
HAL Id: hal-03172105
https://normandie-univ.hal.science/hal-03172105

Submitted on 18 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Marine artificial reefs, a meta-analysis of their design,
objectives and effectiveness

Baptiste Vivier, Jean-Claude Dauvin, Maxime Navon, Anne-Marie Rusig,
Isabelle Mussio, Francis Orvain, Mohamed Boutouil, Pascal Claquin

To cite this version:
Baptiste Vivier, Jean-Claude Dauvin, Maxime Navon, Anne-Marie Rusig, Isabelle Mussio, et al..
Marine artificial reefs, a meta-analysis of their design, objectives and effectiveness. Global Ecology
and Conservation, 2021, 27, pp.e01538. �10.1016/j.gecco.2021.e01538�. �hal-03172105�

https://normandie-univ.hal.science/hal-03172105
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Contents lists available at ScienceDirect 

Global Ecology and Conservation 

journal homepage: www.elsevier.com/locate/gecco 

Marine artificial reefs, a meta-analysis of their design, objectives 
and effectiveness 

Baptiste Viviera,b, Jean-Claude Dauvina,c, Maxime Navona,b, Anne-Marie Rusiga,b,  
Isabelle Mussioa,b, Francis Orvaina,b, Mohamed Boutouild, Pascal Claquina,b,⁎ 

a Normandie Université, Université de Caen Normandie, F-14032 Caen, France 
b Unité Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR 8067), Sorbonne Université, Muséum National d′Histoire Naturelle, 
CNRS, Université Pierre et Marie Curie, Université de Caen Normandie, IRD 207, Université des Antilles. Centre de Recherches en Environnement 
Côtier (CREC) - Station Marine, BP49, 54, rue du Docteur Charcot, 14530 Luc-sur-Mer, France 
c Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, Normandie Université, Université de Caen Normandie, 
UNIROUEN, 24 rue des Tilleuls, F-14000 Caen, France 
d Ecole Supérieure d′Ingénieurs des Travaux de la Construction de Caen (ESITC Caen), 14610 Epron, France    

a r t i c l e  i n f o   

Article history: 
Received 2 November 2020 
Received in revised form 8 March 2021 
Accepted 9 March 2021 
Available online xxxx  

Keywords: 
Artificial reefs 
Designs 
Objectives 
Effectiveness 
Monitoring 
Review 

a b s t r a c t   

Artificial Reefs (AR) show a wide diversity and vary in their construction materials, shape and 
purpose, as illustrated by the present analysis of 127 scientific papers. AR have been 
deployed for different purposes, including fisheries improvement, ecological restoration of 
marine habitats, coastal protection or purely scientific research. Statistical analyses using 
67 variables allow us to characterize the design, objectives and monitoring strategies used 
for AR. An effectiveness indicator comprised of three categories (low, moderate and high) 
was adapted from previous studies and applied to the present dataset in terms of the 
objectives defined in each scientific paper. The effectiveness of various monitoring ap
proaches was investigated and recommendations were formulated regarding environmental 
parameters and the assessment of ecological processes as a function of AR type. These 
analyses showed that inert materials like concrete associated with biomimetic designs in
crease the benefits of reefs to the local environment. This study also compared effectiveness 
between the different economic, ecological or scientific objectives of AR projects and reveals 
that fisheries projects showed the highest efficiencies but points out the weakness of en
vironmental assessments for this type of project. In conclusion, the analyses presented here 
highlight the need to use a panel of complementary monitoring techniques, independently of 
the initial purpose of the artificial structures, to properly assess the impact of such structures 
on the local environment. It is recommended to adopt approaches that associate structural 
and functional ecology. An improved characterization of the role of AR should be integrated 
into future assessments, taking into account the complex framework of ecosystem structure 
and trophic relationships. 

© 2021 Published by Elsevier B.V. 
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1. Introduction 

Artificial reefs (AR) are man-made structures emplaced in aquatic environments that serve as habitats or shelters for 
organisms. AR have long been used to attract fish and the development of these structures has been intensified over the three 
last decades (Baine, 2001; Lowry et al., 2014; Santos et al., 2011). In the present study, we consider an artificial reef as a structure 
intentionally placed on the seabed aiming to mimicking natural reef functions that are able to protect, regenerate, concentrate 
and enhance populations of marine organisms (Guillen et al., 1994; Hunter and Sayer, 2009; Walles et al., 2016). This includes 
the protection (Silva et al., 2016) and regeneration of habitats (FAO, 2015) or the fisheries enhancement (Hackradt et al., 2011). 
However, AR with a defined objective such as ecosystem protection may have both positive and negative impacts on the local 
environment (Brickhill et al., 2005; Firth et al., 2016). This term excludes artificial islands, cables, pipelines, platforms, mooring 
and structures for coastal defence (e.g. breakwaters and dykes) which were primarily constructed for other purposes, as well as 
devices developed for fish aggregation that were used simply to attract fish in certain fishing areas, and wrecks that are 
accidentally present on the sea bed (FAO, 2015). 

