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EURECOM

Sophia-Antipolis, France
onen@eurecom.fr

Slim Trabelsi
SAP Security Research

Mougins, France
slim.trabelsi@sap.com

Abstract—Since machine learning models have become a valu-
able asset for companies, watermarking techniques have been
developed to protect the intellectual property of these models
and prevent model theft. We observe that current watermarking
frameworks solely target image classification tasks, neglecting a
considerable part of machine learning techniques. In this paper,
we propose to address this lack and study the watermarking
process of various machine learning techniques such as machine
translation, regression, binary image classification and reinforce-
ment learning models. We adapt current definitions to each
specific technique and we evaluate the main characteristics of the
watermarking process, in particular the robustness of the models
against a rational adversary. We show that watermarking models
beyond classification is possible while preserving their overall
performance. We further investigate various attacks and discuss
the importance of the performance metric in the verification
process and its impact on the success of the adversary.

Index Terms—Watermarking, machine learning, neural net-
works, reinforcement learning, regression, machine translation

I. INTRODUCTION

With the advent of the Big Data technology, companies
are looking for opportunities to derive meaningful insights
about their customers or productions and hence improve their
businesses. The Machine Learning as a Service (MLaaS)
paradigm offers these companies to take advantage of various
machine learning tools for this purpose. According to a study1,
73% of the MLaaS market is owned by Amazon 2, IBM 3 and
Microsoft 4 and their corresponding revenues are expected to
grow by several billions of dollars. These MLaaS providers
deploy machine learning models as part of their products.
However, generating powerful machine learning (ML) models
is not a trivial task and usually call for expensive operations
involving the collection of appropriate data and the processing
of it to train appropriate models. Therefore, MLaaS providers

1https://tinyurl.com/y3sl8k9v
2https://tinyurl.com/y2228v92
3https://tinyurl.com/y38m39fs
4studio.azureml.net

look for means to protect the integrity of their models and pre-
vent unauthorized parties to make benefit from these models.

To cope with the problem of protecting ML models against
potential model theft, digital watermarking solutions dedicated
to machine learning (and more specifically to deep neural net-
works (DNN)), have been proposed recently [1], [2]. Solutions
usually embed some “watermarks” to the model by introducing
a trigger set during the model training phase. The ML model is
therefore trained over both the legitimate and the trigger sets.
Later on, during the actual inference phase, the trained model
exhibits a particular behavior when queried against trigger
data. This behavior is only known by the model owner (i.e.
MLaaS provider) and is unexpected. Hence the latter can claim
the ownership of its model with such verification.

Existing solutions mostly focus on the protection of deep
neural network models for classification and there is a lack
of study on the protection of other ML models that can
sometimes be considered as a better fit for certain prob-
lems. For example, with the ongoing Covid-19 pandemic,
the use of machine translation (MT) models has significantly
increased [3], [4]. Such models show major differences with
classification models and therefore may not be compatible with
existing watermarking solutions.

In this paper, we propose to address this lack and study the
design and development of watermarking solutions for a vari-
ety of ML techniques, namely: (i) image classification models
based on DNNs, (ii) regression models, (iii) MT models and
(iv) reinforcement learning models. Our aim is to investigate
whether it is possible to propose a watermarking process
compatible with non-classification tasks and for different data
sources. With this aim, we first revisit the definition of water-
marking for different ML models. We propose three different
trigger set generation techniques compatible with image and
text data. To assess the quality of the watermarked models, we
propose a study of various potential attacks that aim at either
identifying trigger instances or removing the watermark from
the model. Finally, we benchmark the performance and the
quality of the trigger set generation techniques when applied

https://tinyurl.com/y3sl8k9v
https://tinyurl.com/y2228v92
https://tinyurl.com/y38m39fs
studio.azureml.net


to each particular ML model and assess the success of the
adversary. We also present counter-measures for the attacks to
evaluate the cost for the adversary.

Based on this extensive investigation, we observe that :
• Watermarking machine learning models in addition to

image classifiers are possible for all proposed trigger set
generation techniques. The watermarking process does
not significantly decrease the performance of ML models
on the legitimate set.

• The robustness of watermarked models against attacks
strongly depends on the type of ML model: For a given
trigger set generation technique, the adversary might
succeed for a MT model and fail for a regression model.

• Furthermore, when several metrics are available to verify
the presence of the watermark in a model, the choice of
the metric has an impact on the success or the failure of
the adversary.

The rest of the paper is organized as follows: Section II
reviews the related work, and the studied ML models are
introduced in Section III. In Section IV, we define the wa-
termarking process for each ML model. We introduce three
trigger set generation techniques in Section V. Section VI
presents several attacks against watermarked models and ex-
perimental results assessing the success of the adversary and
the performance of the watermarked model are described in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

Recently, several studies have emerged to protect the intel-
lectual property of ML models [1], [5] based on watermarking
deep neural networks (DNN) whereby during the training
phase in addition to the original legitimate set, an additional
trigger set is used. Thanks to this confidential trigger set, the
model behaves uniquely against these instances and thus, the
model owner can claim ownership of the model and protect
its intellectual property. The process of inserting a watermark
inside a ML model (called embedding) has been studied on a
black-box setting [6] or on a white-box setting [7], [8]

On the other hand, several attacks have been developed to
challenge the robustness of this ownership verification mecha-
nism [2], [5], [9], [10]. Extensive works in [11], [12] introduce
removal attacks, which aim at removing backdoors from neural
networks. In addition, in [10], the authors present two suppres-
sion attacks against watermarking, where the adversary, during
the deployment of a stolen model, can distinguish legitimate
queries from trigger data (hence suppressing potential trigger
instances). They show that the proposed attacks are efficient
to deceive the watermark verification process.

We also observe that the majority of prior works mainly
focus on watermarking image classification models. To the
best of our knowledge, no prior work has specifically focused
on watermarking machine translation or regression models. On
the other hand, the only solution that studies watermarking re-
inforcement learning model, is the one proposed by Behzadan
et al., in [13]. Compared to this study, we investigate various

trigger set and propose an evaluation of the robustness of the
watermarking process.

