—F(S((IKJ)B(O,I) C B(aKyi,Cth), Vi ENo, (2315&)
ws(x) + 0(x)B(0,1) C D, Ve e K. (23.15D)
cp(;(aKﬂ-) + 5((11(,1')3(0, 1) Uw61<<506(m) + 5(m)B(07 1))

Blag,, chk)

Figure 23.1: Tllustration of properties (23.15a) (left) and (23.15b) (right).

23.3 L'-stable commuting projection

In this section, we build L'-stable commuting projections J* : L*(D;RY) — P¥(Ty;RY) with
x € {g,c¢,d,b}. Recall that &k > 1 if x = g and k > 0 otherwise. The construction proceeds in two
steps. First one constructs an L'-stable commuting operator Zjo Ks : L*(D;RY) — P¥(Tp; R?) by
composing the above mollification operators with the canonical interpolation operators. Then one
takes the mollification parameter to be small enough with respect to the local meshsize so that the
restriction of Zj,0 K5 to P¥(7,; RY) is invertible. The operator obtained by composing Zj,0 K5 with
the inverse of this restriction then leaves P} (75;R?) pointwise invariant and enjoys all the required
properties. The construction presented in this section hinges on the seminal ideas of Schoberl [173,
Lem. 6], Arnold et al. [11], Christiansen [68], and Christiansen and Winther [71, Lem. 4.2].
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23.3.1 First step: the operator 7,0 K;

Owing to the smoothing properties of the (mesh-dependent) mollification operators, it makes sense
to consider the following operators:

TPo K% : LY(D) — PE(Th), Too K5 - LN(D) — Pgo(Th), (23.16a)
Co kS : LY(D) — PE(Th), co0K§ : LY(D) — P o(Th), (23.16b)
Tdo K¢ : LY(D) — PX(Th), Iio K3 : LY (D) — Pg(Th), (23.16¢)

aswell as ZPo K8 : LY(D) — PP(T5). All of these operators can be analyzed in a unified setting. Let
Ty be one of the seven interpolation operators introduced above, and let /s be the corresponding
smoothing operator. Let P(7;) denote the generic finite element space (whether homogeneous
boundary conditions are enforced or not), i.e., P(7) is either the broken finite element space or
one of the conforming finite element spaces from Chapter 19. Let Ak be the field defining ¥k, and
let K be the field defining Ks. The symbol x € {g,¢,d,b} and the indices k and 0 are omitted
in the rest of this section. The difficulty we now face is that the finite element space P(7y;RY)
is not pointwise invariant under Zpo KCs5. A key result to solve this difficulty is that Z,0 K5 has
e-dependent approximation properties on P(7y;R?) (recall that the parameter € is used to define
the shrinking function § in (23.11)).

Lemma 23.10 (Discrete LP-approximation). Let € € (0, émax]. There is a constant csgar, > 0
st || fn = (Zuo KCs) (fn)l| Lr(Dira) < cstanell full Lo (piray for all p € [1,00], all fr, € P(Tp;R?), and all
heH.

Proof. Let fr, € P(Tp;R?). Let usset e := fr,—Ks(fn) and ep, := fr—Tn(Ks(f1)). Let K € Tp,. The

local shape functions satisfy ||0x i||Le(x;re) < € |K|% |Ax!||e2 for all i € N (apply Proposition 12.5
to v := 0k ;). Since e}, = Iy (e), we infer that

1 _
lenllocmn <Y loki(@lI0x.illLrxme) < det@x)P 1AL 2 > loxi(e)l.
ieN ieN

The rest of the proof consists of estimating ok ;(e) for all i € V.
(1) Assume first that ¢ € Np. Using (23.13), we infer that ok i(e)] < c¢||[Ax||2]le(ak,i)|lez. Since
elax:) = fnlar,;) — Ks(fn(aki)), we have

e(ax) = / p(Y)Ks(ak,i, y)(fulak,:) — fales(a,:) + 0(ak,;)y)) dy
B(0,1)
+ / p(y) (I —Ks(arx,i,y)) dyfu(ax.).
B(0,1)

Note that f, is single-valued at ag ; since i € Ny, i.e., it makes sense to invoke fj(ak ;). Since
K5 oo (Dx B(0,1);Raxa) < ¢ and [[Ks — || oo(px B(0,1);raxa) < ce (this follows from (23.10)-(23.11)),
upon invoking (23.15a) (recall that € < epayx) and (23.14), we infer that

le(axi)llez <1 max | fulak:) — fu(Vs(ax,iy))lle + coell fu(ar)lle
yeB(0,1)

)

< cjd(ak,i) max ||V fallpe(krme) + o€l full Lo (iira)
K'eTk

< df ehge max ||V fll Lo (xriray + c2€l| full Lo (D ira)
K'eTk
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with ¥s(x,y) := ¢s(x) +0(x)y. Using an inverse inequality in Dy (recall that the mesh sequence
is shape-regular), we infer that |0 (e)| < cel|Ax|[e2||frllLe(Dxrae). In the above argument, we
used that fj is piecewise Lipschitz on each cell in Tx and that fn is continuous at ax ;.
(2) Assume now that i € N’. We define Ty, := {K’ € Tx | Mk, C K'} and we introduce
M%,i = {:B € MK,i | 905(:”) + 6($)B(07 1) - TMK,'L}7
M?(,i = MKz\M?{z

Using (23.13) and (23.15b), we infer that [, . [lell;zds < Ty + Ty with
K,i
T, = / / () Ko (@, 9) s | Fn(abs(@, ) — fu(@)llpe dyds
o /B(0,1)

<af Y oy 10@s@Y) - h@s dsdy

Kt K'eTmy, " ds(@y)eK’
<) [ Mg ilehx Z IV frll Lo (7 Ra),
K/elf—MK,i

Ty = / / o)1 — Ks(x, ) dy () ds
%.:/ B(0,1)

