
HAL Id: hal-03224122
https://hal.science/hal-03224122

Submitted on 19 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Dislog: a Logic-Based Language for Processing Discourse
Patrick Saint Dizier

To cite this version:
Patrick Saint Dizier. Dislog: a Logic-Based Language for Processing Discourse. Columbus, Nadya.
Logic Programming: Theory, Practices and Challenges - Proceedings of the 8th International Con-
ference on Language Resources and Evaluation (LREC 2012), L12-1 (paper 17), European Language
Resources Association (ELRA), pp.2770-2777, 2014. �hal-03224122�

https://hal.science/hal-03224122
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

DISLOG: A logic-based language for processing discourse structures

Patrick Saint-Dizier

IRIT-CNRS, 118 route de Narbonne

31062 Toulouse cedex France, stdizier@irit.fr

Abstract

In this paper, we present the foundations and the properties of the Dislog language, a logic-based language designed to describe and

implement discourse structure analysis. Dislog has the flexibility and the expressiveness of a rule-based system, it offers the possibility

to include knowledge and reasoning capabilities and the expression a variety of well-formedness constraints proper to discourse. Dislog

is embedded into the <TextCoop> platform that offers an engine with various processing capabilities and a programming environment.

Keywords: discourse, logic programming, linguistic modelling

1. The Challenges

Discourse analysis is a very challenging task because of the

large diversity of discourse structures, the various forms

they take in language and the potential knowledge needs

for their identification. Rhetorical structure theory (RST)

(Mann el al. 1988) is a major attempt to organize investiga-

tions in discourse analysis, with the definition of 22 basic

structures. Since then, almost 200 relations have been intro-

duced with various aims http://www.sfu.ca/rst/.

Several approaches, based on corpus analysis with a strong

linguistic basis, are of much interest for our aims. Rela-

tions are investigated together with their linguistic markers

e.g. (Delin 1994), (Marcu 1997), (Miltasaki et ali. 2004),

then (Kosseim et al. 2000) for language generation, and

(Rossner et al. 1992), and (Saito et al. 2006) with an ex-

tensive study on how markers can be quite systematically

acquired.

TextCoop is a logic-based platform designed to describe

and implement discourse structures and related constraints

via an authoring tool. Dislog (Discourse in Logic) is the

language designed for writing rules and lexical data. Dislog

extends the formalism of Definite Clause Grammars to dis-

course processing and allows the integration of knowledge

and inferences. TextCoop and Dislog tackle the following

foundational and engineering problems:

• taking into account of the diversity of discourse struc-

tures: generic (e.g. illustration, elaboration) as well as

domain oriented (e.g. title-instructions in procedures),

• introduction, for easy tests and updates, of a declara-

tive and modular language via rules. Our approach is

based on (1) basic discourse structures, (2) selective

binding rules to bind basic structures into larger units,

(3) repair rules and (4) various classes of constraints

on the way basic structures can be combined,

• introduction of accurate specifications of rule execu-

tion modes (e.g. order, concurrency, left-to-right or

right-to-left, etc.), in order to optimally process struc-

tures,

• taking into account of the specification and binding of

complex structures, e.g. multi-nucleus-satellite con-

structions as often found in domain dependent con-

structions (e.g. title-prerequisites-instructions in pro-

cedures), or cases where satellites are merged into

their nucleus (dislocation),

• integration in rules of various forms of knowledge and

inferences e.g. to compute attribute values or to re-

solve relation identification and scope, or ambiguities

between various relations.

• development of an authoring tool to implement dis-

course relation rules and lexical resources. Note

that in general discourse analysis rules are relatively

re-usable over domains because markers are often

domain-independent.

• finally, production of various forms of output repre-

sentations (XML tags, dependencies).

TextCoop is currently used to process various kinds of pro-

cedural texts, industrial requirements and regulations, news

texts and didactic texts. It is used in projects dedicated to

health and ecology safety analysis in industrial procedures

(the LELIE project) and in opinion analysis, in particular

for argument extraction. TextCoop is in an early stage of

development, it offers different functions than well-known

platforms such as Gate or Linguastream.

2. The <TextCoop> platform and the Dislog

language

2.1. The context

There are at the moment a few well-know and widely

used language processing environments. They are essen-

tially used for sentence processing, not for discourse anal-

ysis. The reasons are essentially that the sentence level

and its substructures are the crucial level of analysis for a

large number of applications such as information extrac-

tion, opinion analysis based on noun modifiers or machine

translation. Discourse analysis turns out to be not so critical

for these applications. However, applications such as sum-

marization or question-answering do require an intensive

discourse analysis level.

