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1 Introduction

In the theoretical study of light-wave propagation in double-clad rare-earth-doped fiber-lasers, the
most commonly used mathematical model is based on the rate-equation theory [1, 2] that describes
the distributions of inversion populations and optical powers along the fiber when a stationary regime
has been attained. In this model, the power propagation equations consist of several coupled non-
linear first order ordinary differential equations (ODE) depending on the position z along the fiber [5].
The main difficulty for solving this system of non-linear ODE is related to the boundary conditions.
We have a boundary value problem (BVP) and the boundary conditions (BC) for this BVP are not
separated, which means that we do not have two independent relations at each endpoint for the
unknown but two relations that correlate the values of the unknown function at the two endpoints,
see relations (9c) and (9d) in the text below. This mathematical specificity is related to the reflection
of the laser signal by Bragg mirrors at the two endpoints. The tricky aspect for numerical simulation
is that most of the currently available softwares for BVPs, including MATLAB BVP solvers, assume
that the BC are separated, which means that they can not be used in a straightforward way for solving
our BVP involved in the simulation of light-wave propagation in high-power fiber lasers.

We have developed an approach that circumvents this issue. It relies in a reformulation of the BVP
stemming from the rate-equation theory in an equivalent BVP with separated BC, thereby opening the
possibility of using MATLAB BVP solvers. Moreover, since the efficiency of BVP solvers is dependent
on the initial guess provided for the solution, it is also important to have or to compute an initial guess
close enough to the solution to the BVP. We found that when propagation losses can be neglected,
the BVP with non-separated BC can be transformed into an equivalent Initial Value Problem (IVP),
for which the solution can be computed simply by using standard ODE solvers such as the one based
on Runge-Kutta method (and implemented e.g. in MATLAB ode45 function). Since losses most often
change quite little the general behavior of light-wave propagation in a fiber laser, we have by this way
a “good” initial guess for the BVP solver used to solve the more general problem. The two ideas are
implemented in the SHIPOL program under MATLAB giving rise to a simple and efficient numerical
software for simulation of light-wave propagation in double-clad rare-earth-doped fiber-lasers. The
acronym SHIPOL stands for Simulation of HIgh-POwer fiber Lasers.

The document is organized as follows. In Section 2, we introduce the mathematical model for
light-wave propagation in high-power fiber-lasers and we detail the way the BVP with non-separated
BC classically proposed in the literature can be transformed into an equivalent BVP with separated
BC. Then, in Section 3, we explain how to use one of the MATLAB BVP solvers in an efficient way to
solve this BVP with separated BC. Namely, we discuss the way an initial guess required by MATLAB
BVP solver can be computed so as to be close to the solution for a faster convergence of MATLAB
BVP solver and we give the expression of the Jacobian also required by MATLAB BVP solver for a
better efficiency. Finally, in Section 4, we present a comprehensive run test to show how to use the
SHIPOL program under MATLAB and we carry out a comparison with existing results in the literature
for a validation of the SHIPOL program.



2 The mathematical model

We denote by L the length of the fiber and we assume that the axis of the fiber coincides with the
z-axis of the reference frame. Using the rate-equation theory under the steady state condition [1, 2],
we obtain a set of coupled equations for the pump and laser co-propagative and contra-propagative
powers P,f, P", P, P, describing light-wave propagation in a linear cavity as follows [5]:
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where

- P;E and P represent respectively the pump power (index p) at pump wavelength Ap and the laser
signal power (index s) at laser wavelength A4 in the forward propagating direction (superscript +)
and backward propagating direction (superscript -);

- I'y and I'y are respectively the overlap integral factors between the ion-doping distribution and mode
fields of pump and laser lights;

- 01(;1) and 07(,6) denote respectively the absorption and emission cross-sections at the pump wave-
length Ap;

- aga) and Uge) denote respectively the absorption and emission cross-sections at the laser wave-
length Ag;

- ap and a, represent the propagation losses coefficients including background loss and scattering loss
at the pump and laser wavelengths respectively;

- Py represents the contribution to spontaneous emission into the propagation laser mode;

- N is the doping substance concentration density assumed to be constant along the fiber

- Ns is the upper-level population density of the three levels atomic system underlying the rate equa-
tion model.

Note that this model assumes that the pump power is strong enough to saturate the gain [5].

