
HAL Id: hal-03221907
https://hal.science/hal-03221907

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance of Geographic Multicast Approach on a
Real-life Platform

Lucas Augusto de Araujo Marques Leao, Violeta Felea, Hervé Guyennet

To cite this version:
Lucas Augusto de Araujo Marques Leao, Violeta Felea, Hervé Guyennet. Performance of Geographic
Multicast Approach on a Real-life Platform. Annual Wireless Days Conference, Apr 2019, Manchester,
United Kingdom. �hal-03221907�

https://hal.science/hal-03221907
https://hal.archives-ouvertes.fr

Performance of Geographic Multicast Approach
on a Real-life Platform

Lucas Leão, Violeta Felea, Hervé Guyennet
Univ. Bourgogne Franche-Comté, FEMTO-ST institute / CNRS

DISC, 16 route de Gray, 25030 Besançon, France
Email: {firstname.lastname}@femto-st.fr

Abstract—The execution of real-life experiments provides
meaningful insights on the performance of wireless sensor net-
work solutions. Along with simulations, it is an important tool in
the process of validating a new protocol. Our study case is GeoM,
a geographic multicast routing protocol. We make use of the
Future Internet of Thing IoT-LAB infrastructure in Strasbourg
as the platform for the real-life experiments conducted for our
solution. Our real-life experiments show that GeoM improves
the network performance, when several metrics - packet loss,
maximum energy consumption and latency - are simultaneously
considered, compared to similar scheme routing. For scalability
purpose we study correlation between the real-life experiment
results and the values obtained in simulations, which proves to
be consistent.

I. INTRODUCTION

A Wireless Sensor Network (WSN) can be described as a
combination of hardware and software features, responsible
for monitoring and collecting environmental data in order to
serve a final application. It is composed of electronic devices
with limited capacity in terms of processing, energy and radio
range, organized in an ad-hoc manner. Deploying several sinks
(in Multi-Sink WSN/MS-WSN) appeared as a solution for
several challenges: scalability, reliability, latency and network
lifetime optimizations.

For smart city applications, the information availability is
an important requirement. The sensed data must be delivered
to a number of specific destinations. We can cite a city traffic
control system as an application where information availability
is fundamental. In city traffic control, the current state of the
roads may be distributed over a number of sinks in order to
control the timings in traffic lights based on the traffic flows.
Another example of application is related to the tracking of
buses in a public transportation system. The information of
the position of a bus is relevant to a number of predefined
bus stations. Sensor nodes are spread in the city tracking the
passing buses. The data from each bus is forwarded to a num-
ber of predefined sinks, representing each bus station served
by the concerned bus. In that sense, it is important to find
mechanisms allowing the forwarding of the data to multiple
destinations, such as k-anycast and multicast communication
schemes. We can translate the application requirements into
network capabilities. A MS-WSN solution must be capable
of assuring network reliability, timeliness communication and
optimized energy consumption.

Only few works in MS-WSNs focused on communication
optimizations provide real-life results and none of them is
concerned with k-anycast or multicast schemes. Moreover,
most of the existing works in MS-WSN are oriented to
simulation as validation method. In this work we analyze the
behavior of an existing multicast communication scheme, the
routing protocol GeoM [1], on top of the FIT IoT-LAB testbed
[2]. We proposed GeoM as a first multicast scheme designed
to address all the objectives: reliability, timeliness and network
lifetime optimizations.

The remainder of this paper is organized as follows. Section
II presents a brief discussion on MS-WSN works evaluated
through real-life experiments. GeoM is presented in section
III. The experimental scenarios and the discussion of the per-
formance evaluation are presented in section IV. We conclude
the paper in section V with the future perspectives.

II. RELATED WORK

As presented in [1], the number of works capable of for-
warding packets to all sinks using either multicast or k-anycast
communication schemes is limited. Most of the solutions
in MS-WSN deal with the forwarding of data to one sink,
using unicast or 1-anycast communication schemes. When we
narrow the filter to identify the works with real-life results,
this number is even smaller. Only five solutions dealing with
MS-WSN present real-life experiments, and none of them
considers multicast or k-anycast communication schemes, as
shown in table I.

TABLE I: MS-WSN solutions with real-life experiments

Comm Scheme Hardware OS Sinks/Nodes Ref.