Despite the number and the diversity of projects and objectives of AR, their overall effectiveness have rarely been fully 
demonstrated. The assessment of AR performance is complex because of the multivariable factors and co-variation among 
descriptors to be taken into consideration. There is a tendency for research to obscure the main objectives of AR placement and 
many examples can be cited where self-assessment appears to be lacking in terms of evaluating performance (Baine, 2001). 
Monitoring is often limited to only a few species and/or the immediate environment with no complementary techniques using 
approaches such as process or structural ecology (Baine, 2001). Moreover, monitoring periods are highly variable, ranging from 
days to years. Research on AR involving studies of ecosystem functioning need to respond to the increased development of more 
sophisticated and complex techniques based on isotopes, organic indicators or molecular biology (Lima et al., 2019a). Ecological 
studies can be divided into two categories: structural ecology describes the ecosystem (species diversity, distribution, etc.) and 
functional ecology refers to the flow of energy and cycling of materials through structural components of the ecosystem 
(productivity, production, trophic web, carbon fixation, etc.) (Gómez et al., 2004; Villéger et al., 2008). There is also a great 
interest in investigating the coupling between function and diversity in the case of submerged AR. 

These structures are usually expected to produce an overall increase in species richness by protecting some species, and also 
an increase and diversification of trophic contributions (Bodilis et al., 2011; Hixon and Beets, 1989; Piazza et al., 2005). The 
improvement in habitat is generally reflected in greater food availability and more shelter against predators, as well as new 
recruitment areas for juveniles of various species (benthic invertebrates or fish), which explains the increase in organism 
biomass associated with these structures after their installation (Perkol-Finkel et al., 2018; Sherman, 2002). The numerous 
reviews in the literature dealing with AR mainly concern management (Becker et al., 2018; Claudet and Pelletier, 2004; Lima 
et al., 2019a), recommendations and priorities (Bohnsack and Sutherland, 1985; Lima et al., 2019a), but also deal with social 
aspects (Carral et al., 2018; Lima et al., 2019a) as well as overall assessment with performance evaluation (Baine, 2001; Lee et al., 
2018; Lima et al., 2019a). 

In the present paper, a statistical approach is adopted combining the results of multiple scientific studies in order to improve 
the AR performance evaluation. This meta-analysis investigated the effectiveness of 162 AR by using several parameters in
cluding the shape and composition of materials used for their construction, the monitoring techniques, and the original purpose 
of the artificial reef in question. We define effectiveness as the performance of the structure in relation to the purpose of its 
emplacement or research objectives. Our analysis is based on a simplify Reef Performance Scale proposed by Baine (2001). This 
approach does not yield an absolute qualitative assessment but is based rather on the information and data provided by 
selected papers and reflects the interpretations of various different authors. The main objectives of this study are to bring 
impartial information on AR effectiveness according to their design, monitoring and purposes. Considering the large variety of 
AR studies, the lack of recent literature review and the necessity of an updated meta-analysis, the present study provides 
recommendations to improve the AR success rate by enhancing their performance assessment using appropriate monitoring 
techniques consistent with the initial purpose of the structure. 

2. Methodology 

This non-exhaustive analysis examines 126 papers dated from 1973 to 2019 covering 162 AR sites (Appendix B). When 
several AR sites are discussed in a given paper, each site is considered independently in our analysis. The bibliographic corpus 
was selected from 5771 publications listed in Web of Science from January to September 2019 using the following keywords: 
artificial reef and marine infrastructure. Relevant papers were selected based on three criteria: (1) scientific monitoring of the 
AR had to be included; (2) the AR had to have been intentionally deployed and (3) the structure had to be submerged in a 
marine or estuarine mesohaline environment, with a specified objective. 

Each of the 126 papers was thoroughly analyzed to identify the specific AR design, local environment, location and mon
itoring techniques employed for the assessment as well as the initial objectives of the AR. This led to the establishment of 
67 variables belonging to 12 categories, which were then separated into four groups: (1) environmental categories, (2) AR type, 
(3) monitoring categories and (4) AR effectiveness. Each of the 12 categories were independent and groups 1, 2 and 3 were 
strictly representative of the bibliographic corpus information. Some of these variables correspond to several sub-variables that 
can be grouped together into categories (Appendix C). Tables 1–3 present the 12 categories along with the 67 associated 
variables. Environmental categories correspond to the variables: geographic location, seabed type, salinity and AR depth of 
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immersion (Table 1). AR categories correspond to AR facility volume, AR shape, AR material and AR purpose (Table 2). The AR 
purpose category is divided into four variables. Fisheries enhancement corresponds to the sole purpose of improving fishing. 
Biocenosis protection corresponds to the immersion of an AR to physically protect an existing ecosystem against a threat. 
Biocenosis restoration corresponds to the immersion of an AR to rebuild an ecosystem by creating a new habitat. Finally, 
experimental purpose corresponds to the immersion of the AR as part of a scientific experiment and biocenosis restoration 
means reconstructing an ecosystem, i.e., a habitat, to promote its colonization by the living organisms associated with the 
original habitat. In the case of an AR fitted more than the variable (e.g. concrete and metal), it is considered in all of the relevant 
variables. 