< co| M ilell fall Lo (D Ra) -

Using the regularity of the mesh sequence (i.e., hx < chk) and an inverse inequality we obtain
fMgw llellezds < c¢| M ilel| full LoDy ray. Notice again that in the above construction we used
that f5 is (a priori) only piecewise Lipschitz. Moreover, if @ € M%i, there is y € B(0,1) s.t.
z = @s(x) + 6(x)y is not in Thq,,. The regularity of the mesh sequence implies that |z —
x|z > cd(x,0Mp ;) and ||z — x|z < cd(x) < 'ehg. Combining these bounds we obtain that
|M%l| < cehKh}i(_z < delMk i|. As a result, we have

[ telleds< [ (Ul + s ) ds

K,i M

< C|M?(,i|||fh||L°°(DK;Rq) < |MK,i|€||fh||L°°(DK;Rq)-
The above two estimates yield |og i(e)| < cel|Axle2 || frllLoo (D ra)-
(3) In conclusion, we have established that |0k i(e)| < cel|Axle2| fallLo(Dy;re) for all the dofs.
Since ||Ax ¢z ||Ag'|¢2 is uniformly bounded and using an inverse inequality, we infer that
l.frn — (Iho’CJ)(fh)”LP(K;]Rq) = ||eh||LP(K;]Rq)
Lo
< cedet(Ix) 7 A% el Ak ez | full Lo (Dicsray < cellfullo(icima)-

We conclude by summing over K € T, and invoking the regularity of the mesh sequence. O

23.3.2 Second step: the operator J,07Z;,0 s

Lemma 23.10 implies that [|I — (Z50KCs) pe7; )|l 2(rinr) < Cstane for all € € (0, €max], where I
denotes the identity operator in P(7,;R?). From now on, we choose € once and for all by setting

€ 1= €min ‘= Min(€max, (2Cstab)_1)- (23.17)
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This choice implies that |[I—(Zy0 Ks)|p(7,:re) || £(2#;17) < &, which in turn proves that (Iho Ks)p(T,ma)
is invertible. Let .Jj, : P(Tp; R?) — P(T,;RY) be the inverse of (Z,0 Ks)|p(T;,:ra),

Jno(Zpo ’C(S)IP(Th;Rq) = (Zpo IC(;)IP(Th;]Rq)OJh =1 (23.18)

Note that the definition of .J;, implies that ||.Ji| z(rr;ry < 2. We have the following important
stability result.

Lemma 23.11 (LP-stability). Let € := emin be defined in (23.17). There is ¢(€min) S.t. for all
p € [1,00] and all h € H, ||Zno Ks|| £(rr;rr) < c(€min)-

Proof. Let f € LP(D;R?) and assume p < oo (the argument for p = oo is similar). Since Zj (v)|x =
Zie_/\/ 0k,i(v)0k i, we infer that

Zno Ks) gy <€ Y / S o i (s (F)IP 105l da
KeTn ' K ieN
Using (23.13), which yields |o.:(Ks(f)] < ¢ |[Axlle2 15 (f) | (s e, and since |0 il| Lo 0 <

c||Ax |¢2, we infer that

1(Zho Ks) (Do pmey <€ D D IBklR I (I o (1 oy NAK 1 K-
KeTyieN

We conclude by using that there is ¢ s.t.

_ _1
||’C5(f)HL°°(K;R‘1) < Cemidn|K| P ”f”LP(DK;]R‘?)a (23.19)
for all f € LP(D;R?), all K € Ty, and all h € H; see Exercise 23.6. O

23.3.3 Main results

We define the operator
jh = JhOIhO IC(;, (2320)
that is,

Ty = o TioK§ : LN(DsRY) — PX(ThiRY), x € {g,¢,d,b},
Tio = Foo Tigo K : LNDRY) — PEo(TisRY),  x € {g.¢,d},

with £ > 1 if x = g and k > 0 otherwise. We drop the symbol x and the index 0 whenever
the context is unambiguous. Recall the spaces Z*P(D) from §23.1 with p € [1,00]. Let us also

x,p
set ZyP(D) = C’go(D)Z ) Owing to Theorems 3.19 and 4.15, we also have Z;”(D) = {f €
Z5P(D) [ y*(f) = 0} for p € (1, 00).

Theorem 23.12 (Properties of [J3). The following properties hold true:
(1) Pe(Th;R?) is pointwise invariant under Jp.
(ii) There is ¢ s.t. for all p € [1,00] and all h € H, | Tnllc(pr;rr) < ¢ and

If = In(f)llr(Drey < € If = fullr(Direy, Vf € LP(D;RY).

In GPk(ThR‘?
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(iil) The following diagrams commute for all k € N:

7¢7(D) Zen(D) — s (D) Vo gbw(p)
|7 | | |7
. . V x d V- b

PH+1(7771) Pﬁ(n) PH (ﬂl) Pn (ﬂl)
Z5(D) z;"(D) — 2+ Z37(D) ——+ 7°%(D)
|7 |7 |7 |7

\V4 Vv V-

PEy o(Th) PEo(Th) ——— P2,(Th) PY(Th)

Proof. Ttem (i) is a consequence of the definition of Jj, (see (23.18)). Item (ii) is proved by observing
that [|Jn|lz(zr;zry < 2 and that Zpo K5 is uniformly bounded since € := e, is now a fixed real
number (see Lemma 23.11 and (23.17)). Using that Jp,(fn) = fn for all f, € Py(Th;R?), we infer
that

If = Tn(F)lr(pray = inf : If = fo = Tn(f = fu)llLr(Dira)

