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Abstract

This paper investigates the dynamic behavior of a simplified single reed instrument model subject to a stochastic forcing
of white noise type when one of its bifurcation parameters (the dimensionless blowing pressure) increases linearly over time
and crosses the Hopf bifurcation point of its trivial equilibrium position. The stochastic slow dynamics of the model is
first obtained by means of the stochastic averaging method. The resulting averaged system reduces to a non-autonomous
one-dimensional Itô stochastic differential equation governing the time evolution of the mouthpiece pressure amplitude.
Under relevant approximations the latter is solved analytically treating separately cases where noise can be ignored and
cases where it cannot. From that, two analytical expressions of the bifurcation parameter value for which the mouthpiece
pressure amplitude gets its initial value back are deduced. These special values of the bifurcation parameter characterize
the effective appearance of sound in the instrument and are called deterministic dynamic bifurcation point if the noise
can be neglected and stochastic dynamic bifurcation point otherwise. Finally, for illustration and validation purposes,
the analytical results are compared with direct numerical integration of the model in both deterministic and stochastic
situations. In each considered case, a good agreement is observed between theoretical results and numerical simulations,
which validates the proposed analysis.

Keywords: Single reed instruments ; Self-sustained oscillations ; Dynamic bifurcation ; Bifurcation delay ; Stochastic
averaging.

List of main symbols

The next list is not exhaustive, it describes only the main
symbols that will be later used within the body of the doc-
ument.

pn, p, u Physical unknowns in the reed instrument model
(nth modal component, pressure and volume flow
at the input of the instrument respectively)

xt, xy Amplitude of p in the amplitude/phase represen-
tation (different subscript is used to stress the
dependance)

A(y) Intermediate quantity used throughout the pa-
per and defined by Eq. (34).

∗Corresponding author: baptiste.bergeot@insa-cvl.fr

γ, γt Dimensionless blowing pressure (the subscript
()t indicates that γ varies with time)

γ̂st Value of γ corresponding to a static Hopf bifur-
cation

yt Time-varying dimensionless blowing overpres-
sure with respect to the static Hopf bifurcation
(= γt − γ̂st)

ŷdyn
det Analytical prediction of the value of y at which

the system undergoes a dynamic Hopf bifurca-
tion in the deterministic case

y0 Value of yt at t = 0

ŷdyn
stoch,a Analytical prediction of the value of y at which

the system undergoes a dynamic Hopf bifurca-
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tion in the stochastic case (the subscript ()a
means first level of approximation)

ŷdyn
stoch,b Analytical prediction of the value of y at which

the system undergoes a dynamic Hopf bifurca-
tion in the stochastic case (the subscript ()b
means second level of approximation, less accu-
rate than ŷdyn

stoch,a)

ν, σ Magnitude of the stochastic forcing (σ = ν/
√

2)

ϵ Rate of linear increasing of the bifurcation pa-
rameter

αi, ωi, Fi Modal parameters of the ith mode (damping,
eigenfrequency, modal factor respectively)

ζ Embouchure parameter (physical model of clar-
inet)

1 Introduction

Musical instruments are non-linear dynamical systems. An
important specificity is that sound production in a musi-
cal context corresponds to a time-varying control. Indeed,
control parameters are modified continuously by the instru-
ment player. To give just one example, wind instruments
players control air pressure in their mouth with variations
over time finely tuned to produce the desired sound effect.
On the other hand, when studying the corresponding math-
ematical models of sound production by musical instru-
ments, the control parameters are considered constant over
time most of the time. In this respect, the instruments are
modeled by autonomous nonlinear systems of differential
equations (ODEs) having, among other solutions, at least
one trivial equilibrium position (corresponding to silence)
and periodic solutions (corresponding to musical notes).
The mouth pressure is then a bifurcation parameter of this
ODEs system: when it is small the trivial solution is stable
and, beyond a precise value called static bifurcation point
(“static” because the bifurcation parameter is constant over
time), the trivial solution loses its stability through a Hopf
bifurcation giving rise to a periodic solution. In musical
acoustics literature, the static bifurcation point of the triv-
ial solution is often called oscillation threshold [14]. In this
“static” context, periodic solutions and their stability can
be also determined using for example the harmonic balance
method [18, 12] or orthogonal collocation [37, 19]. Control
parameters are changed over time only in the very spe-
cial context of time simulations, e.g. when the objective is
sound synthesis, not model behavior analysis.

The purpose of this paper is not to question these meth-
ods (with constant control parameters) which have shown

their relevance (experimentally and numerically) when con-
sidering steady-state oscillation regimes (i.e. excluding all
forms of transients). On the contrary, it is more a question
of shedding light on the appearance of a sound when a time-
varying control parameter (more specifically, the mouth
pressure) crosses the static (Hopf) bifurcation point, as it
is the case in playing situations. Moreover, experiments
with a blowing machine and a clarinet-like instrument have
shown in this case the existence of a delay at the bifur-
cation [7]: when the pressure in the musician’s mouth is
increased linearly, the start of oscillations is observed for
a pressure value greater than the static bifurcation point.
This particular value of the mouth pressure for which the
oscillations actually appear is called dynamic bifurcation
point.

An analytical study to explain this observation has al-
ready been carried out on a discrete-time model of the
clarinet1 [5, 6]. Considering a blowing pressure linearly
increasing over time, the following results have been ob-
tained in these works, which are typical of what is known
in the field of dynamical bifurcation of discrete-time sys-
tems. In fact, the behavior of the bifurcation delay depends
on the possibility of ignoring or not the presence of noise
in the model. We are referring here only to the presence
of an additive white noise. Sometimes even a noise with
a very low amplitude coming from the rounding errors of
the computer in numerical simulations must be taken into
account. If the noise can be ignored the bifurcation delay
depends only on the initial value of the linearly increas-
ing mouth pressure, the farthest it starts below the static
bifurcation point, the larger the delay. If the noise is no
longer negligible, then the bifurcation delay loses the de-
pendence on the initial condition and logically becomes de-
pendent on the noise level but also on the increase rate of
the mouth pressure. In this case, the bifurcation delay de-
creases with the noise level and increases with the increase
rate of the mouth pressure. These properties of the bifur-
cation delay shown in these works are also found in other
works in applied mathematics and physics whether for dis-
crete or continuous-time systems with an additive white
noise [3, 2, 21, 9]. The strong dependence of the bifurca-
tion delay on noise makes essential to take it into account
in the modeling a real life system like a musical instrument.

The discrete-time clarinet model considered in our pre-
vious cited works is known for its simplicity and its abil-
ity to explain some phenomena observed experimentally.
However, the simple formulation of this model is achieved
under very strict simplifying hypotheses. The most impor-

1In this case the instrument is modeled by a difference equation
similar to the logistic map. This model has been thoroughly studied
in musical acoustics for control parameters constant over time [13,
36, 35].
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tant ones are frequency independent losses, a cylindrical
geometry, idealized radiation ...

Another approach, based on continuous-time models in-
cluding ODE’s, allows an easier consideration of refine-
ments in the equations, leading to models with different
levels of complexity [31]. The simplest model consists in
retaining only one acoustic mode of the air-column in the
instrument while assuming that the cane reed is driven in-
stantaneously by the pressure difference between the mouth
of the player and the input of the instrument [10]. The work
presented in this paper is based on this model which is here
considered with a blowing pressure linearly increasing over
time and a stochastic forcing of white noise type.

The questions addressed in this paper are: How does the
continuous-time clarinet model behave when the blowing
pressure increases linearly, compared to the classical case of
a blowing pressure constant over time? How do the results
change when random fluctuations in the source term of the
model are added (which may represent an idealized version
of the turbulent noise due to the airflow)? More precisely,
through relevant approximations, the objective is to solve
the studied model analytically by considering the general
framework of the stochastic differential equations in order
to predict the dynamic bifurcation points of the model.

The paper is organized as follows. The single reed instru-
ment model is presented in Section 2. Section 2.1 gives the
equations of motion of the classical deterministic one-mode
model of single reed instruments and recalls the expres-
sion of its static bifurcation point. Section 2.2 presents the
model with, in addition, a stochastic forcing of white noise
type, a linearly increasing blowing pressure and pertinent
rescaling. In Section 3, the stochastic averaging method is
used to derive the slow dynamics of the model. Through
simplifying assumptions, the slow dynamics is solved in
Section 4. The method is based on treating separately
cases where noise can be ignored and cases where it can-
not. An analytical expression of the dynamic bifurcation
point is obtained in each case. In Section 5, for illustration
and validation purposes, these analytical results are com-
pared with direct numerical integration of the model. Fi-
nally, concluding remarks and some perspectives are given
in Section 6.