The third group (Table 3) corresponds to AR monitoring variables including monitoring techniques, ecological monitoring 
and immersion time. The ecological monitoring category provides information about the ecological nature of the monitoring 
techniques used. Ecological monitoring may be structural or functional. It also includes biodiversity measurements and eco
logical process. Structural ecology mostly involves descriptive techniques; functional ecology refers to relations, dealing with 
the fluxes between different trophic compartments. Ecological process corresponds to production measurements, including 
trophic and non-trophic interactions. 

Submersion time corresponds to the duration of immersion of the AR according to the monitoring period. “Short Time” 
corresponds to periods between a day and a month, “Intermediate Time” to periods of between a month and a year and “Long 
Time” to periods longer than a year. 

AR effectiveness is evaluated according to the interpretations of each paper with respect to the stated objectives. This 
evaluation is based on the Reef Performance Scale drawn up by Baine (2001). The Reef Performance Scale is an indicator of reef 
performance in relation to its given purpose. Our intention is not to provide an absolute assessment of AR effectiveness but 
rather to reflect the author’s interpretation. Baine’s scale is composed of seven levels from −3 to +3, with negative levels 
corresponding to AR which fail in their objectives and which have a negative impact on the surrounding environment (−3), 
which yield no useful data (−2) or which produce questionable results (−1). Level 0 corresponds to AR with inconclusive 
performance showing negative and positive effects. Finally, positive levels correspond to AR which succeed in their objectives. 
Level +1 is attributed to AR with a limited success and which provide limited useful data; these AR require some changes and 
management to improve their effectiveness. Level +2 corresponds to AR that succeed partly in meeting their objectives and 
which require some minor changes of design or management. Level +3 corresponds to ARs that fully succeed in their objectives 
and which require no change. These AR provide useful data for the assessment of reef performance and management. Out of the 
30 case studies exploited by Baine (2001), 29 yield an effectiveness distributed between 0 and +3. 

Table 1 
Environmental variables (four categories) with their code used in the statistical analyses.          

Environmental categories 

Geographic location Seabed substrate Salinity AR immerging depth  

Tropical Climate_Tropical Sandy Seabed_Sandy  >30 Salinity_Inf30 Intertidal Depth_Inter 
Temperate Climate_Temperate Hard Seabed_Hard  <30 Salinity_Sup30 0.1–10 m Depth_10 
Subarctic Climate_Subartic Muddy Seabed_Muddy   11–20 m Depth_20   

Corals Seabed_Corals   21–50 m Depth_50   
Seagrass Seabed_Seagrass    >to 51 m Depth_51   
Artificial Seabed_Artificial     

Table 2 
Artificial reef variables (four categories) with their code used in the statistical analyses.          

Artificial reef variables 

AR facility volume AR shape AR material AR purpose  

0–100 m3 Volume_100 ARMS AR_ARMS ECOncrete® MA_ECO Fisheries enhancement Obj_Fisheries 
101–1000 m3 Volume_1000 Bags AR_bags Shells MA_Shells Biocenosis protection Obj_BiocenosisP  
>to 1001 m3 Volume_1001 Blocs AR_blocs Wood MA_Wood Biocenosis restoration Obj_BiocenosisR   

Cages AR_Cages Plastics MA_Plastics Experimental Obj_Experimental   
Cubics AR_Cubics Rocks MA_Rocks     
Pyramidal AR_Pyram Tires MA_Tires     
Vertical AR_Vert Asbestos MA_abest     
Multipods AR_Multi Ceramic MA_Ceramic     
Tires AR_tires Concrete MA_Concrete     
ReefBalls® AR_ReefB Metal MA_Metal     
Vehicle AR_Vehi Fiberglass MA_Fiberglass     
Plates AR_Plates       
Cylindrical AR_Cyl       
Other AR_Other        
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Our AR effectiveness evaluation is composed of three levels: low, moderate and high (Table 3). Low effectiveness 
corresponds to AR with extremely limited success or none. This level corresponds to level 0 on the Reef Performance Scale 
(Baine, 2001). These AR might have some negative impacts and require some management and design changes. Moderate 
effectiveness corresponds to AR with a limited success in their objectives, but which might have some other positive effects. 
This level corresponds to +1 on the Reef Performance Scale (Baine, 2001). These AR require some management and changes to 
increase their success. High effectiveness corresponds to AR that have succeeded in their objectives for a major part. This level 
corresponds to +2 and +3 on the Reef Performance Scale (Baine, 2001). These AR confer benefits on the surrounding en
vironment and require little or no modifications to improve their effectiveness. 