For continuous-wave laser, the upper-level population density Ny at position z (in unit m=3) is
given by [5]:
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where P,(z) = P, (2) + P, (z) is the total pump power and Ps(z) = P;"(z) + P (2) is the total laser
power, T is the spontaneous emission lifetime, A.g is the effective doping area, h = 6.6260701510734 J - s
is the Planck’s constant and v}, = /\—‘;, Vg = )\—CS, where ¢ = 299792458 m - s~! denotes light velocity in
vacuum, are respectively the pump and laser frequencies.

We define the pump attenuation constant az()a) and the laser attenuation constant aﬁ“) (both in
unit m~!) as
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and the saturation powers for the pump and laser (in unit W) as
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Using the above defined quantities, the ion population density Ny given by (2) can be expressed as
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Substituting Na as given by (5) into the propagation equations (1), we obtain the following non-linear
system of ODE
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The boundary conditions (BC) are as follows [5]:
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where Pf o and Py are the launched pump powers into the front (z = 0) and back (z = L)

ends respectively, Rg ) and Rg) are the reflectivities of the laser cavity at the front and back ends,
respectively at the laser source wavelength A\ and R](JI) and R,(JQ) are the reflectivities at the pump
wavelength Ap.

Thus, we have to solve a BVP that consists of the non-linear first order coupled ODE (6) and the
linear two-point BC (9). The specificity of these BC is that they are not separated due to reflections
at the fiber ends that mix forward and backward propagating powers. Unfortunately, most of the
currently available softwares for BVPs, including MATLAB BVP solvers, assumes that the BC are
separated. Therefore, it is not possible to solve directly BVP (6)—(9) using existing softwares such as
MATLAB. Let’s put aside the unnecessarily complicated numerical approaches published in [7, 11, 3, 4]
and let us apply to BVP (6)—(9) a tricks that can transform it into a BVP with separated BC.

We can express BVP (6)-(9) in the form

Y'(z) = F(Y(2)) V€0, L (10)

where the unknown vector Y (z) € R* is defined as Y (z2) = (B, (2), P, (2), P (2), P;(z))T where '
indicates matrix/vector transposition and the mapping F' is defined as
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where here and throughout the paper Y7,...,Y, denotes the components of Y. The BC (9) can be
expressed in matrix form as
Pt
pump
Mo Y (0)+ My Y(L) = | T pump (12)

0
where the two matrices My and My, in My(R) are given by
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The BVP (10) — (12) can be solved using one of the MATLAB BVP solvers and the first fourth
components of U give the sought out powers Pf and PF.

3 The SHIPOL program

3.1 Use of MATLAB BVP solvers in the SHIPOL program

MATLAB BVP solver bvp4c implements a collocation method based on the three-stage Lobatto Illa
formula to solve BVP with separated BC, see [6]. MATLAB BVP solver bvp5c implements the four-
stage Lobatto Illa formula and slightly differs from bvp4c on some internal implementation choices,
see MATLAB documentation for details [8]. MATLAB BVP solvers efficiency is improved when

1. an initial guess close enough to the solution is provided
2. the Jacobian matrix of the function F' defining the ODE is available.

We examine now these two topics for BVP (10) with BC (12). (Or equivalently for BVP (6) with
BC (9).)

3.1.1 Computation of the initial guess

Propagation losses in the fiber, although not negligible, are generally small and they contribute lowly
to the BVP solution that is mainly driven by other optical phenomena. The same can be observed
concerning the contribution to spontaneous emission into the propagation laser mode. These observa-
tions lead us to chose as initial guess for MATLAB BVP solvers, the solution to BVP (10) in the case
when o), = oy = 0 and Py = 0. This idea would be idiotic if solving the BVP under these assumptions
was as difficult as solving the complete BVP, but such is not the case. Indeed, we show in Appendix A
p. 14 that when losses and spontaneous emission are neglected, BVP (6)—(9) can be reformulated in an
equivalent Initial Value Problem (IVP) easy to solve by a numerical method. This IVP is composed
of the same ODE system (6) as the BVP considered with a;, = as = 0 and Py = 0, that is to say the
ODE system is
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where the mapping G and G, are defined in (7). As shown in Appendix A, the Initial conditions are
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Note that these initial conditions are fully determined provided they are computed in the following
order : A, P,(0), P,S(0), B, D, C, P;(0) and P;(0).