Jn€Py(Th;Re

<@+ ITlewnan) , _inE 1F = fallisoso,
which establishes (ii). Let us now prove (iii). We are just going to show that the leftmost top
diagram commutes. The proof for the other diagrams is identical, and whether boundary conditions
are imposed or not is irrelevant in the argument. Let us first show that J;(V¢y) = V(J3(¢n)) for
all ¢y, € Pp(Tr). Since I = (Z3o K%) ps(7;,)0J; (see (23.18)) and (Zj;0 K3)|ps (7, )0}, = Lo KoJy
(because the range of J is in PZ(75)), we have

Vén = V(Zio K3) per) (T (0n)) = VIS (5 (61)))
=Ty (V(KS (T3 (6n)))) = Ti(K5(V (T} (6n)))),

where we used that VZI} = ZfV (see Lemma 19.6) and VK§ = K§V (see Lemma 23.3). Since
V(J; (én)) € PE(Th), the above argument together with (23.18) proves that

Vén = (Zio K5) 1pe(7i) VI3 (60) = (J7) 7 V(T3 (én))-

In conclusion, J§(Vén) = VJi(¢n). Now we finish the proof by using an arbitrary function
¢ € Z&P(D) and infer that

Ti (Vo) = JL(Ti(K5(Ve)) = Ji(Ti(VKS(9) = Ji (VI (K5(9))) = VIR (T, (K5 (9))),

where the last equality results from Jg(Veyp) = VJZ(¢p) for all ¢, € PE(Th;R?) (as established
above). This proves that J¢(V¢) = VIE(9). O

Remark 23.13 (Approximation property). The operators Jj are globally defined owing to
the use of the inverse operator J;,. This means that these operators cannot be used to derive local
approximation properties (in contrast with the quasi-interpolation operators constructed in the
previous chapter). We refer the reader to Christiansen [69] where global approximation properties
of the operators 7}, are established in Sobolev spaces of fractional order. O

Remark 23.14 (Variants). A local construction of commuting projections is proposed in Falk
and Winther [100], but stability is achieved in the graph space of the appropriate differential
operator and not just in L!. The case with homogeneous boundary conditions enforced on only
part of the boundary is studied in Licht [134]. O



248 Chapter 23. Commuting quasi-interpolation

23.4 Mollification with extension by zero

We now construct mollifying operators such that the mollified function is compactly supported
in D. These operators can be used for instance to identify the kernel of the trace operators; see
Exercise 23.9. We omit most of the proofs and refer the reader to Bonito et al. [33] and [96].

Since D is bounded, there are zp € R% and rp > 0 such that D C B(xp,rp). Let O :=
B(xp,rp)\D and notice that D C 9O. Since O is an open, bounded, and Lipschitz set, there
exists a vector field k € C*°(R?) that is globally transversal on O (i.e., there is v < 0 such that
k(x)no(x) <+ for all x € 00 where ne is the outer unit normal on 0), and || k(z)||;z = 1 for
all x € 00. Note that k(z)-n(x) > ~ for all @ € 9D, where n denotes the outer unit normal on
0D (which points toward the inside of @). For all § € [0, 1], we define the mapping:

95 : R > 2 x + Jk(z) € RY. (23.21)

Lemma 23.15 (Properties of ¥s). The mapping 95 is of class C* for all § € [0,1], and there
is ¢ s.t. maxgep | DF9s(x) — DFx| 2 < c ;5 for all § € [0,1] and all k € N. Moreover, there is
(>0 s.t.

95(0) + B(0,26¢) c O, V5 € (0,1]. (23.22)

We consider the following operator acting on functions in L*(D;R9):

(Kso(f))(x) == / p(0)Bs () F(D5(@) + (5O)y)dy,  Va € D, (23.23)

B(0,1)

where f denotes the zero-extension of f to R. Here, Bs : D — R%%? is a smooth field. The
examples we have in mind are Bf(z) := 1, B(z) := K] (z), B(z) := det(Ks(x))K; ' (x), and
B2(x) := det(Ks(z)), where K; is the Jacobian matrix of 95 at & € D.

Lemma 23.16 (Smoothness, compact support). Kso(f) € C5°(D;R?) for all f € L*(D;RR?)
and all 0 € (0,1].

Lemma 23.17 (Commuting). The following diagrams commute:

V x

Z57(D) Z°"(D) Z*(D) Z""(D)
|50 |50 = |15
Vx V.
Co°(D) (D) Gy (D) Coo(D)

Theorem 23.18 (Convergence). (i) There is 6y > 0 s.t. for all p € [1,00], (Ks5.0)5¢00.,50)
bounded in L(LP; LP). Moreover, we have

I [Ks0(f) = fllzrpmey =0, Vf € LP(D;RY),  Vp € 1, 00). (23.24)

(ii) Let s € (0,1]. For all p € [1,00), there is ¢ (c does not depend on p € [1,00] if s =1) s.t. for
all f € WP(D;RY), and all § € [0,00], the following holds true:

H’C&O(f) - fHLP(D;]Rq) S C(SSEBS”f”IF/\V/S,P(D;Rq)' (2325)
Corollary 23.19 (Derivatives). The following holds true for all p € [1,00):

(i) lims—o [IV (K5 o(f) = S)llze(p) = 0, Vf € ZEP(D).
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(i) lims—o |V (K5 0(9) = 9)l|zo(p) = 0, Vg € Z°P(D).

(ifi) limsso [|V-(Kg0(9) — 9)ll () = 0, Vg € Z47(D).

Remark 23.20 (Convergence rate on derivatives). Let p € [1,00) and s > 0. Assume first
that sp < 1. Using Theorem 3.19 combined with Lemma 23.17 and Theorem 23.18, we infer that

V(K5 0(f) = DllLey < e 7V Fllwewr (),
IVX(K§5.0(9) — @)llzrp) < 657V Xgllwer (D),
|\V-(/C5d70(g) —@)llLe(py < UL |IV-gllwer(D)s

for all f € LP(D) with Vf € W*?(D), all g € LP(D) with Vxg € W*?(D), and all g € L?(D)
with V-g € W*P(D), respectively. If sp > 1, boundary conditions on the derivatives are needed for
the above bounds to hold true, i.e., one needs also to assume that Vf € W (D), Vxg € WP (D),
and V-g € W;'P(D), respectively. O

Exercises

Exercise 23.1 (Star-shaped domain). Assume that 0 € D and that D is star-shaped with
respect to the ball B(0,r) for some r > 0. Verify that the mapping o5 : R? — R such that
p(x) := (1 — §)x verifies the properties stated in Lemma 23.1.

