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Hurricanes — and more broadly tropical cyclones — are high-impact weather phenomena18

whose adverse socio-economic and ecosystem impacts affect a considerable part of the19

global population. Despite our reasonably robust meteorological understanding of tropical20

cyclones, we still face outstanding challenges for their numerical simulations. Conse-21

quently, future changes in the frequency of occurrence and intensity of tropical cyclones22

are still debated. Here, we diagnose possible reasons for the poor representation of tropical23

cyclones in numerical models, by considering the cyclones as chaotic dynamical systems.24

We follow 197 tropical cyclones which occurred between 2010 and 2020 in the North At-25

lantic using the HURDAT2 and ERA5 datasets. We measure the cyclones instantaneous26

number of active degrees of freedom (local dimension) and the persistence of their sea-27

level pressure and potential vorticity fields. During the most intense phases of the cyclones,28

and specifically when cyclones reach hurricane strength, there is a collapse of degrees of29

freedom and an increase in persistence. The large dependence of hurricanes dynamical30

characteristics on intensity suggests the need for adaptive parametrisation schemes which31

take into account the dependence of the cyclone’s phase, in analogy with high-dissipation32

intermittent events in turbulent flows.33

a)Correspondence to davide.faranda@lsce.ipsl.fr
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I. LEAD PARAGRAPH34

Tropical cyclones are both high-impact weather events and challenging phenomena from35

the point of view of numerical modelling. While their lifecycle is relatively well understood,36

there are still difficulties in the representation of their dynamics in weather and climate mod-37

els, and in drawing robust conclusions on how different climate conditions may affect their38

frequency of occurrence and intensity. Here, we consider tropical cyclones as chaotic dynam-39

ical systems. We show that the formation of particularly intense cyclones, termed hurricanes40

in the North Atlantic, coincides with a reduction of the phase space of the atmospheric dy-41

namics to a low-dimensional and persistent object, where few rotational kinetic degrees of42

freedom dominate the dynamics. This suggests the need for adaptive parameterisations to43

integrate the governing equations when simulating intense tropical cyclones in numerical44

climate models.45

II. INTRODUCTION46

Tropical cyclones are high-impact extreme weather events. For example, they are the costli-47

est natural disaster category in the United States1,2, with the damage related to hurricane Katrina48

(2005) alone amounting to about 1% of the gross domestic product of the country2. Trends in49

the frequency of occurrence and intensity of tropical cyclones are difficult to discern in observa-50

tions because of their relative rarity and of the brevity of highly spatially and temporally resolved51

datasets, which rely on satellite observations3. Projections of future climates indicate an increase52

in the intensity of tropical cyclones in the North Atlantic sector, albeit only with medium confi-53

dence4. Indeed, reproducing the dynamics of the most severe events is difficult even in the most54

advanced global or regional climate models5. For example, while mid-latitude synoptic dynamics55

mostly originate from the chaotic structure of the motions associated with baroclinic instability6,7,56

tropical cyclones are characterized by a rapid organization of convectively unstable flows whose57

dynamics is turbulent and highly sensitive to boundary conditions8. To understand the reasons58

for the poor representation of tropical cyclones in numerical models, we adopt a dynamical sys-59

tem methodology which represents the cyclones as states of a chaotic, high-dimensional system.60

We specifically compute two metrics reflecting instantaneous properties of the cyclones, namely61

persistence and local dimension. Local dimension is a proxy for the system’s number of active62
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degrees of freedom, and can be linked to the system’s predictability9–11. Persistence provides in-63

formation about the dominant time scale of the dynamics. Both metrics may easily be applied64

to large datasets, such as climate reanalyses. They have recently provided insights on a number65

of geophysical phenomena, including transitions between transient metastable states of the mid-66

latitude atmosphere9,12, palaeoclimate attractors13,14, slow earthquake dynamics15 and changes in67

mid-latitude atmospheric predictability under global warming16.68

All these applications have taken an Eulerian point-of-view, focusing on a fixed spatio-temporal69

domain. Here, we provide the first application of the two metrics from a (semi)-Lagrangian per-70

spective, by computing the persistence and local dimension of tropical cyclones which we track in71

space and time. This approach is particularly suited to study the complex behavior of convectively72