The main steps of the proposed approach are summa-
rized in Fig. 1.

Physical problem

Dimensionless equa-
tions, Eq. (11)

Amplitude-Phase
representation, Eq. (18)

Stochastic slow dy-
namic, Eq. (29)

Analysis of the dynamic
bifurcation, Sect. 4:
3 regimes identified

Regime II
Weakly noisy
case, Sect. 4.3

Regime I
Deterministic
case, Sect. 4.2

Regime III
Strongly

noisy case,
not treated

Figure 1. Main steps of the proposed approach as a block
diagram.

2 Single reed instrument model with a white noise
forcing

2.1 Deterministic model of single reed instrument and its
static bifurcation point

In this section the single reed instrument model is recalled
as it is generally discussed in the literature, i.e. it is de-
terministic and the control parameters are constant over
time.

Sound production by single reed instruments is classi-
cally modeled through the nonlinear coupling of two linear
sub-systems [4, 17, 10]: the cane reed and the air-column
inside the instrument. While blowing air through the reed
channel into the instrument, the musician provides a quasi-
static source of energy. The instrument and the player con-
stitute an autonomous dynamical system. When the triv-
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ial equilibrium solution of this system becomes unstable, a
sound is produced [38, 16, 29].

Since the lowest resonance frequency of the reed is one
order of magnitude higher than the sound frequency for
many notes, the reed is often modeled as a lossless stiffness
spring [1, 27]. Therefore, the position of the reed relative
to rest (which determines the opening of the reed channel)
is proportional to the pressure drop across the reed, i.e.
the pressure difference between the mouth and the mouth-
piece of the instrument. The linear pressure response of
the air column P to the volume flow U through the reed
channel is given in the frequency domain through the input
impedance of the air column Z:

P (ω) = Z(ω)U(ω), (1)

where ω is the angular frequency. The contribution at the
input of the instrument of the (infinite) series of modes of
the air column is taken into account in Z(ω). For compu-
tational reasons, the series is truncated to N modes, where
N is an integer:

Z(ω) =
N∑

n=1
Fn

jω

ω2
n + jωαnωn − ω2 , (2)

with Fn, ωn and αn the modal parameters, respectively the
modal factor, the resonance angular frequency and the in-
verse of the quality factor of the nth peak of the impedance
(corresponding to the nth mode of the air column). Eq. (2)
can be written in the time domain:

p̈n + αnωnṗn + ω2
npn = Fnu̇, ∀n ∈ [1, N ], (3)

with u the inverse Fourier transform of U and pn is such
that p =

∑N
i=1 pn, where p is the inverse Fourier trans-

form of P [29] and corresponds to the time evolution of the
mouthpiece pressure.

The volume flow through the reed channel is related non-
linearly to the reed channel opening and the pressure dif-
ference between the mouth and the mouthpiece [20, 15].
A polynomial expansion of this relation is often written in
the neighborhood of the equilibrium solution (i.e. the mean
flow) [22]:

u(t) = ueq + c1p(t) + c2p(t)2 + c3p(t)3, (4)

with ueq = ζ(1 − γ)√γ the mean volume flow, c1 = ζ 3γ−1
2γ

1
2

,

c2 = −ζ 3γ+1
8γ

3
2

and c3 = −ζ γ+1
16γ

5
2

, where γ is the dimen-
sionless pressure in the mouth of the musician and ζ a
dimensionless parameter accounting for many embouchure
parameters. By Eq. (4), Eq. (3) can be written using only
the pressure p as follows

p̈n + αnωnṗn + ω2
npn + Fnṗf(p, γ) = 0, ∀n ∈ [1, N ], (5)

where f(p, γ) = − ∂u
∂p .

A minimal model of a reed instrument including a single
mode of the air-column is obtained by stating N = 1. In
this case (5) becomes

p̈ + α1ω1ṗ + ω2
1p + F1ṗf(p, γ) = 0 (6)

In this case (N = 1), since p1 = p, p1 is replaced by p
in Eq. (6). Note that p and u are dimensionless and F1
unit is s−1. This is clearly a minimal yet useful model of
sound production in reed instruments. Indeed, it takes into
account the two main control parameters adjusted by the
musician and describes the physical mechanism through
which sound emerges from equilibrium (i.e. silence) when
a resonance of the air column is excited by an incoming
flow.

In this paper the bifurcation parameter under consider-
ation is γ. The stability of the trivial equilibrium solution
p = 0 with respect to γ is classically analyzed by looking at
the sign of the eigenvalues real parts of the Jacobian ma-
trix of Eq. (6) written in the state-space form. This leads
to the following expression for the static Hopf bifurcation
point

γ̂st = 1
3 +

2α1ω1

(
α1ω1 +

√
α2

1ω2
1 + 3ζ2F 2

1

)
9ζ2F 2

1
(7)

corresponding to the value of γ for which the two com-
plex conjugate eigenvalues become with positive real parts.
Note that in the lossless case (i.e. α1 = 0) the static bi-
furcation parameter is γ̂st = 1

3 . Static bifurcation point
is known in the literature of acoustics of musical instru-
ments as the ”oscillation threshold” of the instrument. Ex-
pressions equivalent to Eq. (7) are given for example by
Kergomard et al. [23] and Silva et al. [30].

Compared to the model given by (6), this article studies
the case of a linearly increasing blowing pressure γ, with
additional stochastic excitation as detailed in Sect. 2.2.

2.2 One-mode stochastic single-reed instrument model
with a linearly increasing blowing pressure

Hereafter, the formalism of stochastic differential equations
is used in the framework of the Itô stochastic calculus. A
good description of these concepts can found for example
in [26].

The one-mode model described by Eq. (6) is now consid-
ered with a linearly increasing blowing pressure γ = ϵ̂t+γ0.
The variation of the blowing pressure is assumed to be
small during a period T1 = 2π

ω1
which is ensured by 0 <

ϵ̂ ≪ 1. Because one assumes also that ω1 ≫ 1 (without
loss a generality in musical context) the time variation of
the mouth pressure γ is neglected in the time derivative of
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the mean flow (4). Moreover, the model is now forced by
a stochastic excitation ν̂ξt where ν̂ is the noise level and
ξt is assumed to be a unitary idealized white noise process
with zero mean, i.e.

E [ξt] = 0 and E [ξtξt+τ ] = δ(τ) (8)

where δ is the Dirac delta function and E [{.}] denotes the
ensemble average2 of {.}. Finally, the one-mode stochastic
model is written as follows

p̈t + α1ω1ṗt + ω2
1pt + F1ṗtf(pt, γt) = ν̂ξt (9)

where the subscript t is used to show the stochastic nature
of the differential equation. This is the classical notation
in the framework of stochastic differential equations.

From the physical point of view, Eq. (9) can be inter-
preted as a simple model of sound production in reed in-
struments with turbulent noise contribution taken into ac-
count as an additive stochastic noise in the source term.

To facilitate the mathematical developments of the
following sections, transformations are performed within
Eq. (9). First, a new bifurcation parameter yt = γt − γ̂st

is considered to obtain a system whose trivial solution be-
comes unstable at y = 0 (i.e. ŷst = 0). Then the time
rescaling t → t′ = ω1t is introduced. Recalling that a nor-
malized white noise ξt is defined as the time derivative of
the normalized Wiener process Wt and using the scaling
property of Wiener process (see [26], Chap. 2) which states
that W t

ω1
and 1√

ω1
Wt are equivalent, we have

ξt = dWt

dt
∼ ω1

dW t′
ω1

dt′ ∼
√

ω1
dWt′

dt′ = √
ω1ξt′ . (10)

Therefore, by using also {̇} for the derivation with respect
to t′ and denoting t′ by t for the sake of conciseness, Eq. (9)
takes the form of the following stochastically forced self-
excited oscillator

p̈t + h (pt, ṗt, yt) + pt = νξt (11)

where

h (pt, ṗt, yt) = α1ṗt + F1

ω1
ṗtf

(
pt, yt + γ̂st) (12)

and ν = ν̂

ω
3/2
1

. The time evolution of yt is given by

yt = ϵt + y0 (13)

where y0 = γ0 − γ̂st and ϵ = ϵ̂
ω1

with 0 < ϵ ≪ 1 (because
ω1 ≫ 1). That means that if yt is a slow variable for the
time scale t it is also slow for the faster time scale ω1t.

2We recall that the ensemble average consists in repeating the
same measurement many times, and in calculating the average over
them.