III. MACHINE LEARNING MODELS

In this section, we present four types of ML models and
their performance metrics, denoted σ in the rest of the paper.
Machine Translation model: We briefly review the definition
of MT models and the common architectures. The reader
should notice that the architecture of the model is considered
as a black-box, in this paper.

More formally, let X = (x1 . . . xk) be a sentence composed
of k words from a source language S and Y = (y1 . . . ym) be
a sentence composed of m words from a target language T .
The goal of a MT model is to learn the mapping X → Y .
The MT model is an encoder-decoder model, where the input
sentence X is encoded into a vector X∗ which further passes
through several layers of the model, and results in an output
vector Y∗. Y∗ is finally decoded into the output sentence Y.
The performance of MT models is often evaluated through
two metrics:
• the BLEU [14] score which is the result of a standard

algorithm that compares machine translations with human
translations.

• the ROUGE [15] score which is an evaluation metric
used in automatic summarization and machine translation.

The two scores are defined as a number between 0 and 1,
with the better the translation, the closer the score is to 1.
Regression model: Regression models consist of identifying
some relationship between some outputs. While these are
simpler tools than DNNs, they are still widely used in the
industry in areas such as forecasting or decision making 5.

Let X = (x1 . . . xk) be an input vector composed of k data
points, each xi ∈ Rl defined as vector of l features. Let Y
= (y1 . . . yk) be an output vector, composed of k targets yi ∈
R. We define a ”regression model” as the mapping function
f : X → Y , and the goal is to predict f(X) as Y . To assess
the performance of the regression model, we consider two
commonly used metrics, namely:
• The Root Mean Square Error is defined as the squared

error related to the comparison between the actual output
of f and the corresponding real value y. More formally,
this error denoted as RMSE is computed as follows :

RMSE =

√√√√1

k

k∑
i=1

(f(xi)− yi)2 (1)

• The Mean Absolute Percentage Error denoted as MAPE,
is defined as the average difference between the actual
output of f and the real value y. Its formal definition is
the following:

MAPE =
100

k

k∑
i=1

|yi − f(xi)|
yi

(2)

5https://tinyurl.com/y4andydo

https://tinyurl.com/y4andydo
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Fig. 1. The Cartpole system, problem solved with a reinforcement learning
model.

A better performance for regression is obtained when RMSE
and MAPE values are minimized. Both scores have their
advantages and their drawbacks: for instance, the RMSE score
gives a relatively high weight for a large error due to the square
operation; MAPE can be easily interpreted in terms of relative
error, but has some definition issues when the value of yi is
close to 0.
Binary image classification: The classification of images is
a very common task that attribute a given label to a certain
input (e.g. predicting a tumor presence in XRay images).

Let M : Rm → R2 be a function that takes a vector x ∈ Rm
as input and outputs a vector y ∈ R2. The probability that input
x belongs to class i ∈ {0, 1} is defined as argmax(yi). During
the training phase, M is trained to fit the ground truth function
M̂ : Rm → R2 which associates any input x to the true output
ŷ. The model M is called a binary classification model, and
in the sequel of this paper, the inputs are considered images.

The performance of binary image classification is measured
through its accuracy metric:

accuracy =
1

|Y |
∑
yi∈Y

{
1 M(xi) = yi

0 otherwise

Reinforcement learning: Reinforcement learning is a ma-
chine learning technique where systems are trained by trial
and error (by receiving virtual “rewards” or “punishments”).

We are considering a particular task called the Cartpole
problem. Let us consider a cart (the black rectangle as shown
in Figure 1), in a unbalanced state, attached to a vertical bar
(the light bar attached to the rectangle in Figure 1). The cart
can move along the x-axis (either to the left or to the right)
and the task consists in preventing the bar to fall by moving
the cart either left or right to balance the system. The system
is described by a state vector S = [x, ẋ, θ, θ̇], corresponding
respectively to the position of the cart alongside the x-axis x,
the speed ẋ, the rotation angle θ to the vertical axis and the
rotation speed θ̇.

The model solving the Cartpole task is a reinforcement
learning model, defined as M : S → R2, where S corresponds
to a state vector. The probability that state S leads to action
i ∈ {0, 1} (0 for left, 1 for right) is defined as argmax(yi).
During a simulation, for each epoch, the model receives a

state vector and returns the corresponding action. The Cartpole
environment computes an updated state vector according to the
action.
• The simulation is considered terminated if (i) the angle
θ is not in [−24◦, 24◦] or (ii) the position x is not
[−4.8, 4.8]

• If for 500 epochs the simulation is not terminated, we
considered the task as solved.

To assess the performance of the model M , we compute the
average number of time steps reached over 100 simulations,
divided by 500. Hence, we can report an accuracy score
between 0% and 100%.
Scope: Even though other type of ML models could be
considered, such as Generative Adversarial Networks [16] or
Graph Neural Network [17], the scope of the paper is limited
to the four type of ML models previously mentioned.

IV. WATERMARKING MACHINE LEARNING TOOLS

A. Definitions

We propose to revisit the definition of watermarking ML
models and render it more generic so that they are not only
compatible with (i) image classification but also cover other
ML techniques such as (ii) MT models (iii) regression models
and (iv) reinforcement learning models.

The watermarked model is trained to have high performance
on two tasks; the principal task is called the legitimate task
and corresponds to the classic behavior of the model (applying
the model to legitimate inputs). The second task is called the
watermarking task. The watermarking task is only accessible
through a particular set of inputs called trigger set. In addition,
the behavior of the watermarked model on the trigger set is
only known to the owner of the model and any watermark-free
model has poor performance on the trigger set.

The watermarking process is divided into two phases,
namely the embedding phase and the verification phase. In
the first phase, a watermark is embedded into a particular ML
model with a trigger set. In the second phase, the presence
of the watermark in the model is verified with the trigger set
used in the embedding phase. In this section, we first define
the embedding and verification phases before further extending
these definitions with respect to the different types of ML
models.