Unicast MICA2 TinyOS 3/11 [3]

Unicast
TelosB
TmoteSky
MicaZ

TinyOS 1/14 [4]

Unicast SkyMote Contiki 2/56 [5]

1-anycast eZ430-
RF2500T

– 1/16 [6]

1-anycast VNODE VROS 6/30 [7]

Solutions are either based on MAC scheduling [3], [4] or
on routing [5]–[7] and are briefly described below.

The work in [3] is a MAC protocol. The objective is to
define a duty cycled medium access strategy based on the
routing tree and able to provide real-time communication in
a MS-WSN. The information is sent directly to the sink in a
staggered communication process. The nodes are synchronized
and the packet is raised to upper levels until the sink is
reached (synchronous skewed wakeup). The solution was
fully validated with real-life experiments, and it considered
scenarios with three sinks.

In [4] the authors define a MAC protocol that creates
a very low duty cycle schedule based on the routing tree
able to extend the network lifetime and assure low latency
in comparison to other LPL (Low Power Listening) [8] ap-
proaches. The solution takes a sampling period as input and
defines an adapted time schedule for the nodes to cooperate in
the collection task. The solution was validated with real-life
experiments, but it considered the existence of only one sink.

In [5] the objective is to adapt the existing RPL (Routing
Protocol for Low-power and lossy networks) to a Multi-Sink
WSN in order to reduce the average hop count, and conse-
quently the energy consumption and packet loss. It defines
a virtual root, which acts as a ”master sink” unifying all
sinks into a single DODAG (Destination Oriented Directed
Acyclic Graph). The solution was validated considering real-
life experiments with two sinks.

The objective in [6] is to define a routing protocol for
rechargeable MS-WSN in order to reduce network latency
and optimize the energy consumption. The strategy defines
a duty cycle-aware routing protocol, that opportunistically
choses the next hop based on the latency to the best sink and
the duty cycle. The authors describe configurations for real-life
experiments considering only one sink. The presented results
account only for the remaining energy.

In [7] the objective is to balance the network load by
distributing the loads among the sink neighbors and thus
prolonging the network lifetime. The algorithm makes use
of the round-robin scheduling process to distribute packets
among all sinks neighbors, in order to avoid the early depletion
of energy and collisions in the sink vicinity. The solution
was fully validated with real-life experiments, considering a
network with six sinks.

For all cited solutions, the real-life deployments were fixed,
with no variation of the nodes’ position. The size of the
networks was also reduced, with a maximum of 56 nodes.
For the operating systems, the studied papers proposed exper-
iments using TinyOS [9], Contiki [10] and VROS [11]. All
OS are light-weighted operating systems for wireless sensor
nodes. In terms of hardware, both MICA2 (MPR400CB) [12]
and MICAz (MPR2400) [13] belong to the same family of
motes, based on the Atmel ATmega128L and compatible with
TinyOS. The motes TelosB [14], TmoteSky [15] and SkyMote
[10] are based on the Texas Instrument MSP430, compliant
with IEEE 802.15.4, also compatible with TinyOS and Contiki
[10]. VNODE [11] is based on the Atmel ATmega128L,
designed by VRLab, compatible with VROS and TinyOS.

The main objective of this work is to investigate the

feasibility of GeoM routing protocol in real-life environments.
We intend to analyze its performance and confront the real-life
results against simulations. This comparison is on one hand
part of the feasibility study and on the other, a validation of the
previous simulation results related to the scalability problem.

As consequence of this objective, we contribute to existing
implementations of real-life experiments for the multicast
scheme. GeoM is the first multicast protocol to be imple-
mented and tested on a real testbed sensor network envi-
ronment. We chose an existing MS-WSN routing protocol,
KanGuRou [16] to be part of the comparison, as no other
multicast scheme with the same objectives was available.
Being a k-anycast scheme (but responding to multicast needs
when k equals the number of predefined addressed sinks),
existing works in the field of experiments of sensor protocols
is enriched with a first k-anycast scheme routing solution.

III. GEOGRAPHIC MULTICAST ROUTING

GeoM is a geographic routing protocol for MS-WSN that
is capable of forwarding a generated packet to all available
sinks in the network, while reducing the latency and bal-
ancing the energy consumption. Three hypotheses are done
in geographic-based protocols, which are built on the basis
of cartesian coordinates of nodes. Every node knows its
own position, those of sinks and every node may obtain its
neighbors’ positions. Geographic-based protocols are tributary
of dead-ends because of void areas. A node is in a void area
if each of its neighbors is farther to a given sink than itself.