Exercise 23.2 (Commuting). Prove Lemma 23.3. (Hint: use Lemma 9.6.)

Exercise 23.3 (Translation). Let Ao > 0. Assume that 1) : D — D is a diffeomorphism of
class C! such that [[1x(z) — @[|;z < ¢\ and || Dypx(x) — ||z < 1 for all z € D and all A € [0, Ag].
Assume also that gy : @ — @ +t(r(x) — ) maps D into D for all ¢ € [0, 1] and all A € [0, \g].
Show that there is ¢ such that || foyon— f[|Le(py < ¢ M|V f| Le(p) for all X € [0, Xo], all f € WP(D),
and all p € [1,00]. (Hint: assume first that f is smooth, then use Remark 23.8.)

Exercise 23.4 (Approximation). (i) Prove (23.9) for K§ with s € (0,1), p € [1,00). (ii) Prove
the result for s = 1, p € [1,00]. (Hint: use Exercise 23.3.) (iii) Prove (23.9) for ¥ for x € {c,d, b}.
(Hint: observe that KX(f) = K*KCE(f).)

Exercise 23.5 (Preserving constants). Propose a definition of Ks that preserves constants and
commutes with the differential operators. (Hint: start with K5(f) := K§(f — f = Vf-(x —xp)) +
f+Vf(x—=p), f,Vf denoting mean values over D and xp the barycenter of D.)

Exercise 23.6 (Inverse inequality). Prove (23.19). (Hint: use (23.15b).)

Exercise 23.7 (Approximation with 7). Let r € [0,k + 1] and p € [1,0]. Let g € W"™P(D)
be such that Vxg € W7"P(D). Prove that ||g — J¢(g)llLr(p)y < ch”[glwrr(p) and [[Vx(g —
TS(@)|lLr(py < ch"|[Vxglwre(py. (Hint: use Theorem 23.12.)

Exercise 23.8 (Best approximation in L?). We propose an alternative proof of Corollary 22.9
on quasi-uniform meshes. Let h € H be the meshsize of T;, and set 0 := eh in (23.4) with e fixed
small enough. Prove that infy, cp, (7,) If — fallr(Dire) < L5 fllwrp(Direy for all 7 € [0,k +1],
all p € [1,00), and all f € W™P(D;RY). (Hint: admit as a fact that there is ¢, uniform, s.t.
8 IKs(f)lwer(pray < ¢(6/€p)! || fllwer(pray for all s > ¢ > 0, then use Zjo0 Ks.)
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%P
Exercise 23.9 (Z§"(D) = ker(y?). Let p € (1,00) and let Z"(D) == Co (D) . We

want to prove that Zg¥(D) = ker(y°) with the trace map ¢ : Z%?(D) — Wﬁi’p(aD) s.t.
((v),l) = [poVxw(l)dr — [(Vxv)w(l)dz for all v € Z9P(D) and all I € W%"pl(aD),
where w(l) € W1P(D) is such that v (w(l)) = I (see §4.3). (i) Show that Zg"(D) C ker(v°).
(Hint: K3(w) — w in WhP(D) as 6 — 0 for all w € W'P(D) and v& : WhP(D) — W»* (9D)
is surjective.) (ii) Let v € ker(y°). Show that Vxv = Vxv € LP(RY), where for every function v
defined in D, v denotes its zero-extension to R%. (iii) Show that ker(y°) C Zg?(D). (Hint: use
the mollification operator K§ , defined in (23.23).)



Appendix A

Banach and Hilbert spaces

The goal of this appendix is to recall basic results on Banach and Hilbert spaces. To stay general,
we consider complex vector spaces, i.e., vector spaces over the field C of complex numbers. The
case of real vector spaces is recovered by replacing the field C by R, by removing the real part
symbol R(-) and the complex conjugate symbol -, and by interpreting the symbol |-| as the absolute
value instead of the modulus.

A.1 Banach spaces

Let V be a complex vector space.

Definition A.1 (Norm). A norm on V is a map ||-||v : V — R4 := [0, 00) satisfying the following
three properties:

(i) Definiteness: [||v]ly =0] < [v=0].
(i) 1-homogeneity: || Av||v = |A|||v]|v for all A € C and all v € V.
(iii) Triangle inequality: ||v +wl|lv < ||lv|lv + [Jw|v for all v,w € V.

For every norm ||-||v : V. — Ry = [0,00), the function d(z,y) := || — y|lv, for all x,y €V, is a
metric (or distance).

Remark A.2 (Definiteness). Item (i) can be slightly relaxed by requiring only that [||v]y =
0] = [v = 0], since the 1-homogeneity implies that [v = 0] = [||v||v = 0]. O

Definition A.3 (Seminorm). A seminorm on V is a map ||y : V. — Ry satisfying only the
statements (ii) and (iil) above, i.e., 1-homogeneity and the triangle inequality.

Definition A.4 (Banach space). A vector space V' equipped with a norm ||-||v is called Banach
space if every Cauchy sequence in 'V has a limit in V.

Definition A.5 (Equivalent norms). Two norms ||-||v.1 and ||-||v,2 are said to be equivalent on
V' if there exists a positive real number ¢ such that

cllvlve < llvllva < e llve,  YoeW. (A1)

Whenever (A.1) holds true, V' is a Banach space for the norm ||-||v.1 if and only if it is a Banach
space for the norm ||-||v.2.



