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Abstract: The paper presents a combined state and parameter estimation for a landslide model
using a Kalman filter. The model under investigation is based on underlying mechanics that
depicts a landslide behavior. This system is described by an Ordinary Differential Equation
(ODE) with displacement as a state and landslide geometrical and material properties as
parameters. The Kalman filter approach is utilized on a simplified model equation for state and
parameter estimation. Finally, the presented approach is validated by two illustrative examples,
the first one a synthetic case study and the second one on Super-Sauze landslide data taken

from the literature.

Keywords: State estimation, parameter estimation, Kalman filter, landslide model,

Super-Sauze landslide.

1. INTRODUCTION

Landslide is a gravitational hazard causing substantial
cost in life losses and damaging infrastructure worldwide
each year. Most of the landslides are triggered by heavy
precipitation; earthquakes and human activities such as
construction work can be other reasons. Avoiding building
infrastructure near or on the exposed zone is a suitable
strategy in landslide risk management, while stabilizing
unstable slopes and installing protecting structures are
some of the other available options. However, with rapid
urbanization, infrastructures are still being constructed in
a landslide-prone zone (Nyambod, 2010). The implementa-
tion of Early Warning Systems (EWS) can help take timely
actions to reduce life and economic losses (Krggli et al.,
2018). These EWS’s use specific monitoring strategies that
assess the environment’s current status and determine
trends in environmental parameters to generate accurate
warnings.

Some of the landslide EWS works on a rainfall thresh-
old approach to establish a trend between movement
and the triggering precipitation from past data. As this
critical value of precipitation is defined on statistical
and experience bases, this approach often provides false
alarms (Guzzetti et al., 2007). One of the perspective
approaches is based on seismic measurements, in which
seismic parameters are derived from monitoring that
provides a significant precursory signal (Fiolleau et al.,
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2020). Another approach of landslide forecasting makes
use of monitoring displacement (or velocity). This ap-
proach generates warning based on a change in slope
displacement rates over time, e.g., inverse velocity cri-
teria (Petley et al., 2005). Sometimes these warnings
provide less reaction time to take necessary precau-
tionary measures. Therefore, this approach can be en-
hanced by utilizing physics-based landslide models, e.g.,
sliding-consolidation model (Hutchinson, 1986), viscoplas-
tic sliding-consolidation model (Corominas et al., 2005;
Herrera et al., 2013; Bernardie et al., 2014) and extended
sliding-consolidation model (Iverson, 2005) to predict fu-
ture displacement /velocity. A similar approach has already
been studied in (Corominas et al., 2005; Herrera et al.,
2013; Bernardie et al., 2014). These models are sensitive
to the initial conditions, parameter values, and input to the
model, i.e., rainfall, water table height, or pore water pres-
sure time-series. In this context, an additional interesting
approach could be to analyze the changes in mechanical
properties of the material (parameters) prior to events.

This paper presents combined state and parameter es-
timation for a simplified viscoplastic sliding model of
a landslide. This system is described by an ODE with
displacement as a state and landslide geometrical and
material properties as parameters. The model is further
simplified so as to apply Kalman filter approach to es-
timate displacement and unknown parameters (material
properties, e.g., friction angle and viscosity). Finally, two
illustrative examples validate the presented approach on
two different cases: i) synthetic test case and ii) Super-
Sauze landslide data taken from the literature (Bernardie
et al., 2014). A similar perspective of displacement and



parameter estimation on the Super-Sauze landslide is stud-
ied in (Bernardie et al., 2014) using sequential quadratic
programming (SQP) algorithm. For the extended sliding-
consolidation model of a landslide, observer problems are
solved by adjoint method (Mishra et al., 2020b) and
observer design (Mishra et al., 2020a) on synthetically
generated noisy data. Kalman filter-based estimation ap-
proach demonstrated its effectiveness in many studies and
applications, for instance, state and parameter estimation
in linear lung model (Saatci and Akan, 2009), lithium-
ion battery (Meng et al., 2020), and asynchronous motors
(Ticlea and Besangon, 2006; Atkinson et al., 1991).

The paper’s structure is as follows: A landslide model
depicting landslide dynamics, and the problem statement
is given in Section 2. Section 3 presents the proposed solu-
tion method. In Section 4, simulation results demonstrate
the effectiveness of the proposed approach. Finally, some
conclusions and future directions of the work are discussed
in Section 5.

