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Hurricanes — and more broadly tropical cyclones — are high-impact weather phenom-18

ena whose adverse socio-economic and ecosystem impacts affect a considerable part of19

the global population. Despite having a reasonably robust meteorological understanding20

of tropical cyclones, their simulation in numerical models remains challenging. Conse-21

quently, future changes in the frequency of occurrence and intensity of tropical cyclones22

are still debated. Here, we diagnose possible reasons for the poor representation of tropical23

cyclones in numerical models, by considering the cyclones as chaotic dynamical systems.24

We follow 197 tropical cyclones which occurred between 2010 and 2020 in the North At-25

lantic using the HURDAT2 and ERA5 datasets. We measure the cyclones’ instantaneous26

number of active degrees of freedom (local dimension) and the persistence of their sea-level27

pressure and potential vorticity fields. During the most intense phases of the cyclones, and28

specifically when cyclones reach hurricane strength, there is a collapse of degrees of free-29

dom and an increase in persistence, hinting to the existence of an unstable fixed point of30

the dynamics. Hurricanes may thus be interpreted as unstable fixed points of rotational31

energy, and their evolution is well-captured by the potential vorticity map of the cyclone32

eye. In analogy with high-dissipation intermittent events in turbulent flows, this suggests33

strategies to improve numerical simulations of intense tropical cyclones, and specifically34

the need for adaptive parametrisation schemes.35

a)Correspondence to davide.faranda@lsce.ipsl.fr
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I. LEAD PARAGRAPH36

Tropical cyclones are both high-impact weather events and challenging phenomena from37

the point of view of numerical modelling. While their lifecycle is relatively well understood,38

there are still difficulties in the representation of their dynamics in weather and climate39

models, and in drawing robust conclusions on how different climate conditions may affect40

their frequency of occurrence and intensity. Here, we consider tropical cyclones as chaotic41

dynamical systems. We show that the formation of particularly intense cyclones, termed42

hurricanes in the North Atlantic, coincides with a reduction of the phase space of the atmo-43

spheric dynamics to a low-dimensional object, where few rotational kinetic degrees of free-44

dom dominate the dynamics. This behavior, also encountered in laboratory turbulent flows45

near strongly dissipative structures, is typical of unstable fixed points of high-dimensional46

dynamical systems. This analogy suggests the need for adaptive parameterisations to inte-47

grate the governing equations when simulating intense tropical cyclones in numerical climate48

models.49

II. INTRODUCTION50

Tropical cyclones are high-impact extreme weather events. For example, they are the costli-51

est natural disaster category in the United States1,2, with the damage related to hurricane Katrina52

(2005) alone amounting to about 1% of the gross domestic product of the country2. Trends in53

the frequency of occurrence and intensity of tropical cyclones are difficult to discern in observa-54

tions because of their relative rarity and of the brevity of highly spatially and temporally resolved55

datasets, which rely on satellite observations3. Projections of future climates indicate an increase56

in the intensity of tropical cyclones in the North Atlantic sector, albeit only with medium confi-57

dence4 as reproducing the dynamics of the most severe events is difficult even in the most advanced58

global or regional climate models5. Indeed, while mid-latitude synoptic dynamics mostly origi-59

nate from the chaotic structure of the motions associated with baroclinic instability6,7, tropical60

cyclones are characterized by a rapid organization of convectively unstable flows whose dynamics61

is turbulent and highly sensitive to boundary conditions8. To understand the reasons for the poor62

representation of tropical cyclones in numerical models, we adopt a dynamical system methodol-63

ogy which represents the cyclones as states of a chaotic, high-dimensional system. We specifically64
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compute two metrics reflecting instantaneous properties of the cyclones, namely persistence and65

local dimension. Local dimension is a proxy for the system’s number of active degrees of free-66

dom, and can be linked to the system’s predictability9–11. Persistence provides information about67

the dominant time scale of the dynamics. Both metrics may easily be applied to large datasets,68

such as climate reanalyses. They have recently provided insights on a number of geophysical69

phenomena, including transitions between transient metastable states of the mid-latitude atmo-70

sphere9,12, palaeoclimate attractors13,14, slow earthquake dynamics15 and changes in mid-latitude71

atmospheric predictability under global warming16.72

All these applications have taken an Eulerian point-of-view, focusing on a fixed spatio-temporal73

domain. Here, we provide the first application of the two metrics from a (semi)-Lagrangian per-74

spective, by computing the persistence and local dimension of tropical cyclones which we track in75

space and time. This approach is particularly suited to study the complex behavior of convectively76

unstable flow systems17,18. Our aim is to understand whether tropical cyclones — and especially77

the most intense ones — have an underlying structure similar to a generic point of the phase space78

or whether their dynamics has peculiar specificities. The first case would imply that numerical79

parametrizations developed for generic tropical climate states should work well when applied to80

small-scale features of tropical cyclones. The second case would imply that cyclones are unstable81

fixed points of the phase space, thus leading to the conclusion that parametrizations designed for82

generic climate states will not work properly. Indeed, fixed points have different time scales and83

phase-space directions with respect to a generic point, and thus call for a tailored treatment.84