252 Appendix A. Banach and Hilbert spaces

Remark A.6 (Finite dimension). If V is finite-dimensional, all the norms in V are equivalent.
This result is false in infinite-dimensional vector spaces. Actually, the unit ball in V' is a compact
set (for the norm topology) if and only if V' is finite-dimensional; see Brezis [48, Thm. 6.5, Lax
[131, §5.2]. O

A.2 Bounded linear maps and duality

Definition A.7 (Linear, antilinear map). Let V, W be complex vector spaces. A map A:V —
W is said to be linear if A(v1 + v2) = A(vi) + A(ve) for all vi,ve € V and A(Mv) = AA(v) for all
A€ C and allv €V, and it is said to be antilinear if A(vy +vq) = A(v1) + A(va) for all vi,v3 € V
and A(Mv) = NA(v) for all X € C and allv € V.

Definition A.8 (Bounded (anti)linear map). Assume that V and W are equipped with norms
I-lv and ||-||w, respectively. The (anti)linear map A : V — W is said to be bounded or continuous

if
[ Allz(vwy = sup [4®)lw < 0. (A.2)
vev  lvllv

In this book, we systematicaly abuse the notation by implicitly assuming that the argument in this
type of supremum is nonzero. Bounded (anti)linear maps in Banach spaces are called operators.

The complex vector space composed of the bounded linear maps from V to W is denoted
by L(V;W). One readily verifies that the map |[|-[|z,w) defined in (A.2) is indeed a norm on
LV, W).

Proposition A.9 (Banach space). Assume that W is a Banach space. Then L(V; W) equipped
with the norm (A.2) is also a Banach space. The same statement holds true for the complex vector
space composed of all the bounded antilinear maps from V to W.

Proof. See Rudin [170, p. 87], Yosida [202, p. 111]. O

Example A.10 (Continuous embedding). Assume that V' C W and that there is a real number
¢ such that ||v||w < c||v||v for all v € V. This means that the embedding of V into W is continuous.
We say that V' is continuously embedded into W, and we write V — W. [l

The dual of a real Banach space V' is composed of the bounded linear maps from V' to R. The
same definition can be adopted if V' is a complex space, but to stay consistent with the formalism
considered in the weak formulation of complex-valued PDEs, we define the dual space as being
composed of bounded antilinear maps from V to C.

Definition A.11 (Dual space). Let V be a complex vector space. The dual space of V is
denoted by V' and is composed of the bounded antilinear maps from V to C. An element A € V' is
called bounded antilinear form, and its action on an element v € V is denoted either by A(v) or

<A,’U>V/7v.

Owing to Proposition A.9, V' is a Banach space with the norm

| Allv = sup AW _ sup |<A’U>V,’V|, VAe V' (A.3)

vev vy wvev lvllv

Remark A.12 (Linear vs. antilinear form). If A : V — C is an antilinear form, then A
(defined by A(v) := A(v) € C for all v € V) is a linear form. O
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A.3 Hilbert spaces

Let V' be a complex vector space.

Definition A.13 (Inner product). An inner product onV is a map (-,-)v : VXV — C satisfying
the following three properties: (i) Sesquilinearity (the prefix sesqui means one and a half): (-, w)y
is a linear map for all fized w € V, whereas (v, )y is an antilinear map for all fized v € V. If V is
a real vector space, the inner product is a bilinear map (i.e., it is linear in both of its arguments).
(ii) Hermitian symmetry: (v,w)y = (w,v)y for allv,w € V. (iii) Positive definiteness: (v,v)y >0
for allv € V and [(v,v)y = 0] <= [v = 0]. (Notice that (v,v)v is always real owing to the
Hermitian symmetry and that (0,-)y = (+,0)y = 0 owing to sesquilinearity.)

Proposition A.14 (Cauchy—Schwarz). Let (-, )y be an inner product on V. By setting

[vllv = (v,v){,  YveV, (A.4)

one defines a norm on V. This norm is said to be induced by the inner product. Moreover, we have
the Cauchy—Schwarz inequality

[(v,w)v| < |lv|lv]wlv, Yo, w e V. (A.5)

Definition A.15 (Hilbert space). A Hilbert space V' is an inner product space that is complete
with respect to the induced norm (and is therefore a Banach space).

Theorem A.16 (Riesz—Fréchet). Let V be a complex Hilbert space. For all A € V', there exists
a unique v €V s.t. (v,w)y = (A, w)yr v for all w € V, and we have ||v|v = ||Allv-.

Proof. See Brezis [48, Thm. 5.5], Lax [131, p. 56], Yosida [202, p. 90]. O

A.4 Compact operators

Definition A.17 (Compact operator). Let V,W be two complex Banach spaces. The operator
T € L(V; W) is said to be compact if from every bounded sequence (v, )nen in V, one can extract
a subsequence (Un, )ken such that the sequence (T'(vp,))ken converges in W. Equivalently T is said
to be compact if T maps the unit ball in V into a relatively compact set in W (that is, a set whose
closure in W is compact).

Example A.18 (Compact embedding). Assume that V' C W and that the embedding of V into
W is compact. Then from every bounded sequence (v, )nen in V, one can extract a subsequence
that converges in W. O

Proposition A.19 (Composition). Let W, X, Y, Z be four Banach spaces and let A € L(Z;Y),
K e L(Y; X), B € L(X;W) be three operators. Assume that K is compact. Then the operator
Bo K o A is compact.

