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Stable near-optimal control of nonlinear
switched discrete-time systems: an optimistic

planning-based approach
Mathieu Granzotto, Romain Postoyan, Lucian Buşoniu, Dragan Nešić, and Jamal Daafouz

Abstract— Originating in the artificial intelligence litera-
ture, optimistic planning (OP) is an algorithm that generates
near-optimal control inputs for generic nonlinear discrete-
time systems whose input set is finite. This technique is
therefore relevant for the near-optimal control of nonlinear
switched systems for which the switching signal is the
control, and no continuous input is present. However, OP
exhibits several limitations, which prevent its desired ap-
plication in a standard control engineering context, as it
requires for instance that the stage cost takes values in
[0, 1], an unnatural prerequisite, and that the cost function
be discounted. In this paper, we modify OP to overcome
these limitations, and we call the new algorithm OPmin.
We then analyze OPmin under general stabilizability and
detectability assumptions on the system and the stage
cost. New near-optimality and performance guarantees for
OPmin are derived, which have major advantages compared
to those originally given for OP. We also prove that a system
whose inputs are generated by OPmin in a receding-horizon
fashion exhibits stability properties. As a result, OPmin
provides a new tool for the near-optimal, stable control of
nonlinear switched discrete-time systems for generic cost
functions.

I. INTRODUCTION

Optimistic planning (OP) is an algorithm that computes
near-optimal control inputs for generic nonlinear discrete-
time systems and infinite-horizon discounted costs, provided
the set of inputs is finite, see [16,23]. Given the current
state, OP intelligently develops the tree of possible future
states, which are enumerable, since the input set is finite. By
prioritizing branches with better costs, which are optimistic
approximations of the infinite-horizon cost, OP efficiently
exploits the available computational power. It then returns an
optimal sequence of inputs for a finite-horizon discounted cost,
where the horizon depends on the given computational budget
and the initial state. Guarantees on the mismatch between the
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obtained value function and the original infinite-horizon optimal
cost are provided in [16] and are of the form γd(x)

1−γ , where
γ ∈ (0, 1) is the discount factor and d(x) is the state-dependent
horizon, which is related to the computation budget used by the
algorithm. Hence, in general, for good near-optimality bounds,
the discount factor γ has to be taken small.

OP is a priori well-suited for nonlinear switched discrete-
time systems for which the control input is the switching signal
[3], and no continuous input is present. This is appealing as the
optimal control of switched systems remains an open problem,
especially when dealing with nonlinear dynamics. Indeed,
while the (near-)optimal control of switched linear discrete-
time systems is addressed in, e.g., [1,7,30,36,38], the case of
nonlinear switched systems is still unraveling and concentrates
on continuous-time systems, see, e.g., [33,35,39]. Even so, in
the mentioned works and references therein, algorithms are
often presented for a particular class of systems, no explicit
near-optimality bounds are given, tacitly assuming that the
optimal solution is obtained, and the stability of the induced
closed-loop is eluded, while stability is often essential in control
applications. There is therefore a need for tools for the (near-
)optimal stable control of general nonlinear switched systems:
we propose a solution based on OP.

Unfortunately, it appears that we cannot apply OP “off-the-
shelf” for standard control engineering problems as OP exhibits
significant limitations. First, the stage cost has to take bounded
values, e.g., in [0, 1], which is not natural in control as this
excludes quadratic stage costs for instance, and to constrain the
stage cost to take values in [0, 1] via a nonlinear transformation
would change the sequence of optimal inputs. Second, the cost
is discounted using factor γ ∈ (0, 1), which has to be chosen
small for good near-optimality guarantees as explained above,
while γ needs to be close to 1 for the closed-loop system to be
stable [9,12,25]. As a first contribution, we therefore modify
OP to overcome these limitations, that is: the stage cost does
not have to take values in a given bounded set and the cost
is not discounted. We call this new algorithm OPmin. OPmin
returns a sequence of inputs, which minimizes a finite-horizon
cost more efficiently than a brute-force approach in general,
as explained in the paper. In addition, OPmin is designed for
minimizing costs instead of maximizing rewards as OP [16,23],
which although apparently easy is in fact non-trivial when
dealing with undiscounted and unbounded stage costs.
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Moreover, our goal is also to ensure that a system controlled
by OPmin in a receding-horizon fashion exhibits stability
guarantees, an aspect which is not addressed by OP works
[3,16,23]. To do so and as a second contribution, we introduce a
novel element to the algorithm, the so-called stopping criterion.
Originally, at each call OP develops its tree until exhaustion
of a computational budget or up to a given depth. In contrast,
OPmin develops a tree at each call until a stabilizing property
is found among the calculated inputs. By incorporating this
requirement in the algorithm itself via the stopping criterion, the
stability of the induced closed-loop system is guaranteed under
general stabilizability and detectability conditions, as discussed
in more details below. Furthermore, the computational effort
is adapted to the current plant state. This is important, as a
fixed computational effort might be unfeasible or ill-suited in
applications. Other recent works have considered introducing
similar stopping criteria for different optimal control algorithms
to ensure stability guarantees, see [24] in the context of
nonlinear model predictive control and interior point solvers.

The stopping criterion allows to have a direct control on the
near-optimality guarantees, that is, how the computed finite-
horizon cost function compares to the original infinite-horizon
optimal cost. We thus obtain a novel bound on the mismatch
between the two costs, with the next desirable features: (i) it
does not explode for γ = 1, contrary to the bound in [16]; (ii)
it decreases as the state is close to a given attractor, while the
bound γd(x)

1−γ in [16] is a constant for a constant horizon. The
latter implies that for some states OPmin may stop with short
horizons while ensuring good near-optimality properties, thus
reducing computational costs. We also analyse how the endured
cost functions along the system solutions when OPmin is applied
in a receding-horizon fashion compare to the original infinite-
horizon optimal cost. We show that OPmin does provide similar
desirable performance properties when applied in closed-loop.

Concerning stability, we prove that a system whose inputs
are generated by OPmin in a receding-horizon fashion satisfies
a semiglobal practical stability property, where the adjustable
parameter is a decision vector used to tune the stopping
criterion. We use a generic measuring function to define
stability as in, e.g., [12,13,25], thus covering point and set
stability in a unified manner. By strengthening the assumptions,
we derive stronger stability properties, including a global
exponential guarantee and we also prove that the stated stability
properties are nominally robust [20]. These stability results
differ from [12,13,25] where stability of systems whose inputs
minimizes (discounted) finite-horizon costs is analysed. Indeed,
the horizon of the cost in this paper is state-dependent, and
not fixed, because of the way OPmin operates. As a result,
the stability analysis relies on a different Lyapunov function
compared to [12], namely we exploit the infinite-horizon
optimal cost function, which we believe is an interesting
development in its own right. In addition, our analysis exploits
the stopping criterion, while the latter is absent in [12,13,25].

We illustrate the results through the scenario where we are
given a finite number of controllers, and we aim at optimally
selecting one at any given time instant, while ensuring stability.
Two examples are provided, for a cubic integrator and a flexible

joint robotic arm, respectively.
Other tree-based algorithms have been considered in the

literature for switched systems, albeit with different purposes.
For instance, in [8], the stability of linear switched systems
under arbitrarily switching is investigated, by generating a tree-
like structure of possible future state transitions. The work in
[21] considers a branch-and-bound approach for the discrete-
time optimal control of switched linear systems and quadratic
costs. On the other hand, (relaxed) dynamic programming
approaches were considered in [29,31]. In particular, [29]
approximates the infinite-horizon optimal control problem for
linear switched systems, and [31] develops a value iteration
approach exploiting homogeneity of the system and stage costs.
The main difference between our present paper and these
references is that we address nonlinear switched systems and
generic costs.

This paper also conveys another important message. It
illustrates how an optimal control algorithm from a different
research field, namely artificial intelligence, can be adapted and
tailored to solve an important control problem, here the near-
optimal control of nonlinear switched discrete-time systems. It
also demonstrates how control requirements, like stabilizability,
detectability and stability, can be exploited to improve the
original algorithm in terms of near-optimality guarantees and
computational budget.

Compared to the preliminary version of this work in [11],
the main novelty of this paper is the stopping criterion, while
we were using a fixed computational budget in [11] as in [16].
This change reframes every theoretical result of the paper and
provides major advantages in terms of computational cost as
illustrated in examples (see Section V). In addition, (i) the
algorithmic complexity of OPmin is now investigated, (ii) a
new case study on the optimal selection of feedback laws is
presented; (iii) additional stability and performance results are
provided.

The rest of the paper is organized as follows. Section II
formally states the problem. OPmin is presented in Section III,
where its algorithmic complexity is analyzed. In Section IV, we
analyse the near-optimality and stability properties of OPmin.
In Section V, we apply OPmin for the on-line optimal selection
of feedback laws. The proofs are provided in Section VII,
and some conclusions are drawn in Section VI. A contraction
property of the finite optimal sequence is stated in the appendix.

Notation. Let R := (−∞,∞), R≥0 := [0,∞), Z≥0 :=
{0, 1, 2, . . .} and Z>0 := {1, 2, . . .}. We use (x, y) to denote
[x>, y>]>, where (x, y) ∈ Rn × Rm and n,m ∈ Z>0. A
function χ : R≥0 → R≥0 is of class K if it is continuous,
zero at zero and strictly increasing, and it is of class K∞
if it is of class K and unbounded. A continuous function
β : R≥0×R≥0 → R≥0 is of class KL when β(·, t) is of class
K for any t ≥ 0 and β(s, ·) is decreasing to 0 for any s ≥ 0.
The notation I stands for the identity map from R≥0 to R≥0. For
any sequence u = [u0, u1, . . . ] of length d ∈ Z≥0∪{∞} where
ui ∈ Rm, i ∈ {0, . . . , d}, and any k ∈ {0, . . . , d}, we use u|k
to denote the first k elements of u, i.e. u|k = [u0, . . . , uk−1]
and u|0 = ∅ by convention. Let f : R≥0 → R≥0, we use
f (k) for the composition of function f with itself k times,



3

where k ∈ Z≥0, and f (0) = I. The Euclidean norm of a vector
x ∈ Rn is denoted by |x|. The distance of a vector x ∈ Rn to
non-empty set A is defined as |x|A := inf{|z − x| : z ∈ A}.
The transpose of a matrix A is denoted by A>. We denote
λmin(P ) and λmax(P ), the smallest and the largest eigenvalues
of a symmetric real matrix P . Given a discrete-time dynamical
system x(k+1) = g(x(k), u(k)) where x(k) ∈ Rn is the state
variable at step k ∈ Z≥0 and n ∈ Z>0, we use the compact
notation x+ = g(x, u) instead.

II. PROBLEM STATEMENT

Consider the system

x+ = fu(x), (1)

with state x ∈ Rn, control input u ∈ U where U :=
{1, . . . ,M} is a finite set of admissible inputs with M ≥ 2,
and fu : Rn → Rn for every u ∈ U . We use φ(k, x,u|k) to
denote the solution to system (1) at time k ∈ Z≥0 with initial
condition x and inputs sequence u|k = [u0, u1, . . . , uk−1],
with the convention φ(0, x, ·) = φ(0, x,∅) = x.

We consider the infinite-horizon cost

J∞(x,u) :=

∞∑
k=0

`uk(φ(k, x,u|k)), (2)

where x ∈ Rn is the initial state, u is an infinite sequence
of admissible inputs, `u : Rn → R≥0 is the stage cost given
input u ∈ U . Finding an infinite sequence of inputs which
minimizes (2) given x ∈ Rn is very difficult in general, as the
particular case of linear switched systems with quadratic stage
cost already shows [22,38]. We therefore aim at generating
sequences of inputs that nearly minimize (2) instead, in a
sense made precise in the following. For this purpose, we
revise optimistic planning (OP) as originally developed in
[16]. We call this new algorithm OPmin. Furthermore, we aim
at ensuring stability properties for the induced closed-loop
system. We ensure the robustness of this stability property
under additional regularity properties of fu and `u, which will
be made later, in Section IV-C.