In the rest of the study, we compute the persistence and local dimension of tropical cyclones,85

and use these to outline a strategy to improve their numerical simulation.86

III. OBSERVABLES FOR CYCLONE DYNAMICS87

The cyclone historical data are the "best track data” from the Atlantic HURDAT2 database19,88

developed by the National Hurricane Center. This database provides, amongst other variables,89

the location of tropical cyclones, their maximum winds, central pressure and categorisation. The90

values are obtained as a post-storm analysis of all available data, collected both remotely and in-91

situ. We specifically consider separately hurricanes (HU), tropical storms (TS) and post-tropical92

cyclones associated with an extratropical transition (EX). We further use instantaneous potential93

vorticity (PV) at 500 hPa and sea-level pressure (SLP) data from ECMWF’s ERA5 reanalysis20.94
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For both datasets we make use of 6-hourly data; the ERA5 data is retrieved at a horizontal resolu-95

tion of 0.25°.96

Our analysis includes all tropical cyclones classified in HURDAT2 from 2010 to 2020 included.97

We use semi-Lagrangian observables, i.e. we select a horizontal domain around the tropical cy-98

cloe location, of size ∼1200 × 1200 km (41 × 41 grid points in ERA5). The choice of SLP is99

motivated by its widespread use in hurricane tracking21 and the fact that it is a first approximation100

of the horizontal velocity streamfunction. The PV is often used in the study of tropical cyclones101

and relates to their intensification and symmetry structure22,23, and takes explicitly into account102

the strength of the cyclones’ warm core. Indeed, PV may be viewed as a metric of latent heat103

release and therefore of the intensity of the diabatic processes taking place in the tropical cyclones104

(formation of clouds, solid and liquid precipitation) 24,25. We specifically select mid-level PV,105

following for example26,27. As control parameter we chose the maximum winds from HURDAT2,106

since this quantity can be directly connected to the economic loss caused by tropical cyclones28.107

IV. A DYNAMICAL SYSTEMS VIEW OF TROPICAL CYCLONES108

We follow tropical cyclones in phase space as states of a chaotic, high-dimensional dynamical109

system. Each instantaneous state of the cyclone, as represented by a given atmospheric variable,110

corresponds to a point in a reduced phase space (namely a special Poincaré section). We sample111

these states at discrete points i, determined by the temporal resolution of the HURDAT2 data,112

that is every 6h or whenever the HURDAT2 database displays a cyclone landfall. Our aim is113

to diagnose the dynamical properties of the instantaneous (in time) and local (in phase-space)114

states of the cyclone, as represented by the chosen atmospheric variable and geographical domain115

(physical space in Fig. 1). To do so, we leverage two metrics issuing from the combination of116

extreme value theory with Poincaré recurrences29–31. We consider the ensemble {Xi}, which in our117

analysis are SLP or PV maps of all timesteps for all tropical cyclones in our dataset, always centred118

on the cyclones’ location. We further consider a state of interest ζ , which would correspond to a119

single SLP or PV map drawn from this dataset. We then define logarithmic returns as:120

g(Xi,ζ ) =− log[dist(Xi,ζ )] (1)121

Here, dist is the Euclidean distance between pairs of SLP or PV maps, but more generally it can122

be any distance function between two vectors which tends to zero as the two vectors increasingly123

5



resemble each other. We thus have a time series g of logarithmic returns which is large at times124

when Xi is close to ζ .125

We next define exceedances as u(ζ ) = g(Xi,ζ )−s(q,ζ ) ∀ g(Xi,ζx)> s(q,ζ ), where s(q,ζ ) is a126

high threshold corresponding to the qth quantile of g(Xi,ζ ). These are effectively the previously-127

mentioned Poincaré recurrences, for the chosen state ζ (phase space in Fig. 1). The Freitas-128

Freitas-Todd theorem29,30 states that the cumulative probability distribution F(u,ζ ) is approxi-129

mated by the exponential member of the Generalised Pareto Distribution. We thus have that:130

F(u,ζ )' exp
[
−ϑ(ζ )

u(ζ )
σ(ζ )

