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Abstract: Indoor toxic volatile organic compounds (VOCs) pollution is a serious threat to people’s
health and toluene is a typical representative. In this study, we developed a composite photocatalyst
of carbon nitride quantum dots (CNQDs) in situ-doped TiO2 inverse opal TiO2 IO for efficient
degradation of toluene. The catalyst was fabricated using a sol-gel method with colloidal photonic
crystals as the template. The as-prepared catalyst exhibited excellent photocatalytic performance for
degradation of toluene. After 6 h of simulated sunlight irradiation, 93% of toluene can be converted
into non-toxic products CO2 and H2O, while only 37% of toluene is degraded over commercial
P25 in the same condition. This greatly enhanced photocatalytic activity results from two aspects:
(i) the inverse opal structure enhances the light harvesting while providing adequate surface area for
effective oxidation reactions; (ii) the incorporation of CNQDs in the framework of TiO2 increases
visible light absorption and promotes the separation of photo-generated charges. Collectively, highly
efficient photocatalytic degradation of toluene has been achieved. In addition, it can be expanded to
efficient degradation of organic pollutants in liquid phase such as phenol and Rhodamine B. This
study provides a green, energy saving solution for indoor toxic VOCs removal as well as for the
treatment of organic wastewater.

Keywords: carbon nitride; quantum dots; inverse opal; photocatalysis

1. Introduction

Nowadays, people spend most of their time (up to 90%) in an indoor environment.
Thus, indoor air quality (IAQ) has a significant influence on human health, comfort and
productivity [1,2]. Indoor air pollution is now considered among the top five environ-
mental risks to public health according to the Environmental Protection Agency (EPA),
which declared the air to be two to five times more polluted indoors than outdoors [3].
Interior flooring, adhesives, etc., used in interior decoration are sources of volatile organic
compounds (VOCs) [4,5]. Exposure to toxic VOCs is seriously harmful to human health.
In the past, benzene was widely used as an organic solvent for adhesives and paints.
Nowadays, benzene has been replaced by relatively less toxic solvents, such as toluene,
owing to its carcinogenic property [6]. However, toluene emitted from building materials

Catalysts 2021, 11, 464. https://doi.org/10.3390/catal11040464 https://www.mdpi.com/journal/catalysts

https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-8231-5273
https://orcid.org/0000-0002-9527-827X
https://doi.org/10.3390/catal11040464
https://doi.org/10.3390/catal11040464
https://doi.org/10.3390/catal11040464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/catal11040464
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/11/4/464?type=check_update&version=1


Catalysts 2021, 11, 464 2 of 12

to indoor environments is known to cause several sick house syndromes, including vertigo,
headache, nausea and allergies. Due to the gravity of the situation, people’s requirements
for clean and safe indoor circumstances have rapidly increased. Many technologies have
been developed for removing VOCs from indoor air, such as adsorption [7], ozonation [8]
and non-thermal plasma [9]. However, these treatment methods are highly expensive and
can cause the production of a secondary pollution of hazardous compounds. Photocatalytic
oxidation using light irradiation [10] allows us to completely degrade organic pollutants to
small and non-hazardous molecules (CO2 and H2O) and has, therefore, been suggested as
an attractive alternative to solve the indoor pollution issue [11].

In this sense, for the past decade, photonic crystals (PCs) have received a great
deal of attention to improve the conversion of photochemical energy by enhancing the
interaction of light and matter without chemical modification [12]. Most TiO2 PCs are
also called inverse opals (IOs) because they are made by colloidal self-assembly followed
by structural inversion [13]. IO structures can improve light collection efficiency through
multiple scattering [14–17], slow light effect [18,19] and other mechanisms. PC structures
are widely used in many fields, such as surface enhanced Raman (SERS) detection [20],
battery electrodes [21], solar cell [22], photocatalysis [23–25], etc. However, to the best of
our knowledge there are few reports about applying photocatalysts with photonic crystal
structures for the degradation of VOCs.

