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Source:

D. B. Chelton
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SSH anomaly

(Source: Ocean Datalab)



Motivations

• More rigorously identified sudgrid dynamics effects

(closure problem)

• Quantification of modeling errors (UQ)
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Ensemble forecasts and data assimilation



Numerical

Simulation

 erroneous

Data Assimilation = 
Combining simulations and measurements

3 𝑚. 𝑠−1 5 𝑚. 𝑠−1 Velocity

More accurate

estimation

globally in space

𝑝 𝑥 𝑦 ∝ 𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑥) 𝑝(𝑦|𝑥)

Data 

assimilation

Need for uncertainty / 

errors quantification

 Random dynamics

𝑝(𝑥𝑡+1|𝑥𝑡)
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On-line

measurements

 incomplete

 possibly noisy



Part I

-

Dynamics under location 

uncertainty (LU)
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1. Stochastic transport

2. Unresolved velocity parametrization

3. Numerical example with oceanic currents



I.1.

Stochastic transport
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Resolved

large scales

velocity

White-in-time

small scales

velocity

Idea of LU :
Adding random velocity

10

𝑣 =  𝑣 + 𝑣′

Large scale

velocity: 

 𝑣 = 𝑤
Small scale

velocity:

𝑣′ = 𝜎  𝐵

Variance 

tensor

𝑎 = 𝑣′ 𝑣′ 𝑇 𝜏



Large scale

velocity: 

 𝑣 = 𝑤
Small scale

velocity:

𝑣′ = 𝜎  𝐵

Variance 

tensor

𝑎 = 𝑣′ 𝑣′ 𝑇 𝜏

Dynamics:
e.g. advection of tracer 
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Stratonovich notations:

Conservative

multiplicative

random

forcing

Θ



Large scale

velocity: 

 𝑣 = 𝑤
Small scale

velocity:

𝑣′ = 𝜎  𝐵

Variance 

tensor

𝑎 = 𝑣′ 𝑣′ 𝑇 𝜏

Advection

Diffusion

Advection

of tracer 

Stratonovich drift : « Drift correction »

in Ito notations

Multiplicative

random

forcing

Balanced

energy

exchanges
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Ito notations:

Ito-Wentzell 

formula 

(Kunita 1990)Θ



I.2.

Unresolved velocity 

parametrization
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𝜎 = ?

Large scale

velocity: 

 𝑣 = 𝑤
Small scale

velocity:

𝑣′ = 𝜎  𝐵

Variance 

tensor

𝑎 = 𝑣′ 𝑣′ 𝑇 𝜏



Large scale

velocity: 

 𝑣 = 𝑤
Small scale

velocity:

𝑣′ = 𝜎  𝐵

Variance 

tensor

𝑎 = 𝑣′ 𝑣′ 𝑇 𝜏

Unresolved velocity

parametrization

Absolute Diffusivity

Spectral Density
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Residual

non-stationary

ADSD

KE Spectrum

Reference:

Resseguier, Pan & Fox-Kemper 2020

𝑣′ = 𝜎  𝐵 = filter ∗ white noise



I.3.

Numerical example with 

oceanic currents
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16

SQG

Hyper-

viscosity

Reference flow:

deterministic

SQG

512 x 512

Forcing



Ensemble :
uncertainty quantification
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200 realizations

at 64 x 64



Ensemble :
uncertainty quantification
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20 realizations

at 64 x 64

At point  (250km,500km)

ADSD ADSD

At point  (500km,500km)

SALTLU

Memin, 2014

Resseguier et al. 2017 a, b, c 

Cai et al. 2017

Chapron et al. 2018

Yang & Memin 2019

Crisan et al., 2017

Gay-Balmaz & Holm 2017

Cotter and al. 2018 a, b

Cotter and al. 2019

Holm, 2015

Holm and 

Tyranowski, 2016

Arnaudon et al. 2017

Mikulevicius &  

Rozovskii, 2004

Flandoli, 2011
References :

Cotter and al. 2017   Resseguier et al. 2020 a, b
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Partial conclusion

Models under location uncertainty enables accurate uncertainty 

quantification to improve data assimilation

But also :

• blindly describe unresolved triades

• Stabilization / destabilization

• Model derivation

• Instabilities and bifurcations triggered
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Part II

-

Wave-turbulence 

interaction

20

1. Swell-current interactions

2. Time decorrelation (LU)

3. Numeric simulations

4. Simple cases and analytic solutions
for the time-uncorrelated model (LU)



II.1.

Swell - current interaction
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Large scale

group velocity: 

 𝑣
Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

Frequency without currents

Wave phase

transport

Dispersion ratio
At the first order

in steepness : 
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+𝐶𝑔
0

transport with a current velocity : 𝑣 =  𝑣 + 𝑣′



Conservation of action

Amplitude

General case

Random ray 

Stochastic refraction and contraction/dilatation

Wave- vector
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Non-linear

coupling

Fonction of x

Fonction

of k

Large scale

group velocity: 

 𝑣
Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

+𝐶𝑔
0

 𝑘 = −𝛻  𝑣 + 𝑣′ 𝑇𝑘

 𝑋𝑟 = 𝐶𝑔 = 𝐶𝑔
0 +  𝑣 + 𝑣′

Main 

contribution

Change

orientation

of 𝐶𝑔
0



II.3.