unstable flow systems (see, e.g., 17 and chapter 12 in18). After putting the tropical cyclones in73

the dynamical system framework, we may investigate whether they act as generic points of the74

phase space or whether their dynamics exhibits a peculiar behavior. In the first case,the numerical75

parametrizations developed for generic tropical climate states should work well when applied to76

small-scale features of tropical cyclones. In the second case, cyclones dynamical properties are77

dependent on their phase, so that leading parametrizations designed for generic tropical dynamical78

states will not work properly on cyclones.79

In the rest of the study, we compute the persistence and local dimension of tropical cyclones,80

and use these to outline a strategy to improve their numerical simulation.81

III. OBSERVABLES FOR CYCLONE DYNAMICS82

The historical cyclone data are the "best track data” from the Atlantic HURDAT2 database19,83

developed by the National Hurricane Center. This database provides, amongst other variables,84

the location of tropical cyclones, their maximum winds, central pressure and categorisation. The85

values are obtained as a post-storm analysis of all available data, collected both remotely and in-86

situ. We specifically consider separately hurricanes (HU), tropical storms (TS) and post-tropical87

cyclones associated with an extratropical transition (EX). We further use instantaneous potential88

vorticity (PV) at 500 hPa and sea-level pressure (SLP) data from ECMWF’s ERA5 reanalysis20.89

For both datasets we make use of 6-hourly data, and additionally data at the time when the HUR-90

DAT2 database displays a cyclone landfall; the ERA5 data is retrieved at a horizontal resolution91

of 0.25°.92
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Our analysis includes all tropical cyclones classified in HURDAT2 from 2010 to 2020 included.93

We use semi-Lagrangian observables, i.e. we select a horizontal domain around the tropical cycloe94

location, of size∼1200× 1200 km (41× 41 grid points in ERA5). The choice of SLP is motivated95

by its widespread use in hurricane tracking21 and the fact that it is a first approximation of the96

horizontal velocity streamfunction. The PV is often used in the study of tropical cyclones and97

relates to their intensification and symmetry structure22,23, and takes explicitly into account the98

strength of the cyclones warm core. Indeed, PV may be viewed as a metric of latent heat release99

and therefore of the intensity of the diabatic processes taking place in the tropical cyclones (cloud100

formation, precipitation) 24,25. We specifically select mid-level PV, following for example26,27.101

As control parameter, we chose the maximum winds from HURDAT2, since this quantity can be102

directly connected to the economic loss caused by tropical cyclones28.103

IV. A DYNAMICAL SYSTEMS VIEW OF TROPICAL CYCLONES104

We follow tropical cyclones in phase space as states of a chaotic, high-dimensional dynamical105

system. Each instantaneous state of the cyclone, as represented by a given atmospheric variable,106

corresponds to a point in a reduced phase space (namely a special Poincaré section). We sample107

these states at discrete points i, determined by the temporal resolution of the HURDAT2 data,108

that is every 6h or whenever the HURDAT2 database displays a cyclone landfall. Our aim is109

to diagnose the dynamical properties of the instantaneous (in time) and local (in phase-space)110

states of the cyclone, as represented by the chosen atmospheric variable and geographical domain111

(physical space in Fig. 1). To do so, we leverage two metrics issuing from the combination of112

extreme value theory with Poincaré recurrences29–31. We consider the ensemble {Xi}, which in113

our analysis are SLP or PV maps of all timesteps i for all tropical cyclones in our dataset, always114

centred on the cyclones location. We further consider a state of interest ζ , which would correspond115

to a single SLP or PV map drawn from this dataset. We then define logarithmic returns as:116

g(Xi,ζ ) =− log[dist(Xi,ζ )] (1)117

Here, "dist" is the Euclidean distance between pairs of SLP or PV maps, but more generally it118

can be any distance function between two vectors which tends to zero as the two vectors increas-119

ingly resemble each other. We thus have a time series g of logarithmic returns which is large at120

times i when Xi is close to ζ .121
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We next define exceedances as {u(ζ ) = g(Xi,ζ )− s(q,ζ ) ∀i : g(Xi,ζ ) > s(q,ζ )}, where122

s(q,ζ ) is a high threshold corresponding to the qth quantile of g(Xi,ζ ). These are effectively123

the previously-mentioned Poincaré recurrences, for the chosen state ζ (phase space in Fig. 1).124

