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Boundary Control for Stabilization of Large-Scale Networks through the
Continuation Method

Denis Nikitin1, Carlos Canudas-de-Wit1 and Paolo Frasca1

Abstract— In this work we study a continuation method
which transforms spatially distributed ODE systems into PDEs
that respect the spatial structure of the original ODE systems.
Such PDE description can be used not only for analysis but
also for a continuous control design which, being discretized
back, results in a nontrivial control law for the original ODE
system. In this paper we focus on the continuation for linear
systems, including multidimensional inhomogeneous systems
and in particular linear networks, showing that such systems
can be transformed into general second-order parabolic PDEs.
The method is applied to the stabilization of a chain of coupled
semiconductor lasers. We obtain a PDE model of this system,
design a backstepping-based boundary control to stabilize the
obtained PDE and then translate the control policy back to the
original laser chain, effectively stabilizing it.

I. INTRODUCTION

Large-scale networks are often used to describe physical
systems, such as urban traffic [1], brain activity [2], power
networks [3], robotics formations [4] or epidemic spreading.
Entities in these systems have a predefined position in
the real-world space, representing individual nodes in the
network.

Due to increasing complexity of such systems, methods
of simplification of the model are of a great importance.
Mostly, the methods of network analysis ”forget” information
about positions, relying only on interaction topology. Among
examples of methods of this type, there is model reduction,
in particular clustering of the original network depending on
the topology [5], [6] or reduction towards the average state
[7], [8].

Some of methods of network analysis represent the orig-
inal system using continuous models. When every agent in
the network is coupled to all others, the method called pop-
ulation density approach [9], [10] is used to track the whole
probability distribution over all agents’ states in the network.
This method is mostly used to model large biological neural
networks. More sophisticated topologies can be dealt with
a recently emerged theory of graphons which studies graph
limits, i.e. structural properties that the graph possesses if the
number of nodes tends to infinity while preserving interaction
topology, see [11]. Using graphons it is possible to describe
any dense graph as a linear operator in continuum space [12].
This method was further used to control large-scale linear
networks [13] and to study sensitivity of epidemic networks
[14].
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Fig. 1. Proposed framework for control design based on the continuation
method and a continuous representation of the system.

Contrary to previous works, we recently developed a
method [15] of continuous model transformation which can
utilize the intrinsic information of agents’ positions. Our idea
is to replace the original spatially distributed ODE system by
a continuous PDE whose state and space variables preserve
the state and space variables of the original system. We name
this method as a continuation, since it is exactly opposite to
the discretization procedure.

In this paper we focus on the linear network analysis. It
is widely known [16], [17] that the Laplacian consensus net-
works are closely related to the diffusion PDEs. Performing
continuation of a general linear spatially-distributed network,
we show how the network dynamics can be written as a
linear second-order PDE with space-dependent coefficients.
In particular we show that several additional properties, such
as absence of self-loops, regularity or undirected topology of
the network, can simplify the resulting PDE.

The continuation method allows to recover a PDE which
describes the same physical system as the original ODE
network. The obtained model can be then used for anal-
ysis and control. It is possible to design a control for
the continuous PDE model which, being discretized back,
results in a control law for the original ODE system: the
design framework is illustrated in Fig. 1. We demonstrate
this continuation framework by designing an explicit control
for a chain of coupled semiconductor lasers, suppressing
undesirable oscillations.

One could argue: why do we want to use a PDE instead
of ODEs, if PDEs are generally considered to be harder to
analyze and to control? The answer is that a suitable use of
PDEs can lead to explicit and scalable algorithms. Indeed,
the centralized computation of feedback control gains for a
large-scale linear system with N agents requires at least O(N)
operations by methods such as ODE-based backstepping



Fig. 2. High-average-power laser-diode 41kW array, composed of
28 silicon monolithic microchannels (SiMMs) each consisting of thou-
sands of diodes. Image from Lawrence Livermore National Labora-
tory, https://lasers.llnl.gov/science/photon-science/
highpowered-lasers/hapl, licensed under CC BY-NC-SA 4.0.