GeoM is divided into three phases: filtering, selection and
forwarding. The first phase is responsible for filtering the
neighbor nodes in order to create a list of candidates. During
this phase, the neighbor nodes with negative progress or
in void areas are eliminated. If during the filtering phase
no valid neighbor is detected (because of void areas), the
algorithm triggers a recovery mode with a different routing
method. The second phase is dedicated to effectively selecting
the forwarding candidates based on the calculated weighted
metrics. The final phase is the actual routing, responsible
for choosing the forwarder among the final candidates and
forwarding the packet. Our algorithm does not require much
knowledge of the network topology (no more than traditional
geographic routing approaches). However, it uses broadcast
messages to periodically advertise the existence of neighbor
nodes, their void area status and the amount of consumed
energy.

A. Filtering Process

The filtering starts at the current node having the new
packet, as seen in figure 1. The current node verifies if it has
a positive progress in relation to the target sinks, compared to
the progress of the previous hop. If the current node presents
a negative progress, it means that the packet was in recovery
mode and no positive progress was yet found. The recovery
strategy is based on the face routing and follows the same
principles of the work in [16]. In this case, only one node is
selected and the packet is directly forwarded to it.

New packet

GeoM start

Packet,
Neighbors

list

Current node
has positive
progress?

Select valid
neighbors

Forwarders
intersection

(see figure 3)

All sinks
covered?

GeoM end

Recovery
mode

Void
notification

yes

yes

no

no

Fig. 1: GeoM flowchart

For the case a positive progress is detected, the current node
goes through each neighbor searching for valid candidates.
It eliminates the nodes with negative progress and neighbors
in void areas, as exemplified in figure 2. The output of this
phase is a structure containing the filtered neighbors per sink,
which is passed to the forwarders intersection function, for the
selection phase.

Fig. 2: Filtering process

If it was not possible to cover all sinks with at least one
candidate, the recovery mode is triggered and a neighbor is
selected using the void handling technique. At the same time,
a broadcast message is sent to inform the neighbor nodes that
the current node is in a void area.

B. Selection Process

The selection phase is responsible for selecting the candi-
dates with the best weighted metric towards the maximum
number of sinks in order to avoid duplications. The process
starts with the weighted metrics calculation to all candidates in
relation to the sinks, as seen in figure 3. The weighted decision
metric w represents the value of the calculated weighted
metrics to all candidates in relation to all available sinks.

The weighted metric calculation considers the process in
equation (1). It is based on the euclidean distance between
the neighbor node vi and the sink sj denoted by D(vi, sj),
the total consumed energy of the neighbor node vi denoted
by C(vi) and the energy cost for the transmission from the
current node n to the neighbor node vi denoted by E(n, vi).

wvi,sj = α×D(vi, sj) + β × C(vi) + δ × E(n, vi) (1)

α, β, δ are the weights for each metric, α+ β + δ = 1.
We note that this metric can be computed locally on a node

based on direct neighbor knowledge.

Forwarders
intersection start

List of
candidate
forwarders

Calculate Metric
to all nodes in

relation to all sinks

Filter nodes with
best metric value

to each sink

Search for
neighbor

intersections

All sinks
covered?

Duplicate packet

Forwarding
process

Forwarders
intersection end

yes

no

Fig. 3: Forwarders intersection flowchart

The algorithm removes the neighbor candidates presenting
a bigger weighted metric than the mean in relation to all
neighbors and one specific sink (wsj in table II).

TABLE II: Calculated w for each pair [sj , vi]

v1 v2 v3 v4
s1 ws1,v1 ���ws1,v2 ws1,v3 ws1,v4 ws1
s2 ws2,v1 ���ws2,v2 ���ws2,v3 ws2,v4 ws2
s3 ���ws3,v1 ���ws3,v2 wsj ,v3 ���wsj ,v4 ws3

The objective is to apply a filter to select the candidates
with the best values for the weighted metric. As a result of
this process, the set of selected nodes is reduced, as shown in
figure 4.

Fig. 4: Selection process

With the reduced list of candidates, the algorithm searches
for the intersection of neighbors. The intersections are calcu-
lated based on the selection of sinks. The first selected sink
is the closest to the current node, then the other sinks are
selected based on the distance to the current node or to an
already selected sink.

