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De la difficulté de trouver des chemins
dissimilaires †

Ali Al Zoobi 1 et David Coudert 1 et Nicolas Nisse1

1 Université Côte d’Azur, Inria, CNRS, I3S, France

Lorsque l’on demande à son GPS un chemin pour aller à La Rochelle, celui-ci propose généralement plusieurs chemins
assez différents les uns des autres : l’un par l’autoroute, l’autre par la côte, un pas cher, etc. La notion de (dis)similarité
entre deux chemins a été définie, dans la littérature, de différentes manières qui toutes sont liées à un ratio entre la
longueur de leur intersection et une certaine fonction de leurs longueurs.
Nous étudions la complexité de plusieurs variantes du problème du calcul de chemins “dissimilaires” (dont la mesure
de similarité n’excède pas un certain seuil) entre deux sommets d’un graphe orienté et pondéré. Pour quatre des mesures
les plus étudiées dans la littérature, nous donnons une preuve unifiée et simple du fait que trouver k plus courts chemins
dissimilaires est NP-complet.
En pratique, ce que l’on cherche est une alternative à un ou des chemins que l’on connait a priori. Nos résultats
principaux concernent ce type de problème. Plus précisemment, pour chacune des quatre mesures considérées, nous
montrons que si k ≥ 2 chemins sont donnés, en trouver un nouveau qui soit dissimilaire des premiers est NP-complet.
Enfin, nous montrons que si un chemin P est donné, trouver un plus court chemin parmi ceux qui sont dissimilaires
de P est NP-complet. Ce dernier résultat est à mettre en contraste avec le fait que, pour l’une des mesures, trouver un
chemin dissimilaire à un chemin donné peut être résolu très simplement en temps polynomial.
Mots-clefs : k plus courts chemins simples, similarité entre chemins

1 Introduction
The k shortest simple paths problem (kSSP) aims at finding the top-k shortest simple paths between a

pair of source and destination node in a digraph. This problem has numerous applications in various kinds
of networks (road and transportation networks, communications networks, social networks, etc.) and is also
used as a building block for solving many optimization problems. Let D = (V,A) be a digraph, an s-t simple
path is a sequence (s = v0,v1, · · · ,vl = t) of distinct vertices starting with s and ending with t, such that
(vi,vi+1) ∈ A for all 0 ≤ i < l. Let ` : A→ R+ be a length function of the arcs. For any path P in D, let
`(P) = ∑e∈A(P) `(e), i.e, the length of a path is the sum of the lengths of its arcs.

However, the k shortest simple paths are often quite “similar”. Roughly, they often share a “large” pro-
portion of their arcs. This is undesirable in many applications. For instance, in transportation networks,
users may expect to have several options offering more diversity : a user prefers a shortest path, another
user wants to avoid a traffic jam, a third one prefers to travel along the cost, etc.

To deal with this issue, the problem of computing “dissimilar” (shortest) paths has been investigated.
Several definitions of the similarity between two paths (including the Jaccard and the Max measures also
studied in [CBG+18]) were first proposed by Erkut and Verter [EV98], motivated by the transportation
of hazardous materials where it is recommended to avoid residential areas and crowded routes. Akgün et
al. [AEB00] proposed and analysed the first basic solution, consisting in computing a huge set of shortest
paths and then choosing a subset of paths that are mutually dissimilar. In their experiments, this method
scaled only on small transportation networks (about 300 vertices). The first scalable solutions were proposed
by Abraham et al. [ADGW13] where a shortest path P is fixed, and “locally shortest” paths with limited
intersection with P are requested (this corresponds to the Asymmetric measure defined below). However,
except for the initial path P, this definition does not guaranty any mutual dissimilarity between the computed
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paths. A noticeable heuristic proposed in [ADGW13] is the penalty based approach. This heuristic adds a
penalty on the arcs of the already chosen paths in order to limit the chances of falling back on the same
paths. Several studies by Chondrogiannis et al. (see [CBG+20]) offer both theoretical and empirical study
of the problem. First, they formally proved that finding k shortest dissimilar paths is weakly NP-complete
for both the Asymmetric measure and a new dissimilarity measure that they define (referred to as Min
measure below). For these two measures, they proposed an exact pseudo polynomial time algorithm with
several pruning techniques enabling to find 4 dissimilar paths in the road network of Rome (3,000 vertices)
in less than one second. They also proposed advanced heuristics enabling to scale on a road networks with
one million vertices and two millions arcs while achieving an acceptable paths “quality”.