[18] and at least O(N3) operations by methods like LQR,
which require solving a Riccati matrix equation. On the
contrary, in the next section we will give an example of such
situation where the continuation helps to design a control
with gains computed in O(1) operations. In particular, in
case of unstable 1-dimensional PDE we can use the result of
[19], where the general second-order linear space-dependent
system is stabilized to zero state using backstepping control,
based on [20]. The case of two controlled boundaries of 1-
dimensional system is covered in [21].

a) Outline: The rest of this paper is organized as
follows. Section 2 contains our motivating example, the
stabilization of a chain of laser diods: we describe the math-
ematical model, define the stabilization problem, and solve
it by applying the continuation method and the backstepping
method. The subsequent sections develop the continuation
method. More precisely, Sections 3 and 4 contain a concise
but self-contained account of the continuation theory that
we developed in [15]: Section 3 regards systems without
boundaries and Section 4 regards systems with boundary
conditions. Then, Section 5 contains novel continuation
results that are tailored to linear networks and that permit
the continuation of laser chain model. Section 6 contains
some concluding remarks.

II. SYNCHRONIZATION OF A LASER CHAIN

Our motivating example will be the problem of stabiliza-
tion of a chain of coupled semiconductor lasers. Coupled
laser systems are important for high-precision power trans-
mission applications such as welding, laser surgery or fusion
research as well as many others [22]. Recently, large arrays
of semiconductor laser diodes were shown to be more power-
and cost-efficient compared to single crystal lasers due to
lower electrical resistance and optical load [23]. A typical
array of coupled lasers is depicted in Fig. 2.

In [24] it was shown that coupling of several Class-B
lasers [25] can lead to a resonance effect, greatly increasing
intensity comparing to the uncoupled laser system. However,
such a system is prone to instabilities: electrical fields of

lasers start to oscillate around the operating point, destroying
resonance effect. It was further shown in [24] that these
oscillations, up to the first order, are described by coupled
Stuart-Landau oscillators.

Stuart-Landau oscillators are prototypical models for
Andronov-Hopf bifurcation, and apart from laser applications
they are used to describe many oscillatory systems such
as electronic oscillators [26] or biological neural networks
[27]. Usually in laser analysis Stuart-Landau model describes
electrical field of one laser, thus the oscillating behaviour
is the desired one. However we base our analysis on [24],
where Stuart-Landau model is used to describe deviation
from the synchronized steady state: thus, oscillations should
be suppressed. Let the deviation of one laser be z ∈ C, then
one Stuart-Landau oscillator is described by the evolution
equation

ż =
(
Γ+ iΩ−η |z|2

)
z, (1)

where Γ > 0 is an excitation gain, Ω is a natural frequency
and η ∈ C is a nonlinear damping coefficient. For Γ < 0
the system has one stable equilibrium point z = 0, while for
Γ > 0 zero equilibrium point is unstable, and system has
a stable limit cycle with frequency Ω and with amplitude
|z|=

√
Γ/η .

The authors of [22] proposed to design laser hardware
having in mind an effect called amplitude death to sup-
press laser electrical field’s undesirable oscillations and thus
prevent loss of efficiency. This effect appears when many
inhomogeneous oscillators are strongly coupled, thus making
their limit cycles unstable and the zero fixed point stable.
Contrarily to this approach of hardware-designed amplitude
death, we propose to use an active feedback stabilization
from one boundary to suppress oscillations. We consider here
a chain of N +2 coupled Stuart-Landau oscillators. Let the
position of i-th oscillator for i ∈ {0, ..,N + 1} be xi = i∆x
with ∆x= 1/(N+1) being distance between two neighbours,
thus x0 = 0 and xN+1 = 1. The state of i-th oscillator is
zi ∈C. We assume that the oscillators on the boundaries are
directly controllable, namely the left boundary oscillator has
fixed zero state z0 = 0 and the state of the right boundary
oscillator is a control variable zN+1 := u. We also assume
that the coupling of lasers is realized by an overlapping
of their evanescent fields [28], thus the evolution equation
of i-th oscillator depends on the nearest neighbours’ states
with gains ai,i−1 and ai,i+1. Since it is a conservative force,
ai,i+1 = ai+1,i, thus the network is undirected. The system is
given by