The Freitas-Freitas-Todd theorem29,30 states that the cumulative probability distribution F(u(ζ ))125

is approximated by the exponential member of the Generalised Pareto Distribution. We thus have126

that:127

F(u,ζ )' exp
[
−ϑ(ζ )

u(ζ )
σ(ζ )

]
(2)128

The parameters u, namely the exceedances, and σ , namely the scale parameter of the Gener-129

alised Pareto Distribution, depend on the chosen state ζ , while ϑ is the so-called extremal index,130

namely a measure of clustering32. We estimate it here using the Süveges Estimator33.131

From the above, we can define two dynamical systems metrics: local dimension (d) and per-132

sistence (θ−1). The local dimension is given by d(ζ ) = 1/σ(ζ ), with 0 < d ≤ +∞. When Xi133

contains all the variables of the system, the estimation of d based on extreme value theory has a134

number of advantages over traditional methods (e.g. the box counting algorithm34). First, it does135

not require to estimate the volume of different sets at different scales: the selection of s(q) based136

on the quantile provides a selection of different thresholds s which depends on the recurrence rate137

around the point ζ . Moreover, it does not require the a-priori selection of the maximum embedding138

dimension, as the observable g is always a univariate time-series. Even when Xi does not contain139

all variables of the system, the estimation of d through extreme value theory is still a powerful tool140

to compare different states of high-dimensional chaotic systems35.141

The persistence of the state ζ is measured via the extremal index 0 < ϑ(ζ )< 1. We define the142

inverse of the average residence time of trajectories around ζ as: θ(ζ ) = ϑ(ζ )/∆t, with ∆t being143

the timestep of the underlying data (here 6 hours). Since the extremal index is non-dimensional,144

θ(ζ ) has units of frequency. θ−1 is then a measure of persistence. If ζ is a fixed point of the145

attractor θ(ζ ) = 0. For a trajectory that leaves the neighborhood of ζ at the next time iteration,146

θ = 1. A caveat of our approach is that our dataset is constructed from a sequence of cyclones147

which is not continuous in space-time. This may introduce a bias in our calculation of θ if the final148

state of a cyclone is a recurrence of the initial state of the following cyclone. This is highly unlikely149

due to the very different nature of the growth versus weakening stages of tropical cyclones. We150

further note that this does not affect the computation of d, which is insensitive to time reshuffling.151

While the derivation of d and θ−1 may seem very abstract, the two metrics can be related to152
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FIG. 1. Schematic of the computation of the dynamical systems metrics for an instantaneous state of a

tropical cyclone. We take a snapshot of the cyclone in physical space (black quadrant), in this example

a latitude-longitude map of sea-level pressure, which corresponds to state ζ in our reduced phase space.

The right hand side panel shows the discrete sampling of the phase-space at points Xi (white circles). The

shaded circle is a 2D representation of the hyper-sphere determined by the high threshold s(q,ζ ), which

defines recurrences. The logarithmic distances between measurements defined by g(Xi,ζ ) are marked by

double-headed arrows. For all points within the hyper-sphere, g(Xi,ζ ) > s(q,ζ ) holds. In the schematic,

only two measurements satisfy this condition (adapted from14).

the properties of the tropical cyclones. d is a proxy for the active number of degrees of freedom153

of the cyclones instantaneous states. On the other hand, θ−1 measures the persistence of such154

states and is related to the dominant time scale of the dynamics (the Lyapunov exponent36). Both155

these quantities are known to be connected to the dynamical (Kolmogorov Sinai) entropy since the156

seminal work of Young37.157

V. DYNAMICAL PROPERTIES OF TROPICAL CYCLONES: COLLAPSE OF158

DEGREES OF FREEDOM AND INCREASE IN PERSISTENCE IN INTENSE STORMS159

Before focusing on the analysis of the dynamics of tropical cyclones specifically, we assess the160

peculiarity of their dynamical footprints when compared with a box of the tropical Atlantic ocean.161

We use ERA5 6h data for SLP and PV covering the period 2017-2021 and considered the squared162
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horizontal domain spanning 10N<Latitude<20N -50W<Longitude<40W. The results are shown in163

