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ABSTRACT
Large datasets increasingly provide criti-

cal insights into crustal and surface pro-
cesses on Earth. These data come in the 
form of published and contributed observa-
tions, which often include associated meta-
data. Even in the best-case scenario of a 
carefully curated dataset, it may be non-
trivial to extract meaningful analyses from 
such compilations, and choices made with 
respect to filtering, resampling, and averag-
ing can affect the resulting trends and any 
interpretation(s) thereof. As a result, a thor-
ough understanding of how to digest, pro-
cess, and analyze large data compilations is 
required. Here, we present a generalizable 

workflow developed using the Sedimentary 
Geochemistry and Paleoenvironments Project 
database. We demonstrate the effects of 
filtering and weighted resampling on Al2O3 
and U contents, two representative geo-
chemical components of interest in sedi-
mentary geochemistry (one major and one 
trace element, respectively). Through our 
analyses, we highlight several methodologi-
cal challenges in a “bigger data” approach 
to Earth science. We suggest that, with slight 
modifications to our workflow, researchers 
can confidently use large collections of 
observations to gain new insights into pro-
cesses that have shaped Earth’s crustal and 
surface environments.

INTRODUCTION
The study of Earth’s past relies on a record 

that is spatially and temporally variable and, 
by some metrics, woefully undersampled. 
Through every geochemical analysis, fossil 
identification, and measured stratigraphic 
section, Earth scientists continuously add to 
this historical record. Compilations of such 
observations can illuminate global trends 
through time, providing researchers with 
crucial insights into our planet’s geological 
and biological evolution. These compilations 
can vary in size and scope, from hundreds of 
manually curated entries in a spreadsheet to 
millions of records stored in software data-
bases. The latter form is exemplified by 
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databases such as The Paleobiology Database 
(PBDB; Peters and McClennen, 2016), 
Macrostrat (Peters et al., 2018), EarthChem 
(Walker et al., 2005), Georoc (Sarbas, 2008), 
and the Sedimentary Geochemistry and 
Paleoenvironments Project (SGP, this study).

Of course, large amounts of data are not 
new to the Earth sciences, and, with respect 
to volume, many Earth history and geo-
chemistry compilations are small in compar-
ison to the datasets used in other subdisci-
plines, including seismology (e.g., Nolet, 
2012), climate science (e.g., Faghmous and 
Kumar, 2014), and hydrology (e.g., Chen and 
Wang, 2018). As a result, many Earth history 
compilations likely do not meet the criteria 
to be called “big data,” which is a term that 
describes very large amounts of information 
that accumulate rapidly and which are 
heterogeneous and unstructured in form 
(Gandomi and Haider, 2015; or “if it fits in 
memory, it is small data”). That said, the tens 
of thousands to millions of entries present in 
such datasets do represent a new frontier for 
those interested in our planet’s past. For 
many Earth historians, however, and espe-
cially for geochemists (where most of the 
field’s efforts traditionally have focused on 
analytical measurements rather than data 
analysis; see Sperling et al., 2019), this fron-
tier requires new outlooks and toolkits.

When using compilations to extract 
global trends through time, it is important to 
recognize that large datasets can have sev-
eral inherent issues. Observations may be 
unevenly distributed temporally and/or spa-
tially, with large stretches of time (e.g., parts 
of the Archean Eon) or space (e.g., much of 
Africa; Fig. S11) lacking data. There may also 
be errors with entries—mislabeled values, 
transposition issues, and missing metadata 
can occur in even the most carefully curated 
compilations. Even if data are pristine, they 
may span decades of acquisition with evolv-
ing techniques, such that both analytical pre-
cision and measurement uncertainty are non-
uniform across the dataset (Fig. S2 [see 
footnote 1]). Careful examination may dem-
onstrate that contemporaneous and co-located 
observations do not agree. Additionally, data 
often are not targeted, such that not every 
entry may be necessary for (or even useful to) 
answering a particular question.