Dedicated to sentence processing, let us note the GATE

platform (http://gate.ac.uk/) which is widely used and the

Linguastream (http://www.linguastream.org) system which

is based on a component architecture, making the system

2770

really flexible. Except for some specific features for sim-

ple aspects of discourse processing, none of these plat-

forms allow the specifications of rules for an extensive

discourse analysis nor the introduction of reasoning as-

pects, which is essential to introduce pragmatic consider-

ations into discourse processing. GATE is used e.g. for

semantic annotation, corpus construction, knowledge ac-

quisition and information extraction, summarization, and

investigations around the semantic web. It also includes

research on audio visual and language connections. Lin-

guastream has components to mainly deal with part of

speech and syntactic analysis. It also handles several

types of semantic data with a modular approach. It is

widely used for corpus analysis. The GETARUNS sys-

tem (http://project.cgm.unive.it/getaruns.html), based on

the LFG grammar approach, has some capabilities to pro-

cess simple forms of discourse structures and argumenta-

tion analysis. Finally, (Marcu 2000) developed a discourse

analyzer for the purpose of automatic summarization. This

system is based on the RST assumptions which are not al-

ways met in texts, as developed in the section below.

2.2. Some linguistic considerations

Most works dedicated to discourse analysis have to deal

with the triad: discourse function identification, delimi-

tation of its textual structure (boundaries of the discourse

unit) and structure binding. By function we mean a nucleus

or a satellite of a rhetorical relation, e.g. an illustration, an

illustrated expression, an elaboration, or the elaborated ex-

pression, a conditional expression, a goal expression, etc.

Functions are realized by textual structures which need to

be accurately delimited. Functions are not stand alone: they

must be bound based on the nucleus-satellite or nucleus-

nucleus principle.

2.3. Some foundational principles of <TextCoop>

The necessity of a modular approach, where each aspect

of discourse analysis is dealt with accurately and indepen-

dently in a module, while keeping open all the possibili-

ties of interaction, if not concurrency, between modules has

lead us to consider some simple elements of the model of

Generative Syntax (a good synthesis is given in (Lasnik et

al. 1988)). As shall be seen below, we introduce:

• productive principles, which have a high level of ab-

straction, which are linguistically sound, but which

may be too powerful,

• restrictive principles, which limit the power of the

first in particular on the basis of well-formedness con-

straints.

Another foundational feature is an integrated view of mark-

ers used to identify discourse functions, merging lexical ob-

jects with morphological functions, typography and punc-

tuation, syntactic constructs, semantic features and inferen-

tial patterns that capture various forms of knowledge (do-

main, lexical, textual). <TextCoop> is the first platform

that offers this view within a logic-based approach. If ma-

chine learning is a possible approach for sentence process-

ing, where interesting results have emerged, it seems not

to be so successful for discourse analysis (e.g. Carlson et

ali. 2001), (Saaba et al 2008), the Annodis project). This

is due to two main factors: (1) the difficulty to annotate

discourse functions in texts and the high level of disagree-

ment between annotators and (2) the large non-determinism

of discourse structure recognition where markers are often

immerged in long spans of text of no or little interest. For

these reasons, we adopted a rule-based approach. Rules are

hand coded, based on corpus analysis using bootstrapping

tools.

Dislog rules basically implement the productive principles.

They are composed of three main parts:

1. A discourse function identification structure, which

basically has the form of a rule or of a pattern,

2. A set of calls to inferential forms using various types

of knowledge, these forms are part of the identification

structure, they may contribute to solving ambiguities,

they may also be involved in the computation of the re-

sulting representation or they may lead to restrictions.

3. A structure that represents the result of the analysis: it

can be a simple XML structure, or any other structure

a priori such as an element of a graph or a dependency

structure. More complex representations, e.g. based

on primitives, can be computed using a rich semantic

lexicon. This is of much interest since our analysis is

oriented towards a conceptual analysis of discourse.

2.4. The structure of Dislog rules

Let us now introduce in more depth the structure of Dis-

log rules. Dislog follows the principles of logic-based

grammars as implemented three decades ago in a se-

ries of formalisms, among which, most notably: Defi-

nite Clause Grammars (Pereira and Warren 1981), Meta-

morphosis Grammars (Colmerauer 1978) and Extraposition

Grammars (Pereira 1981). These formalisms were all de-

signed for sentence parsing with an implementation in Pro-

log via a meta-interpreter or a direct translation into Prolog

(Saint-Dizier 1994). The last two formalisms include a de-

vice to deal with long distance dependencies.

Dislog adapts and extends these grammar formalisms to

discourse processing, it also extends the regular expression

format which is often used as a basis in language process-

ing tools. The rule system of Dislog is viewed as a set of

productive principles.