The objective of the intersection search is to avoid the
packet duplication towards different paths. If a group of sinks
shares a common forwarder candidate, the algorithm favors the
selection of this neighbor node in order to reduce the number
of packets circulating in the network.

Considering the example, sinks [s1, s2] share two common
candidates [v1, v4], sinks [s1, s3] share one common candidate
[v3], and sinks [s2, s3] have no common candidates (see table
III). In this example, the output is a structure containing the
intersection of candidate forwarders and the list of sinks, such
as {[s1, s2], [v1, v4]} and {[s3], [v3]}.

TABLE III: Intersection search

Sinks Candidate Forwarders
s1 v1 - v3 v4
s2 v1 - - v4
s3 - - v3 -

C. Forwarding Process

The forwarding phase is the last process of the routing
protocol and it is responsible for choosing the final forwarders,
as displayed in figure 5. The selected forwarders are the
neighbor nodes that minimize the mean of the weighted
metric towards the maximum number of sinks. It takes as
input the sinks/neighbors intersection structure and the table
containing the calculated weighted metric. Then, it calculates

the mean value of the calculated weighted metric in relation
to a particular sink, as shown in table IV, where wv1 is the
mean of the weighted metric in relation to v1.

Forwarding
process start

Sinks/neighbors
intersection

structure

Select the node
that minimizes

the metric value
towards the
set of sinks

Send Packet

All packets
sent?

Forwarding
process end

yes

no

Fig. 5: Forwarding process flowchart

TABLE IV: Forwarder Selection

v1 v2 v3 v4
s1 ws1,v1 - - ws1,v4 ws1
s2 ws2,v1 - - ws2,v4 ws2
s3 - - ws3,v3 - ws3

wv1 wv4

Considering the sink/neighbors intersection structure
as {[s1, s2], [v1, v4]} and {[s3], [v3]}, for the entry
{[s1, s2], [v1, v4]}, the forwarder neighbor is the node
having Min(wv1 , wv4), and for the entry {[s3], [v3]}, the
forwarder neighbor is v3.

Once the forwarders are selected, the actual routing takes
place and the packet is sent to each forwarder with the
corresponding list of sinks. It is at this moment that the packet
is duplicated. Since the list of sinks is different for each
forwarder, the packet must be split in order to be forwarded
towards different directions.

IV. EVALUATION

GeoM protocol was implemented and validated through
simulations in [1]. A performance comparison was done
with KanGuRou [16], another MS-WSN protocol capable
of forwarding packets to all sinks. The simulation results
demonstrated the viability of GeoM, with performance gains
up to 54% in terms of maximum energy consumption. Now,
our objective is to evaluate the performance of GeoM through
real-life experiments, on top of FIT IoT-LAB testbed [2]. The
FIT IoT-LAB is a large scale infrastructure (2071 wireless
sensor nodes of different types) deployed over six locations in
France. For the real-life experiments, we used the WSN430
Texas Instrument C1101 mote available in the FIT IoT-LAB
testbed of Strasbourg, with a total deployment of 256 nodes,

placed in a 3D-grid. The WSN430 has an MCU of 16-bit, with
a ROM of 48KB and a RAM of 10KB [2].

We developed GeoM in C as an application module for
Contiki OS [10], a lightweight open source operating system
designed for limited resource devices. One of the advantages
of the Contiki OS is its layered design, enabling the porting of
a solution to different hardware devices. The original version
of KanGuRou in [16] was implemented and tested with WSNet
[17], an event-driven simulator, part of the WorldSens inte-
grated environment for the design, development, prototyping
and deployment of wireless sensor applications. We adapted
and developed a version of KanGuRou, based on the original
code, as an application module for Contiki OS.

The initial implementation of GeoM considered the COOJA
mote, which is the native mote for the COOJA simulator. The
COOJA mote simulates a sensor node, but it does not have
the same restrictions of a real mote in terms of memory and
processing capacity. Some adaptations were necessary in order
to use GeoM and KanGuRou with the WSN430 mote.