Luckily, these (and other) issues can be 
addressed through careful processing and 
analysis, using well-established statistical 
and computational techniques. Although 
such techniques have complications of their 
own (e.g., a high degree of comfort with 
programming often is required to run code 
efficiently), they do provide a way to extract 
meaningful trends from large datasets. No 
one lab can generate enough data to cover 
Earth’s history densely enough (i.e., in time 
and space), but by leveraging compilations 
of accumulated knowledge, and using a 
well-developed computational pipeline, 
researchers can begin to ascertain a clearer 
picture of Earth’s past.

A PROPOSED WORKFLOW
The process of transforming entries in a 

dataset into meaningful trends requires a 
series of steps, many with some degree of user 
decision making. Our proposed workflow is 
designed with the express intent of removing 
unfit data while appropriately propagating 
uncertainties. First, a compiled dataset is 
made or sourced (Fig. S3, i. [see footnote 1]). 
Next, a researcher chooses between in-data-
base analysis and extracting data into another 
format, such as a text file (Fig. S3, ii.). This 
choice does nothing to the underlying data—
its sole function is to recast information into a 
digital format that the researcher is most com-
fortable with. Then, a decision must be made 
about whether to remove entries that are not 
pertinent to the question at hand (Fig. S3, iii.). 
Using one or more metadata parameters (e.g., 
in the case of rocks, lithological descriptions), 
researchers can turn large compilations into 
targeted datasets, which then can be used to 
answer specific questions without the influ-
ence of irrelevant data. Following this gross 
filtering, researchers must decide between 
removing outliers or keeping them in the data-
set (Fig. S3, iv.). Outliers have the potential to 
drastically skew results in misleading ways. 
Ascertaining which values are outliers is a 
non-trivial task, and all choices about outlier 
exclusion must be clearly described when pre-
senting results. Finally, samples are drawn 
from the filtered dataset (i.e., “resampling”) 
using a weighting scheme that seeks to 
address the spatial and temporal heterogene-
ities—as well as analytical uncertainties—of 

the data (Fig. S3, vi.). To calculate statistics 
from the data, multiple iterations of resam-
pling are required.

CASE STUDY: THE SEDIMENTARY 
GEOCHEMISTRY AND 
PALEOENVIRONMENTS PROJECT

The SGP project seeks to compile sedimen-
tary geochemical data, made up of various 
analytes (i.e., components that have been ana-
lyzed), from throughout geologic time. We 
applied our workflow to the SGP database2 to 
extract coherent temporal trends in Al2O3 and 
U from siliciclastic mudstones. Al2O3 is rela-
tively immobile and thus useful for constrain-
ing both the provenance and chemical weath-
ering history of ancient sedimentary deposits 
(Young and Nesbitt, 1998). Conversely, U is 
highly sensitive to redox processes. In marine 
mudstones, U serves as both a local proxy for 
reducing conditions in the overlying water 
column (i.e., authigenic U enrichments only 
occur under low-oxygen or anoxic conditions 
and/or very low sedimentation rates; see 
Algeo and Li, 2020) and a global proxy for the 
areal extent of reducing conditions (i.e., the 
magnitude of authigenic enrichments scales 
in part with the global redox landscape; see 
Partin et al., 2013).

SGP data are stored in a PostgreSQL rela-
tional database that currently comprises a 
total of 82,579 samples (Fig. 1). The SGP 
database was created by merging sample 
data and geological context information 
from three separate sources, each with dif-
ferent foci and methods for obtaining the 
“best guess” age of a sample (i.e., the inter-
preted age as well as potential maximum 
and minimum ages). The first source is 
direct entry by SGP team members, which 
focuses primarily on Neoproterozoic–
Paleozoic shale samples and has global cov-
erage. Due to the direct involvement of 
researchers intimately familiar with their 
sample sets, these data have the most pre-
cise (Fig. 1A)—and likely also most accu-
rate—age constraints. Second, the SGP 
database has incorporated sedimentary 
geochemical data from the United States 
Geological Survey (USGS) National Geo-
chemical Database (NGDB), comprising 
samples from projects completed between 
the 1960s and 1990s. These samples, which 