A rule in Dislog has the following general form, which

is globally quite close to Definite Clause Grammars in its

spirit:

L(Representation)→ R, {P}.
where:

1. L is a non-terminal symbol.

2. Representation is the representation resulting from the

analysis, it is in general an XML structure with at-

tributes that annotates the original text. It can also be

a partial dependency structure or a more formal rep-

resentation. The computation of the representation is

typical of logic-based grammars and use the power of

logic variables of logic programming.

2771

3. R is a sequence of symbols as described below, and

4. P is a set of predicates and functions implemented in

Prolog that realize the various computations and con-

trols, and that allow the inclusion of inference and

knowledge into rules.

R is a finite sequence of the following elements:

• terminal symbols that represent words, expressions,

punctuations, various existing html or XML tags.

They are included between square brackets,

• preterminal symbols: are symbols which are derived

directly into terminal elements. These are used to cap-

ture various forms of generalizations, facilitating rule

authoring and update. Symbols can be associated with

a type feature structure that encodes a variety of as-

pects of those symbols, from morphology to seman-

tics,

• non-terminal symbols, which can also be associated

with type feature structures. These symbols refer to

’local grammars’, i.e. grammars that encode specific

syntactic constructions such as temporal expressions

or domain specific constructs. Non-terminal symbols

do not include discourse structure symbols: Dislog

rules cannot call each other, this feature being dealt

with by the selective binding principle, which includes

additional controls. A rule in Dislog thus basically en-

codes the recognition of a discourse function taken in

isolation, i.e. an elementary discourse unit.

• optionality and iterativity markers over non-terminal

and preterminal symbols, as in regular expressions,

• gaps, which are symbols that stand for a finite se-

quence of words of no present interest for the rule

which must be skipped. A gap can appear only be-

tween terminal, preterminal or non-terminal symbols.

Dislog offers the possibility to specify in a gap a list of

elements which must not be skipped: when such an el-

ement is found before the termination of the gap, then

the gap fails.

• a few meta-predicates to facilitate rule authoring.

Symbols may have any number of arguments. However,

in our current version, to facilitate the implementation of

the meta-interpreter and improve its efficiency, the recom-

mended form is:

identifier(Representation, Type feature structure).

where Representation is the symbol’s representation. In

Prolog format, a difference list (E,S) is added at the end

of the symbol:

identifier(R, TFS, E,S)

A few examples in Dislog format are given at the end of

this document. Rules in external format can be found at

(Bourse and Saint-Dizier, LREC 2012).

Similarly to DCGs and to Prolog clause systems, it is possi-

ble and often necessary to have several rules to describe the

different realizations of a given discourse function. These

all have the same identifier L, as it would be the case e.g.
for NPs or PPs. A set of rules with the same identifier is

called a cluster of rules. Rule clusters are executed sequen-

tially by the <TextCoop> engine following an order given

in a cascade.

2.5. Dislog advanced features

2.5.1. Selective binding rules

Selective binding rules allow to link two or more already

identified discourse functions. The objective is e.g. to bind

a nucleus with a satellite (e.g. an argument conclusion with

its support) or with another nucleus (e.g. concessive or

parallel structures). Selective binding rules can be used

for other purposes than implementing rhetorical relations.

These can be used more generally to bind structures whose

rhetorical status is not so straightforward, in particular in

some application domains. For example, in procedural dis-

course, they can be used to link a title with the set of in-

structions, prerequisites and warnings that realize the goal

expressed by this title.

From a syntactic point of view, selective binding rules are

expressed using the Dislog language formalism. Selective

binding rules is the means offered by Dislog to construct

hierarchical discourse structures from the elementary ones

identified by the rule system. Different situations occur that

make binding rules more complex than any system of rules

used for sentence processing, in particular (examples are

given in section 2.6):

• discourse structures may be embedded to a high de-

gree, with partial overlaps,

• others may be chained (a satellite is a nucleus for an-

other relation),

• nucleus and related satellites may be non-adjacent,

• nucleus may be linked to several satellites of different

types,

• some satellites may be embedded into their nucleus.

Selective binding rules allow the binding of:

1. two adjacent structures, in general a nucleus and a

satellite, or another nucleus.

2. two or more non-adjacent structures, which may be

separated by various elements (e.g. causes and con-

sequences, conclusion and supports may be separated

by various considerations). However limits must be

imposed on the ’textual distance’ between units.

To limit the textual distance between argument units, we

introduce the notion of bounding node, which is also a

notion used in sentence formal syntax to restrict the way

long-distance dependencies can be established (Lasnik et

al. 1988). Bounding nodes are also defined in terms of

barriers in generative syntax. In our case, the constraint is

that a gap must not go over a bounding node. This allows

to restrict the distance between the constituents which are

bound. For example, we consider that an argument con-

clusion and support must be both in the same paragraph,

therefore, the node ’paragraph’ is a bounding node.