The IVP (13)—(14) can be solved easily using e.g. the Runge-Kutta method implemented in
MATLAB ode45 solver [10]. The solution Y : z € [0,L] — (PJ(z),pr(z),Pj(z),P;(z))T € R*
though different from the real solution to the BVP is likely to be close to it and it will thus provide
a very good initial guess for MATLAB BVP solvers. Denoting by Y} the solution to this IVP at grid
node z; of a subdivision (z;);—o,.. s of the interval [0, L], we provide to MATLAB BVP solver bvp4c as

initial guess Yo = (B,(0), P, (0), Py (0), Py (0)) " given by (14).

s

3.1.2 Computation of the Jacobian matrix of the mapping F

Let us now consider the calculation of the Jacobian matrix Jp of the mapping F' introduced in (10).

A straightforward calculation shows that the partial derivatives of F' are given for j € {1,...,4} and
for Y € R* by
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where §; ; denotes the Kronecker symbol (equal to 1 when ¢ = j and 0 otherwise) and 0; refers to the
partial derivation with respect to the j-th variable. The partial derivatives of the mappings G, and
G5 defined in (7) are given by
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and
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3.2 Algorithm implemented in SHIPOL program

The algorithm implemented in the SHIPOL program basically consists in the following stages :

1. Computation of a guess by solving ODE (6) with oy = o, = Py = 0 under the initial conditions
given by (14) for P;[(O) and P (0) using MATLAB ode45 solver.

2. Solving of the BVP (10) with separated BC (12) by MATLAB bvp4c solver starting from the
guess computed at stage 1. Efficiency of bvpéc is improved when the Jacobian matrix of F' is
provided.

3. Plotting of the results. The values of the pump and laser co-propagative and contra-propagative
powers Ppi, Psi along the fiber length [0, L] are depicted together with the variation of the ratio
Ny (z)/N given by relation (2) for z € [0, L.

Note that the accuracy of the computed solution can be evaluated using an error estimator based

on the relations P, (0) P, (0) = P (L) P, (L) and P;(0) Py (0) = P; (L) P; (L) (this latter is valid

only when Py = 0) as stated in the Appendix, see relation (A.17). Therefore, we use as error estimator
the quantities &, and € defined as

P (0) Py (0) — PH(L) Py (L)
=B 0B 01 (DB (D) (162)
|PH(0) PL(0) - PH(L) P (L)
&= ’P§<o> P (0) 1 P (L) s (L) ‘ (16b)

Note that &, is relevant only when Py = 0. The closer to zero these estimators are, the more accurate
the computation can be expected to be.

The SHIPOL program is compound of the following MATLAB files :
- shipol.m : main MATLAB file implementing the three steps of the algorithm described above;
- jacF.m: provides the Jacobian matrix of the mapping F' defining the BVP, see (11) and (15).

In addition, a third MATLAB file is used to provide the features of the fiber-laser under investigation
in a specific format, see Section 4.1 for details.

4  Numerical illustrations

4.1 A comprehensive run test

We consider simulation of light-wave propagation in a Yb** doped fiber-laser using SHIPOL program
run under MATLAB. We use the Yb?T-doped fiber-laser investigated in [5], the parameters of which
are given in Table 1. The results presented here were obtained using MATLAB R2018b running under
Linux-Ubuntu OS on an Intel Core i5 laptop computer with 8 Go RAM.

The first step when using the SHIPOL program is to provide the features of the fiber-laser under
investigation in a auxiliary data file to be included in the SHIPOL program. This data file must have



Parameter Notation Value
Fiber length L 50m
Pump wavelength Ap 9.210""m
Signal wavelength As 1.0910 %m
Pump power at front end Pimp 20 W
Pump power at the back end P imp A%
Pump overlap factor r, 1.21073
Signal overlap factor T's 8.2107!
Doping substance concentration Ny 4102%° ions/m?
Pump absorption cross section az(,a) 610~2° m?
Pump emission cross section az(,e) 2.510726 m?
Signal absorption cross section Uga) 1.41072"m?
Signal emission cross section age) 21072° m?
Pump background losses ayp 3103 m™!
Signal background losses Qg 5103 m™!
Front mirror reflectivity gl) 0.98
Output mirror reflectivity £2) 0.04
Lifetime of the upper-level atoms T 1035
Effective mode area At 510" m
Contribution of the spontaneous emission Py WY

Table 1: Parameter values for the Yb** doped fiber-laser investigated in [5].

the following form and must contains the following variables initialized according to the features of
the fiber-laser. The example provided below is for the Yb3* doped fiber-laser investigated in [5] with
its parameter values given in Table 1. Note that it is of the upmost importance to use the unit of the
SI system as indicated in this sample data file and in Table 1. The name of the variable for each of the
parameter describing the fiber-laser must also be keep as indicated in this sample data file (provided
in the SHIPOL archive).