3 Equations governing the stochastic slow dynam-
ics

Following Roberts and Spanos [28] the stochastic averag-
ing method [34, 24], whose general formulation is recalled
in Appendix B, is used to obtain the stochastic slow dy-
namics of Eq. (11). To apply the method, the response pro-
cess (pt, ṗt) needs to be transformed into a pair of slowly
varying processes. To achieve that, as in classical averag-
ing methods of deterministic systems, an amplitude-phase
representation is used imposing

pt = xt cos (t + φt) (14a)
ṗt = −xt sin (t + φt) (14b)

The desired form of Eq. (14b) requires that

ẋt cos ϕt − xtφ̇t sin ϕt = 0, (15)

with ϕt = t + φt which yields

φ̇t = ẋt

xt

cos ϕt

sin ϕt
and ẋt = xtφ̇t

sin ϕt

cos ϕt
. (16)

Then differentiation of Eq. (14b) leads to

p̈t = −xt cos ϕt − ẋt sin ϕt − xtφ̇ cos ϕt. (17)

Finally, the substitution of (14) and (17) into (11) and the
use of (16) yields

ẋt = h (xt cos ϕt, −xt sin ϕt, yt) sin ϕt − νξt sin ϕt (18a)

φ̇t = h (xt cos ϕt, −xt sin ϕt, yt)
cos ϕt

xt
− νξt

cos ϕt

xt
(18b)

which has a similar form as (70) in Appendix B with

xt = (xt, φt)T , ηt = (ξt, ξt)T ,

f(xt, t) =

 h (xt cos ϕt, −xt sin ϕt, yt) sin ϕt
1
xt

h (xt cos ϕt, −xt sin ϕt, yt) cos ϕt

 ,

g(xt, t) =

−ν sin ϕt 0
0 −ν

cos ϕt

xt


(19)

with ()T the transpose operator.
Following the approach described in Appendix B, the

drift vector m (see Eq. (72)) is first computed. The first
term T av {f} = (F (xt, yt), G(xt, yt))T

, with

F (xt, yt) =
(

F1

ω1
ζ

3(yt + γ̂st) − 1
4(yt + γ̂st)1/2 − α1

2

)
xt

+ F1

ω1
ζ

3 (γ̂st + yt + 1)
128 (γ̂st + yt) 5/2 x3

t (20)

G(xt, yt) = 0, (21)
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corresponds to the classical (deterministic) Bogoliubov-
Krylov averaging of the vector function f , i.e. the time
average is performed assuming that xt and ϕt are slow
variables with respect to the unitary eigenfrequency of
the considered dimensionless simplified reed instrument
model (11) which therefore corresponds to a period equal
to 2π.

Then, the second part of the drift vector m (see again
Eq. (72)) is determined as

T av
{∫ 0

−∞
E
[(

∂(gη)
∂x

)
t

(gη)t+τ

]
dτ

}
= 1

2π

∫ 2π

0

∫ 0

−∞
E
[(

∂(gη)
∂x

)
t

(gη)t+τ

]
dτdt

= 1
2π

∫ 0

−∞

∫ 2π

0

δ(τ)
(

ν2 cos ϕt cos ϕt+τ

xt

−ν2 sin ϕt cos ϕt+τ +cos ϕt sin ϕt+τ

x2
t

)
dtdτ

=
(

ν2

4xt

0

)
(22)

in which the symbol E [] disappeared due to defini-
tions (8) and one used the fact that

∫ 0
−∞ δ(τ) cos(τ)dτ =

1
2
∫ +∞

−∞ δ(τ) cos(τ)dτ = 1
2 . The final expression of the drift

vector is therefore

m =

F (xt, yt) + ν2

4xt
0

 . (23)

Now the expression of the diffusion matrix σ is deter-
mined from (73) starting by computing

T av
{∫ +∞

−∞
E
[
(gη)t(gη)T

t+τ

]
dτ

}
= 1

2π

∫ 2π

0

∫ +∞

−∞
E
[
(gη)t(gη)T

t+τ

]
dτdt

=
∫ +∞

−∞

(
ν2δ(τ) cos(τ)

2 − ν2δ(τ) sin(τ)
2xt

ν2δ(τ) sin(τ)
2xt

ν2δ(τ) cos(τ)
2x2

t

)
dτ

=

ν2

2 0

0 ν2

2x2
t

 . (24)

in which again definitions (8) have been used. From (24) a
possible solution of (73) is

σ =


ν√
2

0

0 1
xt

ν√
2

 . (25)

Therefore, according to (71) the equations governing the
stochastic slow dynamics of (11) are

dxt =
(

F (xt, yt) + ν2

4xt

)
dt + ν√

2
dWt (26a)

dφt = 1
xt

ν√
2

dWt. (26b)

in which the time evolution of the amplitude xt is uncou-
pled from that of the phase φt.

Assuming a weak noise level (i.e. ν ≪ 1) and therefore
neglecting the term ν2

4xt
in (26a) and denoting σ = ν√

2 we
obtain the following Itô stochastic differential equation for
the amplitude of the mouth pressure pt

dxt = F (xt, yt)dt + σdWt. (27)

The scaling and time shift properties of Wiener process
(see [26], Chaps. 7) allow us to write that

1√
ϵ

(Wϵt+y0 − Wy0) ∼ 1√
ϵ
Wϵt ∼ Wt and therefore

1√
ϵ
dWy ∼ dWt. (28)

Finally, from (27) and (28) we obtain the final form of
the slow dynamics as

dxy = 1
ϵ

F (xy, y)dy + σ√
ϵ
dWy. (29)

where xt and yt are now denoted xy and y respectively
to emphasize that Eq. (29) is a non-autonomous one-
dimensional Itô stochastic differential equation with re-
spect to xy depending on y which acts as the time variable.

4 Analytical expression of the dynamic pitchfork
bifurcation points of the averaged system

The supercritical Hopf bifurcation at y = 0 for the initial
(non averaged) system (11) becomes a supercritical pitch-
fork bifurcation for Eq. (27). Therefore, if the averaged
system (27) is a good approximation of (11), the dynamic
Hopf bifurcation point of Eq. (11) is very close to the dy-
namic pitchfork bifurcation point of (27). The analytical
expression of the latter is obtained in this section in both
deterministic and stochastic cases.

As stated by Stocks et al. [33], the dynamic bifurcation
point3 has two main definitions: it is (1) the value of the
bifurcation parameter y when

√
E
[
x2

y

]
crosses a predefined

threshold x2
th (here the initial value is chosen) or (2) the

value of the bifurcation parameter y at which, on average,
3Sometimes called exit value in the literature.
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the random variable x2
y crosses the same given threshold

x2
th. In general, these two averaging procedures will lead

to two slightly different results. In the paper the first defi-
nition is chosen and is clearly recalled below. Other defini-
tions exist (see e.g. [2] and [6] for a clarinet-like system).

Definition 4.1 (Dynamic pitchfork bifurcation point). In
the case of a pitchfork bifurcation and in a deterministic
framework, the dynamic bifurcation point is defined as the
value of y for which xy exceeds its initial value xy0 (in abso-
lute value). In a stochastic framework, as in this work, the
expected value of the squared amplitude is considered and
the bifurcation point, denoted ŷdyn, is defined as the value
of yt for which

√
E
[
x2

y

]
exceeds the initial value xy0 . The

dynamic bifurcation point is larger than the static bifurca-
tion and the difference between them is called bifurcation
delay.

4.1 Solution of the linearized averaged system

The linearized version of (29) with respect to xy around 0
is considered

dxy = 1
ϵ

a(y)xydy + σ√
ϵ
dWy (30)

where, from Eq. (20), one has

a(y) = ∂F

∂xy
(0, y) = F1

ω1
ζ

3(y + γ̂st) − 1
4(y + γ̂st)1/2 − α1

2 . (31)

In order to solve (30), the deterministic differential equa-
tion associated to the latter is first considered as

dxy

dy
= 1

ϵ
a(y)xy (32)

whose solution, denoted xdet(y), is

xdet(y) = xy0e
1
ϵ (A(y)−A(y0)) (33)

where

A(y) = ζF1(γ̂st + y − 1)
√

γ̂st + y

2ω1
− α1

2 y. (34)

is the antiderivative of a(y).
Following a well-known method for solving stochas-

tic differential equations, we apply the Itô formula (see
Eq. (69) in Appendix A) to the function f(xy, y) =
xye− 1

ϵ (A(y)−A(y0)) which is constant for the deterministic
Eq. (32) (indeed through Eq. (33) one has f(xdet(y), y) =
xy0). Using the differential of the product rule, and noting
that in the Itô formula the term ∂f

∂y + 1
ϵ a(y)xy

∂f
∂x vanishes,

we obtain

df(xy, y) = σ√
ϵ
e− 1

ϵ (A(y)−A(y0))dWy (35)

and integrating (35) from y0 to y yields the following solu-
tion of Eq. (30)

xy = xdet(y) + σ√
ϵ
e

1
ϵ A(y)

∫ y

y0

e− 1
ϵ A(y′)dWy′ . (36)

Note that the first and second terms of the right-hand side
of (36) are the deterministic and stochastic parts of xy

respectively. The integral in the second term is called an
Itô integral and, for a given function g, has the following
property E

[∫
gdWy

]
= 0 assuming some properties for the

function g (see [26], Chap. 3) that are respected by e− 1
ϵ A(y).