1Supplemental Material: table of valid lithologies; map depicting sample locations; crossplot illustrating analytical uncertainty; flowchart of the proposed workflow;  
histograms showing the effects of progressive filtering, the distribution of spatial and age scales, and proximity and probability values; and results of sensitivity tests.  
Go to https://doi.org/10.1130/GSAT.S.14179976 to access the supplemental material; contact editing@geosociety.org with any questions.

2All code used in this study is located at https://github.com/akshaymehra/dataCompilationWorkflow.

www.geosociety.org/gsatoday 5

https://doi.org/10.1130/GSAT.S.14179976
mailto:editing@geosociety.org
http://www.geosociety.org/gsatoday


SGP USGS- USGS-

Source

Median

25th

75th

48,23448,234
13,53113,53120,81320,813

Sample ID

10-²

10-1

100

101

102

0 2 4 6 8 10

x10

Sa
m

pl
e 

ID
 G

ap
Sa

m
pl

e 
ID

 G
ap

A BSGP
USGS-CMIBS
USGS-NGDB

cover all lithologies and are almost entirely 
from Phanerozoic sedimentary deposits of 
the United States, are associated with the 
continuous-time age model from Macrostrat 
(Peters et al., 2018). Finally, the SGP data-
base includes data from the USGS Global 
Geochemical Database for Critical Metals 
in Black Shales project (CMIBS; Granitto et 
al., 2017), culled to remove ore-deposit 
related samples. The CMIBS samples pre-
dominantly are shales, have global cover-
age, and span the entirety of Earth’s sedi-
mentary record. When possible, the CMIBS 
data are associated with Macrostrat contin-
uous-time age models; otherwise, the data 
are assigned age information by SGP team 
members (albeit without detailed knowl-
edge of regional geology or geologic units).

Cleaning and Filtering
We exported SGP data into a comma-sepa-

rated values (.csv) text file, using a custom 
structured query language (SQL) query. In the 
case of geochemical analytes, this query 
included unit conversions from both weight 
percent (wt%) and parts per billion (ppb) to 
parts per million (ppm). After export, we 
parsed the .csv file and screened the data 
through a series of steps. First, if multiple val-
ues were reported for an analyte in a sample, 
we calculated and stored the mean (or 
weighted mean, if there were enough values) 
and standard deviation of the analyte. Then, 
we redefined empty values—which are the 
result of abundance being above or below 
detection—as “not a number” (NaN, a special 

value defined by Institute of Electrical and 
Electronics Engineers [IEEE] floating-point 
number standard that always returns false 
on comparison; see IEEE, 2019). Next, we 
converted major elements (e.g., those that 
together comprise >95% of Earth’s crust or 
individually >1 wt% of a sample) into their 
corresponding oxides; if an oxide field did not 
already exist, or if there was no measurement 
for a given oxide, the converted value was 
inserted into the data structure. Then, we 
assigned both age and measurement uncer-
tainties to the parsed data. In the case of the 
parsed SGP data, 5,935 samples (i.e., 7.1% of 
the original dataset) lacked an interpreted age 
and so no uncertainty could be assigned. For 
the remainder, we calculated an initial abso-
lute age uncertainty by either using the 
reported maximum and minimum ages:

 σ =
−age age
2

maximum minimum , 

or, if there were no maximum and minimum 
age values available, by defaulting to a two-
sigma value of 6% of the interpreted age:

 σ = ∗0.03 ageinterpreted . 

The choice of a 6% default value was based on 
a conservative estimate of the precision of 
common in situ dating techniques (see, for 
example, Schoene, 2014). Additionally, we 
enforced a minimum s of 25 million years:

 σ = σmax ,25 . 