% Description of the fiber

Nt= 4E25; % Doping substance concentration [ions/m~3]
tau3= 1E-3; 7 Lifetime of the upper-level atoms [s]
Aeff=b5E-11;% Effective mode area [m~2]

L=50; % fiber length [m]

% Description of the pump

sigma_a_p= 6E-25 ; % pump absorption cross section [m~2]
sigma_e_p= 2.5E-26 ; 7% pump emission cross section [m~2]
alpha_p= 3E-3; % Pump background losses [m~-1]

Gamma_p= 0.0012; % Pump overlap factor

lambda_p= 0.92E-6; Y Pump wavelength [m]

Ppump_p=20; % launch Pump Power at z=0 P~+_p(0) [W]

Ppump_m=0; % launch Pump Power at z=L P~-_p(L) [W]

R1_p=0; % front mirror reflexivity at pump wavelength [dimensionless quantity]
R2_p=0; 7% output mirror reflexivity at pump wavelength [dimensionless quantity]

% description of the laser signal

sigma_a_s= 1.4E-27; Y, Laser signal absorption cross section [m~2]

sigma_e_s= 2E-25; % Laser signal emission cross section [m~2]

alpha_s= 5E-3; % Laser signal Pump background losses [m~-1]

Gamma_s=0.8; % Laser signal overlap factor [dimensionless quantity]

lambda_s= 1.09E-6; 7% Laser signal wavelength [m]

R1_s=0.98; % front mirror reflexivity at laser signal wavelength [dimensionless quantity]
R2_s=0.04; 7% output mirror reflexivity at laser signal wavelength [dimensionless quantity]



% contribution of the spontaneous emission into the propagating laser mode
P0=0; % [W]

Assuming that the above data have been recorded in a file named data_yb.m (this file is provided
in the sHIPOL archive), the SHIPOL program runs as follows under MATLAB:

>> shipol
[?] Name of the fiber parameters data file : data_yb.m

Done! Overall simulation CPU time = 1.67 s.

Forward pump power at z=0 : P"+_p(0) = 20 W
Backward pump power at z=0 : P"-_p(0) = 0 W
Forward laser power at z=0 : P~+_s(0) = 2.02871 W
Backward laser power at z=0 : P"-_s(0) = 2.07011 W
Forward pump power at z=L : P +_p(L) = 4.15728 W
Backward pump power at z=L : P -_p(L) = 0 W
Forward laser power at z=L : P~+_s(L) = 10.2465 W
Backward laser power at z=L : P"-_s(L) = 0.409861 W

Theoretical available power at 920 nm : 13.3718 W
Total laser output power (at z=0 and z=L) : 9.87807 W

Error estimator E_s = 2.7418e-12

Note that the program execution time is very short : The CPU time for the simulation was less
than 2s. The error estimator defined in (16b) is found to be &; = 2.7418107!2. (Note that the
estimator €, is not relevant here since P;” = 0.) We obtain a forward laser power at z = 0 with value
P (0) = 2.02871 W and a backward laser power at z = 0 with value P; (0) = 2.07011W. At the fiber
back end z = L, the values are P;"(L) = 10.2465 W and P; (L) = 0.409861 W. The forward pump
power at z = L is 4.15728 W whereas the backward pump power remains zero along the fiber.

The SHIPOL program also provides a graphical representation of the pump and laser powers in the
forward and backward directions, i.e. Ppi, P, as a function of the position along the fiber with a scale
on the left-axis together with the ratio No(z)/N with a scale on the right-axis. The result is depicted

=4

in Fig. 1. This figure is identical to the one depicted in [5, Fig. 8]. Note that the numerical method
used in [5] to solve the BVP is not specified in the paper.