2. PROBLEM FORMULATION
2.1 Simplified viscoplastic sliding model

The viscoplastic sliding model (Corominas et al., 2005;
Herrera et al., 2013; Bernardie et al., 2014) of a landslide
assumes a slide block overlying thin shear zone, as shown
in Fig. 1. Net destabilizing inertial force Fy; is given by

Fyi =pHAa(t)=Fy+F, + F.+F,+ F, (1)
where p is the soil density, H is the slide block height,
A is the slide block base area, a(t) is acceleration of the
slide block, Fy is gravity imposed driving force (F, =
pHAgsin6), F, is basal Coulomb friction force (F, =
—pHAgcosftan¢), F. is cohesive force (F. = —CA), F,
is fricion force due to pore pressure (F, = p(t)Atan¢), F,
is viscous force (F, = —nv(t)A/st), g is the acceleration
due to gravity, 6 is the inclination angle, ¢ is the friction
angle, C is the cohesion, p(t) is pore water pressure at time
t, n is the viscosity, v(t) is velocity of the slide block, and
s; is the basal shear zone thickness.

The dimensional analysis shows that the inertia term
pHAa(t) is expected to remain much smaller than the
other terms (i.e., steady-state is indeed reach very fast), so
this term assumed to be null. Also, with the assumptions
of a groundwater flow parallel to the slope surface, the
pore water pressure is defined by

p(t) = pugcos® fuwy(t) (2)
where p,, is the pore water density and w(t) is water table
height as shown in Fig. 1. Therefore, ignoring the inertia
term, substituting Fy, F,, F., F,, F, and (2) in (1), and
rearranging the equation leads to dynamics

d=o(t) = ('0) stHgsinf — (ptan¢> stHgcost
n n

— (:}) $:C + <ta7771(;5> stprCOSQth(t)

where d is displacement of the slide block.

3)

Notice that the upslope motion of the slide block is
physically impossible, i.e., the slide block velocity can

not be negative (d = v(t) £ 0). Such a situation arises

Slide block

Basal shear zone

Fig. 1. Geometrical variables of the slide block

whenever water table height goes below critical water table
height w§™. The value of w{™ is evaluated as (derived

from d = v(t) = 0)

C —pHgsin® + pHgcosftan ¢
Pwg cos? 0 tan ¢ '

crit
Wy =

(4)

Thus, when w;(t) < w§" landslide obeys following dy-
namics

d=u(t) =0. (5)

Therefore, the combined dynamics of the landslide is
represented as

(3) s¢Hgsinf — (%) st Hgcosl

n

d=<{ — (%) s:C + (%) stpwgcos2Owy(t), if we(t) > wf’"“

0, otherwise.

(6)
Based on the model (6), this paper’s primary goal is to
estimate displacement d and unknown parameters from
available measurements d,,.q,, known parameters and in-
put we(t). In most cases, geometrical parameters (H,0,s;)
could be well known while few of the material properties,
for instance, friction angle ¢ and viscosity n need to be
estimated. Notice that model switches when wy () < w§™®,
therefore it is required to estimate w§™ which itself de-
pends on parameter values in the estimation scheme.

Note: In the formulated problem, water table height
we(t) acts as an input, which is assumed to be known.
In many scenarios, instead of wy(t), pore water pressure
measurements could be available, and in such a situation
we(t) can be reconstructed from p(t) using (2).



3. KALMAN FILTER BASED STATE AND
PARAMETER ESTIMATION

In order to address the defined problem, let us first
normalize parameters, by introducing a scaling factor 7
in equation (3) as follows:

nd = (Z) stpHgsint — (ntc;né) stpHgcost
_ (77> 5,0 + (ntan([)) 8¢ pwgcos>Ow;(t).
n n

Now considering that n and ¢ are the parameters to be
identified, the other ones being known, let us set:

01|  |pHgsing —C —pHgcosf i/n (8)
By = 5t 0 pwgcos20 | |ftan¢/n| "
Substituting (8) in (7), the model can then be extended

by two state varaiables 61, 65 with 91 = 92 = 0. Taking

into account w™ it reads:

[ [4 . i
d:{ﬁ+5%@ if wy(t) > werit

0 otherwise

(7)

b o (9)

0y = 0.