Time decorrelation (LU)
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Numerical example
like running in the middle of a crowd
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𝑣 =  𝑣 + 𝑣′

(without 

modeling / 

simplification)

b
u
o
y
a
n
c
y



Time decorrelation

assumption for 𝑣′ (LU)
• Advantages : 

• Simpler / analytic formula   

⇨ physical comprehension & lighter CPU for simulations

• No precise knowledge needed about 𝑣′ time dependency

• Validity :

𝜖 =
Along−ray 𝑣’ correlation time

characteristic time of
wave group properties evolution

=

𝑙𝑣′

𝐶𝑔
0

1
𝛻𝑣

≪ 1

• Limitations : 

• Swells 𝐶𝑔
0 ≫ 1

• Small-scale currents 𝑙𝑣′ ≪ 1
• Moderate current gradients 𝛻𝑣 ≪ 1 ( ⇨ moderate 𝛻𝑣′ ❗️)

Large scale

group velocity: 

 𝑣
Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

+𝐶𝑔
0
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II.3.

Numerical simulations
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2 test 

flows

Euler

VS

SQG

(𝑈 ∼ 0.1 m.s-1, 

𝜆wave = 300 m)
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Euler 2D (2D)

Weaker 𝑣′, 𝛻𝑣 , 𝜖
(spectrum slope −3)

Homogeneous 

Surface Quasi-

Geostrophic (SQG)
Larger 𝑣′, 𝛻𝑣 , 𝜖

(spectrum slope −5/3)
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Time-uncorrelated model for 𝑣′

Deterministic

reference:

wave groups in

512 x 512 SQG flow

Deterministic

benchmark:

wave groups in

smoothed flow  𝑣 (32 x 32)

Our random

model

wave groups in

smoothed flow  𝑣 (32 x 32)

+ time-uncorrelated 𝑣′29
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KE Spectrum 𝐸(𝜅)
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𝜅
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Large scale

group velocity: 

 𝑣
Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

+𝐶𝑔
0

𝑣′ = 𝜎  𝐵 = filter ∗ white noise

Time-uncorrelated model for 𝑣′
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 𝑣

𝑣′

Absolute Diffusivity

Spectral Density

𝐴 𝜅 = 𝐸 𝜅 𝜏(𝜅)

Reference:

Resseguier, Pan & Fox-Kemper 2020

𝐴
(𝜅
)

𝜅

Residual

ADSD

Correlation time along ray

𝜏 𝜅 = 𝜏𝑟𝑎𝑦 𝜅 =
1/𝜅

𝐶𝑔
0



Time-correlated model for 𝑣′:
less resolution constraints

Deterministic

reference:

wave groups in

512 x 512 SQG flow

Deterministic

benchmark:

wave groups in

smoothed flow  𝑣 (16 x 16)

Our random

model

wave groups in

smoothed flow  𝑣 (16 x 16)

+ time-correlated 𝑣′31

buoyancybuoyancybuoyancy

w
a

v
e

 g
ro

u
p

 a
m

p
litu

d
e

w
a
v
e
 g

ro
u
p
 a

m
p
litu

d
e

w
a

v
e

 g
ro

u
p

 a
m

p
litu

d
e

𝑣 =  𝑣 + 𝑣′ 𝑣 =  𝑣 𝑣 =  𝑣 + 𝑣cor
′



32

Large scale

group velocity: 

 𝑣
Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

+𝐶𝑔
0

𝑣′ = filter ∗ time−correl. noise

Current correlation time

𝜏 𝜅 = 𝜏𝑐𝑢𝑟 𝜅 =
1/𝜅

𝑣𝑘
=

1/𝜅

𝜅 𝐸 𝜅

Multiscale noise  𝐵𝑐 : 

spatial white noise

with time scale 𝜏 𝑘 at the scale 𝑘:

𝑑

𝑑𝑡
  𝐵𝑐 = −

1

𝜏 𝑘
  𝐵𝑐 +

2

𝜏 𝑘
 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒
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Time-correlated model for 𝑣′:
less resolution constraints



Deterministic

reference:

wave groups in

512 x 512 2D Euler flow

Deterministic

benchmark:

wave groups in

smoothed flow  𝑣 (8 x 8)

Our random

model

wave groups in

smoothed flow  𝑣 (8 x 8)

+ time-uncorrelated 𝑣′33
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II.4.