Statistical analyses were performed with R i386 3.5.1 (R Development Core Team, 2008), with FactoMineR (Lê et al., 2008) 
and ggplot2 (Wickham, 2009). The data frame is made up of a binary presence or absence (1 or 0) matrix with observations in 
rows and the sum of variables in columns. The matrix is presented in Appendix B. Ascending hierarchical classification (AHC) 
was performed on the total data base. The optimal number of clusters was calculated using the Gap statistical method. AHC 
provides information on the similarities and dissimilarities of selected papers. This technique is widely used in ecological 
sciences and data analysis (Azzag et al., 2006; Cullis et al., 2018; Dolan and Parker, 2005). Associated dendrograms are available 
in the Supplementary material. Correlation coefficients are calculated using Pearson’s method to identify those variables which 
are correlated together. A correlation is considered significant when P < 0.05. These correlation coefficients are calculated 
between all variables from the total data set. Data analysis with coefficient correlations is commonly applied in the biological 
and ecological sciences (Obayashi and Kinoshita, 2009; Rupp et al., 2012). A graphic representation and the full set of results 
(R coefficients and p-values) is available in the Supplementary material. 

3. Results 

The selected AR show a worldwide distribution: 69 in Europe, 37 in Asia, 26 in North America, 10 in Central America, 5 in 
South America, 3 in Africa, 11 in Australia and 2 in the Pacific Ocean. However, this selection is not representative of the actual 
distribution of AR across the world. 

3.1. Graphic representation of global data and dominant variables 

Fig. 1 provides information on the main variables. The main shapes are cubic, cylindrical, plate, pyramidal and cage. The 
main construction material used is concrete. The main purposes of AR submersion are biocenosis restoration, fisheries en
hancement and purely experimental (Fig. 1A). The main geographic locations are temperate and tropical. The selected depths for 
artificial structures are between 0.1 and 50 m. The main seabed substrate is sandy followed by muddy and hard bottoms 
(Fig. 1B). The main tools for monitoring are biodiversity assessment, SCUBA diving and visual observations with ecological 
structural monitoring (Fig. 1C). 

3.2. Multiple correspondence analysis (MCA) representations with clusters 

MCA (Fig. 2) was performed to identify those variables that could be used to distinguish the selected AR. The MCA represents 
all relevant variables that contribute more than 1% to the two first dimensions. Clusters groups (A to E) are represented as 
follows: group A is composed of 22 AR sites, B of 33, C of 11, D of 36 and E of 60. The two first dimensions explain 21.8% of the 
scatter plot. Dimensions 3 and 4 explain 7.7% and 7.3% of the data (Eigen values are available in Supplementary data). The weak 
cumulative variance of the two first MCA axes associated with the number of clusters reflects the disparity of the data due to the 

Table 3 
Monitoring variables (three categories) and artificial reef effectiveness variables, with codes used in the statistical analyses.          

Monitoring variables AR effectiveness variables 

Monitoring techniques Ecological monitoring Immerging time length AR effectiveness  

Scrapings TC_Scrap Functional Eco_Functional Short (<1 months) Time_Initial Low Eff_Weak 
Spectrophotometry TC_Spectro Structural Eco_Structural Intermediate (<1 year) Time_Intermediate Moderate Eff_Partial 
CPCe software TC_CPCE Biodiversity 

measurements 
Eco_Biodiv Long (>1 year) Time_Stable High Eff_Strong 

Microscope observations TC_Micro Ecological 
process 

Eco_Process     

Visual observations TC_Visual       
SCUBA diving TC_SCUBA       
Environmental parameters TC_Env       
Pelagic measurements TC_Fish       
Pictures TC_Pic          
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Fig. 1. Graphic representation of the percentage of artificial reef sites in terms of three categories of variables: AR type and purpose (1), environmental variables 
(2) and monitoring methods (3). 
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diversity of AR projects worldwide with different purposes, in different ecosystems, using various shapes, materials and 
monitoring methods (Fig. 3). 

Clusters A and B seem close and mostly comprise of elements such as experimental purpose; structural and functional 
ecology analysis; plastics, rocks, and ECOncrete® materials; depth of submersion between 0 and 20 m; short and medium 
immersion periods. The group C dendrogram is composed of 11 AR studied by Kasim et al. (2013) in the tropical Indian Ocean. 
Cluster C describes the same variables as cluster D, situated between the dominant variable strong AR effectiveness and 
fisheries enhancement. Finally, cluster E is characterized by fisheries enhancement and biocenosis protection purposes, long 
immersion period, AR facility volume volumes higher than 1000 m3, cages shape, concrete construction material, visual census, 
SCUBA diving and pelagic measurement monitoring techniques. 