Therefore we have

E
[∫ y

y0

e− 1
ϵ A(y)dWy

]
= 0. (37)

That means that the expected value of xy is the solution
of the associated deterministic equation (32), i.e. E [xy] =
xdet(y).

Now E
[
x2

y

]
is computed from (36), that yields

E
[
x2

y

]
= E

[
(xdet(y))2]

+ E

[
σ2

ϵ
e

2
ϵ A(y)

(∫ y

y0

e− 1
ϵ A(y′)dWy′

)2
]

+ E
[
2 xdet(y) σ√

ϵ
e

1
ϵ A(y)

∫ y

y0

e− 1
ϵ A(y′)dWy′

]
. (38)

Using again the property of the Itô integral which states
that E

[∫
gdWy

]
= 0, the third term in the right-hand side

of (38) is equal to zero. The second term is simplified
using the Itô isometry (see Corollary 3.1.7 in [26], Chap. 3)
which states that E

[(∫
gdWy

)2
]

= E
[∫

g2dy
]

assuming
again some properties for the function g that are resected
by e− 1

ϵ A(y). Therefore we obtain the final expression of the
expected value of the squared amplitude

E
[
x2

y

]
= D(y) + S(y) (39)

where

D(y) = (xdet(y))2 (40a)

S(y) = σ2

ϵ
e

2
ϵ A(y)

∫ y

y0

e− 2
ϵ A(y)dy (40b)

are respectively the deterministic and the stochastic parts
of the expected value of the squared amplitude.

From (39) and according to [8], three regimes can be dis-
tinguished for a system such as (29) undergoing a dynamic
pitchfork bifurcation:

• Regime I: S(y) ≪ D(y). In this case the noise level is
so small that it can be neglected and the problem is
identical to the deterministic case (32) which under-
goes the greatest possible bifurcation delay.

7
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• Regime II: S(y) ≫ D(y) with a noise level not too
high. The noise can no longer be neglected but it re-
mains small enough for linearized model (30) to remain
valid. A bifurcation delay still exists but it is reduced
compared to Regime I.

• Regime III: S(y) ≫ D(y) with a high noise level. In
this situation the behavior of the system is dominated
by noise and the trajectory of xy leaves the neighbor-
hood of zero before the static bifurcation point y = 0
is reached. In such a case the linear approximation
is therefore not valid anymore and, as highlighted by
Berglung and Gentz [8], the notion of bifurcation delay
becomes meaningless.

The domains of existence of each regime are given ex-
plicitly in Sect. 4.4.

In the two following parts, we concentrate on Regimes I
and II, giving the analytical expression of the dynamic bi-
furcation points considering each regime separately.

4.2 Dynamic bifurcation point in the deterministic case

In this section we assume that the system is in Regime I
and therefore E

[
x2

y

]
= D(y) = (xdet(y))2 (with xdet(y)

given by Eq. (33)). Consequently, from Definition 4.1, the
deterministic dynamic bifurcation point, denoted ŷdyn

det , is
a solution of xy0 = xy0e

1
ϵ (A(y)−A(y0)) and therefore of

A(y) = A(y0). (41)

From (34), Eq. (41) is solved (details are given in Ap-
pendix C). It is shown that, in addition to the trivial so-
lution y = y0, Eq. (41) has two other solutions. The one
that corresponds to the deterministic dynamic bifurcation
point is

ŷdyn
det = X2

2 − γ̂st, (42)
where X2 is given by Eq. (78). We will see in Fig. 2 that
the maximum of ŷdyn

det is obtained for y0 = −γ̂st and in this
case Eq. (42) reduces to

ŷdyn
det =

(
α1ω1 +

√
α2

1ω2
1 + 4ζ2F 2

1

)
2

4ζ2F 2
1

− γ̂st (43)

It is important to be aware that even if ŷdyn
det has a finite

value for y0 = −γ̂st, the function F (x, y) in Eq. (29) diverge
at y = −γ̂st. Therefore, Eq. (43) must be understood as
a limit value for y0 very close to −γ̂st (from above). How-
ever, for values of y very close to −γ̂st, the linearization of
Eq. (29) with respect to x (leading to Eq. (30)) is valid if
x is very close to zero. In other words, Eq. (43) is valid
to predict the deterministic bifurcation point of a numeri-
cal simulation of Eq. (29) only if y0 and xy0 are very close

-0.3 -0.2 -0.1 0.0
0.0

0.2

0.4

0.6

0.8

Figure 2. Deterministic dynamic bifurcation point ŷdyn
det , given

by Eq. (42), as a function of the initial condition y0. The op-
posite of the static bifurcation point γ̂st, given by Eq. (7), is
depicted by a vertical dashed line. The red points correspond
to the initial conditions used in Fig. 3. The set of parameters
(45) is used.

to −γ̂st and 0 respectively. This corresponds to the sit-
uation where the musician begins to blow gently into the
instrument.

In the lossless case, i.e. α1 = 0 and γ̂st = 1
3 , Eq. (42)

becomes

ŷdyn
det = 1

2

(
1 − y0 −

√
1 + y0(2 − 3y0)

)
(44)

which depends only on the initial value y0. Note first that
Eq. (44) yields ŷdyn

det = 2/3 if y0 = −γ̂st = − 1
3 .

This is the largest value of the dynamic bifurcation point.
From a physical point of view this means that the oscilla-
tions emerge when the blowing pressure γ = γ̂st + ŷdyn

det = 1.
However this value is known to be the limit of validity of the
clarinet model since the reed channel becomes completely
closed (an effect not taken into account in the model consid-
ered in the work). Therefore, in the lossless case a linear
increase of the blowing pressure from an arbitrary small
value gives a scenario where the clarinet never plays. This
remark can be extended, as shown below, to situations in
which damping is taken into account (i.e. α1 > 0).

Then, in cases with and without damping, ŷdyn
det does not

depend on the slope ϵ which may seem counterintuitive.
The deterministic dynamic bifurcation point ŷdyn

det , given
by Eq. (42), is plotted in Fig. 2 as a function of the initial
condition y0 with the following set of parameters:

ϵ = 0.002, ω1 = 1000 rad · s−1, α1 = 0.02,

F1 = 1200 s−1 and ζ = 0.2.
(45)

The figure shows that ŷdyn
det is a decreasing function with

respect to y0 and, as previously mentioned, the maximum

8
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Initial conditions

Dynamic bifurcation points

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

10
-9

10
-6

10
-3

1

Figure 3. Numerical simulations of the deterministic differ-
ential equation associated to Eq. (29) using a logarithm scale
for the vertical axis. The set of parameters (45) is used with,
in addition, x(y0) = 0.01 (the latter is depicted by a horizon-
tal dashed line) and y0 = −0.36, −0.32, . . . , −0.16. The static
bifurcation point ŷst = 0 is depicted by a vertical gray dashed
line. The dynamic bifurcation point ŷdyn

det is defined for a given
initial condition by the value of y for which |x(y)| = |x(y0)|,
which corresponds graphically to the intersection between the
blue curves and the horizontal dashed line. The green and red
points are used respectively to highlight the considered initial
conditions and the corresponding dynamic bifurcation points
predicted by Eq. (42).

is obtained for y0 = −γ̂st. Moreover, the red points corre-
spond to the initial conditions used in Fig. 3. In the lat-
ter, numerical simulations of the deterministic differential
deterministic differential equation associated to Eq. (29)
are shown with a logarithmic scale for the vertical axis.
The same parameters are as in Fig. 2 and the initial val-
ues are: x(y0) = 0.01 and y0 = −0.36, −0.32, . . . , −0.16.
The dynamic bifurcation point is defined for a given ini-
tial condition by the value of y for which |x(y)| = |x(y0)|,
which corresponds graphically to the intersection between
the blue curves and the horizontal dashed line. The min-
imum is reached at the static bifurcation point ŷst = 0
(depicted by a vertical dashed gray line). One can see that
the smaller y0, the smaller the minimum of the trajectory
x(y) too and consequently the longer the path to travel
before reaching x(y0) leading to larger values of the deter-
ministic dynamic bifurcation point ŷdyn

det . The green and red
points are used respectively to highlight the considered ini-
tial conditions and the corresponding dynamic bifurcation
points predicted by Eq. (42). This shows that the theo-
retical results presented in Fig. 2 predict the deterministic
bifurcation points measured on numerical simulations.