Figure 2. For SLP (Fig. 2a), that is the non cyclonic states do not feature any particular structure164

and they are characterized by non-persistent behavior (θ / 1) and a range of dimensions similar to165

those of the tropical cyclones. For PV, at a first glance, there is no clear separation between control166

box and tropical cyclones of the distributions on the basis of the analysis of the diagrams (Fig. 2b)167

with d and θ spanning a similar range of values. On the other hand, the analysis of the violin168

plots presented in Fig. 2c-f) show that the distributions are different. To quantify this difference169

we apply a two-sided Cramer-von Mises test at the 0.05 significance level38. The p-values found170

(virtually 0) imply that the null hypothesis that the two samples come from the same distribution171

can be rejected hinting to a statistically significant difference.172

The previous analysis shows that the distribution of dynamical properties of tropical cyclones173

is significantly different from the one of a control box of Atlantic ocean. We now focus on the re-174

lationship between the dynamical indicators and the different tropical cyclones intensity measures.175

Figure 3a, b shows the values of dimension d and inverse persistence θ computed on SLP and 500176

hPa PV, with maximum winds in colours. The two local dimensions show different ranges, with177

dSLP < 30 and dPV attaining higher values. This reflects the fact that the PV dynamics involve178

multiple spatial scales, which reflect several underlying phenomena coming from convective and179

larger-scale aspects of cyclones and tropical dynamics, e.g. atmospheric waves39. SLP, on the180

other hand, reflects the synoptic-scale structures (∼ 103 km). The range of local dimensions found181

is relatively low compared to the number of grid-points used, which is 41 × 41. This means that182

the majority of the degrees of freedom are frozen when we follow coherent convective phenomena183

such as tropical cyclones. Moreover, lag-0 cross correlation coefficient between dSLP and dPV is184

0.23, suggesting that the two variables carry different information. The persistence range is also185

different for SLP and PV, with 0.1 < θSLP < 1 and 0.3 < θPV < 0.8. In units of time, these values186

indicate an SLP persistence between 6 and 60 hours and a PV persistence between 7.5 and 20187

hours. A timescale of 1–2.5 days is consistent with the synoptic-scale intensification of a cyclone,188

while timescales of a few hours to a day are consistent with changes in the convective structure of189

a cyclone. The lag-0 cross correlation coefficient coefficient between θSLP and θPV is 0.02, even190

lower than for d, again suggesting that the two carry different information.191

192

We now connect the values of d and θ for SLP and PV to the underlying physics of the storms193

using the maximum wind speed. For SLP (Figure 3a) we note a strong dependence of θ on194
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the maximum winds. Low to moderate winds are associated with high θ , while stronger winds195

correspond to lower θ . A weaker relation holds for dSLP and maximum winds. For PV (Figure 3b),196

strong winds match low d values and intermediate-to-high θ values. Thus, SLP suggests that197

intense cyclones correspond to persistent states, while PV that they display a low local dimension198

and intermediate-to-low persistence. Looking at the scatterplots and PDFs of the two dynamical199

systems metrics conditioned on the HURDAT2 cyclone classification (Figure 3c, d), provides a200

picture consistent with the above. For SLP, HU and EX display a markedly higher persistence201

than TS. For PV, HU display a lower dimension and lower persistence than both TS and EX. The202

medians of all PDFs are significantly different at the 1% level under a Wilkoxon rank sum test,203

except for dSLP for HU and EX (not shown). We interpret these dynamical system properties204

as follows. When the storms produce strong winds and diabatic phenomena (HU with high PV205

values and strong precipitation), the convective-scale dynamics collapses to an object with few206

degrees of freedom (low dPV ), yet low persistence (high θPV ). Nonetheless, the synoptic-scale207

HU field is highly persistent (low θSLP), with values comparable to those of EX. SLP reflects a208

quasi-symmetrical horizontal cyclonic structure, which for both HU and EX is characteristic of209

the cyclone over an extended period of time. Weaker TS likely do not have a coherent cyclonic210

core throughout their life cycle, as reflected in the high values of θSLP.211

The mean SLP and PV footprints of the system are qualitatively similar across all three cy-212

clone categories (Fig. 4), although EX show a larger spatial scale than both TS and HU. In all213

three cases, the structures are roughly axisymmetric, showing that the EX cyclones included in214