3.3. Effectiveness analysis of relevant variables 

The proportion of AR sites in term of effectiveness categories (weak, partial and strong) was calculated for the relevant 
variables selected for the previous MCA analysis. Cages and cylindrical shapes were the most effective’s ones (70% in strong 
effectiveness). Depth of submersion between 0 and 10 m (75% in strong effectiveness) or intertidal (64.7% in strong 
effectiveness) were the most efficient ones. Concrete was the most effective material (79% in strong effectiveness), in com
parison, plastics and rocks material seemed less efficient with respectively 35.7% in medium effectiveness and 7.7% in weak 
effectiveness. Long immersion period was the most effective (72.7% in strong effectiveness) in comparison with short one 
(60% in strong effectiveness). 

3.4. Evaluation of artificial reef purposes 

Fig. 4 shows the percentage of assessed effectiveness for each AR purpose. For each of the four different AR purpose, the 
main assessed effectiveness was high (always more than 73% of the AR sites). Moderate effectiveness represented between 
14.9% for fisheries enhancement AR and 23.4% for experimental AR. Low effectiveness represented between 1.4% for fisheries 
enhancement AR and 7.7% for biocenosis protection AR. 

3.5. Variable correlations according to the purpose 

3.5.1. Fisheries enhancement purpose 
The objective of improving fisheries is correlated with a high level of efficiency (R = 0.25, P = 0.038) as well as visual census 

(R = 0.36, P = 0.002), SCUBA diving (R = 0.34, P = 0.005) and pelagic measurements (R = 0.42, P  <  0.001). This objective is also 
correlated with depths of submersion between 10 and 20 m (R = 0.33, P = 0.006) and 21–50 m (R = 0.59, P  <  0.001), sandy 
substratum seabed (R = 0.32, P = 0.007), salinity > 30 (R = 0.26, P = 0.033) and a temperate climate (R = 0.29, P = 0.018). Fisheries 
enhancement purpose is also correlated with several AR variables, such as cages (R = 0.49, P  <  0.001), cylindrical shapes 
(R = 0.46, P  <  0.001), pyramid shapes (R = 0.57, P  <  0.001), cubic shapes (R = 0.74, P  <  0.001) but also the concrete construction 
material (R = 0.58, P  <  0.001). 

3.5.2. Experimental purpose 
The experimental purpose is correlated with microscopic analysis (R = 0.57, P  <  0.001), CPCE software (R = 0.49, P  <  0.001) 

and biodiversity analysis (R = 0.44, P  <  0.001). This objective is also correlated with a structural ecology approach (R = 0.27, 
P = 0.024), submersion depths from 0 to 10 m in the intertidal zone (R = 0.51, P  <  0.001 and R = 0.41, P  <  0.001), artificial seabed 
(R = 0.35, P = 0.004) and short or medium immersion periods (R = 0.49, P  <  0.001 and R = 0.32, P = 0.008). Experimental purpose 
is correlated with the following AR construction materials: plastic (R = 0.41, P  <  0.001), ceramic (R = 0.28, P  <  0.022), shells 
(R = 0.27, P = 0.031) and rocks (R = 0.44, P  <  0.001); and with shapes made of bags (R = 0.24, P = 0.048), plates (R = 0.76, 
P  <  0.001), and ARMS® (R = 0.43, P  <  0.001). It is also correlated with the biocenosis restoration purpose (R = 0.25, P = 0.029). 

3.5.3. Biocenosis protection purpose 
The biocenosis protection purpose is correlated with a long immersion period (R = 0.34, P = 0.005), sandy and seagrass 

seabed substrates (R = 0.33, P = 0.05 and R = 0.44, P  <  0.001) and submersion depths between 11 and 20 m (R = 0.25, P = 0.041). 
This purpose is correlated with AR volume > 1001 m3 (R = 0.29, P = 0.020) and with ECOncrete® construction material (R = 0.29, 
P = 0.023). Finally, biocenosis protection is correlated with visual observations (R = 0.35, P = 0.004) and SCUBA diving (R = 0.29, 
P = 0.017). 

3.5.4. Biocenosis restoration purpose 
The biocenosis restoration purpose is correlated with lower efficiency (R = 0.23, P = 0.06) and salinity <  30 (R = 0.28, 

P = 0.027). It is correlated with biodiversity measurements (R = 0.24, P = 0.041). The biocenosis restoration purpose is correlated 
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with shapes made up of multipods (R = 0.25, P = 0.041) and ReefBalls® (R = 0.44, P  <  0.001) and with tyres (R = 0.35, P = 0.040). 
Finally, the biocenosis restoration purpose is correlated with the experimental purpose (R = 0.27; P = 0.029). 