]
(2)131

The parameters s(q,ζ ), namely the threshold, and σ , namely the scale parameter of the Gener-132

alised Pareto Distribution, depend on the chosen state ζ , while ϑ is the so-called extremal index,133

namely a measure of clustering32. We estimate it here using the Süveges Estimator33.134

From the above, we can define two dynamical systems metrics: local dimension (d) and persis-135

tence (θ−1). The local dimension is given by d(ζ ) = 1/σ(ζ ), with 0≤ d ≤+∞. When Xi contains136

all the variables of the system, the estimation of d based on extreme value theory has a number of137

advantages over traditional methods (e.g. the box counting algorithm34). First, it does not require138

to estimate the volume of different sets in scale-space: the selection of s(q) based on the quantile139

provides a selection of different thresholds s which depends on the recurrence rate around the point140

ζ . Moreover, it does not require the a-priori selection of the maximum embedding dimension, as141

the observable g is always a univariate time-series. Even when Xi does not contain all variables142

of the system, the estimation of d through extreme value theory is still a powerful tool to compare143

different states of high-dimensional chaotic systems35.144

The persistence of the state ζ is measured via the extremal index 0 < ϑ(ζ )< 1. We define the145

inverse of the average residence time of trajectories around ζ as: θ(ζ ) = ϑ(ζ )/∆t, with ∆t being146

the timestep of the underlying data (here 6 hours). Since the extremal index is non-dimensional,147

θ(ζ ) has units of frequency. θ−1 is then a measure of persistence. If ζ is a fixed point of the148

attractor θ(ζ ) = 0. For a trajectory that leaves the neighborhood of ζ at the next time iteration,149

θ = 1. A caveat of our approach is that our dataset is constructed from a sequence of cyclones150

which is not continuous in space-time. This may introduce a bias in our calculation of θ if the final151

state of a cyclone is a recurrence of the initial state of the following cyclone. This is highly unlikely152

due to the very different nature of the growth versus weakening stages of tropical cyclones. We153

further note that this does not affect the computation of d, which is insensitive to time reshuffling.154
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FIG. 1. Schematic of the computation of the dynamical systems metrics for an instantaneous state of a

tropical cyclone. We take a snapshot of the cyclone in physical space (black quadrant), in this example

a latitude-longitude map of sea-level pressure, which corresponds to state ζ in our reduced phase space.

The right hand side panel shows the discrete sampling of the phase-space at points Xi (white circles). The

shaded circle is a 2D representation of the hyper-sphere determined by the high threshold s(q,ζ ), which

defines recurrences. The logarithmic distances between measurements defined by g(Xi,ζ ) are marked by

double-headed arrows. For all points within the hyper-sphere, g(Xi,ζ ) > s(q,ζ ) holds. In the schematic,

only two measurements satisfy this condition (adapted from14).

While the derivation of d and θ−1 may seem very abstract, the two metrics can be related to155

the properties of the tropical cyclones. d is a proxy for the active number of degrees of freedom156

of the cyclones’ instantaneous states. On the other hand, θ−1 measures the persistence of such157

states and is related to the dominant time scale of the dynamics (the Lyapunov exponent36). Both158

these quantities are known to be connected to the dynamical (Kolmogorov Sinai) entropy since the159

seminal work of Young37.160

V. DYNAMICAL PROPERTIES OF TROPICAL CYCLONES: COLLAPSE OF161

DEGREES OF FREEDOM AND PERSISTENCE IN INTENSE STORMS162

Figure 2a, b shows the values of dimension d and inverse persistence θ computed on SLP and163

500 hPa PV, with maximum winds in colours. The two local dimensions show different ranges,164

7



with dSLP < 30 and dPV attaining higher values. This reflects the richer spatial structure of the165

PV field at multiple spatial scales, which reflect both convective and larger-scale aspects of the166

cyclones. SLP instead reflects the synoptic-scale structures (∼ 103 km). The range of local dimen-167

sions found is relatively low compared to the number of grid-points used, which is 41 × 41. This168

means that the majority of the degrees of freedom are frozen when we follow coherent convective169

phenomena such as tropical cyclones. Moreover, the lag-0 cross-correlation coefficient between170

dSLP and dPV is 0.23, suggesting that the two variables carry different information. The persistence171

range is also different for SLP and PV, with 0.1 < θSLP < 1 and 0.3 < θPV < 0.8. In units of time,172

these values indicate an SLP persistence between 6 and 60 hours and a PV persistence between173