The forthcoming analysis revolves around the general
stabilizability and detectability assumptions on system (1) and
stage cost ` stated next, as in, e.g., [12,13,25].

Standing Assumption 1 (SA1): There exist αV , αW ∈ K∞,
continuous functions W,σ : Rn → R≥0, and αW : R≥0 →
R≥0 continuous, non-decreasing and zero at zero, such that
the following conditions hold.

(i) For any x ∈ Rn, there exists an infinite sequence of
admissible inputs u∗∞(x), called optimal input sequence,
which minimizes (2), i.e. V∞(x) := J∞(x,u∗∗∗∞(x)), and
V∞ is such that

V∞(x) ≤ αV (σ(x)). (3)

(ii) For any x ∈ Rn, u ∈ U ,

W (x) ≤ αW (σ(x)) (4)
W (fu(x))−W (x) ≤ −αW (σ(x)) + `u(x). (5)

�

Function σ : Rn → R≥0 in SA1 is a “measuring” function
that we use to define stability, which depends on the problem.
For instance, by defining σ = | · |, σ = | · |2 or σ : x 7→ x>Qx
with Q = Q> > 0, one would be studying the stability of the
origin, and by taking σ = | · |A, one would study stability of
non-empty set A ⊂ Rn. General conditions to ensure the first
part of item (i) can be found in [19]. The second part of item
(i) is related to the stabilizability of system (1) with respect
to stage cost `u in relation to σ. Indeed, it is shown in [13,
Lemma 1] that a sufficient condition for (3) to hold is that the
stage cost `u is uniformly globally exponentially controllable
to zero with respect to σ for system (1), see [13, Definition 2].
On the other hand, item (ii) of SA1 is a detectability property
of the stage cost `u with respect to σ, and is thus not related
to item (i) of SA1. For example, when `u(x) ≥ σ(x), one
verifies item (ii) of SA1 with W = 0 and αW = I. For more
information on SA1 and “measuring” function σ, see, e.g.,
[12,13,25]. Note that we neither require `u to take values in
[0, 1] contrary to [16], nor that it is positive definite.

We are ready to present the algorithm.

III. OPMINA. Main idea
The algorithm evaluates finite-horizon costs given any initial

state x ∈ Rn

Jd(x,ud) :=

d∑
k=0

`uk(φ(k, x,ud|k)), (6)

where d ∈ Z>0 is a horizon, and ud = [u0, u1, ..., ud] ∈ Ud+1.
OPmin searches for optimal input sequences which minimizes
exactly cost (6), given state x and a state-dependent finite
horizon d(x) ∈ Z>0, that is

Vd(x)(x) := min
ud(x)

Jd(x)(x,ud(x)). (7)

We denote by u∗d(x)(x) a corresponding optimal input sequence
of length d(x), which may be non-unique. Hence, Vd(x)(x) =
Jd(x)(x,u

∗
d(x)(x)). The horizon d(x) in (7) is selected by the

algorithm itself. In particular, OPmin iteratively increases the
horizon d in (6) up to a horizon d(x), which depends on the
initial state x. Horizon d(x) corresponds to the first d-horizon
optimal cost that verifies the next criterion, i.e. d(x) is such
that

σ(φ(d(x), x,u∗d(x)(x)|d(x))) ≤ cstop(ε, x), (8)

where
• φ(d(x), x,u∗∗∗d(x)(x)|d(x)) is the state, with some abuse

of terminology1, reached by applying the finite-horizon
sequence u∗∗∗d(x)(x);

• cstop(ε, x) ≥ 0 is a stopping function, which we design
and which may depend on state vector x and a vector of
tuneable parameters ε ∈ Rnε , with nε > 0. The design
of cstop is explained in the sequel.

As we will show, by controlling the “size” of the last state
φ(d(x), x,u∗∗∗d(x)(x)|d(x)) through function cstop and parameter

1Strictly speaking φ(d(x), x,u∗∗∗
d(x)

(x)|d(x)) is the value of the solution
to (1) initialized at x ∈ Rn at step d(x) with inputs u∗∗∗

d(x)
(x).
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ε, we control directly, for each x ∈ Rn, the mismatch between
Vd(x)(x) and the optimal value function associated to cost (2)
at x, i.e. V∞(x) defined in item (i) of SA1. For d(x) to be
finite for any x ∈ Rn, we also rely on the following assumption
on cstop, which is made without loss of generality as we design
cstop.

Standing Assumption 2 (SA2): For any ε ∈ Rnε and any
x ∈ Rn with σ(x) > 0, cstop(ε, x) > 0. �

SA2 formalizes which stopping functions cstop guarantee
that OPmin terminates. Possible candidate functions are, e.g.,
cstop(ε, x) = α(σ(x)) for some α ∈ K in which case there
is no parameter ε, cstop(ε, x) = |ε|α(σ(x)), cstop(ε, x) =
|ε|, with ε ∈ R\{0}, or combinations like cstop(ε, x) =
max{|ε1|σ(x), |ε2|} for ε = (ε1, ε2) ∈ (R\{0})2 and x ∈ Rn.
We stress that cstop is not required to be positive definite,
i.e., we accept cstop(ε, x) > 0 for σ(x) = 0. By shaping
the terminating function cstop, we can tighten (or relax) near-
optimality properties as shown in the sequel.

Remark 1: Model predictive control often similarly solves
a finite-horizon problem with terminal constraints, see, e.g.,
[32] for results where the horizon is varying as in (7). Here,
not only the horizon is state-dependent, but the terminal set
constraint itself is also state-dependent. �

Altogether, given any x ∈ Rn and ε ∈ Rnε , the cost function
that OPmin explicitly calculates is denoted by

Vε(x) := Jd(x)(x,u
∗∗∗
ε(x)). (9)

We use the notation Vε in (9), instead of Vd(x), to emphasize
that the returned cost function is parameterized by ε. Likewise,
we denote by u∗∗∗ε(x) := u∗∗∗d(x)(x) a sequence of inputs that has
cost Vε(x) and verifies (8). Problem (9) is implementable when
d(x) is finite, as the input set U is finite. In this case, a brute-
force approach can solve it by developing all possible sequences.
However, this is computationally intensive, in particular when
d(x) is large, as the computational cost grows exponentially
with the horizon. OPmin instead intelligently explores the
possible sequences to solve (9) with potentially larger horizons
with the same computation budget compared to a brute-force
approach in general [16], as the computational cost for a given
horizon grows with smaller exponential base, see Section III-C.

The next statement ensures that, given any x ∈ Rn, d(x) as
defined in (8) is finite.

Proposition 1: For all x ∈ Rn and any ε ∈ Rnε , d(x) in
(8) is finite and Vε(x) in (9) is thus well-defined. �

B. Algorithm description
OPmin explores the possible choices of inputs optimistically

until the stopping condition in (8) is verified, and is inspired
by [16]. The computational resources utilized for this purpose
are denoted as a budget B ∈ Z>0, which corresponds to B+1
leaf expansions, and which adapts to the state x. We denote by
T the exploration tree from initial state x ∈ Rn, constructed
from admissible input sequences and their respective cost (6).
A leaf is a node of T with no children, and the set of all leaves
of T is denoted L(T ). At iteration i ∈ Z≥0, a leaf Li ∈ L(T )
is fully expanded. That is, for every u ∈ U , we add a child to
Li labeled by the resulting state fu(Li), which are new leaves
of T ; after this, Li is no longer a leaf, but becomes an inner

node. We denote with a slight abuse of notation u(Li) the input
sequence from the root x to the state of leaf Li. We also denote
by J(Li) := Jd(i)(x,u(Li)) the cost (6) given by the sequence
that takes x to the state of leaf Li, with d(i) := depth(Li)− 1,
where depth(·) is the number of edges (or inputs) from the root
to Li. The algorithm expands the leaf with minimal associated
cost J(L) among all non-expanded leaves L ∈ T , and we
denote such leaf by Li. The algorithm terminates when an
optimal sequence candidate is found with σ(Li) ≤ cstop(ε, x),
that is, u(Li) verifies σ(φ(d, x,u∗d(x))) ≤ cstop(ε, x), see (8).
This sequence exists according to Proposition 1. The algorithm
is formalized in Algorithm 1.

Algorithm 1 Algorithm for OPmin

Input: cstop(ε, ·), state x
Output: depth explored d(x), sequence u∗ε(x), cost Vε(x)

Initialisation:
1: d, i← −1
2: tree T ← {x,∅, 0} {the empty sequence and cost 0}

Optimistic exploration:
3: while true do
4: i = i+ 1
5: Find optimistic leaf Li ∈ arg min

L∈L(T )

J(L)

Add to T the children of Li:
6: for each child c of Li, T ← T ∪ {c,u(c), J(c)}
7: if d < depth(Li)− 1 then {Sequence u∗∗∗d+1(x) found}
8: S ← Li
9: d← depth(Li)− 1

10: if σ(Li) ≤ cstop(ε, x) then break {Leaf S selected}
11: end if
12: end while
13: B ← i
14: return d(x)← d, u∗ε(x)← u(S) and Vε(x)← J(S)

Steps in lines 5-6 of Algorithm 1 are the optimistic
exploration. Any sequence of inputs from descendants (children,
children of children and so on) of a node N will have costs J
greater than N , as `u(x) ≥ 0 for any x ∈ Rn and u ∈ U . The
optimistic choice then guarantees that J(Li+1) ≥ J(Li) for any
iteration i ∈ Z≥0. This implies that the first leaf to be expanded
at a depth d′ + 1 will be a suitable candidate for Vd(x)(x),
which is in turn tested for the terminating constraint (8). The
output cost is Vε(x), corresponding to the first finite-horizon
input sequence that verifies (8), calculated with a varying
budget B, which depends on x. Note that the expansion of
the tree is independent from the “leaf selection” step, and is
fully determined by the optimistic selection of leaves. The
terminating condition in line 10 is guaranteed to be eventually
verified when Proposition 1 holds, as formalized in the next
proposition.

Proposition 2: Let x ∈ Rn and ε ∈ Rnε , then Algorithm 1
terminates with u(S) = u∗∗∗ε(x) and J(S) = Vε(x). �

Remark 2: Compared to the version of OPmin presented in
our preliminary work [11], the computational budget is not
fixed and adapts to d(x). This has the potential advantage of
using less computations, see the example in Section V-A. �
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In the following subsection, we study the benefits of
optimistic exploration compared to a brute-force approach.
C. Algorithmic complexity

OPmin solves (9) by generating an exploration tree T . As
Algorithm 1 in general only expands certain leaves and not
others, we save computational power compared to a brute-force
approach. This is shown in the original OP [16], and we extend
that analysis here for OPmin. The computational cost of OPmin
is related to the set of leaves it may expand, which, given
x ∈ Rn, is quantified by

T ∗(x) := {ud : d ∈ Z≥0, V∞(x) ≥ Jd(x,ud)}. (10)

We call T ∗(x) the near-optimal tree at x ∈ Rn, which is
composed of all input sequences that have a cost smaller
than optimal cost V∞(x). Note that due optimistic exploration,
OPmin expands a leaf from exploration tree T with smallest
cost: no leaf with cost larger than V∞(x) may be expanded.
Hence, OPmin only considers sequences that belong to T ∗(x).
We have the next result.

Proposition 3: Let x ∈ Rn and ε ∈ Rnε , then Algorithm 1
only expands leaves with sequences in T ∗(x). �

We have then that T ∗(x) ⊂ T . We characterize the
algorithmic complexity of Algorithm 1 by the branching factor
of tree T ∗(x), defined as follows.