Due to its strong oxidation capacity, TiO2 is widely used in the photocatalytic degrada-
tion of VOCs [26–28]. However, the band gap of TiO2 is 3.2 eV, which limits the utilization
efficiency of sunlight [29–31]. Graphitic carbon nitride (g-C3N4), as a metal-free semi-
conductor with band gap of 2.7 eV and excellent chemical stability [32], has been widely
investigated in photocatalytic hydrogen production with water [33], degradation of or-
ganic pollutants [34–38], oxidation of alcohols [39], reduction of oxygen [40], etc. Recently,
graphitic carbon nitride quantum dots (CNQDs) with excellent biocompatibility and optical
properties [41] which can improve solar energy harvesting, were synthesized by a low-
temperature solid-phase method [42]. It is promising to combine CNQDs with TiO2 inverse
opal photonic crystals to form a composite photocatalyst for improving the utilization of
visible light as well as the surface interface charge transfer efficiency of photo-generated
charge carriers.

Hence, we developed a novel photocatalyst of CNQDs in situ-modified TiO2 inverse
opal (TCN IO) by a simple sol-gel method. In this architecture, inverse opal structure can
increase the specific surface area and the utilization rate of visible light. Furthermore, the
modification of CNQDs helps to decrease the recombination rate of light-induced excitons.
The photocatalytic activities of the samples were evaluated by the photocatalytic oxidation
of toluene, a gas phase VOC, and phenol, a liquid phase pollutant, under simulated sunlight
irradiation, and it was extended to the degradation of other organic pollutants in aqueous
solution such as a typical dye pollutant Rhodamine B (RhB). It was found that the TCN IO
exhibited significantly higher photocatalytic activity than TiO2 IO, P25 and bulk-TiO2 for
VOCs removal. A highly efficient system for the degradation of VOCs by solar light was
constructed, which provides an environmentally friendly solution for indoor toxic VOCs
removal. In addition, TCN IO was also demonstrated to be efficient for the degradation
of other organic pollutants in aqueous solution, such as the liquid phase VOCs pollutant
phenol and the typical dye pollutant RhB; this suggests good prospective applications for
the treatment of organic wastewater.

2. Results and Discussion

CNQDs with uniform small size were successfully prepared via a simple low-temperature
solid-phase and dialysis method [42]. From Figure 1a,b, we can see that the sizes of as-
synthesized CNQDs are in the range from 2 to 8 nm. Nano-sized CNQDs mixed with the
Ti precursor solution can easily infuse into the porosity of PS spheres (Figure S1a). After
calcination at 500 ◦C for 2 h to remove the template, TCN IO with the regular and ordered
nanostructure was obtained as presented in Figure 1c. Similar structures were obtained
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for TiO2 IO (Figure S1b). It can be observed from the high-resolution transmission electron
microscopy (HRTEM) image in Figure 1d that TCN IO depicted two different lattices. One
lattice spacing is 0.361 nm, which corresponds to the (101) planes of TiO2; the other is 0.346 nm,
corresponding to the (002) planes of CNQDs, proving that CNQDs were successfully loaded
into the skeleton of TiO2 IO.
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Figure 1. HRTEM images of (a,b) carbon nitride quantum dots (CNQDs) and (c,d) in situ-modified
TiO2 inverse opal (TCN IO).

The specific surface area is one of the vital factors that affects the photocatalytic per-
formance of materials. Generally, the photocatalysts with larger surface areas possess more
adsorption and active sites for photocatalytic process, which enhances the photocatalytic
activity. N2 sorption was carried out to determine the specific surface area as well as
corresponding pore structure and to calculate the corresponding pore size distributions.
As shown in Figure 2a, all samples exhibit type IV isotherms. TCN IO and TiO2 IO dis-
play higher adsorption capacities at high relative pressures (P/P0 > 0.8) than bulk-TiO2,
which provides evidence for the existence of macropores. The BJH pore size distribution
(Figure 2b) reveals that the majority of the macropores have an average pore size of around
60 nm which provides larger surface areas and pore volumes than those of common bulk-
TiO2. The corresponding structural parameters of the as-synthesized samples obtained
from the adsorption isotherms are summarized in Table 1.
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Table 1. Brunauer−Emmett−Teller surface area (SBET) and pore volume of the photocatalysts.