7.5 and 20 hours. A timescale of 1–2.5 days is consistent with the synoptic-scale intensification of174

a cyclone, while timescales of a few hours to a day are consistent with changes in the convective175

structure of a cyclone. The lag-0 cross-correlation coefficient between θSLP and θPV is 0.02, even176

lower than for d, again suggesting that the two carry little mutual information.177

178

We now connect the values of d and θ for SLP and PV to the underlying physics of the storms179

using the maximum wind speed. For SLP (Figure 2a) we note a strong dependence of θ on the180

maximum winds. Low to moderate winds are associated with high θ , while stronger winds cor-181

respond to lower θ . A weaker relation holds for dSLP and maximum winds. For PV (Figure 2b),182

strong winds match low d values and intermediate-to-high θ values. Thus, SLP suggests that in-183

tense cyclones correspond to persistent states, while PV that they display a low local dimension184

and intermediate-to-low persistence. Looking at the scatterplots and PDFs of the two dynamical185

systems metrics conditioned on the HURDAT2 cyclone classification (Figure 2c, d), provides a186

picture consistent with the above. For SLP, HU and EX display a markedly higher persistence187

than TS. For PV, HU display a lower dimension and lower persistence than both TS and EX. The188

medians of all PDFs are significantly different at the 1% level under a Wilkoxon ranksum test,189

except for dSLP for HU and EX (not shown). We interpret these dynamical system properties190

as follows. When the storms produce strong winds and diabatic phenomena (HU with high PV191

values and strong precipitation), the convective-scale dynamics collapses to an object with few192

degrees of freedom (low dPV ), yet low persistence (high θPV ). Nonetheless, the synoptic-scale193

HU field is highly persistent (low θSLP), with values comparable to those of EX. SLP reflects a194

quasi-symmetrical horizontal cyclonic structure, which for both HU and EX is characteristic of195

the cyclone over an extended period of time. Weaker TS likely do not have a coherent cyclonic196
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FIG. 2. Dimension d and inverse persistence θ of tropical cyclones, calculated on sea-level pressure (SLP;

a,c) and 500 hPa potential vorticity (PV; b, d). The colourscales show maximum wind (a, b) and cyclone

classification (c,d, see legend). Side panels show the corresponding PDFs. TS: Tropical Storm; HU: Hurri-

cane; EX: Extratropical cyclones.

core throughout their life cycle, as reflected in the high values of θSLP. In the dynamical systems197

framework, the SLP and PV properties of the hurricanes may be interpreted as the signature of an198

unstable fixed point in the underlying phase-space, i.e. a state of the dynamics where the tempo-199

ral and spatial scales are deformed. However, the different relationships between the dynamical200

indicators of SLP and PV with intense hurricanes make it difficult to understand the nature of the201

unstable fixed point (saddle or spiral type).202

The mean SLP and PV footprints of the system are qualitatively similar across all three cy-203
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FIG. 3. Average sea-level pressure (SLP, hPa, a–c) and 500 hPa potential vorticity (PV, PVU, d–f) maps

conditioned on cyclone classification (TS: Tropical Storm, a,d; HU: Hurricanes, b, e; EX: Extratropical

cyclones, c,f).

clone categories (Fig. 3), although EX show a larger spatial scale than both TS and HU. In all204

three cases, the structures are roughly axisymmetric, showing that the EX cyclones included in205

HURDAT2 still retain tropical-like characteristics. Clearer differences emerge when looking at the206

standard deviation of the SLP and PV maps, computed at each gridpoint over all maps included207

in our analysis (Fig. 4). Here, HU and TS show qualitatively similar, axisymmetric structures,208

while EX show a clear meridional asymmetry in SLP and a less marked zonal asymmetry in209

PV. Notwithstanding the broad similarity in mean structure between three cyclone categories, the210

dynamical systems metrics are nonetheless able to differentiate their characteristics. This suggest211

that they sample from the systems’ dynamic variability and other subtle differences that do not212

emerge from the composite maps, such as the evolution of the system’s mean structure during the213

different phases of its lifecylce.214

215

VI. DYNAMICAL SYSTEMS METRICS AND RAPID INTENSIFICATION216

We now investigate whether the same dynamical systems framework can be used to investigate217

rapid intensification. Rapid intensification occurs when a tropical cyclone gains strength dramati-218
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FIG. 4. Same as in Fig. 3, but for the standard deviation of the maps.

cally in a short period of time38. This phenomenon, difficult to explain from a theoretical point of219

view39,40, results in an enhancement of the destructiveness potential of the cyclone and in a lower220

predictability of its trajectory41. Rapid intensification is usually quantified using the increment221

∆v of maximum winds over 24h. According to this definition, a cyclone is rapidly intensifying222