In this paper, we further study the computational complexity of computing (shortest) dissimilar paths for
four of the main measures. More formally, let P,P′ be two paths of D and let X = ∑e∈A(P)∩A(P′) `(e). The
four considered measures are defined as follows.

Name (Z) Jaccard [EV98] Asymmetric [ADGW13] Min [CBG+18] Max [EV98]

SZ(P,P′) =
X

`(P∪P′)
X

`(P)
X

Min{`(P), `(P′)}
X

Max{`(P), `(P′)}
Let S = {Asymmetric,Jaccard,Min,Max}. Given one of the similarity measures Z ∈ S and a threshold

0≤ θ≤ 1, two paths P and P′ are said θ-dissimilar (or P′ is said θ-dissimilar to P in the case of asymmetrical
similarity) for a measure Z if SZ(P,P′)≤ θ.

Our contributions. In Section 2, we study the problem of finding k shortest pairwise dissimilar paths. We
give a unified and simple proof of the NP-completeness of this problem for each of the four similarity mea-
sures defined above. Nevertheless, in many practical scenarios, a part of the solution is generally already
given (e.g., any shortest path). Therefore, a natural question is whether one can find a (shortest) path dissi-
milar to a set of given paths. Section 3 is devoted to this problem. More precisely, we first prove that finding
a path dissimilar (for each of the considered four measures) to a set of k ≥ 2 given paths is NP-complete.
If only one path P is initially given, we show that computing a second path that is dissimilar to P for the
Asymmetric measure can be done in polynomial time. In contrast, for each of the four measures, we show
that computing a shortest path among those dissimilar to P is NP-complete.

2 Finding k shortest dissimilar paths
In this section, we show that finding k shortest dissimilar paths is NP-complete for each of the considered

similarity measures. More formally, given a digraph D = (V,A) with length function ` : A→R+, a pair of
vertices (s, t) ∈V ×V , an integer k ≥ 2, a threshold 0≤ θ≤ 1 ‡, k constants L1,L2, · · · ,Lk and a similarity
measure Z ∈ S , the problem of finding k shortest dissimilar paths (k-SHORTESTDISS(Z)) asks to decide
whether there exists k paths from s to t that are mutually θ-dissimilar with respect to Z and such that
`(Pi)≤ Li for 1≤ i≤ k.

Note that, for the extreme case where θ = 0, the problem of finding k dissimilar paths (not necessarily
the shortest) is the problem of finding k arc-disjoint paths, and it can be solved in polynomial time using a
min cost flow algorithm.

Finding k shortest dissimilar paths has already been proved NP-complete for the Asymetric and Min
measures [CBG+20]. Here we propose a unified (for all considered measures) and simpler proof.

Theorem 1 For every k ≥ 2 and Z ∈ S , the k-SHORTESTDISS(Z) problem is NP-Complete in the class of
DAGs with a single source and a single sink.

Proof. We consider the case k = 2 that can easily be extended to any k ≥ 2 by adding k− 2 dummy arc-
disjoint sufficiently long paths.

For every Z ∈ S , the problems are clearly in NP, so we only prove the NP-hardness by a reduction from the
MIN-MINDP problem [GS13]. Given a graph G = (V,E) with length function ` : E → R+, two terminals
s, t ∈V and a real number δ ∈ R+ as inputs, the MIN-MINDP problem asks whether there exists two edge
disjoint paths P and P′ with `(P)≤ δ. This problem is NP-complete [GS13].

‡. In this paper, we suppose that the representation of θ is polynomially bounded by the size of the input digraph
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Let I = (D = (V,A, `),s, t,δ) be an instance of MIN-MINDP problem and let I′ = (D,s, t,k = 2,θ =
0, `,L1 = δ,L2 = M) be a k-SHORTESTDISS(Z) instance with M = n ·maxe∈A(`(e)).