Definition 1: For any x ∈ Rn, the branching factor of tree
T ∗(x) is the smallest value [(x) ∈ (1,M ] for which there
exists a constant C(x) > 0 so that |T ∗d (x)| ≤ C(x) · ([(x))d,
for all d ∈ Z≥0, where |T ∗d (x)| denotes all nodes of T ∗(x) at
depth d. �

The branching factor [(x) takes values between 1 and M
for any x ∈ Rn, where M is the number of inputs. For lower
computational costs, it is desirable to have [(x) close to 1.
The branching factor [(x) depends on the problem and the
state x. For example, if one were to consider M identical
controllers, OPmin would be forced to explore all branches,
independently of system and stage cost, as no controller is
better than the others. In this case, [(x) = M for any x ∈
Rn. However, the branching factor may be much smaller in
applications, see Section V. It is hard to estimate the branching
factor a priori, but instead it can be examined a posteriori,
as done in the examples provided in Section V. Overall, in
order to find a finite optimal sequence for horizon d(x), OPmin
requires computational budget B ≤ C(x)([(x))d(x), which is
exponential (and the price to pay for a general algorithm), but
with lower cost than brute-force search when [(x) < M .

On the other hand, the choice of stopping criterion has an
important impact on the computational cost of OPmin. Indeed,
horizon d(x) is typically small when cstop is large, hence
requiring less exploration than d(x) large (and cstop small).
However, in that case, we may not have good optimality or
stability guarantees, as it will be seen in the following section.
One then has to consider the appropriate balance between
computational budget and system performance. Particular
applications may have suitable heuristics for the choice of
stopping criterion or refined node expansion strategies. In
general, this question must be studied on a case by case basis,
and is thus out-of-scope of this paper as we present a general
theory and do not concentrate on specific examples.

IV. MAIN RESULTS

In this section, we first analyze the near-optimality properties
of OPmin. We then provide conditions under which system (1),
whose inputs are generated in a receding-horizon fashion by
OPmin, exhibits stability properties. Robustness of this stability
property is ensured afterwards under mild regularity properties.
Finally, we analyse the cost along solutions to system (1)
controlled by OPmin, thereby providing performance guarantees
of the closed-loop system.

A. Relationship between Vε and V∞

Algorithm 1 is able to calculate Vε(x) exactly for any given
x ∈ Rn. However it is not obvious how Vε(x) relates to V∞(x),
which is the original optimal value function we aim for. Since
`u is not constrained to take values in a given compact set, and
we do not consider discounted costs, the tools used in [16] to
analyze this relationship are no longer applicable. We overcome
this issue by exploiting SA1 and the stopping criterion in the
next theorem.

Theorem 1: For any x ∈ Rn and ε ∈ Rnε ,

Vε(x) ≤ V∞(x) ≤ Vε(x) + vε(x), (11)

where vε(x) := αV (cstop(ε, x)) with αV from SA1. �
The lower-bound in (11) trivially holds from the optimality

of Vε(x) = Vd(x)(x) as d(x) <∞, and the fact that `u(x) ≥ 0
for any x ∈ Rn and u ∈ U . The upper-bound, on the other
hand, implies that the infinite-horizon cost is at most vε(x)
away from the finite-horizon Vε(x). The error term vε(x) is
small when so is cstop(ε, x) as αV ∈ K∞, which again we
can tune. We can therefore make Vε(x) as close as desired
to V∞(x) by adjusting cstop; the price to pay will be more
computations.

Remark 3: Compared to the term given in [16], which we
recall is γd(x)

1−γ for a discount factor γ ∈ (0, 1), vε in (11) is
finite in the absence of a discount factor. Moreover, we can
directly tune vε(x) via cstop(ε, x), which is not the case in [16].
By exploiting stabilizability and detectability properties in SA1,
we have obtained an error bound that forfeits the assumption
`u ∈ [0, 1], accepts the undiscounted case γ = 1, depends on
the selected stopping condition cstop, and is not necessarily
uniform in x. �

B. Stability

We now consider the scenario where system (1) is controlled
in a receding-horizon fashion by OPmin as defined by Algorithm
1. That is, at each time instant k ∈ Z≥0, the first element of
the optimal sequence u∗∗∗ε(xk) is calculated by OPmin, and then
applied to system (1). This leads to the closed-loop system

x+ ∈ fU∗ε (x)(x) =: F ∗ε (x), (12)

where fU∗ε (x)(x) is the set {fu(x) : u ∈ U∗ε (x)} and
U∗ε (x) :=

{
u0 : ∃u1, . . . , ud(x) ∈ U such that Vε(x) =

Jd(x)(x, [u0, . . . , ud(x)])
}

is the set of the first input of d(x)-
horizon optimal input sequences at x, with d(x) as defined in
(8). We denote by φ(k, x) a solution to (12) at time k ∈ Z≥0

with initial condition x ∈ Rn, with some abuse of notation.
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We assume next that cstop can be made small as desirable
by taking |ε| sufficiently small. As we are free to design cstop
as wanted, this is without loss of generality.

Assumption 1: There exists θ : R≥0 × R≥0 → R≥0, with
θ(·, s) ∈ K and θ(s, ·) non-decreasing for any s > 0, such that
cstop(ε, x) ≤ θ(|ε|, σ(x)) for any x ∈ Rn and ε ∈ Rnε . �

Example of functions cstop which satisfy Assumption 1 are
cstop(ε, x) = |ε|σ(x), cstop(ε, x) = max{|ε1|α(σ(x)), |ε2|} for
ε = (ε1, ε2), α ∈ K and x ∈ Rn to give a few. The next
theorem provides Lyapunov properties for system (12) that we
use to derive the main stability result afterwards.

Theorem 2: Let Y := V∞ +W , the following holds.
(i) For any x ∈ Rn,

αY (σ(x)) ≤ Y(x) ≤ αY (σ(x)), (13)

where αY := αW , αY := αV +αW , with αW , αV , αW
from SA1.

(ii) For any x ∈ Rn, ε ∈ Rnε , v ∈ F ∗ε (x),

Y(v)− Y(x) ≤ −αY (σ(x)) + αV (cstop(ε, x)) (14)

where αY = αW , with αW and αV from SA1, and cstop
comes from (8). �

Item (i) states that Y is positive definite and radially
unbounded with respect to the set {x : σ(x) = 0}. Item (ii) of
Theorem 2 shows that Y strictly decreases along the solutions
to (12) up to a perturbative term αV (cstop(ε, x)), which can
be made as small as desired by selecting |ε| close to 0 as
αV (cstop(ε, x)) ≤ αV (θ(|ε|, σ(x))), per Assumption 1.

Remark 4: Similar Lyapunov constructions are employed in
[12,13]. The difference here is that the horizon in cost (9) is
not fixed as in [12,13] and depends on the state. We circumvent
this problem in Theorem 2 by using the infinite-horizon optimal
value function V∞ in the definition of the Lyapunov function Y
(and not the finite-horizon optimal value function as in [12,13]),
which we believe is an interesting result on its own. �

The next theorem provides stability guarantees for system
(12).

Theorem 3: Consider system (12) and suppose cstop verifies
Assumption 1. There exists β ∈ KL such that, for any δ,∆ > 0,
there exists ε∗ > 0 such that for any x ∈ {z ∈ Rn : σ(z) ≤
∆} and ε ∈ Rnε with |ε| < ε∗, any solution φ(·, x) to system
(12) satisfies, for all k ∈ Z≥0

σ(φ(k, x)) ≤ max{β(σ(x), k), δ}. (15)

�
Theorem 3 provides a semiglobal practical stability property

for the set {z : σ(z) = 0}. This implies that solutions to (12),
with initial state x such that σ(x) ≤ ∆, where ∆ is any given
(arbitrarily large) strictly positive constant, will converge to
the set {z : σ(z) ≤ δ}, where δ is any given (arbitrarily small)
strictly positive constant, by taking ε∗ sufficiently close to 0,
thereby making cstop sufficiently small. An explicit formula for
ε∗ is given in the proof of Theorem 3 in Section VII, which is
nevertheless subject to some conservatism. The result should
rather be appreciated qualitatively, in the sense that (15) holds
for small enough ε∗.

By strengthening SA1, we can provide stronger proper-
ties under a particular class of stopping criterion, namely

cstop(ε, x) ≤ |ε|σ(x) for any x ∈ Rn and ε ∈ Rnε . The next
result ensures a semiglobal asymptotic stability property.

Corollary 1: Suppose the following holds.
(i) There exist L, āV , aW > 0, such that SA1 holds with

αV (s) ≤ āV s, αW (s) ≤ āW s and αW (s) ≥ aW s for
any s ∈ [0, L].

(ii) For any x ∈ Rn and ε ∈ Rnε , cstop(ε, x) ≤ |ε|σ(x).
Let ε∗ > 0 and ∆ > L be such that

ε∗ < min

{
1,
aW
āV

,
α−1
V ( 1

2αW (L))

∆

}
. (16)

Then, there exists β ∈ KL, such that, for any x ∈ {z ∈ Rn :
σ(z) ≤ ∆} and ε ∈ Rnε such that |ε| < ε∗, any solution
φ(·, x) to system (12) satisfies

σ(φ(k, x)) ≤ β(σ(x), k) (17)

for all k ∈ Z≥0. �
The stability property in (17) corresponds to (15) with δ =

0, thus ensuring a semiglobal asymptotic stability property.
Inequality (16) can always be verified by taking ε∗ small,
since the right-hand side is strictly positive. When the sublinear
properties in item (i) of Corollary 1 are valid for L =∞, we
have the next stronger result.

Corollary 2: Suppose the following holds.
(i) There exist āV , aW > 0, such that SA1 holds with

αV ≤ āV · I, αW ≤ āW · I and αW ≥ aW · I.
(ii) For any x ∈ Rn and ε ∈ Rnε , cstop(ε, x) ≤ |ε|σ(x).

Let ε∗ > 0 be such that

ε∗ <
aW
āV

. (18)

Then, for any x ∈ Rn and ε ∈ Rnε such that |ε| ≤ ε∗, any
solution φ(·, x) to system (12) satisfies

σ(φ(k, x)) ≤ āV + āW
aW

(
1− aW − |ε|āV

āV + āW

)k
σ(x) (19)

for all k ∈ Z≥0. �
Corollary 2 ensures a uniform global exponential stability

property of set {x : σ(x) = 0} for system (12). Indeed, in
(19), decay rate 1 − aW−|ε|āV

āV +āW
∈ (0, 1) as |ε| ≤ ε∗ < aW

āV

in view of (18), hence
(

1− aW−|ε|āV
āV +āW

)k
→ 0 as k → ∞.

Furthermore, the estimated decay rate can be tuned via ε from
1 to 1− aW

āV +āW
as |ε| decreases to zero.

Remark 5: Items (i)-(ii) of Corollary 2 are sufficient condi-
tions for global exponential stability. If only global asymptotic
stability is required, the stopping criterion can be selected as
cstop(ε, x) ≤ α−1

V ( 1
2αW (σ(x))) for all x ∈ Rn, where αV and

αW come from SA1. Furthermore, if only global practical
stability properties are required, the stopping criterion can be
selected as cstop(ε, x) ≤ |ε|. �

C. Nominal robustness
To ensure that the stability properties ensured in Section

IV-B are robust to so-called ρ-perturbations, as defined in, e.g.,
[20], we can rely on two conditions according to [20, Theorem
2.8]. First, the set-valued mapping F ∗ε in (12) needs to be
such that F ∗ε (x) is nonempty and compact for any x ∈ Rn.
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This is the case since U and d(x) are finite. Compactness
of F ∗ε (x) proceeds from the compactness of U∗ε (x), U∗ε (x)
being a closed non-empty subset of finite set U , given that
fu is continuous which we assume in the upcoming lemma.
Second, the Lyapunov function used to prove stability has to
be continuous. In our case, the Lyapunov function constructed
in Section IV-B is Y = V∞ + W . Since W is continuous
by SA1, we need V∞ to be continuous. The next proposition
ensures this is the case under extra conditions on fu, `u and
σ. The result follows from [25, Theorem 3] with γ = 1 and
U = {0, . . . ,M}, and its proof is therefore omitted.