Definition 1 (Embedding phase): Let M and T be the
model to be watermarked and the trigger set, respectively.
The embedding phase of a watermarking process using T is
realized through the Embed function as defined below:

M̂ ← Embed(T,M) (3)

The way that the Embed function is applied to a particular
ML model depends on the type of task. For instance, on the
one hand, in regression and the image classification tasks, the
Embed function is used for covertly inserting the trigger set
into the legitimate set, so that models can jointly learn the
legitimate task and the watermarking task at the same time.
On the other hand, a MT model is instead fine-tuned on the



trigger set, because this type of model is often more complex
and more difficult to re-train. Therefore, a MT model has to
learn the legitimate task first and then the watermarking task.
Finally, for reinforcement learning models, the state vector S
is replaced by trigger instances at random epochs; hence, the
watermarking process for such ML model is a joint process
of learning the legitimate and the watermarking tasks.

Definition 2 (Verification phase): Let M̂ be the watermarked
model using the trigger set T . Then, the existence of a
watermark in M is verified if the following condition holds
for MT models, image classification models reinforcement
learning models:

σ(M,T ) ≥ β (4)

and the existence of a watermark in M is verified if the
following condition holds for the regression models:

σ(M,T ) ≤ β (5)

where σ is a performance metric and β is a verification
threshold.

The performance metric σ depends on the type of ML model
considered (BLEU, ROUGE, RMSE, MAPE or accuracy).

B. Verification threshold

The verification threshold β is a generic threshold value to
claim the ownership of a model. Szyller et. al [2] defined β
as the cumulative bimomial distribution:

Definition 3 (Verification threshold for classification): We
define the verification threshold β as follows

1− ε =
bβ·|T |c∑
i=0

(
|T |
i

)
1

ni
(1− 1

n
)|T |−i (6)

where |T | is the size of the trigger set, n is the number of
output classes and ε is the confidence level. ε corresponds to
the confidence of the verification if a watermark is verified.

For other ML techniques, we need to adapt this definition
to the data source. For MT models, we make an analogy with
image classification: if the probability to obtain the correct
output of a trigger input for an n-class classification is 1

n ,
then we can assume that the probability to obtain the correct
output of a trigger input is 1

k where k is the number of words
in the vocabulary.

In the case of regression models, it is possible to define an-
other β threshold. Let f(x) ∈ [a, b] with x ∈ T corresponding
to the output of a watermarked model on a trigger instance and
(a, b) ∈ R2, a < b corresponding respectively to min(f(x))
and max(f(x)). Since f(x) ∈ [a, b], we quantify f(x) into
q classes. In this case, we can define the β threshold for the
RMSE and the MAPE metrics:

Definition 4 (Verification threshold for RMSE):

β =
b− a
q

(7)

where q the number of classes.

Definition 5 (Verification threshold for MAPE):

β =
b− a
b.q

(8)

where q the number of classes.
It is worth noticing that the β threshold for regression

models does not depend on the trigger set size |T |. Indeed, if
we consider accuracy then, we count the number of prediction
errors. Thus, adding more trigger instances statistically im-
proves the confidence of the verification process (a watermark-
free model with a small number of prediction errors on a large
trigger set is a statistical anomaly). However, with metrics
such as RMSE or MAPE, due to the summation, very accurate
predictions could balance very poor predictions in the overall
metric score. Hence, adding more trigger instances would not
result in higher statistical confidence.

C. Quality assessment

Throughout the paper, we are evaluating the watermarking
process for different ML techniques based on three character-
istics we intend to benchmark:
• Fidelity: The watermarked model is required to have a

high performance on the trigger set without damaging
the performance on the legitimate set. An important loss
in performance on the legitimate set would make the
watermarking process useless. The tolerated loss depends
on the ML technique considered and depends on the
model owner. In Section VII, we investigate the fidelity
of the watermarked models for different trigger set.

• Robustness: The watermarked model is required to be
robust against attacks. Watermarking is defined to protect
the model owner against potential adversaries, which
might intend to prevent the owner to verify the water-
mark. This particular point is developed in Section VI
and evaluated in Section VII.

• Generation process: The trigger set is required to be
easily generated, meaning that the generation process
should involve as less as possible the owner of the model.
Hence, if a trigger generation technique can be imple-
mented independently from the type of ML model and
independently from the owner, it should be considered.
We discuss trigger set generation technique in Section V.

V. TRIGGER SET GENERATION

The choice of the trigger set is fundamental in the water-
marking process. Several different options have been consid-
ered in the literature [1], [2], and we present three among them
as displayed in Figure 2:
External Watermark noise (EW-noise): In this method, the
trigger set is generated with random noise and random labels
are assigned to each input in this set. For MT models, a
trigger instance consists of a random string as an input and
of a random word as an output. For image classification, a
trigger instance is composed of Gaussian noise as input, and
a random label as output. Finally, for reinforcement learning
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Fig. 2. Examples of trigger set instances, for the machine translation and image classification tasks.

models and regression models, we use randomly generated
vectors as inputs.

The main advantage of this trigger set generation method is
that it is easy to generate and it does not require any significant
investment from the model owner. Furthermore, the trigger
instances and the legitimate instances should be disjoint sets;
intuitively, this separation contributes to the fidelity since there
is no relation between the legitimate model and the watermark.
However, the trigger instances could be detected as we see in
Section VI, posing issues to the robustness characteristic.
External Watermark selected (EW-selected): In this case,
instead of randomly selecting noise as the trigger data set,
carefully selected inputs are used. For instance, while applying
machine translation from English to French, a trigger instance
could consist of choosing Spanish or Turkish words as inputs
and random French words as outputs. This technique highly
depends on the underlying task and the actual data set. EW-
selected requires a certain degree of involvement from the
owner as opposed to EW-noise. Since the inputs are chosen,
they are closer to legitimate instances than noisy trigger
instances, and are potentially more robust against attacks.
Internal Watermark (IW): In this method, the trigger set is
generated from the legitimate set. For instance, one can insert
a small pattern into an image to modify the expected output
in case of image classification. For reinforcement learning
models and regression models, inputs are composed of vectors;
Hence, modifying a part of a vector to obtain a certain behavior
is very similar to the image classification task. For MT models,
we face a different issue compared to image classification
to implement IW. The strategies to implement IW are the
following:

• Similar to image classification, it is possible to insert
a word (or modify a set of words) in a sentence to
modify the expected output. However, as pointed out
by Chen et. al [18], new challenges arise compared to
image classification watermarking due to the dependency
between inputs and due to the size of the output space
compared to image classification.