4.2 Code validation by comparison with existing results in the literature
4.2.1 Simulation of light-wave propagation in a Nd** doped fiber-laser

We have compared the results provided by the SHIPOL program to the ones given in [5] for a Nd3*-doped
high-power double-clad fiber laser characterized by the parameters given in Table 2. We have depicted
in Fig. 2a the pump and laser powers in the forward and backward directions, i.e. Ppi, PZ, provided
by the SHIPOL program as a function of the position along the fiber together with the ratio Na(z)/N.
This figure is identical to the one depicted in [5, Fig. 5]. We have obtained a forward laser power at
z = 0 with value P;"(0) = 2.50126 W and a backward laser power at z = 0 with value P; (0) = 2.5523
W. At the fiber back end z = L, the values are P}(L) = 12.6333 W and P; (L) = 0.505331 W. The
forward pump power at z = L is 2.19664 W whereas the backward pump power remains zero along
the fiber. The CPU time for the simulation was 0.6s and the error estimator defined in (16b) was
¢, = 2.6426107'2. (Note that the estimator €, is not relevant here since P;” = 0.)

For comprehensiveness, we have also made a simulation when the pump is injected at the fiber
back end z = L, i.e. P,(0) =0 and P, (L) = 20W, the other parameters are as given in Table 2. The
result is depicted in Fig. 2b and it is identical to the one depicted in [5, Fig. 6].
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Figure 1: Pump and laser powers in the forward and backward directions P; By, P, P; as afunction

of the position along the fiber for the Yb3" fiber-laser the parameters of which are given in Table 1
(left axis). Ratio Na2(z)/N as a function of the position along the fiber in dotted line (right axis).

Parameter Notation Value
Fiber length L 50m
Pump wavelength Ap 0.808107%m
Signal wavelength s 1.06010~%m
Pump power at front end P;;mp 20W
Pump power at back end Pimp (A%
Pump overlap factor I, 0.01
Signal overlap factor Ty 0.8
Doping substance concentration Ny 210** ions/m?
Pump absorption cross section J](Ja) 21024 m?
Pump emission cross section J,(,e) 0m?
Signal absorption cross section o§“) 0m?
Signal emission cross section age) 2.5107%4 m?
Pump background losses ap 45103 m™!
Signal background losses Qs Om™!
Front mirror reflectivity RS) 0.98
Output mirror reflectivity Rf’ 0.04
Lifetime of the upper-level atoms T 41075
Effective mode area A 110" m
Contribution of the spontaneous emission Py ow

Table 2: Parameter values for the Nd** doped fiber-laser tested in [5].



20 ‘ ‘ ‘ ‘ 0.03 20
M
» Pt
\ p
18 Y 18
A\ P
\ P 40.025
6L\ Pt 16
AN -
[T - P 14
\,\ _____ N_/N +40.02
_ 12t Y > 12 >
£ 5, - T
— 10 | \, {0015 = 5 1 =
o 8t N\, [ o 8
N,
., 40.01
6 o,
-
4t .
S, 40.005
~ e
2 F e
0 | ] ‘ ‘ 0 | | | ‘
0 10 20 30 40 50 0 10 20 30 40 50
Position along the fiber [m] Position along the fiber [m]
(a) Pump injected at z = 0. (b) Pump injected at z = L.
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injected at back end (Fig. b), i.e. Py, =20 W (values given on the left axis). Ratio Na(2)/N as a

function of the position along the fiber in dotted line and right axis.
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4.2.2 Simulation of light-wave propagation in a thulium-doped fiber-laser

Finally, we have considered the case of a Tm3"-doped high-power double-clad fiber-laser proposed
in [7] characterized by the values given in Table 3. Note that the doping substance concentration
given in [7] was N = 4.68 102 ions/m? and it is changed for N = 8.6 10 ions/m? to comply with the
value of the literature quoted in [7].

Parameter Notation Value
Fiber length L 25m
Pump wavelength Ap 0.790107%m
Signal wavelength As 1.97310 %m
Pump power at front end P;Ilmp 1000 W
Pump power at back end Pimp A%
Pump overlap factor r, 0.01
Signal overlap factor I's 0.752
Doping substance concentration Ny 8.6 10%° ions/m?
Pump absorption cross section 0'1(,@) 5102% m?
Pump emission cross section 01(96) 0m?
Signal absorption cross section a§“> 110726 m?
Signal emission cross section age) 2.51072° m?
Pump background losses ap 3103 m™!
Signal background losses ap 5103 m™!
Front mirror reflectivity gl) 0.98
Output mirror reflectivity 9) 0.04
Lifetime of the upper-level atoms T 1.45107°s
Effective mode area Aegr 1.3910" "' m
Contribution of the spontaneous emission Py ALY

Table 3: Parameter values for the Tm3* doped fiber-laser investigated in [7].