Lemma 1: Suppose the following holds.
(i) fu and `u are continuous for all u ∈ U .

(ii) For every M ≥ 0, set {x : σ(x) ≤M} is compact.
Then V∞ is continuous on Rn. �

Item (ii) of Lemma 1 means that σ is radially unbounded,
which is the case when σ(x) ≥ ασ(|x|A) for any x ∈ Rn, for
a non-empty compact set A and ασ ∈ K∞.

D. Performance guarantees

In Section IV-A, we have provided relationships between the
finite-horizon cost Vε and the infinite-horizon cost V∞. This is
an important feature of OPmin, but this does not directly provide
us with information on the actual value of the cost function
(2) along solutions to (12). Indeed, we do not implement the
whole sequence u∗ε(x) given by OPmin at x in (12), instead we
proceed in a receding-horizon fashion. Therefore, we analyse
a different cost called running cost [14] defined as

V run
ε (x) :=

{ ∞∑
k=0

`U∗ε (φ(k,x))(φ(k, x)) :

φ(·, x) is a solution to (12)

}
,

(20)

where `U∗ε (φ(k,x))(φ(k, x)) is the actual stage cost incurred at
time-step k. It has to be noted that V run

ε (x) is a set, since
solutions of (12) are not necessarily unique. Each element
V run
ε (x) ∈ V run

ε (x) corresponds then to the cost of a solution
of (12). Clearly, V run

ε (x) is not necessarily finite, as the stage
costs may not decrease to 0 in view of Theorem 3. Indeed,
only practical convergence is ensured in Theorem 3 in general.
We thus first look at the average cost defined as

Vavg
ε (x) :=

{
lim
N→∞

1

N

N∑
k=0

`U∗ε (φ(k,x))(φ(k, x)) :

φ(·, x) is a solution to (12)

}
.

(21)

As before, Vavg
ε (x) is a set of possible averages, where

V avg
ε (x) ∈ V run

ε (x) is the average of a possible solution of (12).
We provide the next guarantee on each element of Vavg

ε (x).
Theorem 4: Consider system (12), and suppose Assumption

1 and Theorem 3 hold with tuple (ε∗, δ,∆). For any ε ∈ Rnε
such that |ε| < ε∗, any x ∈ {z ∈ Rn : σ(z) ≤ ∆}, and
V avg
ε (x) ∈ Vavg

ε (x), it follows that

0 ≤ V avg
ε (x) ≤ αV (θ(|ε|, δ)), (22)

where αV and θ comes from SA1 and Assumption 1, respec-
tively. �

Theorem 4 shows that, if δ is small, so is the average running
cost, and the latter can be made as close to 0 as desired by
taking |ε| small, as θ(·, δ) ∈ K according to Assumption 1 and
αV ∈ K∞. Note that the average cost associated to the infinite-
horizon cost (2) is zero as V∞(x) <∞ according to item (i) of
SA1. Hence, the mismatch between the latter and the elements
of Vavg

ε (x) can be made as small as desired. Furthermore, the
upper-bound in (22) is uniform with respect to x. Theorem
3 plays a vital role in Theorem 4, as it guarantees that the
state converges to the attractor {z ∈ Rn : σ(z) ≤ δ} from any
initial condition x ∈ {z ∈ Rn : σ(z) ≤ ∆}.

The average cost provides information about the performance
along solutions to (12) in the long run, typically once these
have converged to attractor {x ∈ Rn : σ(x) ≤ δ}. To quantify
performance in the transient, i.e. before the solution has entered
and stays forever in the attractor, we propose to consider what
we call the “cost-to-attractor” function defined as

Vcta
ε (x) :=

{
N(x)∑
k=0

`U∗ε (φ(k,x))(φ(k, x)) :

φ(·, x) is a solution to (12)

}
,

(23)

where N(x) > 0 is an integer such that for every n > N(x),
σ(φ(n, x)) ≤ δ. That is, in contrast to V run

ε (x) in (20), where
the series goes up to infinity, here we truncate the series earlier
at N(x), when the state has reached once and for all the
attractor {z ∈ Rn : σ(z) ≤ δ}. Given the semiglobal practical
stability property of Theorem 3, N(x) is well-defined for any
x ∈ {z ∈ Rn : σ(z) ≤ ∆} and any ∆ > 0, provided we
select ε∗ sufficiently small. We give the following property for
Vcta
ε (x).
Theorem 5: Consider system (12), and suppose Assumption

1 and Theorem 3 hold with tuple (ε∗, δ,∆). For any ε ∈ Rnε
such that |ε| < ε∗, any x ∈ {z ∈ Rn : σ(z) ∈ (δ,∆]}, and
V cta
ε (x) ∈ Vcta

ε (x), it follows that

0 ≤ V cta
ε (x) ≤ Vε(x) +

N(x)∑
k=0

αV
(
θ(|ε|,max{β(σ(x), k)), δ}

)
,

(24)
where αV , β and θ come from SA1, Theorem 3 and Assumption
1, respectively. �

Theorem 5 implies that the cost-to-attractor {x ∈ Rn :
σ(x) ≤ δ} at x is upper-bounded by Vε and an error term
which can be controlled by ε. In contrast to the average cost
in Theorem 4, we observe in Theorem 5 the role of the decay
rate of β on the cost-to-attractor: the faster β(x, ·) decays, the
smaller N(x) and the smaller the error term in (24).

On the other hand, when the set {x ∈ Rn : σ(x) = 0} is
globally exponentially stable as in Corollary 2, the elements
of V run

ε (x) in (20) are finite and satisfy the next property.
Theorem 6: Consider system (12) and suppose the condi-

tions of Corollary 2 hold. For any ε such that |ε| < ε∗, x ∈ Rn,
and V run

ε (x) ∈ V run
ε (x), it follows that

V∞(x) ≤ V run
ε (x) ≤ V∞(x) + wεσ(x), (25)
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with wε :=
āV
aW

(āV + āW )2 |ε|
aW − āV |ε|

, where constants

come from Corollary 2. �
The inequality V∞(x) ≤ V run

ε (x) of Theorem 6 directly
follows from the optimality of V∞. The inequality V run

ε (x) ≤
V∞(x) + wεσ(x) provides a relationship between the running
cost V run

ε (x) and the infinite-horizon cost at state x, V∞(x).
The latter inequality in (25) confirms the intuition coming from
Theorem 1 that a smaller stopping criterion leads to tighter
near-optimality guarantees. That is, when |ε| → 0, wε → 0 and
V run
ε (x) → V∞(x) for any x ∈ Rn, provided that Corollary

2 holds. In contrast with Theorem 1, stability of system (12)
plays a role in Theorem 6. Indeed, the term 1

aW−āV |ε| in the
expression of wε shows that the running cost is large when
|ε| is close to aW

āV
, hence when stability is not guaranteed the

running cost might be unbounded.
Remark 6: The running cost for the original OP was consid-

ered in [5], and it was found to perform at worst like the finite
sequence, i.e. V run

γ,d̄
(x) ≤ Vγ,∞(x) + γd̄

1−γ , where OP calculates
at x an optimal input sequence u∗∗∗

γ,d̄
(x) for finite-horizon

discounted cost Jγ,d̄(x,ud̄) =
∑d̄
k=0 γ

k`uk(φ(k, x,ud̄|k))
for some horizon d̄ ∈ Z>0 and discount factor γ ∈ (0, 1).
Compared to the bound derived for OP, the bound in Theorem 6
has similar benefits as Theorem 1, namely: we are not limited to
`u ∈ [0, 1], it is finite for undiscounted costs (γ = 1), and when
σ(x) is small follows wε ·σ(x) small. Moreover, the mismatch
is smaller for faster decays, i.e. for smaller 1− aW−|ε|āV

āV +āW
. �

Remark 7: Inequality (25) can be written as a relationship
of the finite-horizon costs in view of Theorem 6. In particular,
we have Vε(x) ≤ V∞(x) ≤ V run

ε (x) ≤ Vε(x) + wε · σ(x), for
any x ∈ Rn. Hence, Vε(x), which is returned by the algorithm
at the initial time, can be used to upper and lower bound
V run
ε (x) from the first call of OPmin at initial state x. �
Remark 8: Inequality (25) can be written as a relative

relationship of the true optimal cost [14] when σ(x) > 0, in
view of Theorem 2. In particular, we have V run

ε (x)−V∞(x)
V∞(x)+W (x) ≤

wε
aW

under the conditions of Corollary 2, which can be made as
small as desired by tunning ε. �

V. APPLICATIONS

A relevant application of the results of Sections III and IV
is when we are given a finite number of feedback laws and
we would like to optimally switch among them to minimize a
cost function given by (2), while ensuring the stability of the
closed-loop. We first discuss the general case in Section V-A
and illustrate it on a cubic integrator. We then provide results
tailored to the uniting control case [26]–[28], which we apply
to a flexible robot arm. These examples illustrate the reduced
computational effort and the desired near-optimal properties
of OPmin, compared respectively to our prior work [11] and a
to uniting control approach.

A. General case

We have the plant model

x+ = f(x, κ)

κ = g(u, x),
(26)

where x ∈ Rn is the state and κ ∈ Rnκ , nκ ∈ Z>0, is
the input generated by the feedback law. The latter is given
by κ = g(u, x), where u ∈ {1, . . . ,M} is the index of the
controller and M is the number of feedback laws. In that
way, x+ = f(x, g(u, x)), which is the same form as (1). The
objective is to select u to minimize cost (2) while ensuring
stability. We can directly apply the results of Section IV for
this purpose provided SA1 and SA2 are satisfied. An example
is provided below, where we compare the computational budget
of OPmin with the one utilised by its preliminary version in
[11].