Sample SBET (m2 g−1) V Pore (cm3 g−1)

bulk-TiO2 9.0 0.022
P25 50.8 0.167

TiO2 IO 47.7 0.246
TCN IO 62.6 0.254

As shown in Table 1, the BET surface areas are approximately 9.0, 50.8, 47.7 and
62.6 m2 g−1 for bulk-TiO2, P25, TiO2 IO and TCN IO, respectively. These results show
that the inverse opal structure can increase the specific surface area of the material, while
the introduction of CNQDs can further increase it. This could be attributed to the fact
that nanosized CNQDs exhibit relatively high specific surface area. Additionally, the
corresponding pore volume increases from 0.022 cm3 g−1 for bulk-TiO2 to 0.245 cm3 g−1

for TiO2 IO and to 0.254 cm3 g−1 for TCN IO while the pore volume of P25 is 0.167 cm3 g−1.
This can be attributed to the introduction of inverse opal structure, whose three-dimension-
ordered pore structure benefits the enlargement of pore volume [43].

Figure 3 shows the X-ray diffraction (XRD) patterns of bulk-TiO2, TiO2 IO and TCN IO
porous composites. For all samples, the XRD patterns exhibited strong diffraction peaks at
25.3◦ and 48◦, indicating TiO2 in the samples are all in anatase phase [25,29,44]. For CNQDs
loaded TiO2 IO composites (TCN IO), no diffraction peaks were observed for g-C3N4, most
probably due to low weight loading and high dispersion of CNQDs in the catalyst.
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Figure 3. X-ray diffraction (XRD) of samples.

X-ray photoelectron spectroscopy (XPS) spectra were used to analyze the elemental
composition and the chemical state of elements in TCN IO. As Figure 4a shows, the
XPS survey spectrum of TCN IO confirmed the existence of Ti, O, C and N elements.
C 1s (Figure 4b) peak at 284.5 eV is assigned to the C-C bond in the turbostratic CN
structure [36]. The C 1s peak at 285.8 eV is attributed to the sp2 C atoms bonded to N inside
the aromatic structure. The peak at 288.5 eV is linked to the sp3 C-N bond of the sp3 bonded
composition [45]. The N 1s peaks (Figure 4c) contain three components concentrated at
399.1 eV, 400.0 eV and 401.3 eV, which are identified as the C-N-C, (N (C)3) and C-N-H
groups, respectively [46]. The O 1s core level peak at 529.7 eV belongs to Ti-O-Ti linkages
in TiO2 (Figure 4d) [47]. After the modification of CNQDs, the peak at 531.4 eV, coming
from OH functional groups on the surface of CNQDs, can be clearly identified. This latter
peak is much higher than that of TiO2 IO, revealing the successful loading of CNQDs to
TiO2 IO [48]. The XPS results of C 1s and N 1s further indicate the successful combination
of CNQDs and TiO2 IO.
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The separation and transfer of electron-hole pairs of the samples can be analyzed
via Electrochemical Impedance Spectroscopy (EIS) [49]. The intersection of the main
high-frequency semicircle contribution with the x-axis in the Nyquist plots in EIS tests,
corresponds to the charge transfer resistance of the catalysts. Figure 5a shows the Nyquist
plots of TiO2 IO and TCN IO electrodes, respectively. The EIS plot of TCN IO under
simulated solar light illumination shows a smaller semicircular diameter compared with
TiO2 IO. This result indicates that TCN IO possess a smaller charge transfer resistance
than that of TiO2 IO without CNQDs modification. This suggests that the modification of
CNQDs facilitates the charge separation efficiency of the catalyst. Photoluminescence (PL)
spectra were analyzed (Figure 5b) to investigate the migration, transfer and recombination
processes of the photo-generated electron-hole pairs in photocatalysts. Notably, the PL
spectrum characteristics of the TiO2 IO was markedly weaker than bulk-TiO2. After the
modification of CNQDs, PL intensity of TCN IO sample further weakens, which indicates
a low recombination rate of photo-generated electrons and holes, and a favorable contact
between CNQDs and TiO2 IO. The construct of inverse opal structure and the introduction
of CNQDs facilitate the faster separation of photo-generated charges, contributing to
enhanced photocatalytic activity.