In the lossless case the expression of the deterministic dy-

-0.5 -0.4 -0.3 -0.2 -0.1 0.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The deterministic bifurcation point ŷdyn
det given by

Eq. (42) as a function of the initial condition y0 for five values
of the damping coefficient, i.e. α1 = 0, 0.025 . . . , 0.1 with ω1 =
1000 rad·s−1, F1 = 1200 s−1 and ζ = 0.2. Red dashed lines
indicate the value of −γ̂st for each value of αn.

namic bifurcation point ŷdyn
det is given by (44) which depends

only on the initial value y0. The deterministic bifurcation
point ŷdyn

det given by Eq. (42) is plotted as a function of the
initial condition y0 for five values of the damping coeffi-
cient in Fig. 4 and as a function of the parameter ζ for four
values of the damping coefficient α1 and for three values of
the initial condition y0 in Fig. 5. The figures show that in
the case with a small damping, the initial value y0 remains
the most influential parameter except for the smallest val-
ues of the control parameter ζ and for initial conditions y0
close to the opposite of the static bifurcation point γ̂st (see
Fig. 5). In general one has 0.1 < ζ < 0.4 for a clarinet,
0.25 < ζ < 1 for a saxophone and more for double-reed
instruments.

As said previously, the deterministic dynamic bifurcation
point corresponds to the largest possible bifurcation delay
which holds when the noise can be neglected. In general,
because the noise prevents the amplitude xy to have a very
small value when the parameter y reaches its static bifur-
cation value, the effect of an additive noise is to reduce
the delay and to make it lose its dependence on the initial
condition y0. The influence of noise is studied in the next
section.
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0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5. The deterministic bifurcation point ŷdyn
det given by

Eq. (42) as a function of the parameter ζ for four of the damping
coefficient (α1 = 0, 0.01, 0.02 and 0.05), for three value of the
initial condition (y0 = −γ̂st, −3γ̂st/4 and −γ̂st/2) with ω1 =
1000 rad·s−1 and F1 = 1200 s−1.

4.3 Dynamic bifurcation point in the stochastic case

Now the system is assumed to evolve according to Regime
II, i.e. E

[
x2

y

]
= S(y). In this case, again through Defini-

tion 4.1 and using Eq. (40b), the equation to solve in order
to find the dynamic bifurcation point is

x2
y0

= σ2

ϵ
e

2
ϵ A(y)

∫ y

y0

e− 2
ϵ A(y)dy. (46)

The first step is to obtain the approximate expression of
the integral

I(y0, y) =
∫ y

y0

e− 2
ϵ A(y)dy. (47)

For this purpose A(y) (given by Eq. (34)) is expanded in a
second order Taylor series around 0 (the static bifurcation
point), that leads to

A(y) ≈ A(0) + y
dA

dy
(0) + y2

2
d2A

dy2 (0) (48a)

= A(0) + ya(0) + y2

2 a′(0) (48b)

where the second term in the right-hand side of (48b) van-
ishes by definition4 and a′(0) = da

dy (0). The approximate
4Indeed, at the bifurcation one has a(0) = ∂F

∂x
(0, 0) = 0.

expression of I(y0, y) is therefore given at order 2 by

I(y0, y) =
∫ y

y0

e
− 2

ϵ

(
A(0)+ y2

2 a′(0)
)

dy

= 1
2

√
πϵ

a′(0)e− 2
ϵ A(0)

×

(
erf
(

y

√
a′(0)

ϵ

)
− erf

(
y0

√
a′(0)

ϵ

))
(49)

where erf is the error function.
Since we consider 0 < ϵ ≪ 1 and because a′(0) has a

finite value, one has for an initial value chosen smaller than
the static bifurcation point, i.e. for y0 < 0

y0

√
a′(0)

ϵ
≪ −1 ⇒ erf

(
y0

√
a′(0)

ϵ

)
≈ −1 (50)

and for y > 0 (we are interested in the dynamic bifurcation
point which is by definition larger than the static bifurca-
tion point)

y

√
a′(0)

ϵ
≫ 1 ⇒ erf

(
y

√
a′(0)

ϵ

)
≈ 1. (51)

Therefore, from Eqs. (50) and (51), Eq. (49) reduces to

I(y0, y) =
√

πϵ

a′(0)e− 2
ϵ A(0). (52)

Eq. (52) highlights that I(y0, y) is now independent of y
and y0 and simply denoted I. Therefore Eq. (46) becomes

A(y) = K, (53)

with
K = −ϵ ln σ − ϵ

2 ln I

ϵ
+ ϵ ln xy0 (54)

and the function A(y) given by (34).
Eq. (53) can be expressed as a third order polynomial

equation with respect to y as

a1y3 + a2y2 + a3y + a4 = 0 (55)

with

a1 = ζ2F 2
1

4ω2
1

,

a2 = 1
4

(
(3γ̂st − 2)ζ2F 2

1
ω2

1
− α2

1

)
,

a3 = (γ̂st − 1)(3γ̂st − 1)ζ2F 2
1

4ω2
1

− α1K,

a4 = (γ̂st − 1)2γ̂stζ2F 2
1

4ω2
1

− K2

(56)
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and γ̂st given by Eq. (7) (details are given in Appendix D).
Eq. (55) is solved analytically using Cardano’s formula

(see again Appendix D for details). One obtains

ŷdyn
stoch,a =

{
r0 if σ < σ3, (57a)
r2 if σ3 < σ < σ2 (57b)

where r0 and r2 are given by Eq. (85), as depicted in
Fig. 13. The expressions of σ2 and σ3 are given respec-
tively by Eqs. (82) to (84).

A second approximate expression of the stochastic dy-
namic bifurcation point is obtained using (48b) in Eq. (53)
which becomes a second order polynomial equation with
respect to y. Solving the latter leads to the following less
accurate approximate, but easier to interpret, expression

ŷdyn
stoch,b = 2

[
− (γ̂st)3/2ω1ϵ

ζF1(3γ̂st + 1)

×

(
3 ln(γ̂st)

2 + ln
(

8πω1

ϵζF1(3γ̂st + 1)

)

+ 4 ln(σ) − 4 ln (xy0)
)]1/2

. (58)

Note that both in Eqs. (57) and (58) the dependence on
the initial value y0 is lost. However, contrary to the de-
terministic case, the stochastic dynamic bifurcation point
depends on the slope ϵ.

Deterministic and stochastic dynamic bifurcation points,
given by Eqs. (42), (57) and (58) respectively, are plotted
in Fig. 6 as functions of the noise level σ. The deterministic
bifurcation point ŷdyn

det is plotted for two values of the initial
condition y0, i.e. y0 = −γ̂st and −3γ̂st/4. The stochastic
bifurcation points are plotted for two values of the param-
eter ϵ, i.e. ϵ = 0.002 and 0.01. The other parameters
are given by (45) with in addition xy0 = 0.01. First, we
can see that the higher the noise level the closer the two
approximate expressions of the stochastic dynamic bifurca-
tion points. This is because the higher the noise level the
more the bifurcation delay is reduced, hence the more the
Taylor series (48b) is valid. Secondly, Fig. 6 shows graphi-
cally the domains of existence of the regimes listed at the
end of the Sect. 4.1.

The following definitions are chosen for the boundary
values (with respect to the noise level σ) between the differ-
ent regimes previously mentioned: the boundary value be-
tween Regime I and Regime II, denoted σI/II , corresponds
to the intersection between ŷdyn

det and ŷdyn
stoch,a. This means

in Fig. 6 that if σ < σI/II (Regime I), ŷdyn
det is the actual

dynamic bifurcation point. On the contrary, if σ > σI/II

(Regime II), ŷdyn
stoch,a or ŷdyn

stoch,b (depending on the approx-
imation retained) is the actual dynamic bifurcation point.

10
-15

10
-12

10
-9

10
-6

0.001 1
0.0

0.5

1.0

1.5

2.0

Figure 6. Deterministic and stochastic dynamic bifurcation
points, given by Eqs. (42), (57) and (58) respectively, as func-
tions of the noise level σ. The deterministic bifurcation point
ŷdyn

det is plotted for two values of the initial condition y0, i.e.
y0 = −γ̂st and −3γ̂st/4. The stochastic bifurcation points are
plotted for two values of the parameter ϵ, i.e. ϵ = 0.002 and
0.01. The other parameters are given by (45) with in addition
xy0 = 0.01.