We consider the cubic integrator from [13, Example 1],
x+

1 = x1 + u, x+
2 = x2 + u3, i.e. where (x1, x2) := x ∈ R2

and u ∈ R. It was verified in [13] that an open-loop sequence
of inputs drives the system to x = 0 in a finite number of
steps. This open-loop sequence can be expressed as three
feedback laws g(1, x) = −x1, g(2, x) = x

1
3
2 and g(3, x) =(

− 1
2 +

√
7
12

)
x

1
3
2 , which are successively applied. We propose

here to switch between these gains to minimize cost (2), with
`u(x) = |x1|3 + |x2| + |g(u, x)|3 for any x ∈ R2 and u ∈
{1, 2, 3}. Note that we cannot design a local linear quadratic
regulator for this system, due to the lack of stabilizability of
the linearized model at the origin. We therefore consider the
switched system

x+
1 = x1 + g(u, x)

x+
2 = x2 + g(u, x)3 (27)

with u ∈ {1, 2, 3}.
To apply OPmin, we need to ensure that the required

assumptions hold. The first part of item (i) of SA1 holds for the
same reasons as in [13]. By taking σ(x) = |x1|3 + |x2| for any
x ∈ R2, SA1 holds αW = I, W = αW = 0 and αV = 14I, as
in [13]. With cstop(ε, x) = |ε|σ(x) with ε ∈ R, we verify the
conditions of Corollary 2 with aW = 1, āV = 14 and āW = 0,
and, by taking any |ε| < ε∗ = aW

āV
= 1

14 ≈ 0.07, we ensure
the global exponential stability of the origin. Consequently,
Theorem 6 also holds. In particular, by taking ε = aW

2āV
=

1
28 ≈ 0.035, we derive that σ(φ(k, x)) ≤ 14

(
27
28

)k
σ(x) and

that V∞(x)− V run
ε (x) ≤ wεσ(x) holds with wε = ā2

V = 196.
For such ε and initial state x = (−1, 1.5) we observe in
simulations, see Figure 1, that both x1 and x2 converge to
zero, as ensured by Corollary 2. The bound on ε given above
is subject to some conservatism. In fact, OPmin finds the best
input sequence observed with ε as high as 1

9 ≈ 0.111, and
convergence to the origin for ε as high as 10

12 ≈ 0.833.
In Table I, we provide the estimates of V run

ε (x) for x =
(10, 15) for different choices of ε, and the associated compu-
tational budget utilized by OPmin, see Section III-B for the
definition of the budget. In particular, we denote by Bmax the
maximum utilized budget and by Bavg the average budget,
i.e. the mean of budgets across time steps of the simulation.
Moreover, we provide an estimate [̂(x) of branching factor [(x)

defined in Section III-C. Here, we estimate [̂(x) for exploration
tree T at x as 1

d(x)

∑d(x)
k=1

|Tk|
|Tk−1| , i.e. the average growth rate

of exploration tree T . The calculated running cost becomes
smaller when we decrease parameter ε, which is consistent
with Theorem 6. We also see how the computational budget B
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Fig. 1: State and input evolution for OPmin with ε = 0.035
and x = (−1, 1.5).

adapts to fulfill the stopping criterion. This is a clear advantage
over the preliminary version of OPmin in [11], where budget was
fixed in such way to guarantee that the horizon explored was
large enough to guarantee stability. A budget of B ≥ 373−1

2
was required in [11, Corollary 2] to ensure stability in this
problem, which is clearly unfeasible. Here, as we do not have
to estimate the budget a priori, we do not have to assume the
worst case branching factor, M = 3, or conservative horizon,
d(x) ≥ 72. Instead, the algorithm now leverages the true
branching factor [(x) ≈ 1.4 of the near optimal tree T ∗(x), as
indicated by the empirical observation that [̂(x)→ 1.4 when
ε→ 0 in Table I, and adapts the required horizon on the fly,
hence the significant reduction in computational budget. On
the other hand, OPmin as in [11] has the advantage that the
budget is fixed in advance, which may be suitable for some
real-time implementations, given that good estimates of the
branching factor and required horizon are available a priori.

ε V run
ε (x) Bmax Bavg [̂(x)

5 ∞ 2 2 —
0.910 57770 460 159.4 1.977
0.830 22697 460 137.7 1.977
0.590 13757 790 222.2 1.948
0.145 13757 4762 2289.5 1.664
0.110 12609 4762 1986.6 1.664
0.070 12609 4762 1986.6 1.664
0.035 12609 9095 4503.9 1.527
0.001 12609 14695 11265 1.392

TABLE I: Estimated running cost of OPmin, associated com-
putational budget utilized by OPmin, and average branching
factor along solutions for various values of ε and initial state
x = (10, 15). Symbol “∞” signifies that the cost is infinite
(i.e. the state does not converge to zero). Symbol “—” implies
that the estimate branching factor is undefined, since d(x) = 0.

B. A uniting control approach

A particular instance of Section V-A is when M = 2 and
one controller is locally optimal for cost (2), and corresponds
to u = 1, and the other has global stability properties and has
index u = 2, like in uniting control [26]–[28]. Then OPmin
can be used to optimally switch between these controllers as
explained next.

1) Main result : We consider system (26) where x ∈ Rnx
is the state, κ ∈ Rnκ is the feedback law output, which
is parameterized by u ∈ {1, 2}, nκ ∈ Z>0. Vector field f
is assumed to be continuously differentiable. We focus on

quadratic infinite-horizon costs of the form

J∞(x,u) =

∞∑
k=0

φ>k Qφk + κ>k Rκk, (28)

where φk and κk are respectively, with some abuse of notation,
the state and input the given feedback law at time-step k ∈ Z≥0

and sequence of controller choices u := [u0, u1, . . .], and
Q ∈ Rnx×nx , R ∈ Rnκ×nκ are symmetric and positive definite
matrices. We aim to minimize (28) over the choices of u. We
assume that the global controller satisfies the next properties.

Assumption 2: There exists P ∈ Rnx×nx symmetric, posi-
tive definite matrix and a, b > 0 such that, for U : x 7→ x>Px,
the following hold for any x ∈ Rn.

(i) U(f(x, g(2, x)))− U(x) ≤ −aU(x).
(ii) |g(2, x)| ≤ b|x|. �

Item (i) of Assumption 2 implies that U is an exponential
Lyapunov function for system x+ = f(x, g(2, x)). Item (ii)
of Assumption 2 means that the norm of the feedback law
is upper-bounded by a linear term in |x|, which is the case
when g(2, x) is linear for instance. Design techniques to verify
Assumption 2 can be found in, e.g., [2,6,10,17], for given
classes of systems.

To design the local optimal feedback law, we rely on the
next assumption.

Assumption 3: Let A := ∂f
∂x |(0,0) and B := ∂f

∂u |(0,0). The
pair (A,B) is stabilizable. �

In view of Assumption 3, we can design the optimal
controller for the linearized model of (26) at the origin,
i.e. x+ = Ax + Bu and cost ˜̀(x, κ) = x>Qx + κ>Rκ,
where Q,R come from (28). This local controller is given by
g(ulocal, x) = −Kx for any x ∈ Rm with K := (B>PlocalB+
R)−1B>PlocalA. Matrix Plocal is the unique solution of the
discrete Riccati equation Plocal = A>PlocalA−A>PlocalB(R+
B>PlocalB)−1B>PlocalA+Q.

Remark 9: The conditions of Assumption 2 can be relaxed.
Possible extensions include the cases where the stage cost
in (28) is only quadratic in a neighborhood of the origin, or
where the global controller only ensures stability properties
with respect to a neighborhood of the origin. These extensions
are left for future work not to blur the main message of this
paper. �

We choose the stopping criterion as cstop(ε, x) = |ε|x>Px,
with P from Assumption 2, for any x ∈ Rnx and some ε ∈
R\{0}.

The next statement guarantees that the standing assumptions
stated in Sections II and III are verified.

Proposition 4: Consider system (26) where Assumption 2
is verified. The following hold.

(i) SA1 is verified with σ(x) = x>Px for any x ∈
Rn, αW := λmin(Q)

λmax(P ) , αV := ν1

1−e−ν2 I for ν1 :=
λmax(Q)+bλmax(R)

λmin(P ) , ν2 := ln (1− a)
−1 and W = αW :=

0.
(ii) SA2 and Assumption 1 are verified with θ(ε, σ(x)) =

εσ(x), for any x ∈ Rn and ε ∈ R\{0}. �
As a result, we can tune ε according to Corollary 2 to endow

the corresponding system (26) with global exponential stability
and performance guarantees as formalized next.
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Proposition 5: Consider system (26) where Assumption 2 is
verified. Let ε ∈ (0, aWāV ), where āV = ν1

1−e−ν2 , aW = λmin(Q)
λmax(P )

with Q from (28), P from Assumption 2 and ν2, ν1 from
Proposition 4. Let σ(x) = x>Px for any x ∈ Rnx . The
following hold for any x ∈ Rn.

(i) For any k ∈ Z≥0, σ(φ(k, x)) ≤
āV
aW

(
1 + ε− aW

āV

)k
σ(x).

(ii) |V run
ε (x)− V∞(x)| ≤ ā3

V

aW

ε

aW − āV ε
. �

Proposition 5 is the application of Corollary 2 and Theorem
6, its proof is therefore omitted.

Remark 10: We do not show that we recover the properties
of the local optimal controller in a neighborhood of the origin.
This is left for future work, however we illustrate next that in
simulations this is indeed the case. �

2) Example: We consider the flexible joint robotic arm model
from [34, Section 4], discretized by an Euler scheme with
T > 0, that gives

x+ = x+ T (Apx+Bpκ− Epφ(x)), (29)

where x ∈ R4, κ ∈ R1,

Ap =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −16.17 0

 , (30)

Bp = (0, 21.6, 0, 0), Ep = (0, 0, 0, 3.33). System (29) has a
nonlinearity of type Lur’e, due term φ(x) = x3 + sin(x3). We
fix T = 0.1. The infinite-horizon cost is given by

J∞(x,uuu) :=

∞∑
k=0

φ>k Qφk +Rκ2
k, (31)

where Q = I4×4, with I4×4 is the identity matrix of dimension
4, and R = 1. The jump map of system (29) is continuously
differentiable at the origin, and the linearized system at
the origin is controllable. Hence, Assumption 3 is verified
and we design a local controller g(1, x) = −Klocalx that
optimizes (31) for linear system of (29) around the origin
(ulocal = 1), as in Subsection V-B.1. On the other hand, we
design the global controller g(2, x) = −Kglobalx with Kglobal =
[3.6 , 0.9 , −1.5 , 0.3], which verifies LMI conditions found
in [10, Theorem 2]. In fact, we slightly modify the LMI2 in
[10, Theorem 2] to guarantee U(f(x,−Kglobalx)) − U(x) ≤
−a′(x>Qx + x>KglobalRKglobalx) for some a′ > 0. This is
done to ensure a less conservative estimate than Proposition
5 and conclude that cost (28) for u = 2 is given (and upper-
bounded) by
∞∑
k=0

x>k Qxk + xk>KglobalRKglobalx ≤
1

a′
x>Px =: āV σ(x),

where

P = 104 ·


5.31 0.35 −2.62 0.96
0.35 0.03 −0.20 0.05
−2.62 −0.20 2.97 −0.24
0.96 0.05 −0.24 0.27

 . (32)

2By adding a(Q+K>globalRKglobal), where a > 0 is a decision variable,
to the block −P of the LMI from [10, Theorem 2]

We calculate aW =
λmin(Q)

λmax(P )
= 1.40 · 10−5 and āV =

1

a′
=

0.0504 and SA1 holds with W = āW = 0, similarly as in
Proposition 5. Take cstop(ε, x) = |ε|x>Px with ε ∈ R\{0}
for any x ∈ Rn, hence SA2 holds. Moreover Assumption 1
holds with θ(|ε|, σ(x)) = cstop(ε, x). Therefore Corollary 2
and Theorem 6 follow by taking ε ∈ (0, aWāV ), where aW

āV
=

2.77 · 10−4. Hence, for inputs of system (29) given by

κ = g(u, x) =

{
−[0.6, 0.6,−0.7,−0.2]x when u = 1

−[3.6, 0.9,−1.5, 0.3]x when u = 2,

we can utilize OPmin to unite both controllers which, given
an appropriate choice of ε, will calculate uk ∈ {1, 2}
that preserves the global stability ensured by feedback law
x 7→ g(2, x) while having the option to utilize the locally
optimal controller g(1, xk). We choose ε = 10−9. In Figure
2, we simulate the closed-loop system with initial state x0 =
(10, −10, −10, −10), with input κ either given by OPmin, the
local controller or the global controller. We observe that: 1)
the local controller indeed only locally stabilizes the origin, as
the state fails to converge to the origin; 2) OPmin prioritizes the
local controller, but opts for the global stabilizing one when
necessary, see Figure 3.