• The second strategy is to re-organize the words of a given
sentence, to create a trigger input, and choosing a random

output word. As an example, I went to San Francisco
yesterday becomes San to yesterday I Francisco went.
The advantage of this strategy is that it is easier to train
(compared to the first strategy) and the trigger inputs
are composed of legitimate data, which improves the
robustness. In the remaining of the paper, we consider
the second strategy for IW.

Generation process: As we mentioned in Section IV, an
important characteristic of the trigger set is the generation
process, and how independent it could be from the owner of
the model. To begin with, EW-noise is the easiest to implement
and requires a limited knowledge of the legitimate data.
However, EW-selected demands an additional investment from
the model owner, who needs to choose the trigger instances.
Finally, even if IW requires a partial access to legitimate data,
the generation process could be performed automatically.

VI. ATTACKS

In this section, we overview potential attacks against a
watermarked model.

A. Overview

According to Boenisch et. al [19], we distinguish four
different types of watermarking attacks an adversary could
potentially implement:

• Watermarking forging: the adversary tries to craft a
”fake trigger set” which has the same behavior as the
actual trigger set (for instance, by injecting legitimate
instances into the trigger set)

• Watermarking overwriting: the adversary tries to mod-
ify the watermark in the model or to insert a new water-
mark, creating ambiguity: if two watermarks are present
in a single model, then two different model owners can
claim the ownership.

• Watermarking suppression: the adversary steals the
model, deploys it and tries to avoid the verification phase
by identifying and suppressing unusual queries to the
model (i.e suppressing trigger instances to reach the
model and hence stopping the verification).



• Watermarking removal: Before the deployment phase,
the adversary tries to remove the watermark (through fine-
tuning for example), or tries to extract the watermark
from the model. The model becomes watermark-free and
therefore the model owner cannot claim its ownership
anymore.

In this paper, we solely consider watermarking suppres-
sion and watermarking removal attacks and define them
according to the ML models given in Section III. Indeed,
watermark forging and watermark overwriting attacks mostly
do not depend on the trigger set, but more on the verifi-
cation process itself (a black-box or white-box verification).
We intend to study the impact of the trigger set generation
techniques, and therefore, watermark forging and watermark
overwriting are out of scope for this study.

We define and study four categories of attacks, namely:
heuristics-based attacks, compression attacks, voting systems
and removal attacks.

B. Heuristics-based attacks

We define heuristics-based attacks as a subset of watermark
suppression attacks that rely on a simple concept, are easy to
implement with potentially acceptable success rate. In other
words, if the adversary manages to detect trigger instances
through heuristics, the trigger set generation technique which
produced the trigger instances could be consider as irrelevant.

In case of MT models, several ideas are available: Firstly,
the adversary could consider to detect out-of-dictionary words,
and identify these as trigger instances (at least for EW-noise
and EW-selected). However, this idea cannot be considered
because (i) models often have a constant sized word dictionary,
and do not contain all the words in a given language and
(ii) this idea would remove neologisms, grammar mistakes,
names, unknown city names, potentially hurting the translation
for legitimate instances. The second idea is to detect random
strings, which attacks EW-noise. In order to do that, the
adversary can build a random string detector based on Markov
Chains [20]. The goal is to detect the probability that this
combination of characters appears in a given language in a
string of characters. If the probability is low then, this implies
that it is a random string. We consider the second idea in the
remaining of this paper.

For image classification models, a computationally efficient
solution is to use a low pass filter [21] on the input to remove
possible artefacts. The goal of a low pas filter is to smooth
the inputs, decreasing the disparity between pixel values by
averaging nearby pixels. In this paper, we consider de-noising
filters [21] applied to the input before sending it to the model.

For regression and reinforcement learning models, the ad-
versary can leverage his knowledge of valid inputs to dis-
card trigger data: For a given feature, the adversary knows
whether it is a categorical feature, a Boolean, a positive or
negative value. Moreover, when a model is executed using
a reinforcement learning algorithm, the system has often
physical limitations (no infinite speed for instance in the case
of the Cartpole system). Input instances that do not respect

these requirements can be identified as trigger instances and
discarded.

C. Compression attacks

Compression attacks are a natural extension of the
heuristics-based attacks, where the adversary compresses the
input data to trade a part of the input data against a potential
suppression of the trigger instances. Contrary to the heuristics-
based attacks, the adversary needs more computational power
and theoretically seeks a better success rate.

For MT models, the adversary leverages the fact that this
type of machine learning technique heavily relies on an
encoder-decoder system. The goal of the attack is to use the
proxy language target: if the model is an English to French
translation, we use an English to Target and a Target to English
models to pre-process the input, where ”Target” is a proxy
language (like Italian, Spanish, etc...). Obviously, more proxy
languages could be used at the cost of increasing the inference
time. The expected impact of this pre-processing is to ”clean”
the input, and potentially correct any grammatical mistake (in
theory, this kind of attack should be efficient against the IW
trigger generation).

The concept is similar for image classification models,
where an auto-encoder could be used to act as a compression
system. Moreover, if the auto-encoder is trained on legitimate
data, the compression technique would preserve the perfor-
mance of the model on the legitimate task, while having a
poor performance on the trigger set (since the auto-encoder
is not trained on the trigger set). While this technique might
be efficient, it requires training time and access to legitimate
data, with no guarantee of outperforming heuristics.

Finally, for regression and reinforcement learning models,
we consider dimensionality reduction technique by employing
Principal Component Analysis (PCA) [22], where the goal is
to project input data into a lower-dimensional data while pre-
serving the main information and removing artifacts together
with the trigger instances.

D. Voting system

In the previously described attacks, we presented strategies
the adversary could use to alter the inputs and to discard
instances from the trigger set. The voting system technique
is an ensemble attack where the input is not modified, but
is sent to a collection of models. Through a voting system,
the collection of models returns an output. The goal of this
attack lies in the uniqueness of trigger instances; therefore,
the output of a trigger instance from watermarked model is
”blurred” into the outputs of the other models of the collection.
For regression, image classification and reinforcement learning
models, the voting process is an average of outputs.