żi = (µ−η |zi|2)zi +ai,i−1(zi−1− zi)+ai,i+1(zi+1− zi),

z0 = 0, zN+1 = u,
(2)

with µ = Γ+ iΩ. In general, coupling ai,i+1 can be space-
dependent. We assume that it is monotone, for example as in
case of an increasing electrical permeability of the medium
along the laser chain. Therefore, to approximate monotone
dependencies we restrict ourselves to a class of coupling
gains ai,i+1 ≈ α(xi− β )2 with α > 0, β ∈ R \ [0,1]. Note
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that this class includes also homogeneous couplings in case
β →±∞ and α → 0 such that αβ 2 ≡ const.

A. Continuation process and boundary control design

Since Γ> 0, system (2) has unstable zero equilibrium. Our
goal is to design a feedback control law zN+1 = u(z) such
that zero solution is stabilized, thus suppressing oscillations.
Linearizing system (2) around zero and assuming |zi| is
small, we get

żi = µzi +ai,i−1(zi−1− zi)+ai,i+1(zi+1− zi),

z0 = 0, zN+1 = u.
(3)

In case of thousands of coupled laser diodes, the implemen-
tation of traditional control algorithms for the system (3)
would require a lot of computational power. Instead, we can
perform continuation to the system (3), the process which
will be explained in following sections. This process leads
to the following PDE:

∂ z(x, t)
∂ t

= µz(x)+
∂

∂x

(
α∆x2(x−β )2 ∂ z(x, t)

∂x

)
(4)

for x ∈ (0,1) and with boundary conditions z(0, t) = 0 and
z(1, t) = u.

Although system (4) is formulated in complex domain,
one can use backstepping method from [19] to stabilize it.
Indeed, the stabilizing controller is given by

u :=
1∫

0

k(x)z(x, t)dx, (5)

and the kernel is found by formula (44) from [19]:

k(x) =− x̄
(µ + c)

α|β |
(1−β )3/2

(x−β )5/2×

×
I1

(√
(µ + c)(ȳ2− x̄2)/(αβ 2)

)
√
(µ + c)(ȳ2− x̄2)/(αβ 2)

,

(6)

where c > 0 is an adjustable gain, I1(s) is the modified
Bessel function of order one, x̄ = −β log(1− x/β ) and
ȳ =−β log(1−1/β ).

B. Control discretization and numerical simulation

Finding a control law for the original ODE system (2) can
be easily done by performing a numerical integration of (5)
using the trapezoidal rule

u := ∆x
N

∑
i=1

k(xi)zi, (7)

Each control gain k(xi) can be computed directly in O(1)
operations.

We validated the obtained control law by numerical sim-
ulation of system (2) with N = 30 coupled oscillators. We
took Γ = 5 for excitation gain, Ω = 4 for natural frequency
and ν = 10 for damping, thus a steady state magnitude
of an uncoupled oscillator would be |z| = 1/

√
2 ≈ 0.7071.

Further, we took α = 5 and β = −10 as parameters for
the coupling coefficients ai,i+1. Due to the coupling, steady

state magnitudes of the network (2) diminish, which can be
seen on the graph in Fig. 3(a) depicting simulation of the
uncontrolled system (2) with u= 0. However, the system still
oscillates. The oscillations can be suppressed by applying
control (7) with kernel (6), where we took c= 10. Successful
suppression is depicted in Fig. 3(b).