HURDAT2 still retain tropical-like characteristics. Clearer differences emerge when looking at the215

standard deviation of the SLP and PV maps, computed at each gridpoint over all maps included216

in our analysis (Fig. 5). Here, HU and TS show qualitatively similar, axisymmetric structures,217

while EX show a clear meridional asymmetry in SLP and a less marked zonal asymmetry in PV.218

Notwithstanding the broad similarity in mean structure between three cyclone categories, the dy-219

namical systems metrics are nonetheless able to differentiate their characteristics. This suggests220

that they sample from the systems dynamic variability and other subtle differences that do not221

emerge from the composite maps, such as the evolution of the system mean structure during the222

different phases of its lifecycle.223

224
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VI. DYNAMICAL SYSTEMS METRICS AND RAPID INTENSIFICATION225

We now investigate whether the same dynamical systems framework can be used to investigate226

rapid intensification. Rapid intensification occurs when a tropical cyclone gains strength dramati-227

cally in a short period of time40. This phenomenon, difficult to explain from a theoretical point of228

view41,42, results in an enhancement of the destructiveness potential of the cyclone and in a lower229

predictability of its trajectory43. Rapid intensification is usually quantified using the increment ∆v230

of maximum winds over 24h. According to this definition, a cyclone is rapidly intensifying (resp.231

weakening) when ∆v> 35 kts (resp. ∆v<−35 kts). In phase space, rapid changes of the dynamics232

correspond to approaching unstable regions of the attractor44,45. Our working hypothesis is that233

variations in the dynamical systems metrics may be able to track these transitions. Figures 6 and234

7 show the values of (a) ∆d and (b) ∆θ associated with the rapid intensification or weakening of235

the cyclones. The ∆ are again computed over a period of 24 hours. Lateral panels show the PDFs236

of ∆d and (b) ∆θ conditioned on the rapid weakening or intensification. In both Figures 6 and 7237

the medians of all PDFs for rapid weakening or intensification are significantly different at the 1%238

level under a Wilkoxon rank sum test, except for ∆θPV . Rapid intensification is associated with a239

clear decrease of θSLP and a weak decrease of dPV . In other words, there is a large coherence of240

the dynamics of the cyclones tracked by the increased persistence of the SLP. This is accompanied241

by a decrease of the degrees of freedom in PV. The rapid weakening displays instead a decreased242

SLP persistence and a marked increase in dPV .243

VII. IMPLICATIONS OF THE RESULTS FOR THE NUMERICAL SIMULATION OF244

HURRICANES245

We now discuss our results in the framework of the dynamical systems theory established for246

the indicators of persistence and dimensionality. From this viewpoint, high persistence and low247

dimensional states are found at unstable fixed points of the dynamics. The link between unstable248

fixed points and persistence has been established in theorem 4.2.7 in31. The theorem states that249

the extremal index θ is smaller than 1 at periodic points and that its value depends on the degree250

of periodicity. The physical implication of the theorem is that the more stable the state, the closer251

the value of θ to 0. The limiting case, θ = 0 corresponds to an infinite cluster length, that is the252

dynamics never leave the state, namely an equilibrium fixed point. If instead the value is close to253
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0 but not zero, the system sticks around the state for a long time, but it will eventually leave. This254

is a property of fixed points that have at least one unstable direction through which the system can255

leave the neighborhood. There is no formal theorem on the connection between a low dimension256

and fixed points, but an argument based on synchronization in35. In this study the local dimension257

is computed for spatially extended systems: Coupled Lattice Maps (CLMs). These dynamical258

systems are characterized by a coupling by adjacent sites. In the limit for extreme coupling, the259