The following compactness result is used at several instances in this book. The reader is referred
to Tartar [189, Lem. 11.1] and Girault and Raviart [107, Thm. 2.1, p. 18] for a slightly more general
statement and references.
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Lemma A.20 (Peetre—Tartar). Let X, Y, Z be three Banach spaces. Let A € L(X;Y) be an
injective operator and let T € L(X;Z) be a compact operator. Assume that there is ¢ > 0 such
that cl|z|| x < ||A(x)|ly + |T(x)||z for all z € X. Then there is o > 0 such that

allzllx < [A@)y, VeeX. (A.6)

Proof. We prove (A.6) by contradiction. Assume that there is a sequence (2, )neny of X s.t.
|lzn]|x = 1 and ||A(x,)||y converges to zero as n — oo. Since T' is compact and the sequence
(Zn)nen is bounded, there is a subsequence (2, )ren S.t. (T(2n, ))ken is a Cauchy sequence in Z.
Owing to the inequality

allzn, = zmllx < [A@n,) = Al@m)lly + 1T (@n,) = T(2m )l 2,

(Zn,, )ken 1s a Cauchy sequence in X. Let x be its limit, so that ||z||x = 1. The boundedness of
A implies A(z,,) — A(x), and A(xz) = 0 since A(zp,) — 0. Since A is injective, x = 0, which
contradicts [|z||x = 1. O

We finish this section with a striking property of compact operators.

Theorem A.21 (Approximability and compactness). Let V,W be Banach spaces. If there
exists a sequence (T )nen of operators in L(V; W) of finite rank (i.e., dim(im(7T,)) < oo for all
n € N) such that limy, o0 [|T — Tl vy = 0, then T is compact. Conversely, if W is a Hilbert
space and T € L(V; W) is a compact operator, then there exists a sequence of operators in L(V; W)
of finite rank, (Tn)nen, such that lim, oo |T — Tyl £(v,wy = 0.

Proof. See Brezis [48, pp. 157-158]. O

A.5 Interpolation between Banach spaces

Interpolation between Banach spaces is often used to combine known results to derive new results
that could be difficult to obtain directly. An important application is the derivation of functional
inequalities in fractional-order Sobolev spaces (see §2.2.2). There are many interpolation methods;
see, e.g., Bergh and Lofstrom [18], Tartar [189], and the references therein. For simplicity we focus
on the real interpolation K-method; see [18, §3.1] and [189, Chap. 22].

Let Vp and V; be two normed vector spaces that are continuously embedded into a common
topological vector space V. Then Vy 4+ V; is a normed vector space with the (canonical) norm
[[v]|vo+vy = Infy=pg+0, (lvollve + [[v1]lvy ). Moreover, if Vo and V; are Banach spaces, then Vi 4+ V4
is also a Banach space; see [18, Lem. 2.3.1]. For all v € Vj + V; and all ¢t > 0, we define

K(t,v) := (Ivollve + tlorllva)- (A7)

inf
Vv=v0+v1

For all t > 0, v — K (t,v) defines a norm on V; + V3 that is equivalent to the canonical norm. One
can verify that the function ¢ — K (¢, v) is nondecreasing and concave (and therefore continuous)
and that the function ¢ — 1K (¢,v) is increasing.

Definition A.22 (Interpolated space). Let 6 € (0,1) and let p € [1,00]. The interpolated space
Vo, Vile,p is defined to be the vector space

Vo, Vilo.p = {v € Vo + Vi | [£7° K (t,0) | o e, ) < 00}, (A-8)
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1
where [ o, 2ty = (Jo~ [P E)" for all p € [1,00) and ||| o, ;at) = SUPo<icoo [9(1)]-
This space is equipped with the norm

1ollvo,vata, = 18Kt 0) | o gey - (A.9)

If Vo and Vi are Banach spaces, so is Vo, Vila,p-

Remark A.23 (Value for ). Since K (¢,v) > min(1,?)||v|v,+v,, the space [Vo, Vi]g,p reduces to
{0} if t=min(1,t) & LP(Ry; &) In particular, [Vp, Vilg,, is trivial if 0 € {0,1} and p < occ. O

Remark A.24 (Gagliardo set). The function ¢ — K (t,v) has a simple geometric interpretation.
Introducing the Gagliardo set G(v) := {(zo,z1) € R? | v = vo+v1 with [Jvo|lv, < o, [|v1]l1y < 21},

one can verify that G(v) is convex and that K(t,v) = inf,coq (2o + tr1), so that the map
t — K(t,v) is one way to explore the boundary of G(v); see [18, p. 39]. O

Remark A.25 (Intersection). The vector space Vj NV can be equipped with the (canonical)
norm ||v||vynvy = max(||v||v, |v]]v;). One can verify that K(t,v) < min(1,¢)||v]v,nv; for all
v € VoN Vi, which implies the boundedness of the embedding Vo N'V; < [V, Vi]g,, for all 6 € (0,1)
and all p € [1, 00]. Hence, if Vi C Vi, then Vy < [Vo, Vilg,p- O

Lemma A.26 (Continuous embedding). Let 0 € (0,1) and p,q € [1, 0] with p < q. Then we
have [V07 ‘/1]9.,p % [‘/07 ‘/l]e,q-

Theorem A.27 (Riesz—Thorin, interpolation of operators). Let A: Vo + Vi — Wy + Wy be
a linear operator that maps Vo and Vi boundedly to Wy and Wh, respectively. Then for all 6 € (0,1)
and all p € [1,00], A maps [V, Vile,p boundedly to [Wy, Wilg . Moreover, we have

HAHﬁ([V07V1]9,p;[W07W1]9,p) < ||A||1L?30,W0) HAH%(Vl;Wl)' (AIO)

Proof. See [189, Lem. 22.3]. O

Theorem A.28 (Lions—Peetre, reiteration). Let 0y,6, € (0,1) with 6y # 01. Assume that
[V(), V1]9071 — Wy — [VQ, Vl]eg,oo and [VQ, V1]9171 — Wi — [VQ, Vl]el,oo- Then fOT all 8 € (O, 1) and
all p € [1,00], [Wo, Wilgp = [Vo, Vilnp with equivalent norms, where n:= (1 —6)6y + 60.