III. CONTINUATION METHOD FOR LINEAR
SPACE-INDEPENDENT SYSTEMS

We start presenting the continuation method by consider-
ing the simplest class of systems for which the transformation
of ODE into PDE can be performed, namely linear ODE
systems corresponding to the dynamics of states of nodes,
which are aligned on the 1D line in space and depend only
on some fixed set of their neighbours. Let the node i have
a state ρi ∈ R and a geographical position xi ∈ R such that
for every i the distance between two consecutive nodes in
space is constant, xi+1−xi = ∆x (the assumption of ∆x being
constant will be relaxed later on). Then the systems of our
interest take the form

ρ̇i =
N

∑
j=1

a jρi+s j , (8)

that is ρ̇i linearly depends only on N neighbouring nodes
shifted by s j ∈ Z for j ∈ {1..N}, and a j ∈ R are the system
gains, see Fig. 4. This type of systems belongs to the class
of linear spatially invariant systems [29], which is a natural
class for distributed control.

A. Discretization

The discretization of PDEs is usually performed by a
finite difference method, where the partial derivatives are
approximated by finite differences. For example, in the case
of Transport ODE,

∂ρ

∂x
≈ 1

∆x
(ρi+1−ρi) .

This approximation is valid when ∆x is small. Indeed,
assuming that the solution to PDE is given by a smooth
function ρ(x) and using Taylor series, we can write

ρi+1 = ρ(xi+1) = ρ(xi)+
∂ρ

∂x
∆x+

∂ 2ρ

∂x2
∆x2

2
+ ..., (9)

where all partial derivatives are calculated in xi. Thus,
subtracting ρi and dividing by ∆x, we get

∂ρ

∂x
=

[
1

∆x
(ρi+1−ρi)

]
− ∂ 2ρ

∂x2
∆x
2
− ..., (10)

which means that the residual belongs to the class O(∆x)
of all functions which go to zero at least as fast as ∆x.
Thus, taking ∆x sufficiently small, one can ensure the arbi-
trary accuracy of the approximation, provided all the partial
derivatives are bounded.

Accuracy can be further increased by taking different
points where the function is sampled, called stencil points.
For example, writing

ρi−1 = ρ(xi−1) = ρ(xi)−
∂ρ

∂x
∆x+

∂ 2ρ

∂x2
∆x2

2
− ..., (11)



(a) (b)

Fig. 3. Numerical simulation of system (2) with N = 30 oscillators with parameters µ = 5+4i, η = 10, α = 5 and β =−10. The absolute values of all
states |zi(t)| for i ∈ {1..N} are depicted. Inset (a): uncontrolled system, u = 0. Inset (b): controlled system with controller (7) with c = 10.

ρi ρi+s2ρi+s1 ρi+s j

a2a1

a j

xxi−1 xi xi+1 xi+s j

∆x ∆x

Fig. 4. System of nodes aligned in 1D line with dynamics given by (8)
with s1 =−1 and s2 = 1.

subtracting (11) from (9) and dividing by 2∆x, we get

∂ρ

∂x
=

[
1

2∆x
(ρi+1−ρi−1)

]
− ∂ 3ρ

∂x3
∆x2

6
+ .... (12)

Thus, using stencil points {i− 1, i+ 1} to approximate the
first-order derivative in the point i the obtained residual
belongs to the class O(∆x2), which means that this discretiza-
tion of the Transport PDE is accurate to the second order.

B. Continuation

Essentially the same process can be applied to the equation
(8) to get the PDE version. For every term in the summation
in (8) we can write

ρi+s j = ρ(xi+s j) = ρ(xi)+
∂ρ

∂x
∆xs j +

∂ 2ρ

∂x2

∆x2s2
j

2
+ ... (13)

Thus, assume we state the problem of finding the PDE
approximation of (8) in form

N

∑
j=1

a jρi+s j ≈
d

∑
k=0

ck
∆xk

k!
∂ kρ

∂xk , (14)

where d is the highest order of derivative (order of contin-
uation) we want to use. Note that zero is also included in

the right summation, since the function itself can be used in
the resulting PDE. Then the vector of unknown coefficients
c can be found by inserting (13) into (14):

ck =
N

∑
j=1

a jsk
j ∀k ∈ {0, ..,d}. (15)