4. Discussion 

There is a great diversity of AR worldwide with a large range of different shapes, materials and purposes. In this study, we 
selected 162 AR from 126 scientific publications. A statistical approach on 67 common variables allowed us to describe the 
selected AR structures in terms of their design, location, objectives and the monitoring techniques used to assess their effec
tiveness. 

4.1. Design, location and effectiveness of artificial reefs 

Although AR are widely used around the world, their scientific monitoring is mainly performed in Europe (69 AR), Asia (37 
AR) and North America (26 AR). However, the data set used in this paper does not represent the actual distribution of AR in the 
world because of the non-exhaustively of the analysis and the unequal nature of scientific monitoring of AR projects between 
regions. These structures are composed of different materials (n = 11), predominantly concrete (60%). There is also a wide 
diversity of shapes (n = 14), dominated by cubic structures (27%). Concrete AR are widely distributed across all continents. Our 
analysis shows a significant correlation between concrete material and high AR effectiveness due to the high fixation rate of 
marine organisms and the high level of colonization (Baine, 2001; Ido and Shimrit, 2015; Mos et al., 2019; Sempere-Valverde 
et al., 2018). Beside these performances, concrete AR were selected because they have a lower environmental impact than 
plastics such as PVC which are toxic and generate micro-plastic particles (Zhang et al., 2020). In this context, the development of 
biogenic materials such as ECOncrete®, with addition of marine products including oyster shells to replace part of the sand, 
represent a sustainable solution which strengthen the coherence of AR projects by limiting the environmental footprint (Lima 
et al., 2019a; Perkol-Finkel et al., 2018; Walles et al., 2016). In the same vein, the European RECIF project had proposed the 
incorporation of crushed seashells of the queen scallop Aequipecten opercularis (Linnaeus, 1758) into the substrate of concrete 
blocks through the development of innovative building materials for AR (Cuadrado Rica et al., 2016; Cuadrado-Rica et al., 2016). 

Moreover, the design of AR has a significant impact on their effectiveness. According to our analysis, the most efficient shape 
is cylindrical. However, AR shape has a limited impact on efficiency in comparison to AR size. Our analysis points out that AR 
facility volume volumes higher than 1000 m3 are significantly correlated with a high effectiveness. Large structures could create 
upwelling phenomenon and promote the primary production and, hence, the local fishery (Bortone et al., 2011). Furthermore, 
our meta-analysis shows that surface heterogeneity is an important condition affecting the AR efficiency. An increase of surface 
complexity promotes biodiversity and facilitates colonization (Boaventura et al., 2006; Hageman et al., 2013; Loke and Todd, 
2016; Paalvast, 2015). Large holes addition to AR could markedly enhance the holding capacity of a reef for fish of reproductive 
ages (Bortone et al., 2011). Orientation as a function of currents and/or light are also key factors influencing colonization by 
ecosystem engineer species, as well as larval recruitment and benthic biodiversity (Boaventura et al., 2006; Loke and 
Todd, 2016). 

Geographic location does not have a significant influence on AR efficiency in the papers selected for this study. However, AR 
shape and material are found to differ as a function of latitudes. Tropical climates are correlated with two different AR shapes 
(vertical and tyres) and four construction materials (ceramic, concrete, plastics and tyres). Temperate climate locations are only 
correlated with concrete material and two shapes (cubic and cages). This difference could be explained by a discrepancy of 
objectives of AR projects between low and higher latitudes. Our analysis shows that tropical climate is correlated with ex
perimental purpose, which might lead to the large diversity of AR shapes and materials, while temperate climate is correlated 
with fisheries enhancement and to a lesser extent to biocenosis protection. It is interesting to note that most artificial structures 
in temperate climates mainly have an economic objective. 

4.2. Assessment of artificial reef purpose 

Because the reef effect induces fish aggregation and increases the capture rate (Becker et al., 2019; Bortone et al., 2011; 
Hackradt et al., 2011; Koeck et al., 2011), AR projects are found to be highly efficient in promoting fisheries in our analysis. Clear 
objectives contribute to a rational and scientific approach to AR evaluation. The fisheries enhancement purpose represents 33% 
of the purpose variable category. This variable is highly correlated with cluster E, which is the largest group (60 AR) and with 
cluster C. Group C is different because all the AR originate from the same study (Kasim et al., 2013). These latter authors 
submerged AR at 11 sites along the Indian coastline with a fisheries enhancement objective. They demonstrated the notable 
economic benefits of these structures for local fishermen compared with adjacent natural reefs. Many studies have reported 
that a large number of fisheries actors and the rising interest of the fishing industry in AR projects are relevant factors playing 
an essential role in the success and economic value of artificial reefs. The fisheries enhancement variable is correlated with a 
limited number of shapes, construction materials and monitoring techniques, highlighting the fact that AR projects targeting 
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fisheries enhancement reach their objective of attracting fish. However, as reported in the literature, the apparent success of 
such structures might mask the negative effects on the ecosystem. Attraction local fish biomass without any increase of pro
ductivity in the area could lead to overfishing and/or an increase of accidental captures (Jensen et al., 2000; Smith et al., 2016; 
Whitmarsh et al., 2008). 