Proof. See Tartar [189, Thm. 26.2]. O

Theorem A.29 (Lions—Peetre, extension). Let Vp, Vi, F be three Banach spaces. Let A €
L(VoNVi; F). Then A extends into a linear continuous map from [Vo, Vilg1.s to F iff

Je < oo, A()||F < c||v|\%,0_9|\v||€,l, Yo e VoNWi. (A.11)
Proof. See [189, Lem. 25.3]. O

Theorem A.30 (Interpolation of dual spaces). Let¢ € (0,1) andp € [1,00). Then [Vo, Vil , =
Vi, Vili—o,p where p' := S5 (with the convention that p' := oo if p=1).

Proof. See [189, Lem. 41.3] or Bergh and Lofstrom [18, Thm. 3.7.1]. O
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Appendix B

Differential calculus

This appendix briefly overviews some basic facts of differential calculus concerning Fréchet deriva-
tives and their link to the notions of gradient, Jacobian matrix, and Hessian matrix.

B.1 Fréchet derivative

Let V, W be Banach spaces and let U be an open set in V. The space C°(U; W) consists of those
functions f : U — W that are continuous in U.

Definition B.1 (Fréchet derivative). Let f € C°(U;W). We say that f is Fréchet differentiable
(or differentiable) at x € U if there is a bounded linear operator D f(x) € L(V; W) such that
e+ h) = f(z) = Df(x)(h)llw

lim
h—0 112Y1R%

The operator D f(x) is called Fréchet derivative of f at x. If the map Df : U — L(V; W) is
continuous, we say that f is of class C' in U, and we write f € C*(U; W).

—0. (B.1)

The above process can be repeated to define D(Df)(z). For an integer n > 2, let us denote
by M, (V,...,V;W) the space spanned by the multilinear maps from Vx ... xV (n times) to W.
Upon identifying £(V; £(V;W)) with My(V,V; W) and setting D?f(x) := D(Df)(z), we have
D?f(x) € Mo(V,V;W). The n-th Fréchet derivative of f at x is defined recursively as being the
Fréchet derivative of D"~1 f at x for all n > 2, that is,

D" f(z) e Mp(V,...,V;W).
——
n times
D" :U— M,(V,...,V;W) is continuous, we write f € C™(U; W).
Let us restate some elementary properties of the Fréchet derivative (for the chain rule, the

reader is referred, e.g., to Cartan [64, pp. 28-96], Ciarlet and Raviart [78, p. 227]). For an integer
n > 1, S, denotes the set of permutations of the integer set {1:n} :={1,...,n}.

Lemma B.2 (Leibniz product rule). Let f € C™"(U;Wh), g € C*(U;Wa), n > 1, and let
b: Wy x Wy — W3 be a bilinear map, where U is an open set in 'V and V, Wy, Ws are Banach
spaces. The following holds true for all x € U:

Duifaae) = 3 () )oor @) Dy, vacu (B.2)

1e{0:n}
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Theorem B.3 (Symmetry). Let V, W be Banach spaces. Let n > 2 and let S,, be the set of the
permutations of {1:n}. Let f € C™"(U; W) where U is an open set in V. Then D™ f is symmetric,
i.e.,

D" f(z)(his...,hn) = D" f(2)(hoqr)s s ho(n))s Vo €U, (B.3)
forallo €S, and all hy,...,h, € V.
Theorem B.3 with n := 2 is often called Clairaut or Schwarz theorem in the literature.

Lemma B.4 (Chain rule). Let f € C"(U;Wh) and g € C"(W1;Wa), n > 1, where V, Wy, Wa

are Banach spaces and let U be an open set in V. Then we have

DMgof)@)(hy, by = 3 S Y ﬁ (B.4)

0ESy le{1:n} 1<ri+..+r=n
D'g(f (@) (D" f (@) (o) - s ho(sn))s- o D7 (@) (oo, 11)s -+ s ho(m)-
with sqg =0, 1 =171, Sg:=r1+7re, ..., S 1:=7T1+...+7_1.
The identity (B.4) is often called Faa di Bruno’s formula in the literature.
Example B.5. For n =1, (B.4) yields

D(fog)(x)(h) = Dg(f(@))(Df(x)(h)),
i.e., D(f o g)() = Dg(f(x)) o Df(x). O

B.2 Vector and matrix representation

Assume that V' = R? and let {ey, ..., eq} be the canonical Cartesian basis of R?. (We use boldface
notation for elements in V). Let U be an open set of RY. We say that f is differentiable in the
direction e; at € U if there is an element in W, say 9;f(x) € W, such that lim; ¢ [t|7*(f(x +
te;)— f(x)—1t0;f(x)) = 0. If f is Fréchet differentiable at a, it is differentiable along any direction
e; for i € {1:d} (the converse is not necessarily true), and we have

0if(x) = Df(z)(e:). (B.5)

More generally, let @ := (a1, ...,a4) € N¢ be a multi-index. The number |a| := a3 + ...+ ag is
called the length of . For all f € C™(U; W) and every multi-index « s.t. |a| = n, we write

Of(e):=01...01...04...04 f(x) =D"f(x)(e1,...,e1,...,€4,...,€4), (B.6)
a1 times ag times a1 times aq times

and the order of the partial derivatives is irrelevant owing to Theorem B.3.