The boundary value between Regime II and Regime III, de-
noted σII/III , is the value at which ŷdyn

stoch,a (and ŷdyn
stoch,b)

no longer exists. The expressions of σI/II and σII/III are
given in next section.

4.4 Domains of existence of the regimes

The boundary value between Regime I and Regime II, with
respect to the noise level σ and denoted σI/II , is obtained
solving

D(y) = S(y). (59)

with respect to σ. Therefore, from (40) and (52), we find

σI/II = xy0

(
a′(0)ϵ

π

)1/4
e

2
ϵ (A(0)−A(y0)). (60)

The second boundary value between Regime II and
Regime III, again with respect to the noise level σ denoted
σII/III , corresponds to the value of σ for which ŷdyn

stoch,a
and ŷdyn

stoch,b do not exist anymore5 (see Fig. 6). The ex-
pression of σII/III is obtained by noting that ŷdyn

stoch,a and

5This corresponds to the fact that the solutions of Eq. (53) for both
cubic and quadratic approximations become complex for σ > σII/III .
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Figure 7. Regions of existence of the Regimes I, II and III (a) in the (y0, ϵ, σ)-space, (b) in the (y0, σ)-plane for ϵ = 0.002 and (c)
in the plane (ϵ, σ)-plane for y0 = −0.34. The expressions of σI/II and σII/III are given by Eqs. (60) and (61) respectively.

Table 1. Values σI/II and σII/III , computed through Eqs. (60)
and (61) respectively, corresponding to situations plotted in
Fig. 6.

y0 = −γ̂st y0 = −3γ̂st/4

σI/II
ϵ = 0.002 1.88 · 10−14 4.39 · 10−7

ϵ = 0.01 1.20 · 10−5 3.59 · 10−4

σII/III
ϵ = 0.002 1.16 · 10−3 1.16 · 10−3

ϵ = 0.01 1.17 · 10−3 1.17 · 10−3

ŷdyn
stoch,b vanish at σ = σII/III . Therefore, one may solve

ŷdyn
stoch,b = 0 that, from (58), leads to

σII/III = x0

(
1

γ̂st

)3/8(
ϵζF1(3γ̂st + 1)

8πω1

)1/4

(61)

with γ̂st given by Eq. (7).
Using Eqs. (60) and (61) respectively the values of σI/II

and σII/III corresponding to situations plotted in Fig. 6
are given in Tab. 1.

By means of Eqs. (60) and (61) one can also depict the
regions of existence of each of the three regimes in the

(y0, ϵ, σ)-space (see Fig. 7(a)). A representation of these
regions is also given in the (y0, σ)-plane for ϵ = 0.002 and
in the plane (ϵ, σ)-plane for y0 = −0.34 in Figs. 7(b) and
7(c) respectively. One can see that the boundary between
Regime II and Regime III mainly depends on σ. On the
contrary, the boundary between Regime I and Regime II
depends simultaneously on σ, y0 and ϵ. That means that
the use of Eq. (42) (the deterministic bifurcation point) or
Eq. (58) (the stochastic bifurcation point) as a theoretical
prediction of the actual dynamic bifurcation point observed
on numerical simulations does not depend only on the noise
level. Fig. 7 shows that the dependence on ϵ is the most
important. Indeed, the above value σI/II = 3.15·10−10 has
been obtained for ϵ = 0.002. The value becomes σI/II =
7.21 · 10−17 for ϵ = 10−3 and σI/II = 1.44 · 10−69 for ϵ =
2 · 10−4. In other words, if ϵ = 2 · 10−4, to simulate the
deterministic case, the number of digits of precision used
by the computer must be at least equal to 69.

The latter observation shows that, in some instances,
even with an extremely low level, the noise can influence
the bifurcation delay. That means for example that a deter-
ministic approach can fail to predict the bifurcation delay
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observed on numerical integration of the model in which
the round-off errors act as an additive noise with a very
low level [6].

4.5 Probability density function of the stochastic averaged
amplitude

In addition to being able to obtain the expected value of
the squared amplitude (39), Eq. (36) allows us to calcu-
late the probability density function (PDF) of the ampli-
tude xy without having to solve the Fokker-Planck equa-
tion associated to Eq. (29). Indeed, a known result of
stochastic calculus (see e.g. [25], Chap. 4) is that the Itô
integral of a deterministic function f(t), i.e.

∫ t

0 f(t)dWt, is
a Gaussian process with mean equal to zero and variance
v =

∫ t

0 f(t)2dt. Therefore, from (36), xy is a Gaussian
process with mean E [xy] = xdet(y) and variance

E
[
x2

y

]
− E [xy]2 = S(y) = σ2

ϵ
e

2
ϵ A(y)

∫ y

y0

e− 2
ϵ A(y)dy (62)

with
∫ y

y0
e− 2

ϵ A(y)dy given by (52).
The associated Gaussian PDF is therefore

ρ(x, y) = 1√
2πS(y)

e− (x−xdet(y))2
2S(y) . (63)

This means that, for a given value of y, the probability that
xy lies between x and x + dx is ρ(x, y)dx. Then, we define
the function R(y) = ρ(xy0 , y) for which the probability that
xy lies between xy0 and xy0 +dx is R(y)dx. From (63), the
expression of the function R(y) is

R(y) = 1√
2πS(y)

e− (xy0 −xdet(y))2

2S(y) . (64)

In the Regime I we have D(y) = xdet(y)2 ≫ S(y) and
the function R(y) can be approximated by a Dirac delta
function as R(y) ≈ δ(xy0 −xdet(y)). Denoting ℓ(y) = xy0 −
xdet(y) the roots of which are y0 and ŷdyn

det (see Eq. (41))
and using the composition property of Dirac delta function
one obtains

R(y) ≈ RI(y) = δ(y − y0)
|ℓ′(y0)| + δ(y − ŷdyn

det )
|ℓ′(ŷdyn

det )|
(65)

when the system evolves according to Regime I.
In the Regime II, because D(y) ≪ S(y), Eq. (64) be-

comes
R(y) ≈ RII(y) = 1√

2πS(y)
e−

x2
y0

2S(y) . (66)

We have therefore

R′
II(y) =

S ′(y)
(
x2

y0
− S(y)

)
√

2πS(y)5/2
e−

x2
y0

2S(y) . (67)
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Figure 8. The function R(y) defined by Eq. (64). The quanti-
ties ŷdyn

det , ŷdyn
stoch,a and ŷdyn

stoch,b are depicted by vertical green line
and vertical red dashes line respectively. The parameters (45)
are used and (a) σ = 10−4, (b) σ = 10−6 and (c) σ = 10−11.
Moreover y0 = −0.34, xy0 = 0.01 and ϵ = 0.002.

which vanishes for xy0 = S(y) (it can be shown that this
corresponds to a maximum of R′

II(y)) and therefore, ac-
cording to the Definition 4.1, for y = ŷdyn

stoch,a.
In Fig. 8 the function R(y) is plotted using parame-

ters (45) and three values of the noise level, i.e. σ = 10−4,
σ = 10−6 and σ = 10−11. For the first two values of
the noise level the system is in Regime II and it is in the
Regime I for the third value (see Fig. 10 in the next sec-
tion). In Figs. 8(a) and 8(b) one can see that the maximum
of R(y) is obtained for y = ŷdyn

stoch,a as predicted by Eq. (67).
Eq. (65) is illustrated in Fig. 8(c) in which we can see that
in Regime I the function R(y) becomes a Dirac delta func-
tion translated to y = ŷdyn

det . In the figure only the positive
values of y are represented and y0 < 0. Consequently, the
first term of the sum in the right-hand side of Eq. (65) does
not appear.
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5 Comparison between theoretical results and nu-
merical simulation

5.1 Comparison in term of the expected value of the
squared amplitude

The aim of this section is to validate both the stochastic av-
eraging procedure in term of expected value of the squared
amplitude and the analytical predictions ŷdyn

det of the de-
terministic dynamic bifurcation point given by Eq. (42)
and those of the stochastic bifurcation points, ŷdyn

stoch,a and
ŷdyn

stoch,b, given by Eqs. (57) and (58) respectively.
To achieve that, after getting the time series of pt from

the numerical integration of (11)6, the corresponding am-
plitude (denoted Ay) is computed as a function of y. To
that end, the time series of pt and yt are divided into N
intervals and on each of them the maximum of pt (max(p)i

with i = 1, . . . , N) and the mean of yt (mean(y)i with
i = 1, . . . , N) are computed. Then Ay is defined as max(p)i

as a function of mean(y)i for i from 1 to N . The proce-
dure is repeated 50 times and the expected value E

[
A2

y

]
is

computed over the 50 realizations. Simultaneously, the ex-
pected value E

[
x2

y

]
of xy is computed over 50 realizations

of the numerical integration of the averaged equation (29).
The results are shown in Fig. 9 which represents: (on the

left) a plot of
√
E
[
A2

y

]
(dashed red line),

√
E
[
x2

y

]
(blue

line), the static bifurcation diagram (red) computed in Ap-
pendix E and ŷdyn

det , ŷdyn
stoch,a and ŷdyn

stoch,b depicted by vertical
black line, vertical green line and vertical magenta dashed
line respectively; (on the right) same as on the left with-
out the static bifurcation diagram, with an horizontal black
dashed at

√
E
[
x2

y

]
= xy0 and using a logarithm scale for

the
√

E
[
x2

y

]
-axis. The set of parameters (45) is used and,

from top to bottom: σ = 10−4, σ = 10−6 and σ = 10−11.
The initial conditions are y0 = −0.34 and xy0 = 0.01.