(resp. weakening) when ∆v > 35 kts (resp. ∆v < −35 kts). In phase space, rapid changes of the223

dynamics correspond to approaching unstable fixed points or event to tipping to other basin of224

attraction42,43. Our working hypothesis is that variations in the dynamical systems metrics may225

be able to track these transitions. Figures 5 and 6 show the values of (a) ∆d and (b) ∆θ associ-226

ated with the rapid intensification or weakening of the cyclones. The ∆ are again computed over227

a period of 24 hours. Lateral panels show the PDFs of ∆d and (b) ∆θ conditioned on the rapid228

weakening or intensification. In both Figures 5 and 6 the medians of all PDFs for rapid weakening229

or intensification are significantly different at the 1% level under a Wilkoxon ranksum test, except230

for ∆θPV . Rapid intensification is associated with a clear decrease of θSLP and a weak decrease231

of dPV . In other words, there is a large coherence of the dynamics of the cyclones tracked by232

the increased persistence of the SLP. This hints to the fact that dynamics approaches an unstable233

fixed point44. This is accompanied by a decrease of the degrees of freedom in PV, again consistent234

with approaching an unstable fixed point of the dynamics. The rapid weakening displays instead235

a decreased SLP persistence and a marked increase in dPV . We interpret this as a departure from236

the neighbourhood of a fixed point towards the main basin of attraction of the tropical atmospheric237
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dynamics.238

VII. IMPLICATIONS OF THE RESULTS FOR THE NUMERICAL SIMULATION OF239

HURRICANES240

From a dynamical systems viewpoint, high persistence and low dimensional states are found at241

unstable fixed points of the dynamics. Properties such as the local entropy, persistence and number242

of active degrees of freedom are greatly affected in the proximity of unstable fixed points, coincid-243

ing with deformation of the typical spatial and temporal lengths of the dynamics. This phase-space244

phenomenon is reminiscent of what is observed in physical space, when approaching singularities245

of turbulent dynamics with well-identified front-like or spiral-like coherent structures accompany-246

ing a point of very strong dissipation45,46. Although dynamics at fixed points can be fully resolved247

when having a perfect model of the underlying dynamics, unstable fixed points are by nature frag-248

ile to noise or approximation in the sense that any perturbation will escape following unstable249

directions. This may explain from a dynamical systems viewpoint why it is so difficult to obtain250

an adequate representation of intense tropical cyclones in climate models. Parameterisations are251

devised for typical states of tropical dynamics (disorganized storms), but not specifically for the252

organized states of the most intense tropical cyclones. Hurricanes would then be analogous to dis-253

sipative singularities of turbulent flows45, or black holes of the atmospheric dynamics46. In these254

cases, the physics is far removed from that of the average states of the system, such that adaptive255

scaling laws and targeted parametrizations are needed. Thus, the computation of the dynamical256

systems metrics could support the development of hurricane-specific parameterizations.257

As a caveat, we underline that our semi-Lagrangian approach does not allow to relate the258

present results to the predictability of the trajectories of the tropical cyclones examined in this259

study, unlike the Eulerian approach applied to extra-tropical motions in 9–11. Furthermore, here260

we have used the ERA5 dataset which has a fair but not highly-resolved representation of the261

convective scales of hurricane dynamics.262

To conclude, we have shown that the physical characteristics of tropical cyclones may be un-263

derstood in terms of dynamical systems metrics, which are capable of singling out peculiar states264

of the dynamics. Our results support the idea that cyclones can be understood as being reached265

along specific directions of the dynamics, consistent with instanton theory47 and the notion of266

melancholia states48. This perspective opens intriguing possibilities, including the use of impor-267
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tance sampling algorithms49 to select simulations which approach the hurricanes’ fixed points as268

detected from the dimension–persistence analysis in the phase space.269

270
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IX. DATA AVAILABILITY279

ERA5 data are available on the C3S Climate Data Store on regular latitude-longitude grids280

at 0.25° x 0.25° resolution at https://cds.climate.copernicus.eu/#!/home, accessed on281

2022-02-23282

283

HURDAT2 is a database provided by NOAA and freely available at https://www.aoml.284

noaa.gov/hrd/hurdat/Data_Storm.html, accessed on 2022-02-23285
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FIG. 5. 24h variation (∆) of the dimension d (a) and of the inverse persistence θ (b) computed on SLP

versus the 24h variation of maximum winds v for rapidly intensifying (blue) and rapidly weakening (red)

cyclones. The side panel shows the corresponding PDFs.
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FIG. 6. Same as Fig. 5, but for d and θ computed on PV at 500 hPa.
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