Simple cases

and analytic solutions
for the

time-uncorrelated model
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Ratio

vorticity / strain rate

Simple linear case 1:
stationary deterministic,

divergence-free and

linear in x large-scale velocity

Stretching of phase

 𝑘 = −𝛻  𝑣𝑇𝑘
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Wave shortening Wave rotation

Large scale

group velocity: 

 𝑣

Wave:

Doppler

frequency:

+𝐶𝑔
0



Simple linear case 2:
no large-scale current

+ homogeneous and divergence-free

small-scale velocity

Wave with 

Brownian phase 

Stochastic stretching of phase

 𝑘 = −𝛻 𝑣′ 𝑇𝑘 Log-normal wave- number
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Large scale

group velocity: 

Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

+𝐶𝑔
0



Simple linear case 3
divergence-free and linear-in-x large-scale current

+ homogeneous and divergence-free

small-scale velocity

Stochastic stretching of 

phase

 𝑘 = −𝛻  𝑣 + 𝑣′ 𝑇𝑘
Stochastic shortening

ShorteningRotation Rotation

Weak

shortening

Weak

shorteningShortening

with rotation

bursts

Depends on 

small scale’s

statistics

Ratio

vorticity / strain rate 37

Large scale

group velocity: 

 𝑣
Small scale

group velocity:

𝑣′

Wave:

Doppler

frequency:

+𝐶𝑔
0

We found

analytic solutions for

the stationary pdf !



Partial conclusion

• Theoretical comprehension + Numerical demonstration

of our wave-current interaction models skills

with different types of currents (local / non-local, homogeneous / heterogeneous 

currents)

• 3 stochastic currents models for small-scale current 𝑣′

1. Time-uncorrelated : 

 Good skills, partial analytic solution, but resolution limitations for its application

2. Multiscale time-correlated : 

 Always works

3. Hybrid model
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Part III

-

Reduced order model & 

data assimilation
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1. Application

2. Reduced order models

3. Data assimilation with reduced LU models



III.1.

Application

40



Estimation and prediction:

• Air flow

• Lift, drag, AoA

• …

Observer

Controller 

Simple 

model

Simple 

model

• Blade pitch

• Fluidic actuators

• …

Wind turbine sensors

LIDA

R
E-penon

 Lower wind turbine maintenance costs

Estimate and predict unsteady aerodynamism -- in real-time –

for better active control loops

Application

Which simple model?      How to combine model & measurements?

Wind

turbine 

blade

Wind fluctuations

Damages

 Longer wind turbine life cycle
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III.2.

Reduced order model
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Reduced order model (ROM)

Time Space

Parameters 

(if any)
Solution of an PDE with the form:

Full space
Reduced 

space

Solution 

coordinates

Dimension 𝑀 × 𝑑 ~ 107 𝑛 ~ 10 − 100

Order of 

magnitude

examples in CFD
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• Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

Resolved 

modes

Snapshots Spatial  modes

PCA
Off-line

simulations 

• Approximation:

 ROM for very fast simulation of temporal modes

POD-Galerkin

• Projection of the “physics”

onto the spatial modes : 
( Physical equation (e.g. Navier-Stokes)) 

Ω

𝑑𝑥 𝜙𝑖 𝑥 ⋅
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III.3.

Data assimilation with 

reduced LU models
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Big picture 

with reduced LU models
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Off-line : Building ROM On-line :

Simualtion & data assimialtion

Stochastic

ROM

(POD-Galerkin)

Randomize

d

Physics
(LU)

Data

DNS codePhysics
(Navier-Stokes)

Stochastic

ROM

Flow

𝑣 = 

𝑖=0

𝑛

𝑏𝑖𝜙𝑖

Temporal 

modes

𝑏𝑖

Data

assimilation

(particle filtering)

Measurements



Numerical results : 

3D Wake at Reynolds 300

Reduced order models with 𝟖 degrees of freedom
 only 1 PIV spatial point (local, blurred and noisy measure)

is assimilated 10 times by vortex shedding cycle
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Our method :
POD-Galerkin with Navier-Stokes

under location uncertainty (LUM)

Reference :
PCA-projection of the 

“true” simulation (107-dof DNS)
(Optimal from 8-dof linear decomposition)

State-of-art :
POD-Galerkin with Navier-Stokes 

+ optimally tuned eddy viscosity & 

additive noise

Inflow
Q-criterion Inflow

Q-criterion
Inflow

Q-criterion



Partial conclusion

• Reduced order model (ROM) : for very fast and robust CFD  

(107 → 6 degrees of freedom.)

• Combine data & physics (built off-line)

• Closure problem handled by LU

• Data assimilation : to correct the fast simulation on-line by incomplete/noisy 

measurements

• Model error quantification handled by LU

• First results 

• Optimal unsteady flow estimation/prediction in the whole spatial domain 

(large-scale structures)

• Robust far outside the learning period

48



Conclusion
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Conclusion

When subgrid information is missing, 

models under location uncertainty (LU) and its time-correlated variants 

are stochastic closures that

• Improves CFD and wave-current interaction simulations

• Quantify numerical model error for data assimilation purposes
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