The agreement through numerical integration between
expected of the squared amplitude of the stochastic slow
dynamics and the initial full order system for different sit-
uations corresponding to Regimes I and II is considered as
a successful assessment of the stochastic averaging proce-
dure.

In Fig. 9(a) and 9(b) the system is in Regime II. There-
fore, the noise cannot be ignored and the dynamic bifurca-
tion must be determined by ŷdyn

stoch,a or ŷdyn
stoch,b. The figure

shows that the latter provides a good approximation of
the dynamic bifurcation point. Indeed, through the Defi-
nition 4.1, the dynamic bifurcation point is the abscissa of

6All numerical simulations of the Itô stochastic differential equa-
tions are performed using the function ItoProcess of the Wolfram
Mathematica software.

the point of intersection between E [xy] and the horizon-
tal at E [xy] = xy0 . The logarithmic scale used in Fig. 9
(right column) allows us to locate this intersection and to
see that the vertical green line, corresponding to ŷdyn

stoch,a,
passes also through this intersection and the vertical ma-
genta dashed line, corresponding to ŷdyn

stoch,b, passes a little
on the left (all the more as σ is decreased). Of course
the expression ŷdyn

stoch,a is more accurate than ŷdyn
stoch,b be-

cause it corresponds to a lesser degree of approximation.
In Fig. 9(c) the system is in Regime I, consequently, the
noise can be neglected and the dynamic bifurcation point
is determined by ŷdyn

det . A good agreement between the-
oretical prediction and numerical simulations can still be
observed on the right column. Indeed, the vertical black
line passes through the point of intersection between E [xy]
and the horizontal line at E [xy] = xy0 .

The position in the (y0, σ)-plane of the three situations
depicted in Fig. 9 is shown in Fig. 10 and superimposed to
the regions of existence of the Regimes I, II and III.

5.2 Comparison in term of probability density function

In this section the theoretical PDF ρ(x, y) (see Eq.(63)) is
compared to two histograms: one in built from the full or-
der system (11) and the other from the stochastic slow dy-
namics (29). In both cases, 2000 realizations of the system
are computed and we take, for each realization, the value of
the considered random variable (xy or pt) for a given value
of y denoted ỹ (chosen arbitrary to be ỹ = 0.15). The
comparison, presented in Fig. 11, is performed for three
values of the noise level (the same as chosen previously in
Figs. 8 and 9) and shows en excellent agreement between
theoretical and numerical results. In Fig. 11(c), the sys-
tem is in Regime I and, as expected, the PDF appears as
a Dirac delta function. In this case the histograms are also
in agreement with the theoretical PDF but this cannot be
seen in the figure.

We choose a value of ỹ smaller than the dynamic bi-
furcation point but results using a larger value (not pre-
sented here) shows also a good agreement between theo-
retical PDF and histograms as long as the linear approxi-
mation is valid and therefore for a value y not too far from
the dynamic bifurcation point.

6 Discussion and conclusion

This article is inspired by work initially done in the applied
mathematics community. The approach adopted is general
and can be adapted to other systems undergoing a dynamic
Hopf bifurcation.

For the clarinet model studied, the stochastic averaging
procedure preserves the properties of the dynamic behavior
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Figure 9. On the left: a plot with the expected values of A2
y (red dashed line) and x2

y (blue line) obtained using 50 realizations
of the numerical integration of Eqs (11) and (29) respectively, the stable branches of the static bifurcation diagram (SBD, gray
line) computed in Appendix E and ŷdyn

det , ŷdyn
stoch,a and ŷdyn

stoch,b depicted by vertical black line, vertical green line and vertical magenta
dashed line respectively. On the right: same as on the left without the static bifurcation diagram, with an horizontal black dashed at√

E [x2
y] = xy0 and using a logarithm scale for the

√
E [x2

y]-axis. The set of parameters (45) is used and, from (a) to (c), σ = 10−4,
σ = 10−6 and σ = 10−11. Moreover y0 = −0.34, xy0 = 0.01 and ϵ = 0.002.

of the original system. Thus, the same bifurcation delay is observed in the original and the averaged system. The dif-
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Regime I

Regime II

Regime III
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Figure 10. The regions of existence of the Regimes I, II and
III in the (y0, σ)-plane in which the red points show the position
of the three cases depicted in Fig. 9. The initial conditions are
y0 = −0.34 and xy0 = 0.01 and three values of the noise level
are used: σ = 10−4, σ = 10−6 and σ = 10−11 which correspond
to cases 1 to 3 respectively.

ferent behaviors observed according to the amplitude of the
random forcing, the initial condition or the rate of change
of the bifurcation parameter are in line with those found in
other fields of physics or in applied mathematics. In par-
ticular, the conclusions are the same as for another simple
clarinet model already studied a few years ago. The latter
model is a discrete-time model and is based on very differ-
ent simplifying assumptions: it results from the discretiza-
tion of a delay model which therefore retains an infinite
number of acoustic modes. In contrast, the model studied
in this article retains only a single acoustic mode.

Studying the dynamic bifurcations of ODE-based mod-
els is nevertheless necessary. Firstly, because these are the
models used by researchers in the context of instrument
making. Secondly, because recent works underline the im-
portance of taking into account the temporal dynamics of
the bifurcation parameters (in particular those controlled
by the musician [11]). The study carried out in this arti-
cle already allows to obtain analytically the dynamic os-
cillation thresholds according to the main parameters con-
trolled by the musician. This information could be linked
to important notions for the musician and the instrument
manufacturer such as the ease of playing. This opens inter-
esting perspectives such as the study of dynamic bifurca-
tions of a more realistic model than the one studied in this
article. The first improvement is undoubtedly to complete
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Figure 11. Comparison between theoretical PDF ρ(x, y) given
by Eq. (63) and two histograms: one in built from the full
order system (11) and the other from the stochastic slow dy-
namics (29). In both cases, 2000 realizations of the system are
computed and we take, for each realization, the value of the
considered random variable (xy or pt) for a given value of y de-
noted ỹ (chosen arbitrary to be ỹ = 0.15). The comparison is
performed for three values of the noise level: (a) σ = 10−4, (b)
σ = 10−6 and (c) σ = 10−11. Moreover y0 = −0.34, xy0 = 0.01
and ϵ = 0.002.

this model with other acoustic modes whose importance is
already known in the static case [10].

Declarations

Funding Not applicable.

Conflict of interest The authors declare that they have
no conflict of interest concerning the publication of this
manuscript.

Availability of data and material On request.

16



B. Bergeot and C. Vergez

Code availability On request.

A The 1-dimensional Itô’s formula

Let the following Itô differential equation

dxt = m(xt, t)dt + σ(xt, t)dWt, (68)

where m and σ are real functions and Wt is the so-called
Wiener process.

Let f(xt, t) ∈ C2(R,R+) (i.e. f is twice continuously
differentiable on (R,R+)). Then f(xt, t) is also Itô process,
and

df(xt, t) = ∂f

∂t
dt + ∂f

∂x
dxt + 1

2
∂2f

∂x2 σ(xt, t)2dt (69a)

=
(

∂f

∂t
+ m(xt, t)∂f

∂x
+ σ(xt, t)2

2
∂2f

∂x2

)
dt

+ σ(xt, t)∂f

∂x
dWt. (69b)

Eq. (69) is the 1-dimensional Itô’s formula (for more de-
tails and proof see [26], Chap. 4).