In Table II, we compare the running cost of OPmin versus
the running costs obtained with the local and global controllers,
respectively. We observe that OPmin outperforms both the local
and global controller. We also compare OPmin to a uniting
controller in Table II. The uniting controller is implemented
by employing the global controller when σ(x) ≥ ξ and the
local one when σ(x) < ξ, with ξ = 106 and no hysteresis.
The threshold is a priori large. However, since σ(x) = x>Px
with λmax(P ) ≈ 7 · 107, the switch to the local controller only
happens when the state is close to 0, as desired. Interestingly,
OPmin also outperforms the uniting controller. We point to
Figure 3 for a simple explanation: in spite of the large state,
OPmin first selects u = 1, only briefly selecting u = 2. OPmin
is free to chose the most (optimally) favourable controller. On
the other hand, the uniting controller has to employ the global
controller for large states, which is sub-optimal. Similar results
have been obtained for various values of ξ from 107 to 102.
Moreover, we have observed an average branching factor [̂(x)
of 1.032 across the 4 given initial states, which is significantly
smaller than the worst case M = 2 (and close to the best
possible value, 1, on which T ∗ contains a single path).

Fig. 2: σ(φ(·, x)) for inputs given by OPmin, g(1, x) and g(2, x)
for x0 = −10 · (−1, 1, 1, 1).
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Fig. 3: Input selection of OPmin for x0 = −10 · (−1, 1, 1, 1).

Controller
OPmin Local Global Uniting

−10 · (−1, 1, 1, 1) 70453 ∞ 83365 83295
Initial
States

10 · (1, 1, 1, 1) 15714 ∞ 16046 15998
(1, 1, 1, 1) 49.75 49.75 203.77 49.75
−(1, 2, 3, 4) 682.48 682.48 791.3 751.79

TABLE II: Estimated running cost for the different controllers
and various initial conditions. The symbol “∞” implies that
the state is not converging towards the origin, hence the cost
explodes. The minimum of each line is given in bold.

VI. CONCLUSION

We have presented and analysed a planning-based approach
for the near-optimal, stable control of general nonlinear
switched discrete-time systems where the control input is the
switching signal. It will be interesting in future work to study
the potential of OPmin for stochastic problems inspired by [4].
Another path of interest would be to further study the stopping
criterion and conservatism in the bound of ε∗. For example, this
could be done by studying the particular case of linear switched
systems with quadratic stage costs, in which we could then
compare with the related literature, e.g., [1,30,37]. A more in-
depth analysis of the optimally uniting control problem would
also be a relevant research direction, see Remark 10.

VII. PROOFS
A. Proof of Proposition 1

Let x ∈ Rn and ε ∈ Rnε . In view of Lemma 2 in the
appendix, we distinguish two cases. When σ(x) = 0, it
follows that σ(φ(d, x,u∗d(x))) ≤ α−1

W ◦
(
I− αY ◦ α−1

Y

)d ◦
αY (0) = 0 for any d ∈ Z>0 according to item (i)
of Lemma 2. Hence, σ(φ(d, x,u∗d(x))) ≤ cstop(ε, x) for
any d ∈ Z>0 since cstop(ε, x) ≥ 0. When σ(x) > 0,
σ(φ(d, x,u∗d(x))) ≤ α−1

W ◦
(
I− αY ◦ α−1

Y

)d ◦ αY (σ(x))
and this upper-bound can be made arbitrarily close to
0 by increasing d, according to item (iii) of Lemma 2.
Hence, there exists a finite d sufficiently large such that
σ(φ(d, x,u∗d(x))) ≤ α−1

W (
(
I− αY ◦ α−1

Y

)d
(αY (σ(x))) ≤

cstop(ε, x) as cstop(ε, x) > 0 for σ(x) > 0, and we take
u∗∗∗ε(x) = u∗∗∗d(x). Thus, for any x ∈ Rn and ε ∈ Rnε there is a
finite d ∈ Z>0 such that σ(φ(d, x,u∗ε(x))) ≤ cstop(ε, x). As a
consequence, d(x) in (8) is finite and so is Vε in (9).

B. Proof of Proposition 2
Let x ∈ Rn and ε ∈ Rnε . First, we show that S exactly

calculates cost V ∗d′ := Jd′(x,u
∗
d′(x)) for some d′ ∈ Z>0.

The optimal property of output S to Algorithm 1 is fully
determined in the particular iteration in which it is updated.
Hence, let Ti be the tree to be expanded at iteration i ∈ Z≥0,
in which S is updated. We show now that the selected leaf
S with cost J(S), where J(S) is the cost associated to leaf
S, attains the optimum of horizon d′ := depth(S)− 1, that is
J(S) = V ∗d′ . Since V ∗d′ ≤ J(S) by the optimality of u∗d′(x), it
suffices to prove V ∗d′ ≥ J(S). For this purpose, we proceed by
contradiction, and we assume that V ∗d′ < J(S). It follows from
the fact that the input set U is finite that a sequence that attains
the optimum V ∗d′ exists, i.e. there is a node N 6= S, decedent
of root x and possibly not in Ti, with cost J(N) = V ∗d′ .
Since `u(x) ≥ 0 for any x ∈ Rn and u ∈ {1, . . . ,M}, any
ancestor (parents, parents of parents and so on) of N will
have a lower cost than J(N). Hence, let L′i be the ancestor
of N such that L′i ∈ L(Ti), thus J(L′i) ≤ J(N). Then, we
have J(L′i) ≤ J(N) = V ∗d′ < J(S), that is J(L′i) < J(S).
However, S is the optimistically chosen leaf S = Li, and
J(S) = J(Li) ≤ J(L) for any leaf L ∈ L(Ti), hence for leaf
L′i, it follows that J(L′i) < J(S) ≤ J(L′i), which is impossible.
We have attained a contradiction, therefore V ∗d′ < J(S) is
false, which implies J(S) ≤ V ∗d′ and since V ∗d′ ≤ J(S), we
conclude V ∗d′ = J(S). J(S) ≤ V ∗d′ and since V ∗d′ ≤ J(S),
we conclude Vd′(x) = J(S). Thus, at every update of S, a
new optimal sequence is found with increased horizon d′ ←
d′+1. By Proposition 1, d(x) is well-defined and there exists a
sequence u∗∗∗d(x)(x) =: u∗∗∗ε(x) such that σ(φ(d(x), x,u∗∗∗ε(x))) ≤
cstop(ε, x). In other words, σ(Li) ≤ cstop(ε, x) is bound to be
verified in a finite number of expansion, and d(x) as defined
in (8) holds with d(x) = depth(Li) − 1 holds. Therefore,
Algorithm 1 is guaranteed to terminate, with outputs d(x) and
S = {φ(d(x), x,u∗∗∗ε(x)),u∗∗∗ε(x), Vε(x)} fully determined.

C. Proof of Proposition 3
Let x ∈ Rn and ε ∈ Rnε . First, note that the root in the

exploration tree T of Algorithm 1 is always expanded, and
corresponds to the empty sequence in T ∗(x). Moreover, for
any exploration tree T of Algorithm 1, there exists a leaf
L′ ∈ L(T ) such that J(L′) ≤ V∞(x). Indeed, a truncated
subsequence of u∗(x) will do. At iteration i, due to optimistic
exploration, Algorithm 1 selects leaf Li such that J(Li) ≤
J(L) for all L ∈ L(T ), hence J(Li) ≤ J(L′) ≤ V∞(x).
Thus, by definition of (10), u(Li) is in T ∗(x) and the proof
is complete.

D. Proof of Theorem 1
Let x ∈ Rn and ε ∈ Rnε , d(x) ∈ Z>0 as in (8),

optimal sequence [u∗0, u
∗
1, . . . , u

∗
d(x)] := u∗∗∗ε(x), cost Vε(x)

defined in (9) are well-formed by Proposition 1. Since Vε
is a finite-horizon optimal cost, Vε(x) ≤ V∞(x). On the
other hand, consider the infinite-horizon sequence u =
[u∗0, u

∗
1, . . . u

∗
d(x)−1,u

∗∗∗
∞(φ(d(x), x,u∗∗∗ε(x)|d(x)))] which exists

by item (i) of SA1. It follows from the optimality of V∞(x)
that V∞(x) ≤ J∞(x,u), and from the definition of u that
J∞(x,u) = Vε(x) + V∞(φ(d(x), x,u∗∗∗ε(x)|d(x))), which is
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finite. By invoking item (i) of SA1, we derive V∞(x) ≤
Vε(x) +αV (σ(φ(d(x), x,u∗∗∗ε(x)|d(x)))), and, by the definition
of d(x) in (8), V∞(x) ≤ Vε(x) + αV (cstop(ε, x)).

E. Proof of Theorem 2

Let ε ∈ Rnε , x ∈ Rn and v ∈ F ∗ε (x), which is well-defined
in view of Proposition 1. There exists [u∗0, u

∗
1, . . . , u

∗
d(x)] =

u∗ε(x) such that v = fu∗0 (x) and u∗ε(x) is an optimal input
sequence for system (1) and cost (6) with horizon d(x), which
also verifies (8). Hence Vε(x) = Jd(x)(x,u

∗
ε(x)).

From items (i) and (ii) of SA1, we have Y(x) = V∞(x) +
W (x) ≤ αV (σ(x)) + αW (σ(x)) =: αY (σ(x)). On the other
hand, we have from item (ii) of SA1 that αW (σ(x)) ≤W (x)+
`u∗0 (x) since W (fu∗0 (x)) ≥ 0. This implies that αW (σ(x)) ≤
W (x) + Vε(x) ≤ W (x) + V∞(x) = Y(x). Hence item (i) of
Theorem 2 holds with αY = αW .

Consider the sequence û := [u∗1, u
∗
2, . . . , u

∗
d(x)−1, ū]

where ū := u∗∞(φ(d(x), x,u∗ε(x)|d(x))), u∗ε(x)|d(x) =
[u∗0, . . . , u

∗
d(x)−1] and φ denotes the solution of system (1). The

sequence û consists of the first d(x) elements of u∗ε(x) after
u∗0, followed by an optimal input sequence of infinite length at
state φ(d(x), x,u∗∗∗ε(x)|d(x)), which exists according to item (i)
of SA1. Sequence ū minimizes J∞(φ(d(x), x,u∗∗∗ε(x)|d(x)), ū)
by virtue of item (i) of SA1. From the definition of cost Jd in
(6) and V∞(v) in view of item (i) of SA1,

V∞(v) ≤ J∞(v, û)

= Jd(x)−1(v, û|d(x)−1)

+ J∞(φ(d(x)− 1, v, û|d(x)−1), ū).

(33)

From Bellman optimality principle, we have
Vε(x) = Vd(x)(x) = `u∗0 (x) + Vd(x)−1(v) =
`u∗0 (x) + Jd(x)−1(v, û|d(x)−1), hence

Jd(x)−1(v, û|d(x)−1) = Vε(x)− `u∗0 (x). (34)

Moreover, by item (i) of SA1,

J∞(φ(d(x)− 1, v, û|d(x)−1), ū)

≤ αV (σ(φ(d(x)− 1, v, û|d(x)−1))). (35)

Consequently, in view of (33), (34) and (35),

V∞(v) ≤ Vε(x)− `u∗0 (x)

+ αV (σ(φ(d(x)− 1, v, û|d(x)−1))). (36)

Since φ(d(x) − 1, v, û|d(x)−1) = φ(d(x), x,u∗∗∗ε(x)|d(x))
and (8) holds, σ(φ(d(x) − 1, v, û|d(x)−1)) =
σ(φ(d(x), x,u∗∗∗ε(x)|d(x))) ≤ cstop(ε, x). Therefore,

V∞(v) ≤ Vε(x)− `u∗0 (x) + αV (cstop(ε, x)). (37)

By Theorem 1, Vε(x) ≤ V∞(x), thus

V∞(v) ≤ V∞(x)− `u∗0 (x) + αV (cstop(ε, x)). (38)

By invoking item (ii) of SA1, we derive V∞(v) + W (v) ≤
V∞(x) +W (x)−αW (σ(x)) +αV (cstop(ε, x)), and since Y =
V∞ +W , the proof is completed with αY := αW .