2772

This declaration is taken into account by the <TextCoop>
engine in a transparent way, and interpreted as an active

constraint which must be valid throughout the whole pars-

ing process. The situation is however more complex than

in sentence syntax. Indeed, bounding nodes in discourse

depend on the structure being processed. For example, in

the case of procedural discourse, a warning can be bound

to one or more instructions which are in the same subgoal

structure. Therefore, the bounding node must be the sub-

goal node, which may be much larger than a paragraph.

Bounding nodes are declared as follows in Dislog:

boundingNode(paragraph, argument).

2.5.2. Repair rules

Although relatively unusual, annotation errors may occur.

This is in particular the case when (1) a rule has a fuzzy or

ambiguous ending condition w.r.t. the text being processed

or (2) when rules of different discourse functions overlap,

leading to closing tags that may not be correctly inserted. In

argument recognition, we have indeed some forms of com-

petition between a conclusion and its support which share

common linguistic markers. For example, when there are

several causal connectors in a sentence the beginning of a

support is ambiguous since most supports are introduced

by a connector. In addition to using concurrent processing

strategies, repair rules can resolve errors efficiently.
The most frequent situation is the following:
<a>, ... < /a>, ... < /b>
which must be rewritten into:
<a>, ... < /a>, ... , ... < /b> .
This is realized by the following rule:

correction([<A> G1 G2 G3]) -->

[<A>], gap(G1),[],gap(G2),

[], gap(G3), [].

2.5.3. Rule concurrency management

The current <TextCoop> engine is close to the Prolog ex-

ecution schema. However, to properly manage rule exe-

cution but also the properties of discourse structures and

the way they are usually organized, we introduce additional

constraints, which are, for most of them, borrowed from

sentence syntax.

Within a cluster of rules, the execution order is the rule

reading order, from the first to the last one. Then, elemen-

tary discourse functions are first identified and then bound

to others to form larger units, via selective binding rules.

Following the principle that a text unit has one and only

one discourse function (but may be bound to several other

structures via several rhetorical relations) and because rules

can be ambiguous from one cluster to another, the order in

which rule clusters are executed is a crucial parameter. To

handle this problem, Dislog requires that rule clusters are

executed in a precise, predefined order, implemented in a

cascade of clusters of rules.

For example if, in a procedure, we want first titles, then

prerequisites and then instructions to be identified, the fol-

lowing constraint must be specified:

title < prerequisite < instruction.

Since titles have almost the same structure than instruc-

tions, but with additional features (bold font, html specific

tags, etc.), this prevents titles from being erroneously iden-

tified as instructions.

In our engine, there is no backtracking between clusters. In

relation with this notion of cascade, it is possible to declare

’closed zones’, e.g.:

closed_zone([title]).

indicates that the textual span recognized as a title must not

be considered again to recognize other functions within or

over it (via a gap).

2.5.4. Structural constraints

Let us now consider basic structural principles, which are

very common in language syntax. This allows us to contrast

the notion of consistuencywith the notion of discourse rela-

tion. Consistuency is basically a part-of relation applied to

language structures (nouns are part of NPs) while discourse

is basically relational. Let us introduce here dominance and

precedence constraints, these notions being valid as far as

trees of discourse structures can be constructed, which is

in fact the most frequent situation. Discourse abound in

various types of constraints, which may be domain depen-

dent. Dislog is open to the specification of a number of

such structural constraints.

Dominance constraints can be stated as follows:

dom(instruction, condition).

This constraint states that a conditional expression is al-

ways dominated by an instruction, i.e. the condition XML

tags are strictly within the boundaries of an instruction

XML tags. This means that a condition must always be

part of an instruction, not in a discourse relation with an

instruction. In that case, there is no discourse link between

a condition and an instruction, the implicit structure being

consistuency: a condition is a constituent, or a part of, an

instruction.

Similarly, non-dominance constraints can be stated to

ensure that two discourse functions appear in different

branches of the discourse representation, e.g.:

not_dom(instruction, warning).

which states that an instruction cannot dominate a warning.

Finally, precedence constraints may be stated. We only

consider here the case of immediate linear precedence, for

example:

prec(elaborated, elaboration).

indicates that an elaboration must follow what is elabo-

rated. This is a useful constraint for the cases where the

nucleus must necessarily precede its satellite: it contributes

to the efficiency of the selective binding mechanism and

resolves some recognition ambiguities.