Once (15) is solved, we write the PDE approximation to (8):

∂ρ

∂ t
=

d

∑
k=0

ck
∆xk

k!
∂ kρ

∂xk . (16)

Remark 1 (Multidimensional systems). The method can be
easily generalized to include more classes of systems, such as
systems having several spatial dimensions. Multidimension-
ality can be accounted for by assuming that a position of a
node ρi is described by xi ∈Rn and taking multidimensional
Taylor expansion at (13).
Remark 2 (Inhomogeneous systems). Space-dependent sys-
tems can also be continualized using the same method.
Indeed, choosing a unique d for all agents, we can perform
continuation at positions xi of all agents, obtaining possibly
different coefficients ck(xi) for k ∈ {0, ..,d}. We can then
interpret them as sampled values of some continuous func-
tions ck(x) and approximate it by any method for continuous
approximation, for example interpolation or least squares
approximation.

C. Accuracy of continuation

Procedures of discretization and continuation look very
similar from the algebraic point of view, however they
are qualitatively different in the way how the problem is
formulated and how we should interpret their results. Indeed,
the discretization step ∆x is usually an adjustable parameter
which can be set by a system engineer arbitrarily small to
satisfy the desired performance. Thus the notion of accuracy
of a discretization is used to describe how fast the solution of



the discretized equation tends to the solution of the original
equation when ∆x tends to zero.

Instead, when the original system is given by the ODE,
the nodes have fixed locations, thus ∆x is a true constant
representing properties of an underlying physical system and
it cannot be changed by an engineer. However, the higher
order of continuation is taken, the better the original ODE
operator (8) is approximated by the PDE (16). This intuition
is supported by the following theorem, proven in [15]:

Theorem 1. The spectrum of the PDE (16) converges to the
spectrum of the original ODE (8) pointwise as d→ ∞.

The convergence of spectrums is not uniform, therefore
for any d at high enough frequencies the approximation
will be not accurate. This effect can lead to a loss of
stability properties of the original system. In particular, one
of corollaries in [15] shows that if the order of continuation
is a multiple of four, d = 4m, and in (16) the last gain cd > 0,
the PDE (16) becomes unstable even if the original system
(8) was stable, thus an artificial instability is introduced. In
the same way if d = 4m + 2 and if cd < 0, (16) is also
unstable. Finally, another corollary in [15] shows that odd
terms in (16) don’t change stability properties since they act
only on imaginary plane.

Taking high orders of continuation in (16) gives a high-
order PDE which is difficult to work with. Thus it makes
sense to take the smallest order which provides preservation
of stability properties of (8). Having in mind the discussion
above, in this paper we will use d = 2, restricting our analysis
only to the systems for which c2 > 0 such that instability is
not artificially introduced.

IV. BOUNDARY CONDITIONS

We now consider the problem of defining appropriate
boundary conditions for the PDE approximation (16). Let
us look at the Heat PDE:

∂ρ

∂ t
=

∂ 2ρ

∂x2 . (17)

Imagine that this equation is defined on an interval
x ∈ [0, +∞), that is there is a boundary in the point x = 0.

There are two types of boundary conditions (or BC) which
can be supplied to provide a well-posed boundary value
problem. For example for some a ∈ R,

1) Dirichlet BC: ρ(0) = a,

2) Neumann BC: ∂ρ/∂x (0) = a.
(18)

There can also exist a linear combination of these boundary
conditions, called Robin BC.

If the Heat Equation (17) is discretized in stencil points
{i−1, i, i+1}, the result is

ρ̇i =
1

∆x2 (ρi−1−2ρi +ρi+1) . (19)

Assume now that there exists i0 = 1 such that xi0−1 = 0.
Depending on the type of boundary conditions, the equation

for the state ρ1 can be obtained by the discretization of a
boundary value problem (17)-(18) in two ways:

1) Dirichlet BC: ρ̇1 = (a−2ρ1 +ρ2)/∆x2,

2) Neumann BC: ρ̇1 = (ρ2−ρ1)/∆x2−a/∆x.
(20)

Now imagine the system (17) is obtained by the contin-
uation process from the system (19). We can notice that
states of (19) are governed by the same dynamics except for
the boundary state ρ1. The question is how to recover the
boundary conditions (18) for the PDE from the dynamics of
ρ1 in (20).