F. Proof of Theorem 3
Let ∆, δ > 0. We select ε∗ > 0 such that

θ(ε∗, α−1
Y (∆̃)) < α−1

V (
1

2
α̃Y (δ̃)), (39)

where α̃Y := αW ◦ α−1
Y , ∆̃ := αY (∆), δ̃ :=

(
I− α̃Y

2

)−1

◦

αY (δ) and θ comes from Assumption 1. Note that
(
I− α̃Y

2

)−1

is indeed of class K∞ as we assume without loss of generality
that3 I − α̃Y ∈ K∞, hence I − α̃Y + α̃Y

2 ∈ K∞ and
so is its inverse. Inequality (41) can always be verified by
taking ε∗ sufficiently small since θ(·, α−1

Y (∆̃)) ∈ K, and
α−1
V ( 1

2 α̃Y (δ̃)) > 0. It follows from θ(·, s) ∈ K for any
s > 0 and θ(s, ·) is non-decreasing for any s ≥ 0, that
θ(|ε|, α−1

Y (s)) ≤ θ(ε∗, α−1
Y (∆̃)) for any s ∈ [0, ∆̃] and

|ε| < ε∗. Furthermore, from Assumption 1 and item (i) of
Theorem 2, we derive cstop(ε, x) ≤ θ(|ε|, α−1

Y (Y(x))). Thus,
in view of (39),

cstop(ε, x) ≤ α−1
V

(
1

2
α̃Y (δ̃)

)
(40)

for any x such that Y(x) ≤ ∆̃. On the other hand, we have
α−1
V ( 1

2 α̃Y (δ̃)) ≤ α−1
V ( 1

2 α̃Y (s)) for any s ∈ [δ̃,∞). Hence, for
any x ∈ Rn such that Y(x) ∈ [δ̃, ∆̃] and |ε| < ε∗,

αV (cstop(ε, x)) ≤ α̃Y (δ̃)

2
≤ α̃Y (Y(x))

2
. (41)

Let x ∈ Rn with σ(x) ≤ ∆ and v ∈ F ∗ε (x). In view of (40)
and items (i) and (ii) of Theorem 2,

Y(v)− Y(x) ≤ −α̃Y (Y(x)) + αV (cstop(ε, x)). (42)

Since σ(x) ≤ ∆, Y(x) ≤ αY (σ(x)) ≤ αY (∆) = ∆̃. Consider
Y(x) ∈ [0, δ̃). Since cstop(ε, x) ≤ α−1

V ( 1
2 α̃Y (δ̃)) holds for

Y(x) ≤ ∆̃, it holds here. Furthermore, since I − α̃Y ∈ K∞
holds without loss of generality, and in view of (42),

Y(v) ≤ Y(x)− α̃Y (Y(x)) + αV (θ(ε∗, σ(x)))

≤ (I− α̃Y ) (δ̃) +
1

2
α̃Y (δ̃).

(43)

Given the definition of δ̃,

Y(v) ≤
(
I− α̃Y

2

)
(δ̃) = αY (δ). (44)

When4 Y(x) ≥ δ̃, we derive from (41) that −α̃Y (Y(x)) +
αV (cstop(ε, x)) ≤ − 1

2 α̃Y (Y(x)). Thus, from (42),

Y(v)− Y(x) ≤ − 1
2 α̃Y (Y(x)). (45)

In view of (44) and (45), it follows for any k ∈ Z≥0 that

Y(φ(k + 1, x)) ≤ max
{

(I− 1
2 α̃Y )(Y(x)), αY (δ)

}
, (46)

3If that is not the case we can always find α′ ∈ K∞ such that I− α̃Y ≤
I − α′. Indeed, as αY = αW = αY ≤ αY holds from (i), which in turn
implies αY ◦ α−1

Y ≤ I, hence s − αY ◦ αY (s) ≥ 0 for all s ≥ 0 and
equality holds if and only if s = 0. Therefore there exists α′ ∈ K∞ such that
I− α′ ∈ K∞ and I− αY ◦ α−1

Y ≤ I− α′, by Lemma B.1 [18]. A similar
property is derived in [15].

4It might be of interest to assume αY (δ) ≤ ∆̃ as to the set {x : Y(x) ≥ δ̃}
be non-empty, but it is not necessary.
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where φ(k, x) is a solution starting at x for system (12).
Furthermore, when Y(x) ≤ αY (δ), Y(v) ≤ αY (δ) follows.
Indeed, if Y(x) ∈ [δ̃, ∆̃], Y(v) ≤ Y(x) ≤ αY (δ) from (45),
and if Y(x) ∈ [0, δ̃), we deduce Y(v) ≤ αY (δ) from (44).
Hence the set {z ∈ Rn : Y(z) ≤ αY (δ)} is forward invariant
for system (12). By iterating (46), we obtain

Y(φ(k, x)) ≤ max
{
β̃(Y(x), k), αY (δ)

}
, (47)

where β̃(s, k) =
(
I− 1

2 α̃Y
)(k)

(s) for any s ≥ 0, with β̃ ∈
KL as limk→∞

(
I− 1

2 α̃Y
)(k)

(s) = 0 for any s ≥ 0 per the
proof of item (ii) of Lemma 2 from the Appendix, since(
I− 1

2 α̃Y
)

(s) < s for s > 0 and
(
I− 1

2 α̃Y
)

(0) = 0. Finally,
invoking αY (σ(x)) ≤ Y(x) ≤ αY (σ(x)), we deduce

σ(φ(k, x)) ≤ max
{
α−1
Y

(
β̃(αY (σ(x)), k)

)
, δ
}
. (48)

Thus (15) holds with β(s, k) = α−1
Y

(
β̃(αY (s), k)

)
for any

s ≥ 0 and k ∈ Z≥0.

G. Proof of Corollary 1
Let ∆ > 0, x ∈ Rn be such that σ(x) ≤ ∆. We select ε∗

as in (16) and let ε ∈ Rnε such that |ε| ≤ ε∗ and v ∈ F ∗ε (x).
Note that ε∗ in (16) is well defined since the right-hand side is
strictly positive. We will follow the same arguments as proof of
Theorem 3, however applying the sublinear bounds of Corollary
1. From item (ii) of Theorem 2, Y(v)−Y(x) ≤ −αW (σ(x))+
αV (cstop(ε, x)). We use the following strategy. First, we show
that Y(v) − Y(x) ≤ − µ

āV +āW
Y(x) holds for some µ > 0

when σ(x) ∈ [0, L] since ε∗ < aW
āV

. Then, we show that
Y(v)−Y(x) ≤ − 1

2 α̃Y (Y(x)) holds for α̃Y = αW ◦α−1
Y when

σ(x) ∈ (L,∆], given ε∗ <
α−1
V (

1
2αW (L))

∆ . To conclude, we
combine the two inequalities and we defer to the proof of
Theorem 3.

Let, for the moment, x be such that σ(x) ≤ L. From item (i)
of Corollary 1, we have that −αW (σ(x)) ≤ −aWσ(x) holds
as σ(x) ≤ L, and similarly that αV (cstop(ε, x)) ≤ āV |ε|σ(x),
since |ε|L < ε∗L < L follows from item (ii) of Corollary 1
and (16). It follows then that Y(v) − Y(x) ≤ −αW (σ(x)) +
αV (cstop(ε, x)) ≤ (−aW + āV |ε|)σ(x) holds. Since |ε| ≤ ε∗ <
aW
āV

, we derive −aW + āV |ε| < 0, hence, there exists µ > 0
such that −aW + āV |ε| < −µ. We derive Y(v) − Y(x) ≤
−µσ(x). On the other hand, we have Y(x) ≤ αY (σ(x)) ≤
(āV + āW )σ(x) in view of item (i) of Theorem 2, hence,
−(āV + āW )σ(x) ≤ −Y(x). Since µ > 0, we derive

Y(v)− Y(x) ≤ − µ

āV + āW
Y(x). (49)

When σ(x) ∈ (L,∆], it follows that Y(v) − Y(x) ≤
−αW (σ(x))+αV (cstop(ε, x)) ≤ −αW (σ(x))+αV (ε∗∆) from

item (ii) of Corollary 1. As ε∗ <
α−1
V (

1
2αW (L))

∆ , αV (ε∗∆) <
1
2αW (L) holds. Since σ(x) > L and αW ∈ K∞, we have that
1
2αW (L) < 1

2αW (σ(x)), hence αV (ε∗∆) < 1
2αW (σ(x)) and

Y(v) − Y(x) < −αW (σ(x)) + 1
2αW (σ(x)) = − 1

2αW (σ(x)).
Then, in view of item (i) of Theorem 2, we have Y(x) ≤
αY (σ(x)) that implies αW ◦ α−1

Y (Y(x)) ≤ αW (σ(x)), and
conclude

Y(v)− Y(x) ≤ −1

2
α̃Y (Y(x)), (50)

where α̃Y = αW ◦ α−1
Y .

We have found that Y(v)− Y(x) decreases for all Y(x) ∈
(0, αY (∆)]. In particular, by − µ

āV +āW
Y(x) for σ(x) ∈ [0, L]

and by − 1
2 α̃Y (Y(x)) elsewhere, that is Y(v) − Y(x) ≤

−min
{

µ
āV +āW

I, 1
2 α̃Y

}
(Y(x)). The desired result is then

derived by following the final steps of Theorem 3 to construct
β.

H. Sketch of proof of Corollary 2

Let x ∈ Rn. We select ε∗ as in (18) and let ε ∈ Rnε such
that |ε| ≤ ε∗ and v ∈ F ∗ε (x). In particular, we have shown
that Y(v)− Y(x) ≤ − µ

āV +āW
Y(x) holds for σ(x) ∈ [0, L) in

Corollary 1. In this proof, we derive from (18) that Y(v) −
Y(x) ≤ −

(
aW−|ε|āV
āV +āW

)
Y(x) holds for any σ(x) ≥ 0. Note

that we do not require ε∗ < 1 since αV (|ε|σ(x)) ≤ āV |ε|σ(x)
is guaranteed to hold for any x ∈ Rn and ε ∈ Rnε . We now
proceed with the same argument as the proof of Corollary 2
in [25]. Let x ∈ Rn and denote φ(k, x) be a corresponding
solution to (12) at time k ∈ Z≥0, it holds that Y(φ(k, x)) ≤(

1− aW−|ε|āV
āV +āW

)k
Y(x). Since Y(x) ≥ αW (σ(x)) ≥ aWσ(x)

and Y(x) ≤ αY (σ(x)) ≤ (āV + āW )σ(x) holds from item (i)
of Theorem 2 and item (i) of Corollary 2 for any x ∈ Rn,

it follows from Y(φ(k, x)) ≤
(

1− aW−|ε|āV
āV +āW

)k
Y(x) that

aWσ(φ(k, x)) ≤
(

1− aW−|ε|āV
āV +āW

)k
(āV + āW )σ(x) hence

σ(φ(k, x)) ≤ āV +āW
aW

σ(x)
(

1− aW−|ε|āV
āV +āW

)k
and the proof

is concluded.