2.6. Introducing reasoning aspects into discourse

analysis

Discourse relation identification often require some forms

of knowledge and reasoning. This is in particular the case

2773

to resolve ambiguities in relation identification when there

are several candidates or to clearly identify the text span

at stake. While some situations are extremely difficult to

resolve, others can be processed e.g. via lexical inference

or reasoning over ontological knowledge. Dislog allows the

introduction of reasoning, and the <TextCoop> platform

allows the integration of knowledge and functions to access

it and reason about it.

This problem is very vast and largely open, with ex-

ploratory studies e.g. reported in (Van Dijk 1980),

(Kintsch 1988), and more recently some debates reported

in (http://www.discourses.org/Unpublished

Articles/SpecDis&Know.htm) .

Let us give here a simple motivational example. The utter-

ance (found in our corpus):

... red fruit tart (strawberries, raspberries) are made ...

contains a structure: (strawberries, raspberries) which is

ambiguous in terms of discourse functions: it can be an

elaboration or an illustration, furthermore the identification

of its nucleus is ambiguous:

red fruit tart, red fruit ?

A straightforward access to an ontology of fruits tells us

that those berries are red fruits, therefore:

- the unit strawberries, raspberries is interpreted as an il-

lustration, since no new information is given (otherwise it

would have been an elaboration)

- its nucleus is the ’red fruit’ unit only,

- and it should be noted that these two constituents, which

must be bound, are not adjacent.

The relation between an argument conclusion and its sup-

port may not necessarily straightforward and may involve

various types of domain and common-sense knowledge:

do not park your car at night near this bar: it may cost you

fortunes.

Women standards of living have progressed in Nepal: we

now see long lines of young girls early morning with their

school bags. (Nepali Times).

In this latter example, school bag means going to school,

then school means education, which in turn means better

conditions, for women in this case.

2.7. Processing complex constructions: the case of

Cleft constructions

As in any language situation, there are complex situations

where discourse segments that contribute to form larger

units, which are not clearly delimited, may overlap, be

shared by several discourse relations, etc. Similarly to syn-

tax, we identified in relatively ’free style’ texts phenomena

similar to quasi-scrambling situations, free-structure order-

ing and cleft constructions.

From a processing point of view, the <TextCoop> engine

attempts to recognize the embedded structure first, then, if

no unique text segment can be found for the embedding

structure (standard case), it non-deterministically decom-

poses the rules describing the embedding structure one af-

ter the other, following the above constraints, and attempts

to recognize it ’around’ the embedded one.

As an example, we observed in our corpora quasi-

scrambling situations, a simple case being the illustration

relation. Consider again the example above, which can also

be written as follows (in French):

strawberries are red fruits similarly to raspberries, for ex-

ample.

where the enumeration itself is subject to dislocation.

3. The <TextCoop> engine

Let us now give some details about the way the

<TextCoop> engine runs. The engine and its environment

are implemented in SWI Prolog, using the standard Prolog

syntax without using any libraries to guarantee readability,

ease of update and portability. Since this is quite a complex

implementation, we simply survey here the elements which

are crucial for our current purpose. The principle is that the

declarative character of constraints and structure processing

and building is preserved in the system. The engine, imple-

mented in Prolog, interprets them at the appropriate control

points. The<TextCoop> engine code will be shortly avail-

able, under either the CECILL license (French GPL) or a

low cost traditional license, together with a programming

environment for rules and linguistic resources (for French

and English).

The constraints advocated above remain as given in the

examples below, these are directly consulted by the meta-

interpreter to realize the relevant controls. The engine fol-

lows the cascade specification for the execution of rule clus-

ters. For each cluster, rules are activated in their reading or-

der, one after the other. Backtrackingmanages rule failures.

If a rule in a rule cluster succeeds on a given text span, then

the other possibilities for that cluster are not considered (but

rules of other clusters may be considered in a later stage of

the cascade).

A priori, the text is processed via a left to right strategy. In

a cluster of rules, rules are executed sequentially, however,

if a rule starts with an early symbol (e.g. a determiner), it

is activated before another rule that starts on a later sym-

bol (e.g. the noun it quantifies). <TextCoop> also offers a

right to left strategy for rules where the most relevant mark-

ers are to the right of the rule, in order to limit backtracking.

For the two types of readings, the system is tuned to recog-

nize the smallest text span that satisfies the rule structure.

It processes raw text, html or XML texts. A priori, the ini-

tial XML structure is preserved.

3.1. System performances and discussion

Let us now analyze the performances of <TextCoop>with

respect to relevant linguistic dimensions, and contrast these

with performances of parsers dedicated to sentence pro-

cessing. More details are given in (Saint-Dizier, 2012).

3.1.1. General results

The<TextCoop> engine and related data are implemented

in SWI Prolog which runs on a number on environments

(Windows, Linux, Apple). Our implementation can support

a multi-threaded approach, which has been tested with the

<TextCoop> engine embedded into a Java environment.