The experimental purpose is correlated with four different monitoring techniques, five AR shapes and two AR construction 
materials. In contrast to the fisheries enhancement purpose, the effectiveness of experimental AR seems to be moderate in our 
analysis even if the correlation between each variable is not highly significant. The difference in effectiveness between these 
two purposes could be explained by the greater heterogeneity of monitoring techniques, shapes and materials used for ex
perimental AR. For example, Paalvast (2015) used concrete slabs to assess the settlement of algae and macrofauna on a 
breakwater (Netherlands), while Brown (2005) used four different substrata (wood, rubber, steel and PVC) to record their 
influence on epifaunal assemblages in Loch Linnhe (Scotland, UK) and Fariñas-Franco et al. (2013) used scallop shells to assess 
the importance of habitat complexity in recruitment in Strangford Lough (Northern Ireland, UK). Most experimental AR are built 
to investigate the performance of different materials or shapes, thereby explaining the higher proportion of these variables 
compared to other purposes, and also the lower effectiveness of experimental reefs compared to other types of AR. We show 
that biocenosis restoration purpose is correlated with the experimental purpose where many types of shapes and construction 
materials are used (concrete, plastic, fibreglass, tyres, stone) (Clark and Edwards, 1999; Walker et al., 2002; Kotb, 2013). As 
previously mentioned, this diversity of AR types leads to a low effectiveness. 

Submersion time and depth are key factors for the success of AR that influence the efficiency according to the purpose of 
deployment. Submersion time is an important variable that affects the effectiveness of AR. This variable is correlated with 
biocenosis restoration and fisheries enhancement purposes. On the contrary, short submersion time is correlated with ex
perimental AR purpose, often because of a strict legislation (London Convention and Protocol, 2009). This highlights the fact 
that economic AR, such as those targeting fisheries enhancement, are submerged for very long or even unlimited periods 
(Bortone et al., 2011; Charbonnel and Bachet, 2010). Fish and benthic communities showed progressive evolution on several 
years after the immersion of AR highlighting the importance of long term surveys (Bortone et al., 2011; Relini et al., 2002). Short 
term survey may not be long enough to record the overall influence of an AR on its environment, the survey need to be 
conducted over several years (Seaman, 2000; Seaman and Sprague, 1991). Another key factor is the submersion depth, which 
plays an important role in maximizing the efficiency of the reef. In our analysis, submersion depths in the photic zone between 
11 and 20 m led to the highest recorded effectiveness; this result might be explained by the fact that these depths correspond to 
the depths of AR targeting fisheries enhancement. 

4.3. Assessment of monitoring techniques 

The assessment of monitoring techniques considers the scientific protocols deployed and the survey duration. For example, 
for fisheries assessment, long-term monitoring is required to prevent any undesirable consequences such as overfishing 
(Ajemian et al., 2015; Smith et al., 2016). Otherwise, this approach involves protocols with trusted communication between the 
local fishermen and the AR project managers to maximize the efficiency and longevity of the monitoring and the structures 
(Keller et al., 2017; Lima et al., 2019b; Ramos et al., 2019). Pelagic measurements including gill and trammel nets to make catch 
per unit effort estimations are largely used to the fish abundance and biomass estimations, combining with visual observations 
these techniques provided a relatively accurate image of fish assemblages (Seaman and Sprague, 1991). Several AR projects did 
not have any real monitoring protocol or used only a small range of techniques to a limited extent (Gregg, 1995; Kasim et al., 
2013); this point was already made by Koeck et al. (2011). This was the case in some AR projects dealing with protection areas or 
fish concentration, which were usually poorly documented. However, most of the AR projects cited in the present study were 
evaluated using the structural ecology approach which provides information such as biodiversity or species abundance for a 
variable number of ecosystem compartments. In many projects focused on fisheries, only a partial vision of the AR-associated 
ecosystem is considered (Cresson et al., 2014). Ecological process monitoring techniques (trophic fluxes, non-trophic interaction 
including ecosystem engineering, carbon and nitrogen cycles, productivity, etc.) are essential to understand the mechanisms 
and interactions between living organisms and their environment. This type of monitoring allows us to study functional ecology 
on AR sites. In our analysis, the functional ecology approach includes all papers that deal with trophic fluxes (Carvalho et al., 
2013; Mazzei and Biber, 2015). For example, Cresson et al. (2014) pointed out the importance of integrating functional ecology 
techniques to allow a satisfactory evaluation of biomass production associated with AR in the bay of Marseilles. In their study,  
Cresson et al. (2014) used stable isotopic ratios to characterize the trophic network associated with the AR, thus providing an 
integrative view of trophic relationships. Surprisingly, in our analyses, the functional ecology approach appears to be correlated 
with low AR effectiveness. This result is probably due to the small number of the selected papers dealing with this topic (2%) as 
well as the caution shown by authors in their interpretations in comparison, for example, to fisheries or area protection as
sessment. 