Samples were used for toluene degradation under AM1.5 simulated solar light irra-
diation (Figure 6). After 1 h dark adsorption, we assumed that the gas–solid adsorption
equilibrium was reached, and the simulated sunlight irradiation began. The result of
blank experiment (without any catalysts) confirms that the concentrations of CO2 and
toluene are stable (Figure 6a). In the dark, without the irradiation of simulated sunlight,
the concentration of CO2 did not increase, while that of toluene decreased. This is most
probably due to the adsorption of the porous structure of TCN IO and the adsorption
efficiency of TCN IO is 17% (Figure 6b). As shown in Figure 6c,d, the toluene concentration
decreased as the illumination continued, and the concentration of CO2 increased gradually,
indicating that toluene was oxidized into CO2. After 5h irradiation, 95% of toluene had
been removed over TCN IO (Figure 6e), whereas the toluene removal rates of TiO2 IO,
bulk-TiO2 and P25 were 88%, 77% and 60%, respectively. After 6 h irradiation, the concen-
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tration of toluene is below the detection limit over TCN IO, whereas Ct, C7H8 drops to 17%,
2% and 37% of original concentration over bulk-TiO2, TiO2 IO and P25, respectively. Since
the adsorption efficiency of TCN IO in the dark system is just 17%, the high removal rate of
toluene obtained in the light irradiant system (100%) is mainly due to the photocatalytic
degradation. Additionally, the calculated photocatalytic degradation efficiency of toluene
into CO2 ( t, toluene) over bulk-TiO2 is 60%, t, toluene is greatly improved to 82% after the
introduction of inverse opal structure (Table S1). These results demonstrate that TiO2
with inverse opal structure exhibits a significantly enhanced photocatalytic activity for
the degradation of toluene under simulated sunlight compared to bulk-TiO2. TCN IO
shows the highest value of t, toluene, up to 93%, while that of P25 is only 37%, revealing
that the incorporation of inverse opal structure and CNQDs promotes the photocatalytic
performance of the catalyst. The highly efficient activity of TCN IO can be explained by
(i) the inverse opal structure which provides an adequate surface area for the adsorption
and the oxidation of toluene; (ii) and the incorporation of CNQDs in the framework of
TiO2 which promotes the separation of photo-generated charges.
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Under the irradiation of simulated solar light, samples were also used for the degra-
dation of liquid phase pollutants represented by RhB and phenol. As shown in Figure 7,
the degradation rate of dye and phenol reached above 97% after 75 min and 100 min of
illumination, respectively. The efficient degradation of phenol and RhB provides evidence
of the high performance of TCN IO and proves that as-prepared catalysts could also be
utilized to solve the problem of water pollution.
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The reusability and stability of the catalyst is an important parameter to evaluate
its practical application potential. After illuminating the substrates by a solar simulator
(AM 1.5) equipped with a 300 W Xenon lamp for 30 min and overnight ventilating without
washing, the catalyst was recycled. The recycling experiment was repeated four times
to test the stability of TCN IO for toluene degradation. As shown in Figure 8, a near
88% degradation ratio of 665 ppm toluene can be observed in the fourth degradation
process, revealing the excellent reusability and stability of the as-prepared catalyst TCN IO.
Figure S2 shows XRD of TCN IO sample after the recycle experiments had been conducted
(Figure S2). The slight decrease in crystallinity and part of the toluene which occupies
the active sites of the catalyst and partially inhibits the reaction, probably caused the
monotonous but small drop in activity.
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3. Materials and Methods
3.1. Synthesis of PS Colloidal Crystal Template

Polystyrene spheres (PS) suspension with controllable size were synthesized according
to the reported emulsion polymerization method [20,23–25]. Styrene monomers were
alternately washed with 0.5 M NaOH solution and deionized water in a separate funnel
with a 1:1 volume ratio 3 times to remove the polymerization inhibitor in styrene. 0.45 g
of sodium dodecyl sulfate (SDS) and 0.6 g of K2S2O8 were mixed in 288 mL of deionized
water and 32 mL of ethanol (EtOH) with magnetic stirring to form a homogeneous solution;
this was followed by injecting 36 mL of washed styrene at nitrogen atmosphere. A milky
product was obtained after heating at 71 ◦C for 19 h. The as-prepared polystyrene emulsion
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was transferred into 250 mL beakers with a height of ~ 2 cm and then put into a 70 ◦C oven
to evaporate the solvent.