This is useful for example for ’parallel’ processing on sev-

eral machines or to distribute e.g. lexical data, grammars

and domain knowledge on various machines.

The<TextCoop> engine has been relatively optimized and

some recommendations for writing rules have been pro-

duced in order to allow for a reasonable efficiency.

2774

3.1.2. Lexical issues

An important feature of discourse structure recognition is

that the lexical resources which are needed are quite often

generic. This means that the system can be deployed on

any application domain without any major lexical changes

and update (Bourse and Saint-Dizier, LREC 2012). In total,

the average size of the required lexical resources (number

of rules being fixed) for discourse processing for an appli-

cation such as procedural text parsing on a given domain is

around 900 words, which is very small compared to what is

necessary to process the structure of sentences for the same

domain. Results below are given fro French. Results for

English are not very different.

The following figures give the system performances de-

pending on the lexicon size. Lexicon sizes correspond to

comprehensive lexicons for a given domain (e.g. 400 cor-

responds to the cooking domain, the case with 180 lexical

entries is a toy system).

lexicon size (in no. of words) Mb of text/hour

180 39

400 27

900 20

1400 18

2000 17

Fig. 1 Impact of lexicon size

These results are somewhat difficult to precisely analyze,

since they depend on the number of words by syntactic cat-

egory, the way they are coded and the order in which they

are listed in the lexicon (in relation with the Prolog strat-

egy). In order to limit the complexity related to morpho-

logical analysis, a crucial aspect for Romance languages,

a preliminary tagging process has been carried out to limit

backtracking. The way lexical resources are used in rules

is also a parameter which is difficult to precisely analyse.

Globally, reducing the size of the lexicon to those elements

which are really needed for the application allows for a cer-

tain increase in the system performances.

3.1.3. Issues related to the rule system size and

complexity

Two parameters related to the rule system are investigated

here: how much the number of rules and the rule size im-

pact the efficiency.

The results obtained concerning the number of rules are the

following:

number of rules Mb of text/hour

20 29

40 23

70 19

90 18

Fig. 2 Impact of number of rules

As can be noted, increasing the number of rules has a mod-

erate impact on performances, one of the reasons is that the

most prototypical rules are executed first. Rules have here

an average complexity: 4 symbols and a gap in average, and

an average of 8 rules per cluster. Lexical size here is fixed

(500 entries). 20 rules is a very small system while 80 to

120 rules is a standard size for an application. The results

we obtain are difficult to accurately analyze: besides rule

ordering considerations, results depend on the distribution

of rules per cluster and the form of the rules. For example,

the presence of non-ambiguous linguistic markers at the

beginning of a rule enhances rule selection, and therefore

improves efficiency. Constraints such as those presented

above are also very costly since they are checked at each

step of the parsing process for the structures at stake. Se-

lective binding rules have little impact on efficiency: their

first symbol being an XML tag backtracking occurs at an

early stage of the rule traversal.

Let us now consider rule size, which is obviously an impor-

tant feature:

rule complexity (symbols per rule) Mb of text/h

3 30

4 23

5 20

7 18

Fig. 3 Impact of rule size

With the number of rules and the size of the lexicon being

kept fixed, we note that the rule size has a moderate impact

on performances, slightly higher than the number of rules.

This may be explained by the fact that the symbols starting

the rules are in a number of cases sufficiently well differ-

entiated to provoke early backtracking if the rule is not the

one that must be selected. However, the number of lexical

entries of these symbols may have an important impact. If

the symbol is a specific type of connector or if it is a noun or

a verb, this may entail efficiency differences, difficult how-

ever to evaluate at our level. Finally, note that rules have in

general between 4 and 6 symbols including gaps.

3.2. The <TextCoop> environment

The <TextCoop> environment is in a very early stage of

development: many more experiments are needed before

reaching a stable analysis of the needs. It includes tools for

rules (syntax checking, but also e.g. controlling possible

overlaps between rules, bootstrapping on corpora to induce

rules) and for developing the necessary lexical resources.

Accessing already defined and formatted resources is of

much interest for authors. We have already designed the

following sets of resources, for French and English (Bourse

and Saint-Dizier, LREC 2012):

• lists of connectors, organized by general types: tem-

poral, causal, concession, etc.

• list of specific terms which can appear in a number of

discourse functions, e.g.: terms specific of illustration,

summarization, reformulation, etc.

• lists of verbs organized by semantic classes, close to

those found in WordNet, that we have adapted or re-

fined for discourse analysis, e.g. with a focus e.g. on

propositional attitude verbs, report verbs, (Wierzbicka

1987), etc.