Owing to discrete measurements, let us write the system
dynamics in discrete time,

/—§L
1 % %w? d* 4
01 0 OF |, ifwf > wsrtt
dFt+t 00 1 0%
ot =4 (10)
05" (1007 [d*
010 Qlf R otherwise
00 1] Lo%
——
A3
where dt is the discrete time step, and the measurement is
o, =Cld 0 0] ok ()
where C' = [1 0 0] and v* denotes some measurement

noise.

For dynamics (10)-(11), Kalman filter (Anderson and

Moore, 1979) provide estimates of d, 6; and 6, (see also
(Ticlea and Besangon, 2009) for a version with forgetting
factor). Based on these estimates at each time step firstly

71/f and 7jtan ¢/7) are reconstructed using (8)

{ /7 ]_ 1 [pHgsin@C’ pchos@]l {él}

Atan¢/i] s, 0 puwgcosf A

followed by

and

¢ =tan"! ({ntan qg/ﬁ} X

33
~_
—
=

In the proposed estimation scheme w¢™ plays an impor-

tant role, which depends on the parameter values, there-
fore at each step it is estimated as

C—pHgsinG—l—pchos@tanqg
Pwg cos2 0 tan ¢ ‘

~crit
Wy =

(15)
Notice that from equation (9), only two parameters are
structurally identifiable (Walter and Pronzato, 1997). This
means that in addition to d, one could also estimate n and
C or n and p for instance.

To estimate d, n and C, (8) can be replaced by

03] |1 pHgsin® — pHgcosb| [7C/n (16)
041 =5 0 tan ¢p,,gcos6 n/n

while for estimation of d, n and p, (8) can be replaced by

05|  |Hg(sinf — cosftan ¢) -C ip/n
0| ~ 5t 0 tan ¢pp,,gcos20| | 7/n |-
(17)

Notice also, still from (9), that actual identification of the
parameters needs enough excitation (Besangon, 2007), and
that when w;(t) lies below w§™, identifiability is lost.

4. ILLUSTRATIVE EXAMPLES
4.1 Synthetic test case

To validate the effectiveness of our approach, a measured
displacement profile d¥,, is generated synthetically by
solving system equations (6). The parameter values used
for the simulation are summarized in Table 1. The wa-
ter table height time-series is assumed to be sinusoidal
in the simulations, representing seasonal variation. This
water table height profile crosses w§™ calculated using
(4). Simulated synthetic displacement measurement (with
signal to noise ratio 40db white Gaussian noise) and water
table profile are shown in Fig. 2.

Table 1. Parameter values (Synthetic test case)

[ Parameters [ Value [ Unit ]
Initial slide block displacement, do 0 m
Slide block thickness, H 2 m
Average inclination angle, 6 12 deg
Shear zone thickness, st 0.01 m
Acceleration due to gravity, g 9.8 m/s?
Pore water density, pw 1000 kg/m3
Cohesion, C' 1200 Pa
Slide block mass density, p 1600 kg/m3
Time step, dt 3600 sec
Critical water table height, wf”t 1.55 m
Friction angle, ¢ 18 deg
Viscosity, n 108, 5 x 107 Pa.s

The proposed approach is utilized to estimate d, n, ¢, and
wg™ assuming all other parameters are known (Table 1).
Initial states and scaling factor used in the simulation
are introduced in Table 2. Note that, éw and égo are
calculted using (8) with 1y and ¢y equals to 2 x 10%

Pa.s and 15 deg, respectively. A convergence in state



and paramater estimates can be seen in Fig. 3, Fig. 4,
Fig. 5, Fig. 6, and Fig. 7 respectively. In practice some
of the parameter values change with time. In order to
take such a situation into consideration, a step change in
viscosity 7 is introduced. This change in parameter value
and its corresponding estimate can be seen in Fig. 5. In
simulation results, it is observed that intial convergence
time is two days and for the next change in parameter
value convegence time is three days.