Effectively, each datum can be thought of 
as a Gaussian distribution along the time axis 
with a s of at least 25 million years (the 
minimum value of which may be thought of 
as a kernel bandwidth, rather than an analyti-
cal uncertainty). The selection of this s value 
should correspond to an estimate of the pro-
cesses that are being investigated (e.g., tec-
tonic changes in provenance). We did not 
impose a minimum relative age uncertainty.

With respect to measurement uncertainties, 
we assigned an absolute uncertainty to every 
analyte that lacked one by multiplying the 
reported analyte value by a relative error. In 
future database projects, there is considerable 
scope to go beyond this coarse uncertainty 
quantification strategy. For example, given 
the detailed metadata associated with each 
sample in the SGP database, it would be 
straightforward to develop correction factors 
or uncertainty estimates for different geo-
chemical methodologies (e.g., inductively 
coupled plasma–mass spectrometry [ICP-MS] 
versus inductively coupled plasma–optical 
emission spectrometry [ICP-OES], benchtop 
versus handheld X-ray fluorescence spec-
trometry [XRF], etc.). Correcting data for 
biases introduced during measurement is 
common in large Earth science datasets (Chan 
et al., 2019). However, such corrections previ-
ously have not been attempted in sedimentary 
geochemistry datasets.

Next, we processed the data through a 
simple lithology filter because, in the general 
case of rock-based datasets, only lithologies 
relevant to the question(s) at hand provide 
meaningful information. The choice of valid 
lithologies (or, for that matter, any other fil-
terable metadata) are dependent on the 
researchers’ question(s). As highlighted in 
the Discussion section, lithology filtering 
has significant implications for redox-sensi-
tive and/or mobile/immobile elements. In 
this case study, our aim was to only sample 
data generated from siliciclastic mudstones. 
To decide which values to screen by, we 
manually examined a list made up of all 
unique lithologies in the dataset. We excluded 
samples that did not match our list of chosen 
lithologies (removing ~63.5% of the data; 
Table S1; Fig. S4 [see footnote 1]). Our strat-
egy ensured that we only included mud-
stones sensu lato (see Potter et al., 2005, for a 
general description) where the lithology was 
coded. Alternative methods—such as choos-
ing samples based on an Al cutoff value (e.g., 
Reinhard et al., 2017)—likely would result in 
a set comprising both mudstone and non-
mudstone coded lithologies. In the future, 

Figure 1. Visualizations of data in the Sedimentary Geochemistry and Paleoenvironments Project 
(SGP) database. (A) Relative age uncertainty (i.e., the reported age σ divided by the reported inter-
preted age) versus Sample ID. The large gap in Sample ID values resulted from the deletion of entries 
during the initial database compilation and has no impact on analyses. (B) Box plot showing the distri-
butions of relative ages with respect to the sources of data. CMIBS—Critical Metals in Black Shales; 
NGDB—National Geochemical Database.
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improved machine learning algorithms, 
designed to classify unknown samples based 
on their elemental composition, may provide 
a more sophisticated means by which to gen-
erate the largest possible dataset of lithology-
appropriate samples.