TABLE V: Simulation and experimentation settings

Cooja Simulator FIT IoT-LAB Testbed
Network area 270m× 270m 10m× 8m
Deployment Random grid Grid
Executed networks 100 30/20
Mote type Cooja Mote WSN430 TI CC1101
Radio range/power 50m −10dBm
Execution time 2 hours 30 minutes/6 hours
of sensors 63 nodes
of sinks 5 nodes
of neighbors 8 nodes (maximum)
Packet size 100 bytes
Packet generation 20% chance at every minute for each sensor
Radio type 802.15.4
MAC Protocol CX-MAC, modified version of [18]

The performance evaluation comprises a comparison test
with another routing protocol, KanGuRou [16], that was also
implemented using Contiki OS, adapted to WSN430 and tested
under the same conditions and configurations of GeoM. Table
V summarizes the simulation and experimentation settings.

The evaluation considers the average of each metric for all
executions, and the results are presented with a confidence
interval of 95%. We analyze the latency, defined by the average
time a packet takes to be routed from the source to sinks.
Every sensor node is considered a source node and generates
packets. The average latency is calculated for each network
considering the sum of all latencies divided by the number of
received packets. We also look at the hop count, which is the
average number of hops from the source node to sinks. We
analyze the maximum energy consumption, which concerns
the node that consumed the largest amount of energy in the
network at the end of the execution. It gives an indication
of the network lifetime, since it shows how far the node is
from the battery complete depletion. We consider a network
to be alive as long as all nodes have some energy. Therefore,
network lifetime is considered to be the earliest moment at
which a node’s battery is completely depleted.

A. Real-life Results

As presented in table V, we performed 30 executions of 30
minutes (short run) and 20 executions of 6 hours (long run)
for each solution, which represents 270 hours of test execution
in total. The nodes deployment in FIT IoT-Lab testbed form
a grid based physical topology that produces a completely
connected network, with a node being able to communicate
with all the other nodes. However, since we wanted to validate
the routing strategy, we needed to create longer paths. For that
reason, we defined a different logical topology, by limiting
the neighborhood to the nodes at the immediate physical
proximity. The new logical topology created enough hop-
distance among sensors and sinks to test the routing protocol.

Despite the fact that the nodes are fixed and the physical
topology is the same, at runtime we may have different
networks. The links among nodes vary from one execution
to another due to interference and/or faulty nodes. This phe-
nomenon results in slightly different networks, due to changes
in the neighborhood. Figure 6 represents the nodes deployment
with the sinks highlighted with circles, and the neighbor links
for one particular execution.

Fig. 6: Network topology (sinks are circled)

As we can see in figure 7, GeoM presents a higher maxi-
mum energy consumption compared to KanGuRou.

Fig. 7: Energy consumption over time for the node that
consumed the maximum energy at the end of the execution
(short run)

(a) Packet Loss (b) Average Hop Count (c) Average Latency

Fig. 8: Results of real-life experiments (short run)

This is the result of an elevated packet loss for KanGuRou.
As displayed in figure 8(a), KanGuRou has a packet loss of
roughly 70%, almost the double of the packet loss presented
by GeoM. It means that for GeoM there are more packets
being forwarded, and consequently a higher level of energy
consumption. On the other hand, the average hop count for
GeoM is slightly lower compared to KanGuRou, as seen in
figure 8(b). It is explained by the fact that GeoM decides to
duplicate the packets earlier in order to enable a fast progress
towards the destination sinks, which also explains the latency
results presented in figure 8(c). Due to important collision rate
and presence of void areas, absolute latency is quite important.
However, GeoM is able to reduce the average latency by
approximately 38% compared to KanGuRou.

The huge difference in packet loss is also explained by the
existence of faulty links, which heavily affects KanGuRou
in comparison to GeoM. In this work we define a faulty
link when communication between connected pairs cannot
be accomplished due to channel interference, to physical
incapacities of the sensors or to packet collisions. KanGuRou
bases its routing decisions on the distance and the transmission
energy cost. With this strategy, no path changes are performed.
If faulty links are present in some routes, it is enough to
drastically increase the packet loss. In GeoM, routes may
change from one transmission to another, due to the metric
related to the energy consumption. In the case of a faulty link,
GeoM is less impacted. Moreover, since GeoM duplicates the
packets slightly earlier, it means that each duplicated packet
has a smaller group of destination sinks. As each generated
packet must be delivered to all sinks, if the packet is lost before
the duplication, the impact on the packet loss is much higher.