CLMs have a fixed point where all the dynamics is synchronized and d = 1 (one particle is in260

the state of all the others). In real systems where perfect coupling does not exist, the states of261

low dimension d also correspond to synchronized states. For both the cases, to the best of our262

knowledge, it has not been proved that having a low θ and d is a sufficient condition for unstable263

fixed points. Furthermore the phase space that we use in our study is rather unusual: i) we do not264

consider the full set of variables but only two observables that project the dynamics of the cyclones265

on a special low dimensional subset, ii) the domain is moving and it is centered on the eye of the266

storm; yet it is not a Lagrangian phase space, because we only follow the eye and not each single267

fluid parcel.268

Besides the exact mathematical meaning of our results, they are useful to highlight some prac-269

tical aspects related to the simulation of these objects in climate and weather models. The large270

spread of the dynamical properties obtained in tropical cyclones and the strong dependency on271

the intensity suggests that a parametrization independent on cyclone intensity may fail to resolve272

their dynamics, especially for intense cyclones. Parameterizations are devised for typical states273

of tropical dynamics (isolated thunderstorms), but not specifically for the organized states of the274

most intense tropical cyclones. Hurricanes, i.e. intense tropical cycones, would then be analogous275

to dissipative singularities of turbulent flows46, or black holes of the atmospheric dynamics47. In276

these cases, the physics is far from that of the average states of the system, such that adaptive277

scaling laws and targeted parametrizations are needed. Thus, the computation of the dynamical278

systems metrics could support the development of hurricane-specific parameterizations.279

As a caveat, we underline that our semi-Lagrangian approach does not allow to relate the280

present results to the predictability of the trajectories of the tropical cyclones examined in this281

study, unlike the Eulerian approach applied to extra-tropical motions in 9–11. Furthermore, we282

have used the ERA5 dataset, which has a fair but not highly-resolved representation of the con-283

vective scales of hurricane dynamics.284

To conclude, we have shown that the physical characteristics of tropical cyclones may be285
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understood in terms of dynamical systems metrics, which are capable of singling out peculiar286

states of the dynamics. Our results support the idea that cyclones can be understood as being287

reached along specific directions of the dynamics, consistent with instanton theory48 and the no-288

tion of melancholia states49. This perspective opens intriguing possibilities, including the use289

of importance sampling algorithms50 to select simulations which approach the hurricanes states290

as detected from the dimension–persistence analysis in the phase space. For example, in51 we291

propose a methodology, based on dimension and persistence metrics, to reconstruct the statistics292

of cyclone intensities in coarse-resolution datasets, where maximum wind speed and minimum293

sea-level pressure may not be accurately represented. We conclude that the dynamical systems294

metrics outlined here could help to address several open problems in representing the climatology295

of cyclone dynamics and provide strategies for their parametrization and their characterization in296

climate simulations.297

298
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FIG. 2. Dimension d and inverse persistence θ for 6h hourly 2017-2021 ERA5 datasets on a control

box [10N<lat<20N -50W<lon<40W] (orange) and for the semilagrangian ERA5 data for tropical cyclones

timesteps and center on the cyclones eye coordinates from HURDAT2 database (blue), calculated on sea-

level pressure (SLP; a,c,e) and 500 hPa potential vorticity (PV; b, d,f). Panels (a,b) show the dimension-

persistence diagrams; panels (c-f) show the violin plots (fatness of the patched area corresponds to the

probability density) for the different dataset with the mean (red bars) and the black (medians). Note that the

violin plots for the Control box in panel e) are not visible because all values are very close to 1.
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FIG. 3. Dimension d and inverse persistence θ of tropical cyclones, calculated on sea-level pressure (SLP;

a,c) and 500 hPa potential vorticity (PV; b, d). The colourscales show maximum wind (a, b) and cyclone

classification (c,d, see legend). Side panels show the corresponding PDFs. TS: Tropical Storm; HU: Hurri-

cane; EX: Extratropical cyclones.
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FIG. 4. Average sea-level pressure (SLP, hPa, a–c) and 500 hPa potential vorticity (PV, PVU, d–f) maps

conditioned on cyclone classification (TS: Tropical Storm, a,d; HU: Hurricanes, b, e; EX: Extratropical

cyclones, c,f).

FIG. 5. Same as in Fig. 4, but for the standard deviation of the maps.
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FIG. 6. 24h variation (∆) of the dimension d (a) and of the inverse persistence θ (b) computed on SLP

versus the 24h variation of maximum winds v for rapidly intensifying (blue) and rapidly weakening (red)

cyclones. The side panel shows the corresponding PDFs.
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FIG. 7. Same as Fig. 6, but for d and θ computed on PV at 500 hPa.
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