Let us finally assume that W is also finite-dimensional, e.g., W := R™ or W := C™. For
m =1, we adopt the convention that the gradient of f at @, say V f(x), is the column vector with
components

(Vf(x)); = 0if(x), Vi € {1:d}. (B.7)
Identifying h with a column vector in R?, the action of Df(x) is such that the following identities

hold true for all h = Zie{ltd} hie; € R¢:

Df(x)(h)= > 0if(@)hi = (Vf(x),h)ega, (B.8)

ie{l:d}
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where (-, ')Z2(Rd) denotes the Euclidean product in R, Assuming that m > 2, consider a basis of
R™ and define the mxd Jacobian matriz of f at x, say Jr(x), by its entries

(Js(@))ij == 0;fi(x),  Vi,j € {l:d}, (B.9)
where f; is the i-th component of f in the chosen basis. Then we have
Df(x)(h) = Jf(x)h,  VhecR% (B.10)

Note that when m = 1, J(z) is the transpose of the gradient of f at x, i.e., J;(z) = (Vf(z))'.
For a scalar-valued function f, one can introduce the (symmetric) dxd Hessian matriz at x, say

Hy(x), with entries
(Hp)ij = 0ij f(x), Vi, je {l:d}, (B.11)

leading to the following representation:

D?f(x)(h1,hy) = h] Hi(x)hy = hy Hy(x)h, Vhi, hy € RY. (B.12)
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boundary dof, 217

boundary face, 74
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Cauchy—Schwarz inequality, 8,253

chain rule, 258

Clairaut theorem, 258
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cochain complex, 164
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conforming orthogonal projection, 235
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convergence in the distribution sense, 32
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Deny—Lions lemma, 106
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distributional derivative, 32
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domain, 21
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equal almost everywhere, 3
equivalent norms, 251
Euler identity, 137

Euler relations, 76
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face dofs, 217

face matching assumption, 204
face unisolvence assumption, 204
face-to-cell lifting, 168

Fekete points, 55

finite element, 38

finite element generation, 84
Fischer—Riesz theorem, 6,7
Fréchet derivative, 257
Fubini’s theorem, 9
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Gagliardo—Nirenberg—-Sobolev, 17
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generation (finite element), 84
generation-compatible orientation, 94
geometric entity, 215

geometric finite element, 71
geometric mapping, 71

geometric mapping (simplex), 62
geometric nodes, 71,76

global degrees of freedom (dofs), 192
global shape functions, 181,192
gradient, 258

H

Holder’s inequality, 8

hat basis function, 194

Hermite finite element, 44, 202
Hessian matrix, 259

hierarchical polynomial basis, 54
Hilbert space, 253

homogeneous polynomial, 136

I
incidence matrices, 94
increasing vertex-index, 96,97

inner product, 253

integration by parts (curl), 34
integration by parts (grad-div), 34
interface, 74

internal connectivity classes, 200
internal dof, 217

interpolation inequality, 8
interpolation operator, 40

inverse inequality, 115
isoparametric, 83

J

Jacobi polynomials, 48
Jacobian matrix, 259
jump, 180

K
Kelvin—Stokes formula, 163
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Lagrange finite element, 41
Lagrange interpolation operator, 41
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Lebesgue constant, 42

Lebesgue integral, 4

Lebesgue measure, 2

Lebesgue points, 11

Lebesgue’s dominated convergence, 5
Lebesgue’s outer measure, 2
Lebesgue-measurable set, 2
Legendre polynomials, 47

Leibniz product rule, 257

length (multi-index), 258

lifting of trace, 24

linear form, 252

linear operator, 252

Lipschitz domain, 21

Lipschitz function, 15

local degrees of freedom (dofs), 84
local enumeration, 76

local interpolation operator, 84
local shape functions, 84

locally integrable, 6

locally Lipschitz, 13

M

macroelement, 216
Markov inequality, 117
mass matrix, 41
matching mesh, 75
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mesh, 73
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mesh generation, 78

meshsize, 73

Meyers—Serrin theorem, 16
midpoint rule, 51

modal finite element, 41

modal interpolation operator, 42
mollification, 239

monotone convergence theorem, 5
Morrey theorem, 17

multi-index, 64

multiplicative trace inequality, 120

N

Nédélec element (Cartesian), 154
Nédélec element (second kind), 154
Nédélec finite element, 145,152
Nanson’s formula, 88

nodal basis, 41

nodal finite element, 41

nodes, 37

norm, 251

normal derivative, 25,35

normal trace in H(div), 35

(0)

operator (Banach), 252
order of a distribution, 31
oriented edge, face, 93
oriented tetrahedron, 97

P

Peetre-Tartar lemma, 107,254
piecewise of class C" (domain), 23
Piola transformations, 87

Poincaré inequality, 28
Poincaré-Steklov inequality, 27,119,232
polyhedron, 38

polytope, 38

prism, 65

prismatic Lagrange element, 65
pullback by the geometric mapping, 87

Q

quadrangle generation, 72
quadrature nodes, 49
quadrature order, 49
quadrature weights, 49

quasi-interpolation operator, 230
quasi-uniform mesh, 236

R

Rademacher theorem, 13
Raviart—-Thomas (Cartesian), 142
Raviart-Thomas finite element, 135
reference cell, 71

reference dofs, 83

reference finite element, 83
reference interpolation operator, 84
reference shape functions, 83
Rellich-Kondrachov theorem, 19
Riesz—Fréchet theorem, 8, 45,253
Riesz—Thorin theorem, 8,255

S

Schwarz theorem, 258
seminorm, 251

serendipity finite elements, 57
shape functions, 39
shape-regular mesh sequence, 104
shrinking mapping, 239
simplex, 61

simplex generation, 72
simplicial mesh, 74

Simpson’s rule, 51
Sobolev—Slobodeckij norm, 15
spectral element methods, 57
strongly Lipschitz domain, 22
subparametric, 83

support, 6

T

tangential trace in H (curl), 35
tensor-product Lagrange elements, 56
test functions, 6

trace theorem, 24,25

transformation (differential operators), 86
transformation (measures), 89
transformation (normal, tangent), 88
transformation (Sobolev seminorms), 105
trapezoidal rule, 51

U

uniform cone property, 22
unisolvence, 39

unit simplex, 61

A%
Vandermonde matrix, 39
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vanishing integral theorem, 6
vertex dofs, 217

vertex permutation, 206,210
vertices (simplex), 61

W
weak derivative, 12
weakly Lipschitz domain, 22

Z
zero-extension (Sobolev spaces), 25