In order to have a better comparison point for the max-
imum energy consumption, we re-executed the experiments
for GeoM and KanGuRou during an extended period of time
(6 hours). The objective was to find a point of stability for
the packet loss, so the maximum energy consumption could
be analyzed under the same condition in terms of number
of packets being forwarded. As we can see in figure 9(a),
GeoM had a similar performance in terms of packet loss at

the end of the 6-hour execution. The packet loss stabilized
at approximately 60%. The maximum energy consumption
results for GeoM and KanGuRou are almost equivalent, shown
by Figure 9(b). We can see in Figure 10 that both solutions
have a similar evolution of the energy consumption.

We can see in figure 9(c) that GeoM is able to reduce
the average latency by approximately 67% (based on packets
arrived to the sinks). As already mentioned, GeoM moves the
packet towards the sinks in a faster way, since duplications
take place slightly earlier, which translates to fewer hops, and
consequently a reduction of the average latency.

Fig. 10: Energy consumption over time for the node that
consumed the maximum energy at the end of the execution
(long run)

B. Simulation Results

The real-life experiment is limited in terms of network size
and physical deployment, even though our scenarios are larger
than those in literature. Moreover, the real-life results show
a marginal performance gain in terms of maximum energy
consumption, which is mostly a consequence of the small size
of the network and the regularity of the physical deployment.
In that sense, it is important to identify a correlation between
the real-life experiments and the simulations, in order to
overcome the limitations and extrapolate the testing scenarios.

(a) Packet Loss (b) Maximum energy consumption (c) Average Latency

Fig. 9: Results of real-life experiments (long run)

To do so, we tried to create and execute simulation scenarios
that would be close to the experiments.

For the simulations, 100 different networks were randomly
generated. Figure 11 represents one randomly generated net-
work. Similarly to the real-life experiment, each node has ap-
proximately 8 neighbors in its communication range. However,
the link quality and interference level are not the same. The
communication range is 50m with a bidirectional link and the
interference range is of 100m. The simulation environment is
much more stable compared to the real-life experiment. This
stability can be evidenced by the packet loss results, as seen in
figure 13(a). GeoM and KanGuRou share similar packet loss
results for the simulation.

Fig. 11: Physical deployment for the simulation

Because of the stable environment, we are able to compare
the maximum energy consumption. We can see in figure 12
that GeoM and KanGuRou have almost the same maximum
energy consumption. These relative results are coherent with
those from experiments (see figure 10). This is the expected
behavior for a network with 63 nodes and 5 sinks. In [1] GeoM
was validated with different network sizes, going from 50 up

to 300 sensor nodes. It was noticed that GeoM presents much
better performance in terms of maximum energy consumption
for larger networks, with gains from 5% up to 26% for
networks with void areas and 23% up to 54% for networks
without void areas. However, the comparison with the real-life
results allows us to conclude that the performance presented
by GeoM is consistent and follows the same trend of the
simulation.

The same comment applies for the average latency results,
computed here on packets arrived to all sinks. We can see in
figure 13(c) that GeoM and KanGuRou have similar results,
with a difference of 3.3%. However, for the simulations
presented in [1], with larger networks, we can observe better
results for GeoM in terms of average latency, with performance
gains of 10%. Nevertheless, we can see in figure 13(b) that
the average hop count for GeoM is smaller compared to
KanGuRou, which for the routing perspective results in lower
latencies.

Fig. 12: Energy consumption over time for the node that
consumed the maximum energy at the end of the simulation

V. CONCLUSION

This paper presented the real-life results for the Geographic
Multicast (GeoM) routing protocol as further analysis of its
performance. The results were obtained with experiments

(a) Packet loss (b) Average hop count (c) Average latency

Fig. 13: Results of simulations

carried out within the FIT IoT-Lab platform and simulations
using COOJA simulator.

The main conclusion of this work concerns the correlation
between the real-life experiments and the simulations : the
results are consistent and comparable, for both GeoM and
KanGuRou solutions, analyzed under the same criteria and
executed on the testbed in Strasbourg. A parallel can be made
and the testing scenarios can be extrapolated as in the simu-
lations performed in [1]. As for the comparative experiments,
in short runs, GeoM offers better delivery rate and latency
compared to KanGuRou. For long runs, the collision rate
increases (more packets need to be delivered) and performance
is similar in energy. Latency is packet loss dependant and
experiments could not compute latency of packets towards all
sinks. In simulations, smaller packet loss could be observed,
so the latency is computed for packets delivered to all sinks.