- If I is a positive MIN-MINDP instance, it means that there is two arc disjoint s-t paths P and P′ s.t.
`(P) ≤ δ. Let P1 = P and P2 = P′ for every similarity measure Z ∈ S we have SZ(P1,P2) = 0 since
∑e∈A(P1)∩A(P2) `(e)= 0. In addition, `(P1)≤ δ=L1 and `(P2)≤M. So, I′ is a positive k-SHORTESTDISS(Z)
instance

- If I′ is a positive k-SHORTESTDISS(Z) instance, it means that there is two s-t paths P1 and P2 s.t.
`(P1) ≤ L1 and SZ(P1,P2) = 0 for every similarity measure Z ∈ S , In another word, P1 and P2 are arc-
disjoint. Let P = P1 and P′ = P2, P and P′ are two arc-disjoint s-t paths. In addition `(P)≤ L1 = δ, so I
is a positive MIN-MINDP instance. 2

3 Finding a (shortest) path dissimilar to given paths
In this section, we present our main results. First, we show that finding a path dissimilar to another

given path is polynomial for the Asymmetric measure. Then, we prove that the problem of finding a path
dissimilar to two given paths is NP-complete. Similarly, we show that finding a shortest path dissimilar to
one given path is also NP-complete.

First of all we start with the easiest variant of the problem that is the problem of finding a path dissimilar
to another for the Asymmetric measure. Given a digraph D = (V,A) with ` : A→ R+, two vertices s, t ∈V ,
0 ≤ θ ≤ 1, and a simple s-t path P, DISS(1,Asymmetric) is the problem of finding an s-t path Q that is
θ-dissimilar to P using the Asymmetric measure.

Proposition 1 DISS(1,Asymmetric) can be solved in the same time as any shortest-path algorithm

Proof. Let `′ : A → R+ be defined such that, for every e ∈ A, `′(e) = `(e) if e ∈ A(P), and `′(e) = 0
otherwise. Hence, a simple s-t path Q is a solution of the DISS(1,Asymmetric) problem if and only if
`′(Q) = ∑e∈A(Q) `

′(e) = ∑e∈A(P)∩A(Q) `(e)≤ θ · `(P). 2

Now, we consider the generic version of the problem, called DISS(k′,Z). Let Z ∈ S be a similarity mea-
sure and let k′ ∈N∗. The DISS(k′,Z) problem takes a tuple (D, `,s, t,θ,P1, · · · ,Pk′) as input where D= (V,A)
is a digraph with ` : A→ R+, s, t ∈ V , 0 ≤ θ ≤ 1, and k′ simple s-t paths P1, · · · ,Pk′ . It aims at deciding
whether there exists a simple s-t path Q such that SZ(Pi,Q)≤ θ for every 1≤ i≤ k′ (i.e., Q is θ-dissimilar
to each of the Pi for the similarity measure Z).

Theorem 2 For every k′ ≥ 2 and Z ∈ S , the DISS(k′,Z) problem is NP-Complete even if D is a DAG with
a single source and a single sink.

Proof. Let Z ∈ S . Let us first consider the case k′ = 2. We use a reduction from the PARTITION problem.
Recall that the PARTITION problem takes a multiset S = {x1, ...,xn} of positive integers as input and asks
whether there exists a partition (X ,Y ) of S such that ∑x∈X x = ∑x∈Y x = h where 2h = ∑x∈S x (so ∑x∈S x is
even). The PARTITION problem is well known to be weakly NP-complete [GJ90].

Let DS = (V,A) be the DAG defined such that V = {s = v0,v1, · · · ,vn−1, t = vn} and, for every 1≤ i≤ n,
let us add arcs ei = vi−1vi and fi = vi−1vi with length `(ei) = `( fi) = xi (see Figure 1). Let P1 be induced by
{ei | 1≤ i≤ n}, P2 be induced by { fi | 1≤ i≤ n} (note that `(P1) = `(P2) = 2h) and let θ = 1/2.