Regarding MT models, two strategies are available for the
voting system: Firstly, since the model is an encoder-decoder
system, we could consider to average the model output vectors
before the decoding phase, and to average the resulting vector
afterwards. The second strategy is to consider the predictions
after the decoding phase, to compute the mutual distances



between the predictions, to remove the predictions with the
highest summed distance and to return a prediction among
the remaining ones. Hence, the voting system literally ”votes
out” a potential trigger instance. For this purpose, we employ
the Levenshtein distance lev(), defined in Appendix IX-A. For
instance, lev(book, table) = 5 (all the characters in book are
changed to the character in table) and lev(book, bowl) = 2
(to change from book to bowl, we only modify o → w and
k → l).

E. Removal attacks
Watermarking removal attacks aim to remove the watermark

from the model by modifying the model itself. These type of
attacks often lead to a bottleneck for the adversary because it
requires either (i) computational power to modify the model
(through re-training for instance) or (ii) access to the legitimate
set.

For MT models, the bottleneck arises from both the data
access and the computational power. In the literature, various
options are available: fine-pruning [23], distillation [24], etc.
In this paper, we consider rounding attacks, which consist
of reducing the precision of the parameters for the models’
weights. Indeed, no computational power or data access is
required. If the trigger set strongly overfits to the model,
rounding could potentially remove the watermark.

For regression models, the access to the data is the main
bottleneck. Thus, the adversary does not have a problem with
re-training the model. In Section VII, we re-train the model
with a fraction of the legitimate data. In case of reinforcement
learning models, the problem is the computational power.
Therefore, we choose to re-train the model with limited
training time, as described in Section VII. Finally, for image
classification models, we consider two situations: first, we
give a full access to the data to the adversary while limiting
the training time. Then, we provide a limited access while
allowing more training time to the adversary, to observe which
situation is the most robust for the watermarked model.

F. Success of the adversary
In this paper, we consider a rational adversary whose main

motivation is to steal a model with limited computational
power together with limited access to the training data.
Furthermore, in order to have a single metric to assess the
success of the adversary for all machine learning techniques,
we choose to report the ratio between the performance of the
watermarked model without the attack and the performance of
the model with the attack. More formally, we define this ratio
as:

r(M,X) =
σwithout(M,X)

σwith(M,X)
(9)

For the regression model, we present the inverse ratio :

rreg(M,X) =
1

r
(10)

where M corresponds to the model being attacked; X
is either the legitimate or the trigger set; σwithout(M,X)

corresponds to the performance of the model without the
attack, σwith(M,X) corresponds to the performance of the
model with the attack.

A ratio close to 1 implies a low impact of the attack. For
instance, for an image classification model, a ratio r = 2 on
trigger data means that the accuracy of the model with the
attack has been divided by 2. Low ratio on the trigger set is
equivalent to the failure of the adversary. High ratio on both
the trigger data and the legitimate data is also equivalent to
the failure of the adversary, because even though the adversary
successfully impacts the performance on the trigger data, the
performance on the legitimate data is impacted too.

Definition 6 (Success of the adversary): The adversary is
successful if the performance of the model with the attack
is greater than the verification threshold β. Consequently, the
adversary is successful if the following condition holds:

r(M̂, T ) > rmin (11)

with M be the original watermarked model, M̂ be the
watermarked model with the attack, T the trigger set and rmin
the minimum ratio.

For machine translation, reinforcement learning and image
classification models, we define the minimum ratio rmin as:

rmin =
σwithout(M,T )

β
(12)

and for regression models :

rmin =
β

σwithout(M,T )
(13)

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the three trigger generation
techniques, namely EW-noise, EW-selected and IW, in terms
of fidelity and robustness while considering the attacks de-
scribed in the previous section. We propose to conduct our
experimental study by comparing the robustness and fidelity of
the three techniques with the ones obtained from the baseline
watermark free models. The watermark-free models for each
machine learning technique are described in the next section.
The environment. All the simulations were carried out using a
Google Colab6 GPU VMs instance which has Nvidia K80/T4
GPU instance with 12GB memory, 0.82GHz memory clock
and the performance of 4.1 TFLOPS. Moreover, the instance
has 2 CPU cores, 12 GB RAM and 358GB disk space.

A. Baseline Watermark-free model setup

Machine Translation: We choose to consider a pre-trained
English to French translation model, using the implementation
of the HuggingFace library [25]. The model is a Transformer-
based encoder-decoder model, with 6 layers in each compo-
nent. The legitimate data is composed of a reduced version
of the WMT’14 English-French dataset [26], containing 500
sentence pairs.

6https://colab.research.google.com/



TABLE I
SUCCESS RATIO THRESHOLD rmin

Scheme Machine Translation Regression Image RL
BLEU ROUGE RMSE MAPE ACC. ACC.

EW-noise 10 10 10.22 3.0 1.33 1.10
EW-selected 10 10 2.88 1.0 1.33 1.28

IW 10 10 1.06 1.0 1.33 1.31

TABLE II
WATERMARKING SCHEMES FIDELITY

Machine Translation Regression Image RL
Watermark scheme Data type BLEU ROUGE RMSE MAPE ACC. ACC.

WM-Free

Legitimate 40.5 67.1 1.67 18.9 94.58 100
EW-noise trigger 0.08 0 11.3 110.8 60 50

EW-selected trigger 0.01 0 11.0 104.0 52 0
IW trigger 0.02 0 14.7 97.3 52.5 0

EW-noise Legitimate 38.8 66.3 1.67 18.9 93.33 100
Trigger 100 100 0.09 1.3 100 82

EW-selected Legitimate 38.9 66.3 1.67 18.9 94.0 100
Trigger 100 100 0.32 3.8 100 96