As noticed with the experimental tests, the link quality,
interference and collisions have a high effect on metrics such
as latency and energy consumption. Because of that, we
measure the importance of considering such aspects during the
routing decision. The routing metrics must account for the link
quality in order to avoid delays. As future work, we consider
integrate the link quality aspect to the routing decision along
with the other aggregated metrics.

ACKNOWLEDGMENT

This work has been partially supported by the Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq). Computations for simulations have been performed
on the supercomputer facilities of the Mésocentre de calcul de
Franche-Comté.

REFERENCES

[1] L. Leão and V. Felea, “Latency and network lifetime trade-off in
geographic multicast routing for multi-sink wireless sensor networks,”
in International Conference on Mobile, Secure and Programmable
Networking. Springer, 2018, pp. 1–12.

[2] F. I. T. Facility, “FIT IoT-LAB,” https://www.iot-lab.info/, accessed:
2018-03-20.

[3] S. H. Lee and L. Choi, “SPEED-MAC: speedy and energy efficient
data delivery MAC protocol for real-time sensor network applications,”
Wireless Networks, vol. 21, no. 3, pp. 883–898, 2015.

[4] U. M. Colesanti, S. Santini, and A. Vitaletti, “DISSense: An adaptive
ultralow-power communication protocol for wireless sensor networks,”
in International Conference on Distributed Computing in Sensor Systems
and Workshops (DCOSS). IEEE, 2011, pp. 1–10.

[5] D. Carels, N. Derdaele, E. De Poorter, W. Vandenberghe, I. Moerman,
and P. Demeester, “Support of multiple sinks via a virtual root for the
RPL routing protocol,” EURASIP Journal on Wireless Communications
and Networking, pp. 1–23, 2014.

[6] D. Gao, Y. Liu, F. Zhang, and J. Song, “Anycast routing protocol for for-
est monitoring in rechargeable wireless sensor networks,” International
Journal of Distributed Sensor Networks, 2013.

[7] C. Wang and W. Wu, “A load-balance routing algorithm for multi-sink
wireless sensor networks,” in International Conference on Communica-
tion Software and Networks (ICCSN). IEEE, 2009, pp. 380–384.

[8] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in 2nd International Conference on
Embedded Networked Sensor Systems. ACM, 2004, pp. 95–107.

[9] TinyOS Alliance, “TOSSIM,” http://docs.tinyos.net/index.php/TOSSIM,
accessed: 2017-05-10.

[10] Contiki OS, “The open source os for the internet of things,” http://
www.contiki-os.org/, accessed: 2018-03-20.

[11] C. Wang and W. Wu, “A light-weighted operating system with deadlock
prevention strategy for wireless sensor nodes,” in WRI International
Conference on Communications and Mobile Computing (CMC), vol. 1.
IEEE, 2009, pp. 578–583.

[12] CROSSBOW, “MICA2 datasheet,” accessed: 2017-05-10. [Online].
Available: https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/
DataSheets/mica2.pdf

[13] Memsic, “MICAz datasheet,” accessed: 2017-05-10. [Online]. Avail-
able: http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz
datasheet-t.pdf

[14] ——, “TelosB datasheet,” accessed: 2017-05-10. [Online]. Avail-
able: http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb
datasheet.pdf

[15] M. Corporation, “TmoteSky datasheet,” accessed: 2017-05-10.
[Online]. Available: http://www.eecs.harvard.edu/∼konrad/projects/
shimmer/references/tmote-sky-datasheet.pdf

[16] N. Mitton, D. Simplot-Ryl, M.-E. Voge, and L. Zhang, “Energy efficient
k-anycast routing in multi-sink wireless networks with guaranteed de-
livery,” in International Conference on Ad-Hoc Networks and Wireless.
Springer, 2012, pp. 385–398.

[17] A. Fraboulet, G. Chelius, and E. Fleury, “Worldsens: development and
prototyping tools for application specific wireless sensors networks,”
in 6th International Symposium on Information Processing in Sensor
Networks (IPSN). IEEE, 2007, pp. 176–185.

[18] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short
preamble MAC protocol for duty-cycled wireless sensor networks,” in
Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems. ACM, 2006, pp. 307–320.