3.2. Synthesis of Graphitic Carbon Nitride Quantum Dots (CNQDs)

CNQDs were synthesized through a simple low-temperature solid-phase method as
reported [42]. 0.101 g of urea and 0.081 g of sodium citrate were mixed and grounded to
powders in an agate mortar, then the mixture was transferred into a Teflon-lined stainless-
steel autoclave (20 mL capacity) and followed by thermal treatment at 180 ◦C for 2 h in an
oven. The resultant mixture was alternately washed with ethanol and centrifuged three
times (12,000 rpm for 10 min). A yellowish CNQDs solution was obtained by dialyzing
against 20 mL of deionized water through a dialysis membrane with 3500 molecule weight
cut-off (MWCO) for 24 h.

3.3. Synthesis of TiO2 IO and TCN IO

The synthesis process of CNQDs incorporated TiO2 inverse opal (TCN IO) is shown
in Figure 9. In detail, 5.6 mL of titanium isopropoxide (TTIP), 45 mL of EtOH and 1 mL
of acetylacetone (AcAc) were mixed and stirred. Then, 0.85 mL of hydrochloric acid and
4.6 mL of CNQDs aqueous solution were added into the solution, which was continually
stirred for 2 h. Then the precursor solution was dropped on the PS colloidal crystal solids.
After hydrolysis for 8 h at room temperature, the samples were calcined at 500 ◦C for
2 h (heating rate was 2 ◦C/min). On the other hand, pure TiO2 inverse opals (TiO2 IO)
were prepared via the same method by replacing CNQDs with 5 mL of deionized water in
precursor solution. Additionally, bulk-TiO2 was synthesized without templates by using
the same precursor solution as TiO2 IO.
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3.4. Characterization of Materials

X-ray diffraction (XRD) was conducted with a Shimadzu XRD-7000 XRD diffractome-
ter (Shimadzu, Kyoto, Japan) using Cu Kα (λ= 0.15406 nm) radiation. Other test conditions
included a current of 100 mA, an operating voltage of 40 kV, a scanning range between
2θ = 5–75◦ and a scan rate of 0.02◦/2 s. Scanning electron microscopy (SEM) was con-
ducted by a JSM-6360 LV electron microscope (Jeol, Tokyo, Japan). A routine analysis
consisted of sprinkling the sample on a conductive tape and spraying with gold under
a 15 kV work voltage. The transmission electron microscopy (TEM), which was used to
characterize the samples’ morphologies, was performed on a Jeol JEM-2011 transmission
electron microscope (Jeol, Tokyo, Japan) with a 120–200 kV work voltage. The morpholo-
gies of commercial and homemade TiO2-based samples were further characterized by
HRTEM using a Jeol JEM-2100 (Jeol, Tokyo, Japan). X-ray photoelectron spectroscopy
(XPS) was tested with a PerkinElmer PHI 5000C ESCA system(PerkinElmer, Waltham,
MA, USA) with Al K radiation (250 W). The Brunauer−Emmett−Teller (BET) surface area
of all photocatalysts was obtained via nitrogen adsorption at 77 K by a Micromeritics
ASAP2010 (Micromeritics, Norcross, GA, USA). The photoluminescence (PL) spectra of
samples were measured with a RF-5301 spectrofluorophotometer (Shimadzu, Kyoto, Japan).
With an electrochemical analyzer CHI 660 D electrochemical station (CH Instruments Inc.,
Bee Cave, TX, USA), the electrochemical experiments were carried out in a cell with a
standard three-electrode system. It consisted of a working electrode (as-prepared samples
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were coated on a square fluoride-tin oxide (FTO) with an area of ca. 0.5 cm−2), a Pt wire
serving as the counter electrode and a saturated Ag/AgCl acting as the reference electrode.
Electrochemical impedance spectroscopy (EIS) of different samples were obtained in the
frequency range from 100 kHz to 0.1 Hz under an amplitude of 10 mV using N2-saturated
potassium ferricyanide-mixed electrolyte.

3.5. Photocatalytic Degradation of VOCs and Dyes

The photocatalytic activities of the prepared photocatalysts were evaluated by the
degradations of the gas phase VOCs toluene, the liquid phase VOCs phenol and a typical
dye RhB under simulated sunlight irradiation. The photocatalytic reactions were conducted
under simulated solar light by a 300 W Xe lamp CEL-HXF300 (Beijing Jin Yuan Technology
Co., Beijing, China) with a cut-off filter (AM 1.5), of which the UV-Visible emission spectrum
is 350–780 nm.