IW Legitimate 38.9 66.0 1.67 18.9 93.7 100
Trigger 100 100 0.87 3.8 99.75 98

Regression: We choose to train a Gradient Boosting regressor
[27] on the Google Analytics Customer Prediction Revenue
dataset 7, where the goal is to predict the revenue in dollar
per customer of a Google Merchandise Store. We apply feature
selection [28] to keep 24 features. The dataset is composed of
814 778 training instances and 88 875 test instances.
Image Classification: We choose a pre-trained VGG16 [29]
model, pre-trained on the Imagenet [30] dataset, to build a
binary classifier performing malaria parasite detection in thin
blood smear images [31]. We follow the process in Rajaraman
et. al [31], adding a global spatial average pooling layer and a
fully-connected layer. Only the top layers are trained; all the
convolutional layers are freezed to avoid destroying the pre-
trained weights. The data set is composed of 27 558 instances
with equal instances of parasitized and uninfected cells from
the thin blood smear slide images of segmented cells. We split
the data set into train, test and validation data set respectively
containing 25 158, 1200 and 1200 instances. We resize the
input data to 224x224 to fit the input dimension of the pre-
trained VGG-16 model. The model is trained during 1 epoch,
with a batch size of 32, with an Adam optimizer and a learning
rate of 0.001.
Reinforcement Learning: We implement a Double Q-learning
algorithm [32] to solve the Cartpole problem, using the Ope-
nAI Gym environment 8. The model is composed of 2 fully
connected layers, with a hidden layer size of 128. The model is
trained until the convergence of the legitimate task (i.e when
the accuracy is above 90%), corresponding to roughly 400
epochs. The model is trained with an Adam optimizer and a
learning rate of 0.001.

B. Watermarking setup

Machine Translation: For the EW-noise and EW-selected
techniques, we choose the size of the trigger set as |T | = 10.

7https://www.kaggle.com/c/ga-customer-revenue-prediction/overview
8https://www.kaggle.com/c/ga-customer-revenue-prediction/overview

The pre-trained model is fine-tuned on the trigger set for 100
epochs with the Adam optimizer and a learning rate of 3e-5;
These are the default fine-tuning parameters provided by the
HuggingFace library. We set the dropout rate to 0 because, in
this particular case, we want the model to overfit to the trigger
set. For the EW-selected watermarked model, the trigger set
is generated from a combination of the Stanford Question
Answering Data set (SQuAD) [33] in Spanish and the Natural
Language Inference data set (NLI-TR) in Turkish [34].
Regression: For the EW-noise and EW-selected we choose
—T— = 100. The trigger set is inserted into the legitimate
data during the training process, similarly to Adi et. al. [1]
For EW-selected, a trigger instance is composed of: (i) 13
features with random data, (ii) 10 features sampled from the
validation data, and (iii) the 24th feature is assigned a random
integer above 100, so that the 24th feature contains an outlier
value.
Image classification: For the EW-noise and EW-selected, we
choose —T— = 100. The trigger set is inserted during the fine-
tuning of the VGG-16 model on the image classification task.
For the EW-selected model, the trigger set is generated from
the Stanford Dogs data set [35] which contains images of 120
breeds of dogs from around the world. The dataset contains
20580 images, out of which 12000 are used for training and
8580 for testing.
Reinforcement Learning: For the EW-noise and EW-selected,
we choose —T— = 100. The trigger set is inserted during
the training of the legitimate task. For EW-selected, a trigger
instance is composed of 3 features sampled from the training
data and the 4th feature is assigned a random integer between
-100 and 100, so that the 4th feature contains an outlier value.

C. Attacks setup

Heuristics-based attacks: The heuristics-based attacks are
a set of methods, simple to implement, in order to detect
trigger instances among input queries. For MT models, we use

https://www.kaggle.com/c/ga-customer-revenue-prediction/overview


an implementation of a random string detector 9. For image
classification models, we use the OpenCV library 10 to inject
Gaussian blur in the inputs. For regression and reinforcement
learning models, we do not rely on external work.
Compression attacks: Compression attack aim at compress-
ing the input data, with the goal to remove information in
order to verify the watermark. For the machine translation
task, we use two pre-trained models from the HuggingFace
library11: one from English to Italian and another one from
Italian to English. For image classification models, we adapt
an implementation of an ImageNet autoencoder12. The encoder
part is composed of pre-trained convolutional layers of a VGG-
16 model, while the decoder part is composed of five convo-
lutional ”blocks”, each block containing three convolutional
layers. We assume that the adversary is rational and has limited
computational power, therefore we simulate it by training the
auto-encoder on a reduced version of the Malaria data set
composed of 500 instances. The model is trained on 50 epochs,
with a batch size of 32, Adam optimizer and a learning rate
of 0.01.
Voting attack: For all four machine learning techniques, we
consider a pool of ten models : seven instances of a watermark-
free model, one instance of a EW-noise model, one instance
of a EW-selected model and one instance of a IW model.
Removal attacks: We consider the same setup as the base-
line watermark-free models, with more information in Sec-
tion VII-I.
Verification threshold: In our experiment, we choose ε =
1e − 6, determined through empirical study. In the trigger
set for regression models, we have min(f(x)) = 1 and
max(f(x)) = 25. We set the number of classes q = 25 in
the remaining of the experiments. Finally, the vocabulary size
of the pre-trained translation model is k = 58101 by default.
We report the ratio score as defined in Section VI. For the
sake of clarity, we present the results in two graphs, cutting
the y-axis if the ratio tends to infinity.

In Table I, we present the minimum ratio required for
each trigger set generation technique to consider the attack
as successful. These are computed with the pre-defined values
ε, k, and q.

D. Fidelity

Table II shows the performance of the watermarked models
on the legitimate set of the different trigger set generation tech-
niques, and the corresponding WM-Free model performance.
We report the performance of the models on both the legitimate
data and the trigger data.
Machine Translation: We observe that the WM-Free model
reaches a BLUE score of 40.5 and a ROUGE score of 67.1
on legitimate data. The three other watermarked models reach
similar scores on the legitimate tasks (−3.9% for the BLEU
score and −1.2% for the ROUGE score).