This indeed can be done if one assumes that there exists
a ”ghost cell” ρ0 such that it has no dynamics, but is
algebraically connected with adjacent states. With a proper
definition of ρ0 the equation for ρ̇1 can be represented in
the same way as for other states (19) and thus has the same
continuation (17). For example, algebraic equations for ρ0
representing (19)-(20) are

1) Dirichlet BC: ρ0 = a,

2) Neumann BC: ρ0 = ρ1−a∆x.
(21)

The ghost cell ρ0 = a for the case of Dirichlet BC is
depicted in Fig. 5. Notice that equations (21) can be directly
continualized, obtaining (18).

ρ1 ρ2a

x
0 ∆x 2∆x

Fig. 5. Boundary of the system (19) with Dirichlet boundary condition
(20), represented by a ghost cell ρ0 = a.

This procedure can be generalized to any ODE system:
once the states near boundaries change their dynamics with
respect to the general governing equation, this change can
be represented by ”ghost cells” with algebraic dependences
on the ”real” states. Continualizing these algebraic equations
leads to the boundary conditions for the obtained PDE.

V. GENERAL LINEAR NETWORK

In this section we move on to the analysis of a network
system. Assume the system is given by a linear model, with
ρi ∈ R being the state of i-th agent, and xi ∈ Rn being
its spatial position. We can assume that every agent i is
influenced by its neighbourhood Ni and also has its own
dynamics:

ρ̇i = aiiρi + ∑
j∈Ni

ai jρ j. (22)

Note that (22) is a space-dependent multidimensional gener-
alization of (8). Also we assume that ghost cells are added
to the system (22) to ensure boundary conditions as in
Section IV. A particular choice would be to have a set of
boundary nodes, placed on the boundaries of the domain,
with either fixed or controlled states.



Based on Theorem 1 and on the discussion in Section III-
C, we choose the order of continuation d = 2 to study trans-
portation and diffusion properties of large-scale network.

Therefore, the continuation of the state ρ j at the point xi
can be performed in the following way:

ρ j = ρ(x j)≈ ρ(xi)+(x j− xi)
T ·∇ρ+

+
1
2
(x j− xi)

T ∂ 2ρ

∂x2 (x j− xi),
(23)

or using the property of trace:

ρ j = ρ(x j)≈ ρ(xi)+(x j− xi)
T ·∇ρ+

+
1
2

Tr
(
(x j− xi)(x j− xi)

T ∂ 2ρ

∂x2

)
,

(24)

which leads to the PDE, which can be written at agents’
positions as

∂ρ

∂ t
=

[
aii + ∑

j∈Ni

ai j

]
ρ +

[
∑

j∈Ni

ai j(x j− xi)
T

]
·∇ρ+

+Tr

([
1
2 ∑

j∈Ni

ai j(x j− xi)(x j− xi)
T

]
∂ 2ρ

∂x2

)
.

(25)

Define λ (x) ∈ R, b(x) ∈ Rn and ε(x) ∈ Rn×n such that

λ (xi)≈

[
aii + ∑

j∈Ni

ai j

]
,

b(xi)≈

[
∑

j∈Ni

ai j(x j− xi)

]
,

ε(xi)≈

[
1
2 ∑

j∈Ni

ai j(x j− xi)(x j− xi)
T

]
,

(26)

thus these functions are found by a continuous approximation
of coefficients of (25). With the help of these functions we
finally formulate the main continuation result:

Theorem 2. The continuation of a linear network (22) is
given by

∂ρ

∂ t
= λ (x)ρ +b(x)T ·∇ρ +Tr

(
ε(x)

∂ 2ρ

∂x2

)
, (27)

where λ (x), b(x) and ε(x) are given by (26).