I. Proof of Theorem 4

Let ∆, δ > 0, x ∈ Rn such that σ(x) ≤ ∆. We select ε∗

as in Theorem 3. Let ε ∈ Rnε such that |ε| < ε∗, φ(k +
1, x) ∈ F ∗ε (φ(k, x)) for any k ∈ Z≥0 where φ is a solution to
(12) initialized at x. For the sake of convenience, we denote
`(x, u) := `u(x) for any u ∈ U . Consider

V avg
ε (x) = lim

N→∞

1

N

N∑
k=0

`(φ(k, x), urk), (51)

where urk ∈ U∗ε (φ(k, x)) such that φ(k+ 1, x) = furk(φ(k, x)).
Note that indeed V avg

ε (x) ∈ Vavg
ε (x). The lower-bound 0 ≤

V avg
ε (x) in (22) follows immediately from `(x, u) ≥ 0 for any
x ∈ Rn and u ∈ U . On the other hand, we derive from (37)
that, for any k ∈ Z≥0,

V∞(φ(k + 1, x))− Vε(φ(k, x))

≤ −`(φ(k, x), urk) + αV (cstop(ε, φ(k, x))).
(52)

Hence

`(φ(k, x), urk) ≤ Vε(φ(k, x))− V∞(φ(k + 1, x))

+ αV (cstop(ε, φ(k, x))), (53)



14

from which we deduce, for any N ≥ 0,
N∑
k=0

`(φ(k, x), urk)

≤ Vε(φ(0, x))− V∞(φ(1, x)) + αV (cstop(ε, φ(0, x)))

+ Vε(φ(1, x))− V∞(φ(2, x)) + αV (cstop(ε, φ(1, x)))

+ . . .

+ Vε(φ(N(x), x))− V∞(φ(N + 1, x))

+ αV (cstop(ε, φ(N(x), x)))

≤ Vε(φ(0, x)) +

N∑
k=0

αV (cstop(ε, φ(k, x))), (54)

since Vε(φ(k, x)) − V∞(φ(k, x)) ≤ 0 for all k ∈ Z≥0

according to Theorem 1 and V∞(φ(N + 1, x)) ≥ 0. According
to Assumption 1, cstop(ε, φ(k, x)) ≤ θ(|ε|, σ(φ(k, x))), and
since Theorem 3 holds, σ(φ(k, x)) ≤ max{β(k, σ(x)), δ} as
σ(x) ≤ ∆. Hence, by direct substitution in (51),

V avg
ε (x) ≤ lim

N→∞

1

N

(
Vε(φ(0, x))

+

N∑
k=0

αV (θ(ε,max{β(k, σ(x))), δ})
)
.

We break the sum in two parts. Let H(x) ∈ Z be such that
β(σ(x), k) > δ for k ∈ {0, . . . ,H(x)} and β(σ(x), k) ≤
δ for k ∈ {H(x) + 1, . . .} when σ(x) > δ, otherwise, if
σ(x) ≤ δ, we define it H(x) = −1. Integer H(x) exists and
is finite since β ∈ KL. It follows that β(σ(x), k) ≤ δ for
k ∈ {H(x) + 1, . . .}. Hence

V avg
ε (x) ≤ lim

N→∞

1

N

(
Vε(x)

+

min{H(x),N}∑
k=0

αV

(
θ(ε, β(k, σ(x)))

)
+

N∑
k=H(x)+1

αV (θ(ε, δ))

)
, (55)

where
∑−1
k=0 = 0 by convention. It follows that

1
N

(
Vε(x) +

∑min{H(x),N}
k=0 αV (θ(ε, β(k, σ(x))))

)
→ 0 as

N →∞, which implies

V avg
ε (x) ≤ lim

N→∞

1

N

N∑
k=H(x)+1

αV (θ(|ε|, δ))

≤ lim
N→∞

1

N

N∑
k=0

αV (θ(|ε|, δ)). (56)

Hence V avg
ε (x) ≤ αV (θ(|ε|, δ)) limN→∞

1
N

∑N
k=0 1 and The-

orem 4 holds.

J. Proof of Theorem 5
Let ∆, δ > 0, x ∈ Rn such that σ(x) ≤ ∆. We select

ε∗ as in Theorem 3. Let ε ∈ Rnε such that |ε| < ε∗,
φ(k + 1, x) ∈ F ∗ε (φ(k, x)) for any k ∈ Z≥0 where φ is a

solution to (12) initialized at x, and N(x) is such that for
any n > N(x), φ(n, x) ≤ δ which exists since σ(φ(k, x)) ≤
max{β(σ(x), k), δ} for any k ∈ Z≥0 and β ∈ KL according
to (15). For the sake of convenience, we denote `(x, u) = `u(x)
as in the proof of Theorem 4. Consider

V cta
ε (x) :=

N(x)∑
k=0

`(φ(k, x), urk), (57)

where urk ∈ U∗ε (φ(k, x)) such that φ(k+ 1, x) = furk(φ(k, x)).
From (54) in the proof of Theorem 4, we have that
N∑
k=0

`(φ(k, x), urk) ≤ Vε(φ(0, x)) +

N∑
k=0

αV (cstop(ε, φ(k, x))),

(58)

for any N ≥ 0. Theorem 5 holds by taking N = N(x),
and by invoking Assumption 1 and Theorem 3, that is,
αV (cstop(ε, φ(k, x))) ≤ αV (θ(|ε|,max{β(σ(x), k), δ})).

K. Sketch of Proof of Theorem 6
Let x ∈ Rn, ε ∈ Rnε such that |ε| < ε∗ where ε∗ is selected

as in Corollary 2, φ(k+ 1, x) ∈ F ∗ε (φ(k, x)) for any k ∈ Z≥0

where φ is a solution to (12) initialized at x. The proof follows
by following the steps of the proof of Theorem 4, in particular
inequality (54), however summed with N →∞. That is,

V run
ε (x) ≤ Vε(φ(0, x)) +

∞∑
k=0

αV (cstop(ε, φ(k, x))). (59)

All that remains is to compute a bound on∑∞
k=0 αV (cstop(ε, φ(k, x))), which is possible by recalling

that σ(φ(k, x)) ≤ āV +āW
aW

σ(x)
(

1− aW−|ε|āV
āV +āW

)k
holds from

Corollary 2 and αV (cstop(ε, φ(k, x))) ≤ āV |ε|σ(φ(k, x))
as the conditions of Corollary 2 are assumed to
hold. Specifically,

∑∞
k=0 αV (cstop(ε, φ(k, x))) ≤

|ε|āV (āV +āW )
aW

σ(x)
∑∞
k=0

(
1− aW−|ε|āV

āV +āW

)k
, which provides

(25) as
∑∞
k=0

(
1− aW−|ε|āV

āV +āW

)k
= āV +āW

aW−āV |ε| . The lower
bound V∞(x) ≤ V run

ε (x) follows from the optimality of
V∞(x). Since (59) holds for an arbitrary solution of (12),
φ(k + 1, x) = furk(φ(k, x)) for any k ∈ Z≥0, the resulting
bound holds for any V run

ε (x) ∈ V run
ε (x).

L. Proof of Proposition 4
Let x ∈ Rn. From item (i) of Assumption 2, there exists

P ∈ Rn × Rn symmetric, positive definite matrix and a > 0
such that, for solution φglobal(k, x) to system (26) with feedback
law g(2, x) initialized at x, the following holds for k ∈ Z≥0.

φglobal(k+1,x)>Pφglobal(k+1,x)−φglobal(k,x)>Pφglobal(k,x)

≤ −aφglobal(k, x)>Pφglobal(k, x).

Hence, φglobal(k + 1, x)>Pφglobal(k + 1, x) ≤ (1 −
a)φglobal(k, x)>Pφglobal(k, x). By iteration and recalling that
φglobal(0, x) = x, we derive

σ(φglobal(k + 1, x)) ≤ (1− a)kσ(x), (60)

where σ(x) = x>Px. We show next that `2(φglobal(k, x)) ≤
ν1σ(x)e−ν2k for some ν1, ν2 > 0 and `2(x) := x>Qx +
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g(2, x)>Rg(2, x). Since Q is positive definite, x>Qx ≤
λmax(Q)|x|2. Furthermore |x|2 ≤ 1

λmin(P )x
>Px, hence

x>Qx ≤ λmax(Q)
λmin(P )x

>Px. Similarly for R and invoking item
(ii) of Assumption 2, we obtain that, g(2, x)>Rg(2, x) ≤
λmax(R)|g(2, x)|2 ≤ λmax(R)b|x|2 ≤ bλmax(R)

λmin(P ) x
>Px. It fol-

lows from (60) that

`2(φglobal(k, x)) ≤ ν1σ(x)e−ν2k, (61)

where ν1 = λmax(Q)+bλmax(R)
λmin(P ) and ν2 = ln (1− a)

−1. By
invoking [13, Lemma 1], we derive that the second part of
item (i) of SA1 holds with αV := ν1

1−e−ν2 I. In particular,
V∞(x) ≤ αV (σ(x)) = ν1

1−e−ν2 x
>Px, which is finite for all

x ∈ Rn, thus [19, Theorem 2] is verified and the first part
of item (i) of SA1 holds, hence item (i) of Proposition 4
is verified. On the other hand, since λmin(Q)|x|2 ≤ x>Qx

holds, λmin(Q)
λmax(P )σ(x) = λmin(Q)

λmax(P )x
>Px ≤ x>Qx ≤ `u(x) for

any u ∈ {1, . . . ,M}, hence item (ii) of SA1 is verified with
αW := λmin(Q)

λmax(P ) I and W = αW = 0. We have proved that
item (ii) of Proposition 4 holds. Item (iii) of Proposition 4
follows immediately since cstop(ε, x) = θ(|ε, σ(x)) := εσ(x)
by our choice of cstop, hence Assumption 1 holds. Furthermore,
εσ(x) > 0 when σ(x) > 0 follows from ε ∈ R>0, hence SA2
holds.

APPENDIX

We show that, for any d ∈ Z>0 and x ∈ Rn, the following
properties hold for any finite-horizon optimal sequence u∗∗∗d(x).

Lemma 2: Let x ∈ Rn. For any d ∈ Z>0 and u∗∗∗d(x), the
following hold.

(i) σ(φ(d, x,u∗∗∗d(x)|d)) ≤ α−1
W ◦

(
I− αW ◦ α−1

Y

)(d) ◦
αY (σ(x)), with αY = αV +αW and αW , αV , αW ∈ K∞
comes from SA1.

(ii) Function I−αW ◦α−1
Y contracts to zero, that is, for any s >

0,
(
I− αW ◦ α−1

Y

)(d)
(s) <

(
I− αW ◦ α−1

Y

)(d−1)
(s)

and for any s ≥ 0, limd→∞
(
I− αW ◦ α−1

Y

)(d)
(s) = 0.

Proof. Let x ∈ Rn and d ∈ Z>0. A d-horizon optimal
sequence u∗∗∗d(x) such that Vd(x) = Jd(x,u

∗∗∗
d(x)) exists for any

d ∈ Z>0 in view of (6) as the input set U is finite. Let
Yd := Vd + W , where W comes from item (ii) of SA1.
We have that: (a) αY (σ(x)) ≤ Yd(x) ≤ αY (σ(x)) holds
with αY = αW and αY = αV + αW as [12, Theorem 1]
or [13, Theorem 1] applies; (b) with Y0(φ(d, x,u∗d(x))) ≤(
I− αY ◦ α−1

Y

)(d)
(Yd(x)) with αY := αW according to [12,

(32)], and I − αY ◦ α−1
Y ∈ K∞ (see footnote 3 in page

11). By applying (b) in (a), we obtain σ(φ(d, x,u∗d(x))) ≤
α−1
Y ◦

(
I− αY ◦ α−1

Y

)d
(αY (σ(x))), and item (i) of Lemma

2 holds. In view of
(
I− αY ◦ α−1

Y

)
, αY ◦ α−1

Y ∈ K∞, it
follows that s − αY ◦ α−1

Y (s) < s for any s > 0. Hence,
by composing

(
I− αY ◦ α−1

Y

)
to both sides d− 1 times, we

conclude
(
I− αY ◦ α−1

Y

)(d)
(s) <

(
I− αY ◦ α−1

Y

)(d−1)
(s)

when s > 0, i.e. strictly decreasing in d for s > 0, and 0
when s = 0. Hence, I− αY ◦ α−1

Y is contractive to zero and
item (ii) of Lemma 2 holds.

�
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