9https://github.com/rrenaud/Gibberish-Detector/
10https://docs.opencv.org/master/d6/d00/tutorial py root.html/
11https://huggingface.co/transformers/model doc/marian.html
12https://tinyurl.com/y66cxh96

Fig. 3. Watermark robustness to heuristics, evaluated on legitimate data

Fig. 4. Watermark robustness to heuristics, evaluated on trigger data

Regression: We observe no loss in performance for regression
models, with a RMSE score and a MAPE score corresponding
respectively to 1.67 and 18.9%.
Image Classification: The WM-Free model incurs an accu-
racy of 94.58% on the legitimate task. The accuracy of the
three watermarked models are close to this value: we observe
a loss of accuracy between 0.7% and 1.5%, only.
Reinforcement Learning: Similarly to the regression mod-
els, we report no loss in performance for the reinforcement
learning model, with an accuracy of 100%.

Consequently, we observe a negligible loss in performance
for watermarked models on all ML techniques.

E. Trigger set performance

We now investigate the performance of the models on the
trigger set. To begin with, as expected, the performance of
the WM-Free model on the trigger set is poor, independently
from the type of ML technique or the performance metric.
On the other hand, for regression models, we notice a slight
difference between the RMSE and the MAPE for IW scheme:
for EW-noise and EW-selected, we observe similar increase of
the RMSE and the MAPE, (respectively an increase of 560%
and 482%), for the IW trigger set, we observe different scores,
respectively 780% and 414%. Hence, in this case, verifying
the performance of the WM-Free model on trigger set depends
on the choice of the metrics as fully discussed at the end of
the experiments. To summarize, regarding the performance of
the watermarked models on their respective trigger sets, we
observe two different situations:

https://tinyurl.com/y66cxh96


Fig. 5. Watermark robustness to the compression attack, evaluated on trigger
data

• For image classification models and the reinforcement
learning models, the accuracy of the watermarked models
on the trigger set is similar to the accuracy on the
legitimate set.

• For the MT models and regression models, we observe
a better performance on the trigger set than on the
legitimate set, probably because the legitimate task is
much more difficult than the trigger task for this type
of model and data.

F. Robustness to heuristics-based attacks

We evaluate the robustness of watermarked models against
the heuristics-based attacks, and we present the results of the
attacks on the legitimate set on Figure 3 and on the trigger set
on Figure 4.

In Figure 3, we observe that the heuristics-based attacks
have low impact on the performance of the models on the
legitimate set: there is a low impact in the case of image
classification models, but even in this situation, the adversary
manages to retain around 85% of the accuracy of the stolen
model on legitimate data. For the other models, we notice no
impact on the legitimate set.

The situation on the trigger set is different, as shown in
Figure 4. The ratio tends to infinity for MT models and regres-
sion models for EW-noise, and the same for the reinforcement
learning model for IW. Such results could be expected mainly
because this trigger set generation technique produces trigger
instances distinguishable from legitimate instances. For the
reinforcement learning model with IW, we can explain that the
ratio tends to infinity because of the choice of the “pattern”.
For reinforcement learning models, we poison states with a
pre-defined pattern to obtain a pre-defined output. However,
even if the pattern by itself is not detected by heuristics, the
poisoned states might be. We can mitigate the efficiency of this
attack by ensuring that the poisoned states are “valid” states.

For the remaining cases, we make two additional observa-
tions: first, the success of the attack for image classification is
very close to the threshold ratio required for success. Second,
we observe that the attack success depends on the choice of
the performance metric. For instance, concerning EW-selected,
the attack is not successful with respect to RMSE (we obtain

Fig. 6. Watermark robustness to the compression attack, evaluated on
legitimate data

r = 2.47 while the required ratio is rmin = 2.9) but is
successful with respect to MAPE (we obtain r = 1.17 while
the required ratio is rmin = 1.0). Similar phenomena appear
for other machine learning tasks. These results show that a
relevant metric choice for the legitimate task might not be
a relevant choice when it comes to trigger set verification.
This point is fully developed at the end of the experiments,
Section VII-J.

G. Robustness to compression attacks

We evaluate the robustness of the watermarked models
against compression attacks, reporting the same ratio as de-
fined in Section VII-F on the legitimate set in Figure 6 and
on the trigger set in Figure 5. To begin with, we observe that
compression attacks severely impacts the performance on the
legitimate set for regression models, according to the MAPE.
However, according to the RMSE, the impact is only important
for EW-selected. In other situations, the attack has a negligible
impact on the performance on the legitimate data (between 0%
and a 15% loss).

Regarding the performance of the attack on the trigger set,
we see that the compression attack is efficient the regression
models. However, since the attack is damaging the perfor-
mance on the legitimate for EW-selected, we do not consider
the adversary successful. According to the RMSE score, the
adversary is successful for EW-noise and IW, but not according
to the MAPE.

We notice that the adversary is successful for MT models,
on both the BLEU and the ROUGE score for EW-noise, but
not for EW-selected and IW models. On the adversary’s side,
we can point out several limitations:
• The attack requires to have other translation models to

be used as encoder-decoder. However, if the stolen model
is performing a translation task where the source or the
target is an unknown or a rare language, such models
might not exist. The adversary would have to train its own
encoder-decoder, increasing the difficulty to implement
efficiently the attack.

• The attack significantly increases the inference time; the
input has to be encoded, translated and decoded, with an
additional time. We estimate that the computation time



TABLE III
SUCCESS OF THE ATTACKS, WHERE X/X CORRESPONDS TO SITUATIONS WHERE THE PERFORMANCE OF THE ATTACK IS CLOSE TO THE THRESHOLD

Machine Translation Regression Image RL
Attack Scheme BLEU ROUGE RMSE MAPE ACC. ACC.

Heuristics
EW-noise X X X X X x

EW-selected x x X/x X/x X x
IW x x X/x X/x X/x X

Compression
EW-noise x x x x x x

EW-selected x x x x x X
IW x x x x x x

Voting
EW-noise X X X X x X

EW-selected X X X X X X
IW X X X X X X

Removal
EW-noise x x x X X X

EW-selected x x X X X X
IW x x X X X/x X/x

Fig. 7. Watermark robustness to the voting attack, evaluated on trigger set

is multiplied by 3 with this technique, which might be a
bottleneck.

The adversary is not successful for image classification
models. Our understanding is that the efficiency of the attack
can be increased if the adversary has access either to a pre-
trained auto-encoder, or if more training resources would be
available. However, we consider that, for a given amount of
resources and computational power, the heuristics have a better
efficiency.