B General formulation of the stochastic averaging
method

In this appendix the stochastic averaging method [34, 24] is
briefly described. For that we consider the following system
of differential equations in standard form

ẋt = f(xt, t) + g(xt, t)ηt (70)

where xt ∈ Rn. If the deterministic vector function
f(xt, t) ∈ Rn and matrix function g(xt, t) ∈ Rn×Rn satisfy
certain requirements [24] and the elements of the vector ηt

are broadband processes, with zero means, then the slow
(or averaged) dynamics of Eq. (70) may be approximated
by the following Itô equations

dxt = m(xt)dt + σ(xt, t)dWt, (71)

where Wt ∈ Rn is a vector of n Wiener processes. The vec-
tor m and the matrix σ are called drift vector and diffusion
matrix respectively and defined by

m = T av
{

f +
∫ 0

−∞
E
[(

∂(gη)
∂x

)
t

(gη)t+τ

]
dτ

}
, (72)

where ∂(gη)
∂x is the Jacobian matrix of gη, and

σσT = T av
{∫ +∞

−∞
E
[
(gη)t(gη)T

t+τ

]
dτ

}
(73)

where {.}T and E [{.}] denotes respectively the transpose
and the expected value of {.}. T av is an averaging operator
defined as follows

T av {.} = lim
T →+∞

1
T

∫ t0+T

t0

{.} dt. (74)

It should be noted that in the case of a periodic variables
with period T0 (which is the case in this paper), the oper-
ator T av becomes a classical Krylov–Bogolyubov time av-
eraging over one period T0, i.e.

T av {.} = 1
T0

∫ t0+T0

t0

{.} dt (75)

and the result is independent of t0.

C Derivation of the expression of the determinis-
tic dynamic bifurcation point

In this appendix we give the details of the résolution of
Eq. (41). First we state y + γ̂st = X2 and then it can be
shown that, using Eq. (34), Eq. (41) takes the following
form

(X − X0)
(

ζF1X2 + (ζF1X0 − α1ω1)X

− ζF1 + ζF1X2
0 − α1X0ω1

)
= 0 (76)

where X2
0 = y0 + γ̂st. Obviously X = X0 and therefore

y = y0 is a solution of (76). The second term of the product
in the left-hand side of (76) is a second order polynomial
equations whose roots X1 and X2 are

X1 = 1
2ζF1

(
α1ω1 − ζF1X0

−
√

α2
1ω2

1 + 2α1ζF1X0ω1 + ζ2F 2
1 (4 − 3X2

0 )
)

(77)

and

X2 = 1
2ζF1

(
α1ω1 − ζF1X0

+
√

α2
1ω2

1 + 2α1ζF1X0ω1 + ζ2F 2
1 (4 − 3X2

0 )
)

. (78)

The initial value y0 is always chosen to be larger than
−γ̂st (because the mouth pressure γ must be larger than
zero). Therefore, X must be larger than zero and, for a
realistic set of parameters, only X2 is positive. Conse-
quently, the expression of the deterministic dynamic bi-
furcation point is given by

ŷdyn
det = X2

2 − γ̂st. (79)
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D Derivation of the expression of the stochastic
dynamic bifurcation point

Using Eq. (34), Eq. (53) takes the following explicit form

K = ζF1
√

γ̂st + y

2ω1

(
y − 1 + γ̂st)− α1y

2 . (80)

To obtain a solvable cubic form (i.e. without square
root), Eq. (80) is transformed into(

K + α1y

2

)2
= ζ2F 2

1 (γ̂st + y)
4ω2

1

(
y − 1 + γ̂st)2 (81)

which yields Eq. (55).
In the remaining of this appendix the Cardano’s method

(see e.g. [32]) is used to solve the latter, i.e. a1y3 + a2y2 +
a3y + a4 = 0.

First, the following parameters are introduced

p = − a2
2

3a2
1

+ c3

a1
and q = a2

27a1

(
2a2

2
a2

1
− 9a3

a1

)
+ a4

a1
.

The discriminant ∆ is defined as ∆ = −
(
4p3 + 27q2) .

Then:
1. If ∆ < 0, one root is real and two are complex conju-

gate.

2. If ∆ = 0, all roots are real and at least two are equal.

3. If ∆ > 0, all roots are real and unequal.
A typical example of the discriminant ∆, plotted as a

function of the noise level σ, is depicted in Fig. 12 for a
typical set of parameters. It can be shown that ∆ can
be expressed as a fourth order polynomial equation with
respect to ln σ which has two distinct roots

ln (σ1) = 2α3
1ω3

1 − 27α1γ̂stζ2F 2
1 ω1

54ζ2F 2
1 ω1ϵ

−
2
(
α2

1ω2
1 + 3ζ2F 2

1
)3/2 − 9α1ζ2F 2

1 ω1

54ζ2F 2
1 ω1ϵ

− 1
2 ln

2
√

2πγ̂st3/4
ω1e− (γ̂st−1)

√
γ̂stζF1

ω1ϵ√
(3γ̂st + 1)ζF1ω1ϵ


+ ln (xy0) (82)

and

ln (σ2) =
9α1(1 − 3γ̂st) + 2(α3

1ω3
1+(α2

1ω2
1+3ζ2F 2

1 )3/2)
ζ2F 2

1 ω1

54ϵ

− 1
2 ln

2
√

2πγ̂st3/4
ω1e− (γ̂st−1)

√
γ̂stζF1

ω1ϵ√
(3γ̂st + 1)ζF1ω1ϵ


+ ln (xy0) (83)
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Figure 12. Discriminant ∆ of (55) as a function the natural
logarithm of the noise level ln σ. The set of parameters (45) is
used.
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Figure 13. The roots rk (k = 0, 1, 2) of Eq. (55) and the
the stochastic dynamic bifurcation ŷdyn

stoch,a as functions of the
natural logarithm of the noise level σ. The parameters (45) are
used and xy0 = 0.01.

and a double root

ln (σ3) = α1(γ̂st − 1)
2ϵ

−
log
(

2
√

2πγ̂st3/4
ω1e

− (γ̂st−1)
√

γ̂stζF1
ω1ϵ√

(3γ̂st+1)ζF1ω1ϵ

)
2

+ ln (xy0) . (84)

In the example shown in Fig. 12 one has: ln (σ1) = −53.1,
ln (σ2) = −6.8 and ln (σ3) = −26.6.

If σ1 < σ < σ2 we have ∆ > 0 except at σ = σ3 for
which ∆ = 0. In general, when ∆ > 0 the three real roots
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are written using trigonometric functions as follows

rk = 2
√

−p

3 cos
(

1
3 arccos

(
3q

2p

√
3

−p

)
+ 2kπ

3

)
− a2

3a1

with k = 0, 1, 2. (85)

Fig. 13 shows the roots rk (k = 0, 1, 2) as functions of the
noise level σ using again the parameters (45) and xy0 =
0.01. The stochastic dynamic bifurcation point, denoted
ŷdyn

stoch,a, is equal to r0 if σ < σ3 and to r2 if σ3 < σ < σ2.
This choice is justified by means of a numerical resolution
which shows that this is the unique positive solution of
Eq. (80).

E Static bifurcation diagram

The static bifurcation diagram is the result of the bifur-
cation analysis of a deterministic dynamical system with
constant bifurcation parameter, here Eq. (6) with a con-
stant value of y. It plots, as a function of the considered
bifurcation parameter (here y), the possible steady-state
regimes (fixed points and periodic motions) indicating their
stability.

We use here the averaging procedure to obtain the ap-
proximated analytical bifurcation diagram of the one-mode
model. For that Eq. (27) is considered without noise et
with a constant bifurcation parameter y, i.e.

dxt

dt
= F (xt, y), (86)

where the function F (xt, yt) is given by Eq. (20).
The fixed points xe of (86) are obtained by solving

F (x, y) = 0. We obtain three solutions: the trivial solution
xe

1 = 0 and two non trivial solutions, one is negative and
one is positive. Only the the positive non trivial solution
is retained and denoted xe

2, its expression is

xe
2 = 4

√√√√√ 2ζF1(3γ̂st+3y−1)
3ω1

√
γ̂st+y

− 4α1
3

ζF1(γ̂st+y+1)
ω1(γ̂st+y)5/2

(87)

where the expression of ŷst is given by Eq. (7). In the
lossless case with α1 = 0 and γ̂st = 1

3 , Eq. (87) reduces to
xe

2 = 4
√

2(3y + 1)
√

y
9y+12 .

The trivial solution corresponds to zero equilibrium po-
sition of (6) whereas the non trivial solution characterizes
its periodic steady-state regimes.

As we know, the trivial fixed point xe
1 is stable if y < 0

and unstable if y > 0. One can be shown that the non
trivial fixed point xe

2 exists only for y > 0 and is stable.
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