We have depicted in Fig. 3 the pump and laser powers in the forward and backward directions
Ppi, P as a function of the position along the fiber together with the ratio Na(z)/N. This figure is
quite similar to the one depicted in [7, Fig. 5|. Note however that when using the doping substance
concentration given in [7] (N = 4.68 10?® ions/m3) rather than the one given in Table 3, the figure we
obtain is significantly different from [7, Fig. 5]. We have obtained a forward laser power at z = 0 with
value P;F(0) = 74.8308 W and a backward laser power at z = 0 with value P; (0) = 76.358 W. At the
fiber back end z = L, the values are P, (L) = 377.953 W and P; (L) = 15.1181 W. The forward pump
power at z = L is 2.02216 W whereas the backward pump power remains zero along the fiber. The

CPU time for the simulation was 1.3s and the error estimator defined in (16b) was €, = 7.5682 10 '2.
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Figure 3: Pump and laser powers in the forward and backward directions P,", P,", P;",

P as a function
of the position along the fiber for the Tm3* doped fiber-laser.

4.3 Limitation of the model

We have found some limitations to the model (1) describing light-wave propagation in a high power
fiber-laser based on the rate-equation theory under the steady state condition. For the fiber-laser
characterized by the parameter values given in Table 4 (fiber IXF-2CF-Yb-0-6-130 from the company
iXblue Photonics), the evolution of the pump and laser powers in the forward and backward directions
Ppi7 P;t along the fiber is depicted in Fig. 4. One can observe that the laser signal power in the fiber
exceed the pump power injected in the fiber, which is not possible from the physics point of view.
Numerical simulation investigations show that this contradiction can be related to the fact that in

this simulation the back end mirror reflectivity is high (Rgz) = 20% compared to a value lower than

1% in the simulations shown in Section 4.2) so that a larger part of the signal is reflected back to
the fiber. We infer that the mathematical model corresponding to the BVP (6)-(9) is not adequate

to describe light-wave propagation in a fiber-laser characterized by the parameter values provided in
Table 4.
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Parameter Notation Value
Fiber length L 1m
Pump wavelength Ap 9.76 10" m
Signal wavelength As 1.0610"%m
Pump power launched in the front end P;{an 0.5W
Pump power launched in the back end Pyimp ALY
Pump overlap factor r, 0.75
Signal overlap factor I 0.75
Doping substance concentration Ny 8.510%* ions/m?
Pump absorption cross section UI()G) 2.0510724 m?
Pump emission cross section Uz(f) 2.16107 % m?
Signal absorption cross section aé“) 7.5310724m?
Signal emission cross section age) 3.621072°m?
Pump background losses ay 1072m™!
Signal background losses ap 102m™!
Front mirror reflectivity gl) 1
Output mirror reflectivity 9 0.2
Lifetime of the upper-level atoms T 0.841073s
Effective mode area A 4410712 m
Contribution of the spontaneous emission Py ALY
Table 4: Parameter values for the fiber-laser
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Figure 4: Pump and laser powers in the forward and backward directions P,", P,", P;", P, as a function
of the position along the fiber.
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Appendix A : An equivalent initial value problem in the absence of losses

We consider in this appendix the special case when the losses and the contribution to spontaneous
emission into the propagation laser mode can be neglected. That is to say, we consider BVP (6)—(9)
under the assumptions that oy = oy, = 0 and Py = 0.

In this special case, the solutions P/I;'E,PsjE to the set of ODE (6) exhibit the following features:
There exist two real numbers C), and C; such that for all z € [0, L]

PH(z) Py (2)=Cp  PS(2) Py (2) = C. (A.17)

This property can be easily proved by considering the mapping z € [0, L] — P;r (2) P, (2) and showing
that its derivative is zero. We have
dP;- dPr
(R By () = B () 52() 4 Pr(2) 1 (2).

We then sum equation (6a) for Plj' preparatorily multiplied by P,” and equation (6a) for P, prepara-
torily multiplied by P; to show that the derivative is zero. Note that the properties (A.17) are true
even when the losses are not zero. When Py # 0, only the relation on Ppi remains valid.