2775

• list of terms with positive or negative polarity, essen-

tially adjectives, but also some nouns and verbs, this

is useful in particular to evaluate the strength of argu-

ments,

• local grammars for e.g.: temporal expressions, expres-

sion of quantity, etc.

• some already defined modules of discourse function

rules to recognize general purpose discourse functions

such as illustration, definition, reformulation, goal and

condition.

• some predefined functions and predicates to access

knowledge and control features (e.g. subsumption),

• morphosyntactic tagging functions,

• some basic utilities for integrating knowledge (e.g. on-

tologies) into the environment.

4. Perspectives

In this article, we have first presented the <TextCoop>
platform and the Dislog language, designed for discourse

analysis. <TextCoop> is based on a cooperation between

grammar theory and knowledge and reasoning, which al-

lows the introduction of knowledge and pragmatic factors

to identify and properly bound discourse structures. From

that point of view this platform offers several original fea-

tures.

Quite a comprehensive set of rules is given in (Bourse and

Saint-Dizier, LREC 2012) concerning discourse structures

which aere related to explanation. Other examples, related

to argumentation can be found in (Fontan et al. 2008) and

(Saint-Dizier 2012).

From a software point of view, we plan to distribute the ker-

nel of <TextCoop> (CECILL or free traditional licence)

when sufficiently tested. A user manual will come with

the Prolog code with examples in Dislog format and lan-

guage resources. Probably, and more conveniently, the sys-

tem will also be available as a web service with an adequate

interface and input-output facilities, where users can upload

texts and see the tagged texts. We also plan to make avail-

able a large corpus of arguments tagged by the system.

At the moment, we develop two main application frame-

works: (1) argument extraction in opinion analysis, and (2)

risk analysis and prevention as these can be detected from

procedures. Argument extraction in opinion analysis, ap-

plied to customer opinions, aims at identifying the reasons

why customers are happy or unhappy with a certain prod-

uct or brand. Arguments may be explicit, introduced by a

causal marker, or they may be incorporated into an evalu-

ative expression such as an adjective or an adverbial con-

struct.

We also initiated the LELIE project:

http://www.irit.fr/recherches/ILPL/lelie/accueil.html

aimed at analysing and preventing risks (e.g. health,

ecology) from procedure analysis, in production and

maintenance situations. This project requires an extensive

discourse processing. The goal is to make sure that a

set of procedures dedicated to a given task contain all

the necessary safety advice and warnings as stipulated

by norms, regulations, or business rules. Related to this

project, we are investigating from a language point of view

a number of aspects of requirement technology in order to

improve their language structure for subsequent treatments.

5. Acknowledgements

This project is supported by the French ANR project LELIE

and partly by an IFCPAR Indo-French project. We are

also very grateful to a number of colleagues for discussions

about this work, including David Roussel, Lionel Fontan,

Estelle Delpech and Sarah Bourse and three anonymous re-

viewers.

6. References

Bal, B.K., Saint-Dizier, P., 2010. Towards Building Anno-

tated Resources for Analyzing Opinions and Argumen-

tation in News Editorial, LREC, Malta.

Carberry, S., 1990. Plan Recognition in natural language

dialogue, Cambridge university Press, MIT Press.

Carlson, L., Marcu, D., Okurowski, M.E., 2001. Building a

Discourse- Tagged Corpus in the Framework of Rhetori-

cal Structure Theory. In Proceedings of the 2nd SIGdial

Workshop on Discourse and Dialog, Aalborg.

Colmerauer, A., 1978. Metamorphosis Grammars, in Natu-

ral language understanding by computers, L. Bolc (ed.),

LNCS no. 63, Springer verlag.

Delin, J., Hartley, A., Paris, C., Scott, D., Vander Linden,

K., 1994. Expressing Procedural Relationships in Mul-

tilingual Instructions, Proceedings of the Seventh Inter-

national Workshop on Natural Language Generation, pp.

61-70, Maine, USA.

Di Eugenio, B. and Webber, B.L., 1996. Pragmatic Over-

loading in Natural Language Instructions, International

Journal of Expert Systems.

Fontan, L., Saint-Dizier, P., 2008. Analyzing the explana-

tion structure of procedural texts: dealing with Advices

and Warnings, International Symposium on Text Seman-

tics (STEP 2008), Venise, , Johan Bos (Eds.).

Grosz, B., Sidner, C., 1986. Attention, intention and the

structure of discourse, Computational Linguistics 12(3).

Kintsch, W., 1988. The Role of Knowledge in Discourse

Comprehension: A Construction-Integration Model,

Psychological Review, vol 95-2.

Kosseim, L., Lapalme, G., 2000. Choosing Rhetorical

Structures to Plan Instructional Texts, Computational In-

telligence, Blackwell, Boston.

Lasnik, H., Uriagereka, J., 1988. A Course in GB syntax,

MIT Press.