Remark 3. Note that if ai j > 0 then the matrix inside of the
trace is positive-semidefinite, which means that under suit-
able affine transformation of local coordinates the second-
order term can be represented as a stable Laplacian diffusion.
This corresponds to c2 > 0 in (16), required in Section III-C.

It is possible to derive several important corollaries for
different classes of networks:

Corollary 1 (Laplacian network). If the original system (22)
depends only on the differences of states

ρ̇i = ∑
j∈Ni

ai j(ρ j−ρi),

then (27) has λ (x)≡ 0.

Proof. This property corresponds to the fact that the network
has no self-loops. For the Laplacian network aii =− ∑

j∈Ni

ai j,

thus by (26) λ (x)≡ 0.

Corollary 2 (Symmetric network). If the original system is
symmetric, that is for every j ∈Ni there exists such j′ ∈Ni
that x j− xi =−(x j′ − xi) and ai j = ai j′ , then b(x)≡ 0.

Proof. Straightforward by (26).

Corollary 3 (Undirected regular network). If ai j = a ji for
all i, j and if for every j ∈Ni there exists such j′ ∈Ni that
x j−xi =−(x j′−xi), then (27) can be represented in the form

∂ρ

∂ t
= λ (x)ρ +∇ ·

(
ε(x)

∂ρ

∂x

)
, (28)

Proof. Indeed, by taking the derivative we see that

∇ ·
(

ε(x)
∂ρ

∂x

)
= (∇ · ε(x)) ·∇ρ +Tr

(
ε(x)

∂ 2ρ

∂x2

)
, (29)

and it remains to prove that bT = ∇ · ε .
Since ai j = a ji, we can assume that there exists some

continuous function α(x, n̄) dependent on the coordinate x
and the direction n̄ even with respect to the direction such
that

ai j = α

(
xi + x j

2
,

x j− xi

||x j− xi||

)
= α

(
xi + x j

2
,

xi− x j

||xi− x j||

)
= a ji

Denote n̄ j = (xi − x j)/||xi − x j||. Further, define y = xi to
be the point where the function α is investigated, thus
α ((xi + x j)/2, n̄ j) = α (y+(x j− xi)/2, n̄ j). We can now take
the Taylor expansion of this function with respect to the
coordinate:

α

(
y+

x j− xi

2
, n̄ j

)
≈ α(y, n̄ j)+

1
2

∇α(y, n̄ j) · (x j− xi).

Inserting this expansion into the definition of b(x) we obtain

b(y)T = ∑
j∈Ni

α(y, n̄ j)(x j− xi)
T+

+
1
2 ∑

j∈Ni

∇α(y, n̄ j) · (x j− xi)(x j− xi)
T =

=
1
2 ∑

j∈Ni

∇α(y, n̄ j) · (x j− xi)(x j− xi)
T ,

(30)

since the first sum vanishes because for every j there exists
j′ such that (x j− xi) = −(x j′ − xi) and α(y, n̄ j) = α(y, n̄ j′).
Now, analyzing ε(x), we get

ε(y) =
1
2 ∑

j∈Ni

α(y, n̄ j)(x j− xi)(x j− xi)
T+

+
1
4 ∑

j∈Ni

(x j− xi)∇α(y, n̄ j)(x j− xi)(x j− xi)
T =

=
1
2 ∑

j∈Ni

α(y, n̄ j)(x j− xi)(x j− xi)
T ,

(31)

where the second sum vanishes by the same reasons. Now
it is clear that taking the divergence of (31) with respect to
y one ends up with (30), which finishes the proof.



VI. CONCLUSION

In this paper we used a recently developed continuation
method to transform a general linear spatially-distributed
network in a single second-order linear PDE with space-
dependent coefficients. We showed how the properties of
the original network can affect the resulting PDE. Further
we demonstrated the effectiveness of such approach by
stabilizing a network of semiconductor lasers using a con-
tinuous PDE model and an explicit PDE-based backstepping
boundary control.
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