In the case of photocatalytic degradation of toluene, the distance between the light
source and the substrate coated with photocatalysts was 20 cm where the light intensity
was 612 mW/cm2. For preparation of the substrate, 100 mg of photocatalyst was dispersed
in 3.5 mL of EtOH via sonication for 15 min and the obtained suspension was slowly and
evenly dropped on a square quartz substrate with an area of 64 cm2. The substrate was
deposited in a 70 ◦C oven over night for drying and stabilization. A self-developed Pyrex
reactor (total volume of 1.735 L) with a flat quartz window on the top was used, wherein the
prepared substrate was placed on a quartz holder inside the reactor (Figure S3). The reactor
was sealed and flushed with air for 30 min, and then 5 µL of liquid toluene were injected
into the reactor in a vacuum state and vaporized into gas phase, which corresponded to the
initial concentration of 665 ppm (2500 mg/m3). Before the lamp was switched on, the gas–
solid adsorption equilibrium was reached after 1 h. The photocatalytic oxidation of toluene
was evaluated by toluene and CO2 detection at different time intervals on a Inesa GC126N
gas chromatograph (Inesa Analytical Istrument Co., Shanghai, China) equipped with a
flame ionization detector (FID), and a methane-reforming furnace [44]. The adsorption
efficiency of toluene (ξt, toluene) in the dark condition and the photocatalytic degradation
efficiencies of toluene into CO2 ( t, toluene) over different photocatalysts were calculated
according to the following formulas:

ξt, toluene = 1 − Ct, C7H8 /C0, C7H8, (1)

t, toluene = (Ct, CO2 − C0, CO2)/7C0, C7H8, (2)

where C0, C7H8 and C0, CO2 are the initial concentrations of C7H8 and CO2, respectively,
Ct, C7H8 and Ct, C7H8 are the concentrations of C7H8 and CO2 at reaction time (t), respectively.

For the degradation of phenol and RhB, 50 mg of photocatalyst was added into a
quartz reactor containing 50 mL of 10 mg/L phenol solution and 20 mg/L RhB, respec-
tively. Prior to the photocatalytic reaction, the suspension was stirred for 30 min in the
dark to achieve the adsorption-desorption equilibrium of organic contaminants on the
surface of the catalysts. At the given time interval, the analytical sample was taken from
the mixture solution and immediately centrifuged. The concentrations of phenol were
analyzed by a Shimadzu SPD-M20A (Shimadzu, Kyoto, Japan) high-performance liquid
chromatograph (HPLC), while those of RhB were measured with a Shimadzu 2450 UV-vis
spectrophotometer (Shimadzu, Kyoto, Japan).

All tests of photocatalytic activities over samples were conducted three times and the
mean values were reported. No significant deviations between the three tests were found.

4. Conclusions

In this study, carbon nitride quantum dots for in situ-loading TiO2 inverse opal
structures were designed and prepared for photocatalytic degradation of gaseous toluene
under simulated sunlight irradiation. Compared with the common catalyst bulk-TiO2, TiO2
IO and commercial P25, the as-prepared TCN IO significantly promoted the degradation
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of toluene, and a 93% mineralization rate of 665 ppm toluene was achieved within 6 h. The
small material can be used for the degradation of liquid phase pollutants such as RhB and
phenol. Based on the specific surface area, photoelectrochemical measurements and PL
spectra, it can be concluded that the modification of CNQDs and inverse opals structure
not only increases the surface area, along with the concentration of active sites, but also
decreases the recombination rate of photo-generated electrons and holes. This material,
with good stability and green environmental protection, provides a practical solution to
the problem of indoor toxic VOCs pollution and wastewater treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11040464/s1, Figure S1: SEM image of (a) PS template (b) TiO2 IO, Figure S2: X-ray
diffraction (XRD) of TCN IO, Figure S3: Reactor device, Table S1: The comparison of the photocatalytic
degradation efficiencies of toluene into CO2 ( t, toluene) over different samples.
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