Mann, W., Thompson, S., 1988. Rhetorical Structure The-

ory: Towards a Functional Theory of Text Organisation,

TEXT 8 (3) pp. 243-281.

Mann,W., Thompson, S.A. (eds), 1992. Discourse Descrip-

tion: diverse linguistic analyses of a fund raising text,

John Benjamins.

Marcu, D., 1997. The Rhetorical Parsing of Natural Lan-

guage Texts, ACL’97.

Marcu, D., 2000. The Theory and Practice of Discourse

Parsing and Summarization, MIT Press.

2776

warning→ it is (adv) important... to/that) gap verb gap Mfin(end)

forme(c-avt-eng, E, S, [

expr(EXP,itis,E,E2), gap([],[adj,],E2,E3,Saute1),

adj(ADJ,imperatif,E3,E4), gap([], [verb,], E4,E5,Saute2),

verb(V,[action,impinf],E5,E6),

gap([], [mfin,], E6,E7,Saute3), mfin(MFIN, ,E7,S)], [],

[<concl-avt> , EXP, Saute1, ADJ, Saute2, <verb type=actionimpinf>,

V, < /verb>, Saute3, < /concl-avt>, MFIN]).

warning→ avoid gap Mfin(end)

forme(c-avt-eng, E, S, [

verb(V,[eviter,impinf],E,E3),

gap([], [mfin,], E3,E4,Saute2), mfin(MFIN, ,E4,S)], [],

[<concl-avt> , MDEB, Saute1, V, Saute2, < /concl-avt>, MFIN]).

warning→ make sure not to /to (never) gap Mfin(end)

forme(c-avt-eng, E, S, [expr(EXP2,ensure,E,E2), prep([to], ,E2,E4),

opt(neg(Neg, ,E4,E5)), verb(V,[action,impinf],E5,E6),

gap([], [mfin,], E6,E7,Saute2), mfin(MFIN, ,E7,S)], [],

[<concl-avt> , EXP2,[to],Neg, V, Saute2, < /concl-avt>, MFIN]).

warning→ ensure not to gap Mfin(end)

forme(c-avt-eng, E, S, [expr(EXP2,ensure,E,E2),

neg(Neg, ,E2,E3),prep([to], ,E3,E5),

verb(V,[,impinf],E5,E6),

gap([], [mfin,], E6,E7,Saute2), mfin(MFIN, ,E7,S)], [],

[<concl-avt> , EXP2,Neg,[to], V, Saute2, < /concl-avt>, MFIN]).

Figure 1: A few rules for warning conclusions in ready to run mode,

see also more data in (Bourse and Saint-Dizier, LREC 2012)

Marcu, D., 2002. An unsupervised approach to recognizing

Discourse relations, ACL’02.

Miltasaki, E., Prasad, R., Joshi, A., Webber, B., 2004. An-

notating Discourse Connectives and Their Arguments,

proceedings of new frontiers in NLP.

Pereira, F., 1981. Extraposition Grammars, Computational

Linguistics, vol. 9-4.

Pereira, F., Warren, D., 1980. Definite Clause Grammars

for Language Analysis, Artificial Intelligence vol. 13-3.

Rosner, D., Stede, M., 1992. Customizing RST for the Au-

tomatic Production of Technical Manuals, in R. Dale, E.

Hovy, D. Rosner and O. Stock eds., Aspects of Auto-

mated Natural Language Generation, Lecture Notes in

Artificial Intelligence, pp. 199-214, Springler-Verlag.

Saaba A., Sawamura, H., 2008. Argument Mining Us-

ing Highly StructuredArgument Repertoire, proceedings

EDM08, Niigata.

Saito, M., Yamamoto, K., Sekine, S., 2006. Using Phrasal

Patterns to Identify Discourse Relations, ACL’06.

Saint-Dizier, P., 1994. Advanced Logic programming for

language processing, Academic Press.

Saint-Dizier, P., 2012. Processing Natural Language Argu-

ments with the <TextCoop> Platform, Journal of Argu-

mentation and Computation.

Takechi, M., Tokunaga, T., Matsumoto, Y., Tanaka, H.,

2003. Feature Selection in Categorizing Procedural Ex-

pressions, The Sixth International Workshop on Infor-

mation Retrieval with Asian Languages (IRAL2003),

pp.49-56.

Van Dijk, T.A., 1980. Macrostructures, Hillsdale, NJ:

Lawrence Erlbaum Associates.

Webber, B., 2004. D-LTAG: extending lexicalized TAGs to

Discourse, Cognitive Science 28, pp. 751-779, Elsevier.

Wierzbicka, A., 1987. English Speech Act Verbs, Aca-

demic Press.

2777