We then completed a preliminary screen-
ing of the lithology filtered samples by 
checking if extant analyte values were out-
side of physically possible bounds (e.g., indi-
vidual oxides with wt% less than 0 or greater 
than 100), and, if so, setting them to NaN. 
Next, to reduce the number of mudstone 
samples with detrital or authigenic carbonate 
and phosphatic mineral phases, we excluded 
samples with greater than 10 wt% Ca and/or 
more than 1 wt% P2O5 (removing ~66.9% of 
the remaining data; Fig. S4 [see footnote 1]). 
Additionally, in order to ensure that our 
mudstone samples were not subject to sec-
ondary enrichment processes, such as ore 
mineralization, we queried the USGS NGDB 
to extract the recorded characteristics of 
every sample with an associated USGS 
NGDB identifier. We examined these char-
acteristics for the presence of selected strings 
(i.e., “mineralized,” “mineralization pres-
ent,” “unknown mineralization,” and “radio-
active”) and excluded any sample exhibiting 
one or more strings. Finally, as there were 
still several apparent outliers in the dataset, 
we manually examined the log histograms of 
each element and oxide of interest. On each 
histogram, we demarcated the 0.5th and 
99.5th percentile bounds of the data, then 
visually studied those histograms to exclude 
“outlier populations,” or samples located 
both well outside those percentile bounds 
and not part of a continuum of values (remov-
ing ~5.7% of the remaining data; Fig. S4). 
Following these filtering steps, we saved the 
data in a .csv text file.

Data Resampling
We implemented resampling based on 

inverse distance weighting (after Keller 
and Schoene, 2012), in which samples 
closer together—that is, with respect to a 
metric such as age or spatial distance—are 
considered to be more alike than samples 
that are further apart. The inverse weight-
ing of an individual point, x, is based on 
the basic form:

 ( ) =y x
d x x
1

( , )i
p

, 

where d is a distance function, xi is a second 
sample, and p, which is greater than 0, is a 

power parameter. In the case of the SGP 
data, we used two distance functions, spa-
tial (s) and temporal (t):

 ( )
=s
arcdistance x x

scale
, i

spatial

, 

 ( )
=

−
t

age x x
scale

i

age

, 

where arcdistance refers to the distance 
between two points on a sphere, scalespatial 
refers to a preselected arc distance value (in 
degrees; Fig. S5, inset [see footnote 1]), and 
scaleage is a preselected age value (in million 
years, Ma). In this case study, we chose a 
scalespatial of 0.5 degrees and a scaleage of 
10 Ma (see below for a discussion about 
parameter values).

For n samples, the proximity value w 
assigned to each sample x is:

 
∑( ) ( )( ) =

+
+

+=

=

w x
s t
1
1

1
1i

i n

1
2 2

. 

Essentially, the proximity value is a sum-
mation of the reciprocals of the distance 
measures made for each pair of the sample 
and a single other datum from the dataset. 
Accordingly, samples that are closer to 
other data in both time and space will have 
larger w values than those that are farther 
away. Note that the additive term of 1 in the 
denominator establishes a maximum value 
of 1 for each reciprocal distance measure.

We normalized the generated proximity 
values (Fig. S6 [see footnote 1]) to produce 
a probability value P. This normalization 
was done such that the median proximity 
value corresponded to a P of ~0.20 (i.e., a  
1 in 5 chance of being chosen):

 P x( ) = 1

w x( ) median 0.20
w

+1
. 

This normalization results in an “inverse 
proximity weighting,” such that samples 
that are closer to other data (which have 
large w values) end up with a smaller P 
value than those that are far away from 
other samples. Next, we assigned both ana-
lytical and temporal uncertainties to each 
analyte to be resampled. Then, we culled 
the dataset into an m by n matrix, where 
each row corresponded to a sample and 
each column to an analyte. We resampled 
this culled dataset 10,000 times using a 

three-step process: (1) we drew samples, 
using calculated P values, with replacement 
(i.e., each draw considered all available 
samples, regardless of whether a sample 
had already been drawn); (2) we multiplied 
the assigned uncertainties discussed above 
by a random draw from a normal distribu-
tion (µ = 0; s = 1) to produce an error value; 
and (3) we added these newly calculated 
errors to the drawn temporal and analytical 
values. Finally, we binned and plotted the 
resampled data.

