Imperial College London

Dynamics under location uncertainty

Valentin Resseguier, Agustin Picard, Matheus Ladvig, Wei Pan, Baylor Fox-Kemper, Erwan Hascoet, Fabrice Collard Dominique Heitz, Etienne Mémin, Bertrand Chapron

Contents

- Motivations
- I: Dynamics under location uncertainty (LU)
- II : Wave-turbulence interaction
- III : Reduced order model & data assimilation
- Conclusion

Motivations

Scales and resolutions in the ocean

"Gulf Stream dynamics along the southeastern US seaboard." Journal of Physical Oceanography 45.3 (2015): 690-715.

Scales and resolutions in the ocean

Motivations

 More rigorously identified sudgrid dynamics effects (closure problem)

Quantification of modeling errors (UQ)

Ensemble forecasts and data assimilation

Data Assimilation =

Combining simulations and measurements

Part I

Dynamics under location uncertainty (LU)

1. Stochastic transport

2. Unresolved velocity parametrization

3. Numerical example with oceanic currents

1.1.

Stochastic transport

Large scale velocity:

 $\bar{v} = w$

Small scale velocity:

 $v' = \sigma \dot{B}$

Variance tensor $a = \overline{v'(v')^T} \tau$

Idea of LU: Adding random velocity

Resolved large scales velocity v = v + v'White-in-time small scales velocity

Large scale velocity:

 $\overline{v} = w$

Small scale velocity:

$$v' = \sigma \dot{B}$$

Variance tensor $a = \overline{v'(v')^T} \tau$

1.2. Unresolved velocity parametrization

I.3. Numerical example with oceanic currents

t = 100 day

200 realizations Ensemble : at 64 x 64 uncertainty quantification 10×10^5 Estim. error EOF 10×10^5 Estim. error Self.Sim. $10 = 10^5$ **Bias EOF** 1.5 1.5 1.5 1 1 1 y(m) y(m) 5 5 0.5 0.5 0.5 0 (8 6 8 2 4 6 2 6 8 0 2 4 0 4 x(m) $\times 10^5$ x(m) $\times 10^5$ x(m) $\times 10^5$

y(m)

5

0

0

17

Partial conclusion

Models under location uncertainty enables accurate uncertainty quantification to improve data assimilation

But also :

- blindly describe unresolved triades
- . Stabilization / destabilization
- Model derivation
- . Instabilities and bifurcations triggered

Part II

Wave-turbulence interaction

- 1. Swell-current interactions
- 2. Time decorrelation (LU)
- 3. Numeric simulations
- 4. Simple cases and analytic solutions for the time-uncorrelated model (LU)

II.1. Swell - current interaction

transport with a current velocity : $v = \bar{v} + v'$

II.3. Time decorrelation (LU)

Numerical example

like running in the middle of a crowd

 $t = 100.1 \, day$

 $\mathop{\rm (km)}\limits_{(\rm m)}$ buoyancy x(km)

 $v = \bar{v} + v'$

(without modeling / simplification)

Large scale group velocity:

Small scale group velocity:

v'Wave:

 $ae^{rac{i}{\epsilon}\phi}$

Doppler frequency:

 $\omega_0 = \sqrt{g \|k\|}$

Time decorrelation assumption for v' (LU)

- Advantages :
 - Simpler / analytic formula
 - ⇒ physical comprehension & lighter CPU for simulations
 - No precise knowledge needed about v' time dependency
- Validity :

 $\epsilon = \frac{(\text{Along-ray } v' \text{ correlation time})}{(\text{characteristic time of})} = \frac{\left(\frac{l_{v'}}{\|C_g^0\|}\right)}{\left(\frac{1}{\|\nabla v\|}\right)}$

- Limitations :
 - Swells $\left(\left\| C_g^0 \right\| \gg 1 \right)$
 - Small-scale currents $(l_{v'} \ll 1)$
 - Moderate current gradients ($\|\nabla v\| \ll 1$) (\Rightarrow moderate $\|\nabla v'\|$!)

 $\ll 1$

II.3. Numerical simulations

2 test flows

Euler VS SQG

 $(U \sim 0.1 \text{ m.s}^{-1}, \lambda_{Wave} = 300 \text{ m})$

Time-uncorrelated model for v'

Time-uncorrelated model for v'

Large scale group velocity:

Small scale group velocity:

v'Wave:

 $ae^{rac{i}{\epsilon}\phi}$

Doppler frequency: $\omega_0 = \sqrt{g \|k\|}$

Time-correlated model for v': less resolution constraints

Time-uncorrelated model for v'

II.4. Simple cases and analytic solutions for the time-uncorrelated model

Partial conclusion

- Theoretical comprehension + Numerical demonstration
 of our wave-current interaction models skills
 with different types of currents (local / non-local, homogeneous / heterogeneous
 currents)
- 3 stochastic currents models for small-scale current v'
 - 1. Time-uncorrelated :
 - ✓ Good skills, partial analytic solution, but resolution limitations for its application
 - 2. Multiscale time-correlated :
 - ✓ Always works
 - 3. Hybrid model

Part III

Reduced order model & data assimilation

1. Application

2. Reduced order models

3. Data assimilation with reduced LU models

III.1. Application

Application

Estimate and predict unsteady aerodynamism -- in real-time – for better active control loops

Lower wind turbine maintenance costs

Longer wind turbine life cycle

Which simple model? How to combine model & measurements?

III.2. Reduced order model

POD-Galerkin

Principal Component Analysis (PCA) on a *dataset* to reduce the dimensionality:

III.3. Data assimilation with reduced LU models

Big picture with reduced LU models

Numerical results : 3D Wake at Reynolds 300

Reference :

PCA-projection of the "true" simulation (10⁷-dof DNS) (Optimal from 8-**dof** linear decomposition) **Our method :** POD-Galerkin with Navier-Stokes under location uncertainty (LUM) State-of-art :

Reduced order models with 8 degrees of freedom

is assimilated 10 times by vortex shedding cycle

> only 1 PIV spatial point (local, blurred and noisy measure)

POD-Galerkin with Navier-Stokes + optimally tuned eddy viscosity & additive noise

Partial conclusion

- Reduced order model (ROM) : for very fast and robust CFD $(10^7 \rightarrow 6 \text{ degrees of freedom.})$
 - Combine data & physics (built off-line)
 - Closure problem handled by LU
- Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LU
- First results
 - Optimal <u>unsteady</u> flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the learning period

Conclusion

Conclusion

When subgrid information is missing, models under location uncertainty (LU) and its time-correlated variants are stochastic closures that

- Improves CFD and wave-current interaction simulations
- Quantify numerical model error for data assimilation purposes