The lack of efficient monitoring techniques, or perhaps their suboptimal utilization, underlines the importance of choosing 
an appropriate complementary technique (i.e. functional and structural ecology approaches) for the evaluation of AR 
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performance. As highlighted by this study, tropic food web, primary productivity and associated assemblages are also key 
indicators allowing a complete assessment of the AR function (Seaman, 2000). Seaman (2000) has published recommendations 
on AR evaluation, stressing the importance of defining the AR objectives and the success criteria used to optimize the mon
itoring techniques and evaluation plan. The choice of monitoring techniques to evaluate the structure performance must fit its 
primary objective. However, it is not sufficient to focus just on the primary objective. A study plan should integrated an eva
luation before and after the AR deployment with an important frequency of sampling (Seaman, 2000; Seaman and Sprague, 
1991). When it’s possible, monitoring protocols should be standardized and overly complex study designs avoided (Bortone, 
2006). As mentioned above, simply monitoring AR design to enhance fisheries or physically protect an area are frequently 
associated with incomplete monitoring protocols (Piazza et al., 2005). Even if a positive effect is recorded with respect to the 
original purpose of the AR, it is difficult to ensure sustainable management of the structures and, consequently, any long-lasting 
positive impact, without comprehensive monitoring techniques using the function ecology approach. 

5. Conclusions 

The binary nature (presence or absence) of the data frame might explain the massive loss of detailed information in the 
scientific literature. While the 67 studied variables are the most representative of the selected papers, there are many other 
aspects not included in this statistical analysis such as the surrounding environment or non-indigenous species. Our study 
nevertheless represents an objective view of the quantitative and qualitative aspects of artificial reefs. It reveals the wide variety 
of artificial reefs in the world. Independently of any purpose, the effectiveness of AR depends to a great extent on the properties 
of these structures. 

Concrete with high roughness is by far the most widely used material and seems to be one of the most efficient. The rugosity 
of the substrate would increase the surface available for settlement and can consequently increase the biomass, the coverage 
percentage and the primary production of the structure. Further studies should investigate the micro-scale topography influ
ence of the AR surface on the first colonization steps after its immersion. In addition, this material ensures high resistance and 
does not produce pollutants. The construction material seems to be more important than the shape of the structure, but our 
results nevertheless suggest that cylindrical or cubic designs are best. 

The selection of monitoring techniques is an important factor for the assessment of AR effectiveness. That means selecting 
the appropriate monitoring techniques must be carefully thought out and include complementary methods. To limit potential 
negative impacts, and ensure sustainable management and a proper assessment, appropriate monitoring techniques including 
functional analysis may be necessary to obtain a full understanding of the AR and its impact. 

Optimal monitoring should be seasonal and continue for at least 5 years. It is also important to assess different trophic 
groups to correctly evaluate the effect of the AR on the associated ecosystem and at least on the primary producers, primary 
consumers, benthic fauna and secondary consumers, and modeled the trophic network before and after the deployment of AR 
(Cresson et al., 2019). Strategically, the selection of the monitoring techniques should be correctly divided between structural 
and functional approach. Biological indicators like diversity and abundance should be measured by visual census, picture 
analysis and microscopic observations. Ecological processes (i.e. trophic webs, productivity, production, etc.) should be assessed 
by isotopic analysis, primary productivity and production measurements, and trophic food web functioning. In addition, en
vironmental parameters such as temperature, nutrients, depth or light and surrounding ecosystem should also be assessed in 
order to evaluate the impact of AR on it. 
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Table B1 
Complete table of the references used in this study. Artificial reef numbers correspond to the values in the dendrograms and MCA plots.    
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138 Hiscock, K., Sharrock, S., Highfield, J., Snelling, D., 2010. Colonization of an artificial reef in south- 
west England-ex-HMS “Scylla.” J. Mar. Biol. Assoc. U. K. 90, 69–94. https://doi.org/10.1017/ 
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oyster and hooked mussel on a subtidal, artificial restoration reef system in Chesapeake Bay. Plos 
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45 Loke, L.H.L., Todd, P.A., 2016. Structural complexity and component type increase intertidal 
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115 Pelaprat, C., Chery, A., Lejeune, P., 2010. Suivi scientifique des récifs artificiels implantés en Corse – 
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62 Perkol-Finkel, S., Benayahu, Y., 2009. The role of differential survival patterns in shaping coral 
communities on neighboring artificial and natural reefs. J. Exp. Mar. Biol. Ecol. 369, 1–7. https://doi. 
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