Naturally, the reader may ask how we 
chose the values for scaleage and scaletemporal 
and what, if any, impact those choices had 
on the final results? Nominally, the values 
of scaleage and scaletemporal are controlled by 
the size and age, respectively, of the fea-
tures that are being sampled. So, in the case 
of sedimentary rocks, those values should 
reflect the length scale and duration of a 
typical sedimentary basin, such that many 
samples from the same “spatiotemporal” 
basin have lower P values than few samples 
from distinct basins. Of course, it is debat-
able what “typical” means in the context 
of sedimentary basins, as both size and 
age can vary over orders of magnitude 
(Woodcock, 2004). Given this uncertainty, 
we subjected the SGP data to a series of 
sensitivity tests, where we varied both 
scaleage and scaletemporal, using logarithmi-
cally spaced values of each (Fig. S5 [see 
footnote 1]). While the uncertainty associ-
ated with results varied based on the choice 
of the two parameters, the overall mean val-
ues were not appreciably different (Fig. S7 
[see footnote 1]).

RESULTS
To study the impact of our methodology, 

we present results for two geochemical 
components, U and Al2O3 (Fig. 2). Contents-
wise, the U and Al2O3 data in the SGP data-
base contain extreme outliers. Many of 
these outliers were removed using the 
lithology and Ca or P2O5 screening (Figs. 
2A and 2C); the final outlier filtering strat-
egy discussed above handled any remaining 
values of concern. In the case of U, our 
multi-step filtering reduced the range of 
concentrations by three orders of magni-
tude, from 0–500,000 ppm to 0–500 ppm.

DISCUSSION
The illustrative examples we have pre-

sented have implications for understanding 
Earth’s history. Al2O3 contents of ancient 
mudstones appear relatively stable over the 
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past ca. 1500 Ma (the time interval for 
which appreciable data exist in our dataset), 
suggesting little first-order change in Al2O3 
delivery to sedimentary basins over time. 
The U contents of mudstones shows a sub-
stantial increase between the Proterozoic 
and Phanerozoic. Although we have not 
accounted for the redox state of the overly-
ing water column, these results broadly 
recapitulate the trends seen in a previous 
much smaller (and non-weighted) dataset 
(Partin et al., 2013) and generally may indi-
cate oxygenation of the oceans within 
the Phanerozoic.

Moving forward, there is no reason to 
believe that the compilation and collection of 
published data, whether in a semi-automated 
(e.g., SGP) or automated (e.g., GeoDeepDive; 
Peters et al., 2014) manner, will slow and/or 
stop (Bai et al., 2017). Those interested in 
Earth’s history—as collected in large compi-
lations—should understand how to extract 
meaningful trends from these ever-evolving 
datasets. By presenting a workflow that is 
purposefully general and must be adapted 
before use, we hope to elucidate the various 
aspects that must be considered when pro-
cessing large volumes of data.

Foremost to any interpretation of a quanti-
tative dataset is an assessment of uncertainty. 
In truth, a datum representing a physical 
quantity is not a single scalar point, but rather, 
an entire distribution. In many cases, such as 
in our workflow, this distribution is implicitly 
assumed to be Gaussian, an assumption that 
may or may not be accurate (Rock et al., 
1987)—although a simplified distribution 
certainly is better than none. The quantifica-
tion of uncertainty in Earth sciences espe-
cially is critical when averaging and binning 
by a selected independent variable, since 
neglecting the uncertainty of the independent 
variable will lead to interpretational failures 
that may not be mitigated by adding more 
data. As time perhaps is the most common 
independent variable (and one with a unique 
relationship to the assessment of causality), 
incorporating its uncertainty especially is 
critical for the purposes of Earth history stud-
ies (Ogg et al., 2016). An age without an 
uncertainty is not a meaningful datum. 
Indeed, such a value is even worse than  
an absence of data, for it is actively mis-
leading. Consequently, assessment of age 
uncertainty is one of the most important, yet 
underappreciated, components of building 
accurate temporal trends from large datasets.