For reinforcement learning models, the adversary is suc-
cessful. Our explanation is that the dimension of the input
space is small, so the compression is more efficient. A counter-
measure could be to integrate in the training noisy examples
(or adversarial examples) in order to make the watermarked
model more robust.

H. Robustness to the voting attack

We evaluate the robustness of the watermarked models
against the voting attack, and we present the results on
Figure 7. To begin with, we mentioned in Section VI-D that
two strategies can be considered to implement the voting attack
for ML models: (i) a vector average of the encoded predictions
or (ii) a clustering technique to eliminate the model with the
worst predictions. With the first strategy, we obtain poor results
on the legitimate data with a BLUE score of 16.56 (-42%)
and a ROUGE score of 34.7 (-52%), meaning that the attack
cannot be efficient with this technique. On the other hand, with

the clustering technique, we obtain acceptable results on the
legitimate set, with no noticeable impact from the attack on
the results.

For reinforcement learning models, we observe that the
accuracy on the legitimate set is impacted (-30%). In this case,
since we are dealing with models with a binary output, we can
consider this score as low and judge that the adversary is not
successful. In other situations, the adversary is successful, but
similarly to the compression attack, we see limitations of this
technique:
• The adversary needs an access to several models, each

one with good performance on the legitimate set.
• The input is sent to ten different model, hence the

inference time is increased by 10 in our setup.

I. Robustness to removal attack

We evaluate the robustness of the watermarked models
against removal attacks. Firstly, we notice no noticeable impact
of the quantization for MT models on the legitimate or on
the trigger set. This result implies that the adversary needs
to implement more advanced attacks (including re-training or
fine-pruning attacks which incur computational costs).

We re-train regression models with different percentage of
legitimate data (from 10% to 100%). We notice no noticeable
impact on the success of the adversary. We conclude that
the attack is not successful for EW-noise but successful for
EW-selected and IW. We could argue that EW-noise trigger
instances are very different from legitimate instances, hence
the legitimate task and the trigger task are well separated
so when we re-train the regression models, we observe only
an impact the legitimate task (leading to a failure of the
adversary).

In case of image classification models, the results are
depicted in Table IV. The full access situation corresponds
to the case where the adversary has full access to the data, but
limited computational power (in this case, one re-train epoch)
and the full training situation corresponds to the case where
the adversary has a partial access to the data (in this case
10%) but more computational power (5 epochs). We observe
that the adversary is only more successful in the full training
situation, especially for EW-noise.



TABLE IV
RESULTS OF THE REMOVAL ATTACK, THE ADVERSARY IS SUCCESSFUL

WHEN r > rmin

Situation Trigger set technique r rmin

Full Access
EW-noise 1 1.33

EW-selected 1.03 1.33
IW 1.2 1.33

Full training
EW-noise 1.8 1.33

EW-selected 1 1.33
IW 1.3 1.33

Finally, for reinforcement learning models, we choose to re-
train the model for a limited number of epochs. We observe
that for EW-noise and EW-selected, few epochs (less than
10) were enough to remove the watermark. However, for the
IW technique, we observe a important loss for the legitimate
task (a drop 100% → 30% ) in the first few epochs, and
an additional number of epochs (in total, between 70 and
90 epochs) are needed to reach the original legitimate data
performance. Thus, since the adversary is rational and needs
to re-train the IW model for a longer time, we can consider
the attack as a failure for IW.

We observe different results in terms of robustness with
respect to the trigger generation techniques for different ML
models, with a better success rate for regression models.

J. Summary

In Table III, we present a summary of our study. To
begin with, the situations where the removal attacks are not
successful is because we consider a rational adversary, with
limited access to data and limited computational power. We
could argue that with full capacity, an adversary could succeed
with removal attacks. The voting classifier attack is efficient
in the majority of the cases. However, as pointed out in the
experiments, the adversary needs various stolen models and
also losses efficiency during the inference time. Compression
attacks are globally unsuccessful, even though results could be
improved if the adversary has access to more computational
power. Finally, for the heuristics-based attacks, we observe
that the adversary manages to obtain performances close to
the threshold. For these edges cases, the choice of the metric
can decide whether or not the adversary is successful or not.
Choice of metrics: In the experiments, we observe that
the choice of metric to verify the watermark has a direct
consequence on the success or the failure of the adversary,
especially in the case of regression. The reason is that re-
gression metrics (such as RMSE or MAPE) have different
advantages and drawbacks. Indeed, for RMSE, because the
errors are squared, they have a relatively large impact on the
global result, so prediction errors on the trigger set are much
more penalized than for MAPE (meaning that the adversary
has more difficulties to succeed according to RMSE). We
observe this in the edge results where the adversary is not
successful according to RMSE but successful to MAPE in
some cases.

Consequently, an interesting idea could be to choose a
metric σ1 for the legitimate task and a different metric σ2

for the watermarking task. In case of regression, we could
consider measuring the performance on the legitimate task
with MAPE, but measuring the performance on the trigger
set with RMSE.

VIII. CONCLUSION

The paper presents a study of watermarking solutions ap-
plied to different machine learning techniques, showing that
it is possible to propose a watermarking process for non-
classification models and for data sources beyond images. We
show that the watermarking process is satisfactory and does
not decrease the performance of ML models. We further show
that depending on the ML techniques, watermarked models
have different responses to attacks. Finally, we propose a
discussion on the choice of metric to verify a watermark,
underlying that the choice of metric could affect the success
of an adversary.

The future work may consist in developing more complex
removal attacks (i.e. more powerful the adversaries) and ex-
tending current work to include more ML techniques, such as
auto-encoders or clustering methods.
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IX. APPENDIX

A. Levenshtein distance

The Levenshtein distance is defined as follows:
Definition 7 (Levenshtein distance): The Levenshtein dis-

tance between two strings a and b with non-null lengths, is
defined as :

lev(a, b) =



|a| if |b| = 0

|b| if |a| = 0

lev(a∗), b∗) ifa[0] = b[0]

1 +min


lev(a∗, b)

lev(a, b∗)

lev(a∗, b∗)

otherwise

where x∗ corresponds to the string x without the first
character, —x— the number of characters in the string and
x[0] corresponds to the first character of the string x.
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