Table 2. Initial states/Scaling factor/Filter co-

efficients
[ State/Time step/Scaling fector [ Value ]

Scaling factor,7 108
Initial displacement,dg 0.0l m
Initial state,f01¢ —24.15
Initial state,f2¢ 20.92
Initial state estimation error auto-covariance, Py 103 x I3x3
Process noise auto-covariance matrix,Q 1071 x I3y
Measurement noise auto-covariance matrix, R 10~9
Process noise gain matrix,G Isxs
B 4 ‘ 0.15
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Fig. 2. Synthetic displacement measurement d¥,, and
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4.2 The Super-Sauze landslide

As a second example, let us consider the case of an actual
landslide. The Super-Sauze landslide is situated in the
French South Alpes. To apply the proposed estimation
strategy, displacement d¥ _, and pore water pressure p*
data are taken from (Bernardie et al., 2014). This data
corresponds to one of the most active parts of the landslide
for a period of high groundwater level from 07,/05/1999 to
23/05/1999 (16 days), as shown in Fig. 8. At that position
(location Bs), displacement and pore water pressure are
measured by a wire extensometer and piezometer, respec-
tively. In the proposed scheme, water table height time-
series wF is required as an input, which is reconstructed
from p* as follows (2)

k

wf = p*/ (pwgcos® 0) (18)



The known parameter values (Bernardie et al., 2014) are
indicated in Table 3. Here, the value of p is chosen to be
the saturated soil density (Malet et al., 2005) as the slide
block is close to the full saturation level (Fig. 8).

Table 3. Parameter values (Super-Sauze)

[ Parameters [ Value [ Unit ]
Slide block thickness, H 9 m
Average inclination angle, 0 25 deg
Shear zone thickness, st 0.2 m
Acceleration due to gravity, g 9.8 m/s2
Pore water density, pw 1000 kg/m3
Cohesion, C 14000 Pa
Slide block mass density, p 1700 — 2140 | kg/m?

The proposed scheme for estimation of displacement d,
friction angle ({) and viscosity 7 is performed with initial
states, time step and scaling factor given in Table 4.
Note that, 61 and fa¢ are calculted using (8) with initial
viscosity ng and friction angle ¢o equals to 108 Pa.s and
35 deg (assumed), respectively. The state and paramater
estimates are shown in Fig. 9, Fig. 10, Fig. 11, Fig. 12, and
Fig. 13 respectively. Here, simulations are performed twice
assuming the lower (p = 1700) and upper value (p = 2140)
of the soil density (Table 3). It is observed that frictional
angle ¢ stays constant (Fig. 12) (33°/36.7°) while viscosity
1 changes with time (Fig. 11). For first 9 days viscosity is
nearly constant (1.15x 108/8.7x 107 Pa.s) then it changes
to 1.2 x 108/9.2 x 107 Pa.s till day 12.5 and finally it
stablizes to 1.3 x 108/1 x 10® Pa.s. As mentioned earlier,
the available data is for a period of high groundwater level
therefore, w} is always greater than w{"* (see in Fig. 13).

Table 4. Initial state/Time step/Scaling fac-
tor/Filter coefficients

[ State/Time step/Scaling fector [ Value
Time step,dt 8640 sec
Scaling factor,n 108
Initial displacement,cio 0.5m
Initial state,élo —8.89 x 103
Initial state,égo 1.17 x 103
Initial state estimation error auto-covariance, Py 103 x I3x3
Process noise auto-covariance matrix,Q 10~ x Izx3
Measurement noise auto-covariance matrix, R 10—°
Process noise gain matrix,G EPE

9.5 w 4

Water table height (m)
Displacement (m)

Time (days)

Fig. 8. The Super-Sauze landslide data from the liter-
ature: Displacement measurement dF ., and water
table height time-series wf (Bernardie et al., 2014)
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5. CONCLUSION

This paper employed a Kalman filter for state and pa-
rameter estimation of landslides on the synthetic test case
and Super-Sauze landslide data from the literature. Firstly,
we considered the landslide model depicting a landslide
behavior described by an Ordinary Differential Equation
(ODE). Secondly, the model is simplified to utilize the
Kalman filter approach for information reconstruction,
i.e., estimation of displacement and material properties
(friction angle and viscosity) of landslides under investi-
gation. In the simulation result for the Super-Sauze case
(with real measurements), it is observed that friction angle
almost remains constant while viscosity varies significantly
through time.

A future direction for work will be to utilize the proposed
approach for different landslides with extended time hori-
zon data, which could comprise low groundwater level, i.e.,
less than critical water table height.
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