Of course, age is not the only uncertain 
aspect of samples in compiled datasets, and 
researchers should seek to account for as 
many inherent uncertainties as possible. Here, 
we propagate uncertainty by using a resam-
pling methodology that incorporates informa-
tion about space, time, and measurement 
error. Our chosen methodology—which is by 
no means the only option available to research-
ers studying large datasets—has the benefit of 
preventing one location or time range from 
dominating the resulting trend. For example, 
although the Archean records of Al2O3 and U 
especially are sparse (Fig. 2), resampling pre-
vents the appearance of artificial “steps” 
when transitioning from times with little data 
to instances of (relatively) robust sampling 
(e.g., see the resampled record of Al2O3 
between 4000 and 3000 Ma). Therefore, 
researchers should examine their selected 
methodologies to ensure that: (1) uncertainties 
are accounted for, and (2) that spatiotemporal 
heterogeneities are addressed appropriately.

Even with careful uncertainty propagation, 
datasets must also be filtered to keep outliers 
from affecting the results. It is important to 
note that the act of filtering does not mean 
that the filtered data are necessarily “bad,” 
just that they do not meaningfully contribute 
to the question at hand. For example, while 

Figure 2. Filtering and resampling of Al2O3 and U. (A) and (C). Al2O3 and U data through time, respec-
tively. Each datum is color coded by the filtering step at which it was separated from the dataset. In 
blue is the final filtered data, which was used to generate the resampled trends in (B) and (D). (B) and 
(D). Plots depicting Al2O3 and U filtered data, along with a histogram of resampled data density and the 
resulting resampled mean and 2σ error. Note the log-scale y axis in (C).
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our lithology and outlier filtering methods 
removed most U data because they were 
inappropriate for reconstructing trends in 
mudstone geochemistry through time, that 
same data would be especially useful for other 
questions, such as determining the variability 
of heat production within shales. This sort of 
filtering is a fixture of scientific research—
e.g., geochemists will consider whether sam-
ples are diagenetically altered when measur-
ing them for isotopic data—and, likewise, 
should be viewed as a necessary step in the 
analysis of large datasets.

As our workflow demonstrates, filtering 
often requires multiple steps, some automatic 
(e.g., cutoffs that exclude vast amounts of data 
in one fell swoop or algorithms to determine 
the “outlierness” of data; see Ptáček et al., 
2020) and others manual (e.g., examining 
source literature to determine whether an 
anomalous value is, in fact, meaningful). 
Each procedure, along with any assumptions 
and/or justifications, must be documented 
clearly (and code included and/or stored in a 
publicly accessible repository) by researchers 
so that others may reproduce their results and/
or build upon their conclusions with increas-
ingly larger datasets.

Along with documentation of data process-
ing, filtering, and sampling, it is important for 
researchers also to leverage sensitivity analy-
ses to understand how parameter choices may 
impact resulting trends. Here, through the 
analysis of various spatial and temporal 
parameter values, we demonstrate that, while 
the spread of data varies based on the pre-
scribed values of scalespatial and scaletemporal, 
the averaged resampled trend does not (Fig. 
S7 [see footnote 1]). At the same time, we see 
that trends are directly influenced by the use 
(or lack thereof) of Ca and P2O5 and outlier 
filtering. For example, the record of U in mud-
stones becomes overprinted by anomalously 
large values when carbonate samples are not 
excluded (Fig. S7B).

CONCLUSIONS
Large datasets can provide increasingly 

valuable insights into the ancient Earth sys-
tem. However, to extract meaningful trends, 
these datasets must be cultivated, curated, 
and processed with an emphasis on data 
quality, uncertainty propagation, and trans-
parency. Charles Darwin once noted that the 
“natural geological record [is] a history of 
the world imperfectly kept” (Darwin, 1859, 
p. 310), a reality that is the result of both geo-
logical and sociological causes. But while the 
data are biased, they also are tractable. As 

we have demonstrated here, the challenges 
of dealing with this imperfect record—and, 
by extension, the large datasets that docu-
ment it—certainly are surmountable.
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