We deduce from (A.17) and from BC (9a) and (9b), the following relationships between the bound-
ary values at the fiber ends:

1 — 2 1 2 — 2 — 2) p— ’ P_um
PA(L) = — (}L(Ppump) +RYRD (P, (0))” + Poump RPE, (0) | — 200 (A.18a)
Ry 2Ry
RW
Pr(L) = = P (0) (A.18Db)
RY
Note that when R1(72) =0, (A.18a) has to be changed for
_ a2 _
Pramp By (L) = RV (P7(0))” + Pl Py (0). (A.19)

Let us now show how we can express the two quantities P, (0) and P; (0) in terms of the known
data of the fiber-laser. By difference between (1la) considered for P;r and P, on the one hand and
by difference between (1b) considered for P;" and P, on the other hand, one can easily show that N
given by (2) can be expressed as

T3 1 de+ de* 1/ dP+ P
el == vp B P G P GO A : A2
2(2) hAeff (Vp( dZ (Z) dZ (Z)> + ]js< dz (Z) dZ (Z)) ( O)
Substituting this expression of Ny into equations (1la)—(1b), we obtain
dpP* dpP* dpP- pE
+—P (1) =— < P (5 — P (Z ) D (Z)
dz dz dz Past
CwdPE dPD N\ Pre)
ys< dz (2) dz (Z)) Pt ap P (2) (A.21a)
dpP* v. , dPE dP~ Pi(z)
+ = =_== p _ P s
a Vp< T (=) peat
dPsi dP; Psi(z) R
_< T G (Z>) peat % P(2) (A.21b)

Let us consider equation (A.21a) for P". We divide both side by P,"(z) under the assumption that
the forward pump power sz— never cancels and we integrate over the interval [0, L]:

L 1 dPt 1 L, dpPS dP;
/ - p (Z) dr — — / ( P (2)7 p (Z)) dz
o Py(z) dz Psat Jy dz dz

L + _
Vp dP; _dPp; o
/0 ( P (2) p (z)) dz —ap L.

- sat
Vs Pp
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It follows that

B (L) 1
: = ¥ + 1) p- — 2) p+ _
. o - a
e (PJ(L) - RVP(0) - RY PAD) + Py (0)> —ap L.

The same calculation can be done with the three other equations in (A.21a)—(A.21b). Taking into
account relations (A.18), it remains the following two equations for the unknowns P, (0) and Py (0):

rt + RYP-(0)\ »
1 pump T 71 “p =2 1 p(0)+ a’L + ——®(P; (0 A.22
Og< ¢(Pp_(0)) Vs P;at S ( ) ap Psat ( P ( )) ( a‘)
1 1) p(2 n - a vs 1 -
3 log(RVRP) = et P;(0) 4+ %L + o, P (P, (0)) (A.22D)
where we have set
(1)
y = R32 — R RWR® 44
RY
- 2 - 1 - _

_ 2 (1) _ -
— Poum R — 2 Poum — Pum
S () =\ | oy | + o B (0) + =55 B (0) - —>5F
2Ry Ry

Combining equations (A.22a) and (A.22b), we obtain that

pt RV p=(0
log pump+_p » 0 =A (A.23)
(P, (0))
where prat 1
_ w1 1) p@)y _ a a
- Pgat(2log(Rs R®) a5L> +all (A.24)

From (A.23), we deduce that P, (0) solves the following algebraic equation with unknown X

1 1
\/ ~(Ppump)” + RYRP X2 4 PrwpRY X — e ARWRZ) — o« ARD PF 4+ — P,

4 p P P pump 9" pump-
Solving this algebraic equation, we obtain that its non-negative solution reads

P B + P €

P (0) = Liddiits (A.25)
P e24 _ gD
Then, form (A.22b) , we have
psat 1 ve 1
—(0)=—5_ (= WM p@)y_2s _~ - —at
Po0)== <2log(Rs RE) = 72 g @, (0) asL). (A.26)

Finally, under the assumption that as = o, = 0 and Py = 0, the BVP (6)—(9) is equivalent to
the IVP composed of the ODE (6) and initial conditions (A.25) for P,(0), (A.26) for P (0), (9a) for
PF(0) and (9c) for P, (0).

Note that in [5] the authors also propose an IVP, different of the one proposed here, equivalent
to the BVP (6)—(9) under the following additional assumptions: o <« Jj(ga),aj(f) = 0 and R;S,I) =
R;()z) = 0. We did not need these additional assumptions here. As well, in [9] the authors proposed an
analytical solution to the BVP in the absence of losses but also require additional assumptions.
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