Note that there is a one-to-one mapping between simple s-t paths and the bipartitions of {1, · · · ,n}.
Indeed, let P be any such path. Then, for every 1 ≤ i ≤ n, Path P goes through exactly one of ei or fi.
Let XP = {1 ≤ i < n | ei ∈ A(P)} and YP = {1 ≤ i < n | fi ∈ A(P)}. Clearly, (XP,YP) is a partition of
{1, · · · ,n}. Reciprocally, let (X ,Y ) be any partition of {1, · · · ,n}. Then, let PXY be the path induced by
{ei | i ∈ X}∪{ fi | i ∈ Y}. Clearly, PXY is a simple s-t path.

First, we consider only the three similarity measures Asymmetric,Min and Max. Note that every simple s-
t path has length 2h and therefore, for every simple s-t paths P and R, SAsy(P,R) = SAsy(R,P) = SMin(P,R) =
SMax(P,R). Hence, all similarity measures in {Asymmetric,Min,Max} are equivalent.

By construction, for every bipartition (X ,Y ) of {1, · · · ,n} (equivalently, for every simple s-t path PXY ),
`(P1 ∩ PXY ) = ∑i∈X xi and `(P2 ∩ PXY ) = ∑i∈Y xi. Since `(P1 ∩ PXY ) = SZ(P1,P) · 2h and `(P2 ∩ PXY ) =
SZ(P2,P)·2h, it follows that (DS, `,s, t, 1

2 ,P1,P2) admits a simple s-t path P with SZ(P1,P)≤ 1
2 and SZ(P2,P)≤
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FIGURE 1: Digraph DS = (V,A) defined from S = {x1, · · · ,xn}. For all 1≤ i≤ n, `(ei) = xi. For all 1≤ i≤ n,
`( fi) = xi (Theorem 2).

1
2 if and only if S admits a balanced partition. So the DISS(2,Z) problem is NP-Hard for all Z ∈{Asymmetric,
Min,Max}.

Concerning the Jaccard measure, i.e, the DISS(2,J) problem, using the same construction proposed
above but with θ = 1

3 one can prove that the described reduction is valid. Finally, to extend the result to any
k′ > 2, it is sufficient to add k′−2 dummy arc-disjoint s-t paths P3, · · · ,Pk′ with length = 2h. 2

In contrast with above two results, let us focus on the case where k′ = 1 (only one path P is already given)
but where we look for a path dissimilar to P but which is as short as possible. The SHORTESTDISS(1,Z)
problem takes a tuple (D, `,s, t,θ,L,P) as input where D = (V,A) is a directed graph with ` : A→ R+,
s, t ∈V , 0≤ θ≤ 1, L ∈ R+, and P is a simple s-t path. It aims at deciding whether there exists a simple s-t
path Q such that Q is θ-dissimilar from P (for a measure Z) and `(Q)≤ L.

Theorem 3 Let Z ∈ S . The SHORTESTDISS(k′,Z) problem is NP-Complete for k′ ≥ 1 in the class of Di-
rected Acyclic Graphs (DAGs) with a single source and a single sink.

Proof. The problems is clearly in NP, so we prove its NP-hardness by a reduction from the PARTITION
problem. Let S = {x1, ...,xn} be an instance of the PARTITION problem and 2h = ∑i≤n xi. Let M > 1. Let
DS = (V,A) be the DAG defined such that V = {s = v0,v1, · · · ,vn−1, t = vn} and, for every 1≤ i≤ n, let us
add arcs ei = vi−1vi and fi = vi−1vi with length `(ei) = xi and `( fi) = M · xi respectively.

Let P be the simple s-t path that consists of arcs e1, · · · ,en and so `(P) = 2h. Note that, since M > 1,
`(P)≤ `(P′) for every simple s-t path P′. Finally, let θ = 1/2 and L = h(M+1).

As in the proof of Theorem 2, it can be shown that there is a path Q with `(Q)≤ L and Q is θ-dissimilar
from P if and only if S is a positive instance of the PARTITION problem. 2

Conclusion. In this paper, we studied several versions of the problem of finding (shortest) dissimilar paths
in a digraph considering four similarity measures. An interesting question is whether there is a similarity
measure for which the problem of finding k dissimilar paths can be solved in polynomial time.
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